
2004 VGrADS Annual Report

VGrADS Activities 1

I. Project Activities

The “Computational Grid,” as described in The Grid: Blueprint for a New Computing
Infrastructure and demonstrated by many proof-of-concept applications, promises to connect
computers, databases, and people in a network to solve problems in scientific research and
other diverse fields. However, the complexity, unreliability, and overhead of low-level
operations in today's systems obscure the Grid's potential. The five-year Virtual Grid
Application Development Software (VGrADS) project is attacking a fundamental part of this
problemæhow to more effectively program these highly complex and dynamic systems. It is
developing software tools that simplify and accelerate the development of Grid applications
and services, while delivering high levels of performance and resource efficiency. This
improved usability will greatly expand the community of Grid users and developers. In the
process, VGrADS will contribute to both the theory and practice of distributed computation.

To address these aims, VGrADS is exploring, defining, and implementing a hierarchy of
virtual resources and a set of programming models for Grid computing. It is conducting
research in three key areas:

1. Virtual Grid (vgrid) architectures, enabling a separation of concerns between high-
level services and the Grid's inherent complexity.

2. Programming models, compilers, component libraries, and tools supporting creation of
Grid applications.

3. Core software technologies, including performance-efficient scheduling, fault
tolerance, and economic models for resource management, allowing scalable Grid
computations.

VGrADS is pursuing this agenda by collaborating with leading scientific applications to elicit
key challenges, validate results, and disseminate technology. It will distribute software that it
creates in open-source form for the research community. It will also build on its PIs' past
successes in human resource development by using existing programs to attract and retain
women and minorities in computational science.

During the current reporting period (10/1/03-5/31/04), VGrADS research focused on the
three inter-institutional efforts described in the following sections: Applications, VGrADS
Programming Tools, and VGrADS Execution System. Project publications and additional
information can be found at http://www.hipersoft.rice.edu/vgrads. The project Web site
includes a participants-only area where VGrADS researchers exchange drafts of project
documents and other materials.

Project design and coordination during the current reporting period were enabled through
weekly technical teleconferences involving researchers from each of the VGrADS sites, three
PI teleconferences, a kickoff meeting at Rice for PIs and senior researchers (2/10-11/04), and
communication via VGrADS mailing lists. In addition, subproject participants met on a
regular basis to exchange ideas and develop research plans.

VGrADS Activities 2

1 Applications (Rice, UCSD, UCSB, UH, UNC)

We have begun work on four Grid applications under VGrADS. In most cases, these
applications were started under the GrADS project, but further development is driven by the
needs and goals of the VGrADS project. In particular, we are deriving requirements for
virtual grid (vgrid) functionality from the applications’ needs. We summarize recent work on
each application in the following four subsections.

1.1 EMAN

The Rice and UH VGrADS research efforts have focused on the molecular structure
determination package EMAN, which we take as a model for workflow-style applications.
EMAN is a package for Electron Micrograph Analysis developed within the National Center
for Macromolecular Imaging at Baylor College of Medicine by Steve Ludtke, a senior
researcher in Dr Wah Chiu’s group. The package processes thousands to possibly tens of
thousands of micrographs from electron microscopes iteratively in the determination of a
macromolecular structure. Most of the computations are of a throughput nature consisting of
fitting individual micrographs to a hypothesized 3-D structure. An improved hypothesized
structure is then generated from the fits made, a computation that requires consolidation of all
fits in a “tightly coupled” computation. The application and the iterative nature of the
processing are illustrated below.

EMAN Database
•Archival
•Data Mining
•Management

Vitrification
Robot Particle Selection

Power Spectrum
Analysis

Initial
3D Model

Classify
Particles

Reproject
3D Model

Align
Average
Deconvolute

Build New
3D Model

EMAN

Micrographs

• 4 - 64 Mpixels, 16-bit
(8 – 128 MB)

• 100 – 200/day per lab

• 10 – 1,000 particles per
micrograph

• Several TB/yr

Project

• 200 – 10,000+ micrographs

• 10,000 – 10,000,00 particles

• 10k – 1,000k pixels/particle

• Up to hundreds of PFlops

VGrADS Activities 3

One aspect of making applications Grid aware is the creation of performance models for its
components in order to make proper decisions for resource selection and scheduling of the
components. The construction of performance models has been the focus of our efforts. One
approach we have pursued (mostly at UH) makes use of a set of equations, the structure of
which is derived from knowledge of the component’s computational requirements and the
dependence upon input variables such as micrograph sizes, number of micrographs, and
variables controlling the processing of the micrographs. Model parameters are then
determined from execution traces. We have also pursued (mostly at Rice) a more black-box
approach based on instrumentation of object code, followed by benchmarking runs. The
benchmark results are then used to create a polynomial model without explicit prior
knowledge of the application structure. In both approaches, the objective is to separate
application characteristics invariant with respect to architectures from those that are
dependent. For instance, the number of floating point operations should be independent of the
platform used for the processing, but the number of instructions will depend upon both that
platform and the compiler used, as well as compiler options used. Similarly, memory access
patterns should have a strong correlation to the application, while the number of cycles
required will depend significantly on the memory system.

We have derived a model for the main EMAN components and made a first mostly manual
validation of the model. We are now in the process of automating the model fitting and
investigating the sensitivity of the results to compilers being used as well as the impact of
compiler options being used. The main platforms targeted at the moment are Opteron and
Itanium2 based clusters.

In addition, EMAN has served as the first test case for work on the new VGrADS binder,
which is described in the Programming Tools section.

1.2 EOL

UCSD VGrADS work has focused on the Encyclopedia of Life (EOL), a collaborative global
project designed to catalog the complete genome of every living species in a flexible
reference system. It is an open collaboration led by the San Diego Supercomputer Center, and
currently has three major development areas: (i) Creating protein sequence annotations using
the integrated genome annotation pipeline (iGAP); (ii) Storage of these annotations in a data
warehouse where they are integrated with other data sources; and (iii) A toolkit area that
presents the data to users in the presence of useful annotation and visualization tools. In
VGrADS we will focus on (i) because it is the major computational element. The key goal of
(i) is to discover relationships across genomes, and thus involves extensive computation and
access to databases that contain data derived from the iGAP processing of multiple genomes
(dozens initially and ultimately hundreds). However, this coupling across genomes is
achieved exclusively thru accesses and updates to these shared databases. In the future, (ii)
may be of interest as well.

EOL is not a single code, but rather a script (iGAP) that glues together a number of well-
known community software packages. These packages operate on input files ("sequence
files") as well as on community databases (actually, flat ASCII files containing biological

VGrADS Activities 4

sequences). Like EMAN, the script is essentially a workflow application performing a
pipeline of operations on each input genome. The analysis we are concerned with is shown in
the figure below, in somewhat idealized form.

The overall model for the EOL computation is then as follows: a set of independent jobs (one
job per genome), where each job consists of independent sub-jobs (one sub-job per sequence),
where each sub-job consists of a "chain" of the above 4 steps.

At the moment EOL is deployed on a Grid that aggregates AIX and Linux clusters in several
institutions (see http://eol.sdsc.edu:8080/eol/resources.jsp). The databases are fully replicated
and installed on each cluster (either in each local disk, or over a GPFS, maybe even NFS).
The computation is controlled by APST (http://grail.sdsc.edu/projects/apst), which handles all
logistics of application deployment (interaction with Globus, SGE, PBS, etc.), and the
Biology Workflow Management System (BWMS), which was developed specifically for
EOL. Essentially, EOL researchers submit a full genome for computation to APST, and APST
schedules and runs all involved sequences through the iGAP steps. The major current
limitation of this arrangement – one that we hope vgrids will help solve – is that the scheduler
does not take account of data movement costs.

Scale of Multi-genome AnalysisScale of Multi-genome Analysis
Genomes Protein sequences

Prediction of :
 signal peptides (SignalP, PSORT)
 transmembrane (TMHMM, PSORT)
 coiled coils (COILS)
 low complexity regions (SEG)

Structural assignment of domains by
PSI-BLAST on FOLDLIB

Only sequences w/out A-prediction

Only sequences w/out A-prediction

Structural assignment of domains by
123D on FOLDLIB

Create PSI-BLAST profiles for Protein sequences

Store assigned regions in the DB

Functional assignment by PFAM, NR,
PSIPred assignments

FOLDLIB

NR, PFAM

Building FOLDLIB:

 PDB chains
 SCOP domains
 PDP domains
 CE matches PDB vs. SCOP

 90% sequence non-identical
 minimum size 25 aa
 coverage (90%, gaps <30, ends<30)

Domain location prediction by sequence

structure info
sequence info

SCOP, PDB

~800 genomes
@ 10k-20k per
=~107 ORF’s

4 CPU
years

228 CPU
years

3 CPU
years

9 CPU
years

252 CPU
years

3 CPU
years

104

entries

VGrADS Activities 5

EOL was demonstrated in its current deployment at SC'03. A paper reporting on this
deployment was accepted for publication and will be available soon. Status of ongoing
computations can be seen on-line at http://eol.sdsc.edu:8080/eol/genomestatus1.jsp.

1.3 GridSAT

The UCSB VGrADS application work has focused on GridSAT, a parallel and complete
satisfiability solver used to solve non-trivial SAT problems in a grid environment. The
application uses a parallel solver algorithm based on Chaff to (attempt to) solve SAT
problems of the form ‘given a large, non-trivial Boolean expression, is there a variable
configuration (and what are the variable values) which results in the expression evaluating to
TRUE?’ The system stands apart from other SAT solvers in the sense that it was designed
explicitly to run in grid environments, and has built in intelligent parallelism scheduling
mechanisms. As a result of this design, the system has been used to successfully and quickly
solve several previously unknown problems by utilizing vast amounts of computational
resources.

The fundamental algorithm of GridSAT is a parallelization of the Chaff SAT solver.
Chaff is a highly optimized complete sequential solver based on the Davis-Putnam-Logeman-
Loveland (DPLL) algorithm with many heuristic optimizations. GridSAT modifies Chaff to
make it possible to divide the search space between many clients. In particular, both the
sequential and parallel algorithms use a “decision” stack to keep track of progress. The initial
decision stack contains only variable assignments that are definite. The algorithm heuristically
selects a variable and a Boolean value to assign to it. This is called a decision and adds a new
level to the decision stack. The first variable in this level will be the decision variable.
Additional variable assignments are added to the current level as new values are deduced
from previous decisions. The process continues until the algorithm runs into a conflict (i.e. a
variable is deduced to be both true and false), at which point the algorithm backtracks by
popping decisions from the stack. It terminates when either a solution is found (a satisfiable
problem) or it deduces that no such solution exists (an unsatisfiable problem).

A major improvement to the DPLL algorithm is “learning”, which enables the algorithm to
deduce new clauses and store them in a local database. New clauses are generated after a
conflict and are used in backtracking. The database of new clauses can grow indefinitely, but
can be controlled by heuristically deleting some new clauses. (New clauses carry only
redundant information that can be used to speed optimization. A key to GridSAT’s success is
integrating these learning heuristics with runtime information about the status of the Grid (or
vgrid). In particular, it attempts to split the program onto additional resources (i.e. assigning
sub-problems to other Grid nodes) only when needed since the problem is tightly coupled. It
splits the problem if memory is exhausted on a node, choosing the best available resources
and tailoring the split itself to make the best use of those resources. A relatively unique,
application-driven scheduling mechanism does this using resource information gleaned from
the execution system, particularly the MDS and NWS components. The splitting mechanism
also allows nodes to exchange the learned clauses.

VGrADS Activities 6

Satisfiability problems can be arbitrarily hard and may take long periods of time even using
large resource pools. The duration on some of the problems we investigated ranges from
seconds to weeks. During this time, planned and un-planned resource and network failures are
frequent. GridSAT clients take checkpoints to recover from such failures. GridSAT clients are
automatically restarted when a resource recovers and are assigned a sub-problem from the
available list of checkpoints. GridSAT clients can be configured to take two types of
checkpoints: Light or Heavy. Light checkpoints only involve saving the first level of the
decision stack. This is on the order of the number of variables, which is small and may reach
10s of kilobytes. This kind of checkpoint is managed by the master so as not to be
overwhelming. Heavy checkpoints, however, are much larger and are in the order of 100s of
megabytes. Such files cannot be managed by a single host and are best stored in a distributed
storage environment such as IBP. This solution also avoids having a communication
bottleneck, which would exist if the checkpoints were stored at some central location.

GridSAT executions could take days or weeks, depending on the problem search space,
resource pool, and resource attributes. By using dynamic internal scheduling techniques,
individual client checkpoints, and ability to utilize new resources during the system’s lifetime,
the GridSAT application accomplishes the goal of keeping volatile grid resources busy until
the application completes.

1.4 LEAD

In response to the need for a national cyberinfrastructure in mesoscale meteorology, the UNC
VGrADS research team (in collaboration with researchers at UIUC and elsewhere) is creating
an integrated, scalable framework -- known as Linked Environments for Atmospheric
Discovery (LEAD) -- for identifying, accessing, preparing, assimilating, predicting,
managing, analyzing, mining, and visualizing a broad array of meteorological data and model
output, independent of format and physical location. The meteorology of LEAD is being
developed under a separate ITR award (NSF #0315594); the VGrADS project collaborates
with the project in the area of enabling Grid computations for this application.

A transforming element of LEAD is dynamic workflow orchestration and data management,
which allows the use of analysis tools, forecast models, and data repositories not in fixed
configurations or as static recipients of data, as is now the case, but rather as dynamically
adaptive, on-demand, Grid-enabled systems that can (a) change configuration rapidly and
automatically in response to weather; (b) continually be steered by new data; (c) respond to
decision-driven inputs from users; (d) initiate other processes automatically; and (e) steer
remote observing technologies to optimize data collection for the problem at hand. Toward
these goals, LEAD research is focused on creating a series of interconnected, heterogeneous
virtual IT “Grid environments” that are linked at several levels to enable data transport,
service chaining, interoperability, and distributed computation.

VGrADS has only begun discussions with the LEAD principals on how to best collaborate.
Some initial areas where we see possible joint work include

• Workflow Orchestration – the construction and scheduling of data sources including
dynamic (real-time) sensor streams, simulation outputs and data mining. Orchestration

VGrADS Activities 7

must include these constraints and use load monitoring to make decisions.

• Interaction and Control of Dynamically Adaptive Sensors – the protocols, command
interfaces, and linkages with meteorological models and other tools needed for two-
way adaptivity.

• Data Streaming – to support robust, high bandwidth transmission of multi-sensor data.
LEAD’s dynamic and real-time functionality will require more flexible content-based
subscription approaches to data stream management and control, methods for
asynchronous pull-based retrieval, and batching methods for relaying large volumes of
archival data.

• Distributed Monitoring and Performance Estimation – to enable soft real-time
performance guarantees by estimating resource behavior. To identify resource classes
capable of satisfying performance expectations, and to verify that the resources behave as
expected during ensemble execution, LEAD requires an extended set of Grid monitoring
and performance estimation tools, as well as Grid services and dynamic orchestrations
based on the Illinois Autopilot Grid toolkit and other previous GrADS monitoring work.

• Data Management – in support of the storage and cataloging of observational data, model
output and results from data mining. LEAD requires grid support for the three
cornerstones of management: data dissemination, over the network data storage (including
cataloging, archival of processes, metadata, and ephemeral data), and user view
maintenance (including the MyLEAD personalization of LEAD’s computing and data-
intensive research environment).

• Data Mining – to provide tools that enable users to glean insights from data and model
output. The LEAD data mining capabilities will be implemented as sets of federated
mining components capable of operating on multiple platforms as independent grid
services, dynamically linked for analysis tasks.

• Semantic and Data Interchange Technologies – to enable use of heterogeneous data by
diverse tools and applications. To allow orchestration of workflows involving both
heterogeneous information from different data sources, and chains of disparate services, in
a seamless, dynamic, automated fashion, LEAD will incorporate ontologies, interchange
technologies, and other concepts being explored in the Semantic Web and Semantic Grid.
Coupling this with grid computing technologies like VGrADS is a heretofore unexplored
idea.

2 VGrADS Programming Tools (Rice, UH)

Work on tools has primarily consisted of two general thrusts. First, we have been refining the
infrastructure that we developed under the previous GrADS project. Second, we have been
interpreting the results of our experience for the purpose of helping to establish the design for
both the virtual grid layer, reported on elsewhere in this document, and the new class of tools
proposed to run on top of them.

With regard to the first of these thrusts, we have continued our work on the new binder
mechanism that permits the execution of applications on heterogeneous resources. In a

VGrADS Activities 8

nutshell, this new binding and execution strategy consists of preparing a script that will run on
each of the resources on which an application is to be executed. Then the relevant script is
executed on each resource, which results in compilation of the components and linking
against preinstalled component libraries.

This last capability is a step toward the component machine that was described on the
proposal. Components that are to be available at different Grid sites are advertised via the
GrADS Information Service (GIS), which has been extended to include information about
which component libraries are installed at each location in the GrADS testbed. This permits
component installations to be taken into account in the scheduling process.

We have also continued work on workflow scheduling and performance model construction,
which are described in Section 2.1. Much of this work has focused on the EMAN bio-imaging
application, which is described in Section 1.1.

The tools project has also collaborated with the virtual grid group to define useful virtual grid
abstractions that will permit tools to focus on simplified models of Grid resources without
sacrificing performance. Preliminary work on this collaboration is described in Section 3.1.

2.1 Scheduling Workflow Applications

We have developed and implemented new strategies for scheduling and executing Workflow
applications on Grid resources using the GradSoft infrastructure (see
http://hipersoft.cs.rice.edu/grads/publications/GrADSIPDPS02.pdf). Workflow scheduling is
based on heuristic scheduling strategies that use combined computational and memory
hierarchy application component performance models. The Workflow is executed using a
novel strategy to bind and launch the application onto heterogeneous resources. We have
applied these strategies in the context of launching EMAN (see
http://ncmi.bcm.tmc.edu/homes/stevel/EMAN/doc), a bio-imaging workflow application, onto
the Grid. The workflow scheduling techniques were also applied in the context of scheduling
“Montage” (see http://montage.ipac.caltech.edu/) workflows as a part of the Pegasus planner
(see http://pegasus.isi.edu/). The simulation results for workflow completion times for
different “Montage” workflows show that, by using the heuristic workflow scheduling,
workflow completion times improve by an order of magnitude (more than 20 times) over the
random scheduling strategy used by Pegasus for heterogeneous platforms. There is an
improvement of more than 20% for homogeneous platforms. The workflow completion times
produced by this approach are within 10% of that using a very expensive AI scheduler that
does not scale to 2047 jobs.

We are currently working on launching the latest version of EMAN on the Grid with a large
input data size [4 GB] to further validate the workflow scheduling techniques. We are also
investigating the issues of better and more comprehensive Workflow-DAG scheduling for
heterogeneous Grid systems, which minimizes data movements over high latency
interconnects and handles large distributed databases, multiple DAGs and DAGs having
nodes representing tightly coupled parallel computations. We are developing these strategies

VGrADS Activities 9

in the context of scheduling three of the VGrADS applications – EMAN, EOL and LEAD. In
future, we intend to investigate the issues of scheduling onto virtual grid abstractions.

2.2 Automatic Construction of Performance Models

One aspect of making applications Grid aware, in the sense of our current infrastructure, is the
construction of performance models for the application’s components in order to make proper
decisions for resource selection and scheduling. The construction of performance models for
the EMAN application has been a major focus of research efforts at both Rice and UH.

The approach we have pursued makes use of a set of equations, the structure of which is
derived from knowledge of the component’s computational requirements and the dependence
upon input variables such as micrograph sizes, number of micrographs, and variables
controlling the processing of the micrographs. Model parameters are then determined from
execution traces. The objective is to attempt to separate application characteristics invariant
with respect to architectures from those that are dependent. For instance, the number of
floating point operations should be independent of the platform used for the processing, but
the number of instructions will depend upon both that platform and the compiler used, as well
as compiler options used. Similarly, memory access patterns should have a strong correlation
to the application, while the number of cycles required will depend significantly on the
memory system.

To better understand the impact of the memory system on performance, we have been
pursuing a novel approach that uses application binary analysis to instrument preliminary runs
of the application in order to determine the distance, in memory accesses, between accesses to
the same cache block. Using the input from several training runs, we can fit curves to the data
to determine the effect of increasing problem size on this distance, which we call reuse
distance. This provides us with a reasonably accurate performance model that is able to
predict which memory access will result in cache misses.

By integrating the components described above, we have derived a model for the main
EMAN components and made a first mostly manual validation of the model. We are now in
the process of automating the model fitting and investigating the sensitivity of the results to
compilers being used as well as the impact of compiler options being used. The main
platforms targeted at the moment are Opteron and Itanium2 based clusters.

3 VGrADS Execution System (UCSD, UCSB, USC, UTK, UNC)

3.1 Development of Virtual Grid Abstractions

The core activity amongst all of the execution system teams, led by the UC San Diego team,
is to develop and refine the notion of virtual grids. The core elements include the virtual grid
abstractions, implementation technologies, and underlying statistical resource classification
techniques. To effectively support applications while achieving efficient resource selection
and scheduling, virtual grids must enable applications to express simply their desired resource
abstraction and preferences. To develop these abstractions, we have pursued a systematic

VGrADS Activities 10

study of several leading grid application efforts – Encyclopedia of Life (SDSC/UCSD),
EMAN (UHouston/Rice), LEAD (Illinois/UNC), and SATisfiability (UCSB) – developing for
each of them a simple virtual grid description that expresses desired resource abstraction. The
UCSD group is spearheading a large team effort to evaluate these abstractions for
appropriateness for application expression and optimization.

We expect that an initial design of the abstractions interface will be completed at the end of
the first year of the project (October 2004). An important goal is to characterize the
performance benefits and potential losses due to use of a simple performance abstraction. An
important subsequent step is to include a coordinated evaluation of the underlying
implementation issues such as rapid resource selection, scheduling, rescheduling, and fault
resilience. In the following sections, we summarize the following activities which directly
support the development and evaluation of virtual grids: 1) grid resource configuration
generation, 2) automatic resource characterization, 3) application studies, 4) grid modeling,
simulation, and benchmarking, and 5) techniques for fault-tolerance.

3.2 Realistic Grid Resource Configuration Generation

Study of dynamic, adaptive grid applications and middleware depends on the ability to
experiment with a wide range of realistic resource environments and to do detailed,
performance and behavior-accurate simulations. The latter need is ably met by the MicroGrid
system. However, to date little work has addressed the problem of realistic grid resource
generation. Leveraging the observation that the majority of high capability grid resources are
Linux clusters, the UCSD team is building a general-purpose grid resource configuration
generator. Using several databases of Linux cluster configurations to populate a statistical
model of grid resources and an array of statistical tools, we have designed and validated
statistically a grid resource generatoræone for which the output has been shown to be
statistically the same as other sample data sets (which are as large as 10,000 processors!).
Further, by analyzing historical sample data and technology trends, we have extended our
model to generate representative resource structures for grids of the future. We will use this
grid resource generator to study the efficacy of our virtual grid abstractions and their
implementation techniques, and make it generally available to the research community to
enable better-grounded study of software and application behavior in grid resource
environments.

3.3 Automatic Resource Characterization

To develop the automatic resource characterization capabilities necessary to build virtual
grids, the UC Santa Barbara team is developing models and prediction techniques for resource
availability. We have developed resource availability sensors for Linux/Unix workstations
and Condor-controlled resources that use the NWS to record resource status. Availability
sensing is a critical component of the virtual grids and obtaining accurate measurements
suitable for automatic characterization proved more difficult than first anticipated. Indeed, we
found that previous sensing data such as that taken from the NCSA administrative logs, while
providing useful high-level insight, did not contain the accuracy required to form models and
make accurate resource predictions, particularly with quantifiable confidence bounds.

VGrADS Activities 11

To digest this data, we have developed an automatic modeling technique that uses Maximum
Likelihood Estimation (MLE) and Expectation Maximization (EM) to derive availability
models from measurement data. The system uses two goodness-of-fit tests (Kolmogorov-
Smirnoff and Anderson-Darling) to evaluate competitive models to identify the most accurate
fit. While EM-fit hyperexponential models of 6 or more parameters often fit the observation
data best, the additional accuracy over a two-parameter MLE-determined Weibull is small.
This result is particularly surprising since the hyperexponential uses more parameters to
describe the data. Weibull confidence bounds and invertability are both tractable and
computationally cheap to compute. Given only a small loss of fit accuracy, we found Weibull
models to be a previously uninvestigated excellent choice. Further, for the purposes of
making future predictions, we found non-parametric techniques based on resampling and
Binomial modeling to be far superior. The Binomial method, in particular, can make future
availability predictions (with provable confidence bounds) with as few as 20 measurements.

In summary, we have developed availability sensing technology more accurate than previous
systems, automatic modeling technology that produces accurate and useful parametric
statistical models, identified the most useful – the Weibull family of models, and automatic
availability prediction capability that uses non-parametric techniques to make future
predictions, complete with verifiable confidence bounds.

3.4 EOL Application Modeling

As part of the evaluation and refinement of our ideas for virtual grids, the UC San Diego team
has developed a simple resource abstraction for the Encyclopedia of Life application.
Because we have a close partnership with this application team, we have quickly settled on a
high level abstract model for the virtual grid abstraction – and several refinements appropriate
as the EOL implementation is enhanced for greater capability and efficiency. In addition to
the macro-scale modeling, we have also engaged in detailed application behavioral modeling
for subsets of the computation – PSI-BLAST and 123D – which correspond to the major
compute-intensive parts of the backend annotation pipeline. These models provide reasonable
estimates for the computational work in each subtask and are being used to evaluate the value
of precise dynamic resource information in efficient execution of these phases of EOL.

3.5 Grid Modeling, Simulation, and Benchmarking

As an ongoing activity, which began with the GrADS project and will continue to support
research in VGrADS, the UC San Diego team has completed several new releases of the
MicroGrid system (April 2004). These new MicroGrid releases include automatic synthesis
of internet-like topologies using well-established tools such as BRITE, and they enable large-
scale simulation of large-scale networks (20,000 routers) by efficiently exploiting parallel
resources such as the TeraGrid. Recent advances include the generation of realistic multi-AS
networks, enabling realistic modeling of Internet routing structures. In addition, we have
recently developed new load balancing techniques that improve our previous profile-based
techniques with a new hierarchical approach to improve parallel simulation efficiency
dramatically. Parallel efficiencies of 40% on 128 nodes enable experiments with networks

VGrADS Activities 12

comprising large fractions of the Internet (for example a 20,000 router network, similar in
scale to AT&T’s network). These capabilities enable the study of large-scale grid systems
and applications.

Several grid benchmarking efforts exist, for example the Grid Assessment Probes (GRASP)
benchmark from UCSD, the NAS Grid Benchmarks (NGB) from NASA, and GridBench at
the University of Cyprus. The UTK team is investigating these benchmarks for the VGrADS
project, to see how they can be applied to the concept of a virtual grid. We are also
examining the output from these benchmarks, to see if they generate useful and appropriate
information for the purposes of grid applications. We are also measuring the overheads
associated with some grid infrastructures (e.g., NetSolve, Globus) for operations such as file
transfer and resource querying.

3.6 Fault Tolerance and Resilience

FT-MPI is a fault tolerant implementation of the MPI 1.2 specification being developed at
UTK. The approach to adding fault tolerance is to enhance the error modes of MPI to allow
for damaged communicators to be repaired. The UTK team is exploring the use of FT-MPI as
a mechanism for adding fault tolerance to MPI applications that run under the VGrADS
framework. At UNC/Illinois, we are also exploring the behavior of MPI applications when
subjected to faults, as a basis for assessing the resilience of these applications to system
failures; this is joint work with the Los Alamos Computer Science Institute (LACSI).
Quantitative data from this assessment, together with measurements of system failure modes,
will be used to develop predictive performability (i.e., integrated performance and reliability)
models for application Grid scheduling.

VGrADS Findings 13

II. Findings

During the reporting period (10/1/03–5/31/04), VGrADS research focused on three inter-
institutional efforts: Applications, VGrADS Programming Tools, and VGrADS Execution System.
The following sections summarize the findings of each subproject.

1 Applications (Rice, UCSD, UCSB, UH, UNC)

Work on applications during this reporting period focused on determining requirements for
virtual grids (vgrids) to support common programming practice.

EMAN showed that support for “clusters” (collections of relatively homogeneous processors,
connected by a relatively homogeneous connectivity, with a common file system) was required
for applications with tightly coupled components. Higher-level “bags” (collections of
heterogeneous resources) are also appropriate for systems built from such components, such as
parameter sweeps. Finally, it appears that multi-level scheduling schemes, like our current
distinction between workflow and MPI scheduling, are needed to separate concerns in real
programs.

EOL led to much the same findings as EMAN - the need for homogeneous clusters and
heterogeneous bags of resources. It also demonstrated the need for explicit handling of data
movement in the virtual grid. This handling includes both performing the movement itself and
estimating its cost, which is needed for effective scheduling.

GridSAT has very different requirements from the other applications. Here, the set of tasks is
extremely dynamic, thus pointing out the requirement for run-time expansion (and contraction)
of the virtual grid. It also relies more heavily than the other applications on topology
information (in particular, identifying resources with good connectivity). Finally, fault tolerance
is useful in GridSAT both to handle unreliable resources and to effect rescheduling when new
resources become available.

LEAD has requirements much like EMAN and EOL for running an ensemble of simulations -
the need for tightly-connected clusters and loosely-coordinated larger collections. It adds the
need for streaming data, as opposed to the fixed data collections used in the other two
applications. LEAD also allows interesting trade-offs between fidelity of results and fault
tolerance, which require more investigation at both the application and system level before they
can be refined into vgrid requirements.

2 VGrADS Programming Tools (Rice, UH)

The Binder in the VGrADS infrastructure is responsible for making the final modifications to the
application before it is launched on the grid. An important goal of the Binder was to design a
mechanism to cope with heterogeneous architectures present on the VGrADS testbed. The
Binder achieved this by maintaining a high-level representation of the application until after grid
scheduling decisions were made and only then compiling on the target machines.

VGrADS Findings 14

We have demonstrated that tools that automatically construct performance models can be
developed and that the constructed models are accurate enough to be used in scheduling
applications on the Grid.

Through our application studies, we have demonstrated that the VGrADS strategy of using
performance models for scheduling, particularly DAG scheduling, is extremely effective on
heterogeneous computational resources, improving performance over current performance-blind
strategies by up to factors of 20 in some cases.

3 VGrADS Execution System (UCSD, UCSB, USC, UTK, UNC)

Based on early evaluations, the core ideas of virtual grid abstractions are promising – both
simplicity and sufficient specificity for applications appears achievable. Based on application
case studies, the simple virtual grid descriptions are rich enough to capture the critical distributed
architectural features of applications.

Automatic modeling technologies that produce accurate and useful parametric statistical models
can be built using the Weibull family of models. These models can be combined with automatic
availability prediction capability that uses non-parametric techniques to make future predictions,
complete with verifiable confidence bounds.

Scalable online simulation of large grid applications, software, and grids consisting of 10,000
compute resources and 20,000 routers is feasible and can be achieved with reasonable
performance using TeraGrid or other cluster resources, and is supported in the MicroGrid
software.

A critical need for systematic, scientific evaluation of a wide range of dynamic middleware,
network service, and applications, realistic generation of grid resources can be achieved with
good statistical accuracy and reasonable computational effort and with moderate input data
(10,000 processors). Generation is based on models that are calibrated by library input data,
enabling automated recalibration as well as projection to future grid resource environments.

VGrADS EOT Activities 15

III. VGrADS Education, Outreach, and Training Activities

1. Training and Development Activities

The VGrADS project has provided opportunities for graduate students to become
involved in an exciting and important research project.! Through participation in
VGrADS project meetings, email, and phone conversations, students have been able to
interact with, learn from, and contribute toward the research of off-site VGrADS
participants.! The multi-site nature of this project has given students first-hand exposure
to a wider range of research approaches and specialty areas than would typically be
possible. These students bring their insights back to other students in their research
groups who are not exposed to as many 'outside' collaborators, enriching the experience
for other graduate students as well.

The VGrADS project has been a vehicle for collaboration among faculty, students, and
staff.! Additionally, the VGrADS project has provided students with a chance to build a
very large-scale system in which all of the components must work together efficiently.
The students have learned goal-setting and management techniques for distributed teams,
and have learned how to use a variety of group communication techniques to make
distributed teams effective. Since research groups are developing components of the
system at various VGrADS sites, the project has also provided an opportunity for
participants to collaborate closely with researchers with different expertise.

VGrADS Education, Outreach and Training efforts will begin active work with
underrepresented students during the summer of 2004, by including two VGrADS
students as part of an expansion of Rice University’s existing summer program, Alliances
for Graduate Education and the Professoriate, which brings undergraduate students to
Rice to work directly with scientists who are doing active research.

2. Outreach Activities

Two meeting were held during the spring of 2004 to begin the planning process for the
summer outreach activities (2-11-2004 and 4-6-2004). The VGrADS Education
Outreach and Training Committee (EOTC), chaired by Richard Tapia, will continue to
review and plan VGrADS EOT programs, including efforts to encourage minorities and
women to pursue careers in computer science.

• Future planning sessions will occur via teleconferences and e-mail, and will occur
regularly, beginning during the summer of 2004.

• The committee will coordinate EOT efforts among VGrADS sites.
• The EOTC will include a representative from each of the VGrADS sites.

We will be aggressively supporting two meetings devoted to increasing diversity in
computer and computational science --

Grace Hopper Celebration of Women in Computing
Richard Tapia Celebration of Diversity in Computing

VGrADS EOT Activities 16

• Rice’s Center for Excellence and Equity in Education (CEEE) will be presenting a
panel at the Grace Hopper Celebration of Women in Computing, in October 2004,
utilizing Rice students, CEEE employees, and CEEE workshop participants. The
presentation will show that a variety of methodologies are required for success in
the process of encouraging diversity. The same or a similar panel will be
presented at Tapia 2005.

• VGrADS will provide travel support to these conferences for student participants
and attendees.

VGrADS will provide content and support to the NSF-funded Computer Science
Computing and Mentoring Partnership (CS-CAMP), during June 2004.

• Make presentations and provide curriculum at CS-CAMP sessions (Tapia and
Cooper)

• Participate in planning and development of future CS-CAMP sessions, in
preparation for scaling the program.

• Disseminate materials nationally, through NSF supported workshops, including
the National Computational Science Institute’s (NCSI) summer workshops, and
the Supercomputing Conference.

In addition, VGrADS researchers have presented VGrADS research results and ideas in a
variety of forums, including technical computer science presentations, presentations to
applications groups, and presentations to students.

