
VGrADS Activities  1 

I. Project Activities 
 

The “Computational Grid,” as described in The Grid: Blueprint for a New Computing 
Infrastructure and demonstrated by many proof-of-concept applications, promises to 
connect computers, databases, and people in a network to solve problems in scientific 
research and other diverse fields. However, the complexity, unreliability, and overhead 
of low-level operations have obscured the Grid's potential. The six-year Virtual Grid 
Application Development Software (VGrADS) project attacked a fundamental part of 
this problemhow to more effectively program these highly complex and dynamic 
systems. It developed software tools and methods to simplify and accelerate the 
development of Grid applications and services without compromising high levels of 
performance and resource efficiency. This improved usability should greatly benefit the 
community of Grid users and developers. In the process, VGrADS contributed to both 
the theory and practice of distributed computation. 
 
To address these aims, VGrADS explored, defined, and implemented a hierarchy of 
virtual resources and a set of programming models for Grid computing. Its research 
covered three key areas: 
 

1. Virtual Grid (VG) architectures, enabling a separation of concerns between 
high-level services and the Grid's inherent complexity.  The Virtual Grid 
Execution System (vgES) implements this architecture. 

2. Programming models, compilers, component libraries, and tools supporting 
creation of Grid applications. 

3. Core software technologies, including performance-efficient scheduling, fault 
tolerance, and economic models for resource management, allowing scalable 
Grid computations. 

 
VGrADS pursued this agenda by collaborating with leading scientific applications to 
elicit key challenges, validate results, and disseminate technology. It is also built on its 
PIs' past successes in human resource development by leveraging existing programs to 
attract and retain women and minorities in computational science. 
 
Over its lifetime (10/1/03 – 9/30/09), VGrADS research focused on the three inter-
institutional efforts described in the following sections: and VGrADS Execution System 
(Section 1), VGrADS Programming Tools (Section 2), and Applications (Section 3). 
Project publications and additional information can be found at http://vgrads.rice.edu. 
The project Web site includes a participants-only area where VGrADS researchers 
exchange drafts of project documents and other materials.  The management structure 
of the VGrADS project is described in Management & Structure (Section 4).  Annotated 
VGrADS milestones appear in Project Milestones (Section 5). We finish by presenting 
the Graduate Student Thesis Abstracts (Section 6) completed with VGrADS support. 



VGrADS Activities  2 

1 VGrADS Execution System (UCSB, UCSD, UNC, USC/ISI) 
 
As in past reports, our execution system research addressed the development of vgES 
(Virtual Grid Execution System) to support complex, adaptive workflow applications. 
Section 1.1 describes the basic capabilities of vgES, which might be considered the 
software infrastructure for VGrADS. Other sections expand on research that extends 
parts of this system. 
 
As it was the last year of the grant, little “new” development occurred in vgES. Our 
efforts were spent in capitalizing on past success, and providing more robust software 
for our final experiments. One exception to this was the improved support for “cloud 
computing”, which we began late last year and completed this year. Section 1.2 
describes these efforts, and more details are available in a paper that appeared at 
CCGrid 09 and in our upcoming SC09 paper. 
 
As this is a final report, we should note that some major efforts over the lifetime of the 
project came to fruition before our final year. We refer the reader to previous annual 
reports for descriptions of such research directions as temporal reasoning for resource 
characterization (2008 report), Virtual Advanced Reservations for Queues (VARQ) 
(2007), monitoring the virtual grid (2006), and simplifying grid scheduling (2006). Each 
of these areas led to at least one thesis during the course of the project.  
 
In addition to the above, we have conducted research in the four areas described in 
detail in the indicated sections:  slot allocations using both advanced and virtual 
reservations (Section 1.1.2), grid computing using local cluster resources (Section 1.2), 
fault tolerance in the Virtual Grid (Section 1.3.1), and tuning parameters for fault-
tolerance methods (Section 1.3.2). 
 
As it has been for the past several years, vgES formed the basis for a VGrADS 
demonstration at the annual SC conference (SC08 in Austin). Multiple members of the 
execution system team presented these demonstrations at the GCAS (Gulf Coast 
Academic Supercomputing, a consortium including Rice and UH), SDSC, and RENCI 
booths.  
 
1.1 vgES Fundamentals 
 
As it has been from the beginning of the project, vgES provides VGrADS with a 
framework for resource management and an execution environment for grid 
applications. Here, we briefly describe the current core concepts of that framework. 
 
1.1.1 A Generic Framework for Resource Allocation and Execution 
 
Since many Grid resource managers were designed for time-sharing or dedicated 
resources, the resource acquisition process has been ignored or, at most, been simple 



VGrADS Activities  3 

and naive. In the real world, however, most resource providers employ a resource 
manager for efficient utilization and better services, which makes the resource 
acquisition process complex. As a solution, we implemented a new resource acquisition 
mechanism called resource actualization that consists of orchestration to make a 
resource bound and personalization to configure the bound resources with appropriate 
execution environments. 
 
Resource orchestration coordinates distributed resources and transparently acquires a 
resource collection for a resource specification, isolating the user from the heterogeneity 
and dynamics of the underlying resources. In essence, it defines the meanings and the 
mechanisms of binding a resource collection for a specification. A resource collection is 
called bound when it is made available. vgES orchestrates multiple resources 
simultaneously against binding failures and determines the best one among the bound 
resources, considering the characteristics of application and resource. 
 
Resource personalization implicitly configures the bound resources with an execution 
environment, based on the application characteristics. In essence, resource 
personalization leverages commodity tools for task scheduling, resource management, 
communication, etc, to simplify application development and exploit the features of the 
tools. A fundamental difference from conventional approaches such as Plush and 
Condor-G, which configure a predetermined execution environment, is that resource 
personalization enables arbitrary coupling of resources and execution environment. 
Moreover, any commodity tools can be plugged in as long as they conform to the 
external APIs for extension. 
 
1.1.2 Slot Allocation over Advance Reservation and Virtual Reservation 
 
As VGrADS developed, our concept of the resources needed for an application did as 
well. By then end of the project, we had settled on the construct that we termed a slot as 
the basic unit of scheduling. A slot is a high level representation of resources in time 
and space. It is a set of resources available in a certain time range. It can be expressed 
by a tuple <size, start time, duration>. Different from the slot used in a batch system 
that describes one resource allocation across time and space for the single resource from 
the system viewpoint, the slot in vgES is a resource collection in time and space across 
multiple resources from the application viewpoint.  
 
We implemented this slot concept against advance reservations provided by some batch 
systems and virtual reservation using batch queue prediction, as detailed in previous 
annual reports. This year, we added implementations for cloud computing systems. In 
effect, both traditional batch-queued systems and cloud systems were managed by the 
same VG interface, which translated our commands into the format (queue submissions 
or image start-ups) appropriate to the underlying cluster or cloud. The resulting system 
was highly flexible, and provided an excellent foundation for our demonstrations at 
SC08 in Austin and our SC09 paper experiments. 



VGrADS Activities  4 

 
1.2 Cloud Computing Local Cluster Resources 
 
During the past two years, the VGrADS team at UCSB developed EUCALYPTUS – An 
Elastic Utility Computing Architecture for Linking Your Programs to Useful Systems.  
Eucalyptus is an open-source reverse-engineered implementation of Amazon’s EC2 
cloud computing infrastructure that can be deployed on local cluster resources.  Using 
SDSC Rocks as a deployment tool, any site installing Eucalyptus can offer cloud-
computing services from its resources using the user-interface and command-line tools 
available from Amazon.com.  It is EC2@home. 
 
The intention was to include cloud computing in the portfolio of systems that vgES can 
amalgamate automatically beneath the VGrADS slot abstraction.  Various VGrADS 
sites (UCSB, RENCI, UH) have run Eucalyptus, each exporting its own cloud, which 
was then integrated into a single set of slots by vgES.  In addition, because Eucalyptus 
uses the Amazon.com interface tools, integrating Eucalyptus with vgES allowed 
VGrADS to also use Amazon’s EC2 cloud (although there was an occupancy charge).   
 
Eucalyptus has had a wide impact outside VGrADS itself. While part of VGrADS, 
Eucalyptus was downloaded approximately 17,000 times in more than 80 countries. It is 
now being used on every continent except Antarctica (and we are hopeful there as well). 
It was integrated into the Ubuntu Linux release, and has been part of every copy of that 
system since Ubuntu 9.04 server edition. The Ubuntu release has led to more than 
20,000 additional downloads. In 2009, VGrADS PI Rich Wolski co-founded Eucalyptus 
Systems, Inc. to provide support for Eucalyptus. While the software remains open-
source, the new company provides on-premise private and hybrid cloud computing 
solutions for large-scale enterprise deployments. As Wolski said at the time the 
company was formed, “Eucalyptus Systems will ensure the viability and growth of 
Eucalyptus well beyond its life as a university research project, while also extending the 
technology to meet the needs of organizations that require high scalability, reliability, 
and enterprise-grade support.” All this has led to excellent technology transfer from this 
VGrADS project. 
 
1.3 Fault Tolerance in the Virtual Grid  
 
Grid applications have diverse requirements for performance and reliability that are 
difficult to enforce, given variability across grid resources. Although there were tools 
and mechanisms to monitor performance and ensure reliability (e.g., via replication and 
over provisioning, checkpoint/restart and other schemes), few tools allowed users to 
express reliability policies from the application’s perspective, map these to resource 
capabilities, and then coordinate and enforce strategies. We filled this gap by 
implementing additions to vgES as described in the subsections below.  
 



VGrADS Activities  5 

1.3.1 Fault-tolerance for slots  
 
During VGrADS Year 6, we integrated algorithms for slot replication with workflow 
engine, which is the planning and execution engine in the VGrADS software stack. The 
core slot-replication algorithm was developed last year, while the integration with the 
workflow engine was accomplished this year. These algorithms provided automatic 
replication capabilities to the workflow planner.  
 
The workflow planner interacts with a fault tolerance component to determine if a task 
should implement replication in the second case. For this implementation, the fault 
tolerance component implements replication based fault-tolerance techniques to 
increase the probability of success for each workflow task. Given the current mapping 
of tasks on a Gantt chart of available resource slots with corresponding reliability 
characteristics, each workflow task is replicated on additional slots to increase the 
probability of success of a task to the desired success probability. The fault-tolerance 
techniques determine the mapping of the replicated tasks on the available slots and 
return the mapping to the planner. During this mapping process, we use simple 
techniques based on joint probabilities derived from success probabilities of tasks on 
slots. For each task, a window of replication is determined by the planner, which 
constrains the replicated tasks to start-after and end-before particular time based on task 
dependencies. The fault tolerance mapping process tries to fit a task on the available 
slots in that replication window based on the expected performance characteristics of 
the task (number of CPUs required and expected execution times derived from 
performance models). If the task fits on a slot, the success probability of the task 
increases. When the success probability reaches the desired level during this replication 
process, the mapping of the replicated tasks is returned to the planner.  
 
We demonstrated fault-tolerance on slots with LEAD workflows during the VGrADS 
presentations at the SC08 conference in Austin. Also included in that demonstration were 
some tools advances that are described in other sections. 
 
1.3.2 Experiments with fault-tolerance parameters  
 
We also designed a set of experiments to explore the different parameters that affect the 
median replication factors and replication success rate for providing fault-tolerance on 
slots -- reliability increments, underlying slot reliability etc. The results of these 
experiments have been included as a section in a paper published at the 
Supercomputing’09 (SC) conference. 
 



VGrADS Activities  6 

 
 
2 VGrADS Programming Tools (Rice, UCSB, UCSD, UH, UTK) 
 
The broad vision of the programming tools thrust was to provide for application users 
high-level interfaces that allow automatic construction of capabilities that are 
(currently) hard to achieve in a Grid environment.  At the core of this work was our 
attempt to take advantage of the virtual grid (VG) abstraction and tools to provide more 
application-specific abstractions. 
 
More specifically, we have followed five research thrusts this year: 

1. Scheduling for workflow computations taking queue delays into account,  
2. Scheduling workflow computations taking fault tolerance into account, 
3. Fault-tolerant libraries for MPI,  
4. Resource allocation via grid economies, and 
5. Optimization of FFT routines, 

The following subsections discuss each thrust in turn. 
 
Some major programming tools projects came to fruition before the end of the grant. 
We refer the interested reader to our previous annual reports for such topics as resource 
allocation via grid economies (2008 annual report) and compiling and optimizing node 
programs (2007), both of which led to theses. In addition, several other variants of 
scheduling for grids led to thesis work in previous years, which is reflected in our 
cumulative publication history. 
 
2.1 Scheduling Workflows for Fault Tolerance 
 
Rice and UNC collaborated in proposing new scheduling approaches that combine fault 
tolerance techniques (overprovisioning (replication) and checkpoint-restart) with 
existing workflow scheduling algorithms. We also studied a novel scheduling algorithm 
that performed overprovisioning at a whole-application level, as opposed to the 
previous approaches that replicated at a single-task level. UNC was responsible for 
development and integration of the fault-tolerance algorithms component, while Rice 
was responsible for combining these with workflow scheduling algorithms and 
experimentations.  
 
This work has been published at the CCGrid’09 conference. In this paper, we present a 
study on the effectiveness of the combined approaches by analyzing their impact on the 
reliability of workflow execution, workflow performance and resource usage under 
different reliability models, failure prediction accuracies and workflow application 
types. The key finding was that we could quantify, to some extent, the trade-offs 
between reliability, performance, and resource usage. Two charts  show part of this 
story: 
 



VGrADS Activities  7 

 
 

 
 
As the graph of success probability shows, node-based overprovisioning – signified by 
“_O” in the method name – improves reliability by about 25% while node-based 
checkpointing – signified by “_C” – only adds 12% to reliability. Whole DAG 
Overprovisioning (WDO) does best of all by this measure. Of course, this comes at a 
cost, as seen in the resource usage graph. Overprovisioning uses more than twice the 
actual CPU time as the non-fault-tolerant version of the same method, while 
checkpointing adds 50% overhead. WDO, again, is the extreme case, using the most 
CPU time. 
 
2.2 Scheduling Workflows with Queue Delays 
 



VGrADS Activities  8 

Another VGrADS paper, presented at Cluster2009, considered workflow scheduling 
onto batch queue controlled clusters. Although vgES makes it possible to schedule onto 
grids of such clusters, this work addresses single-cluster execution. Because inter-
cluster communication costs often dominate the computation, this is an important 
special case even for grid computing. Our new method uses runtime monitoring of 
application performance (including computation, communication, and file I/O time) and 
estimated wait times from the batch queue system itself to appropriately partition the 
workflow DAG for execution. The key insight was that, by overlapping one job’s 
execution with another’s queue wait time, we could hide much of the total waiting time. 
This could, of course, be taken too far – submitting every individual task as a separate 
job produces jobs that are too short to effectively hide waiting times. We developed a 
“peeling” algorithm to move DAG levels from one job to another to balance the 
overlapping and wait times.  
 
Based on extensive simulations (over 700,000 individual experiments), we were able to 
show that our hybrid method outperformed the most common workflow scheduling 
methods, either submitting the entire task as a single batch queue job (the “giant” 
method in the charts below), or submitting every task as an individual job (“individual” 
below). Our basic results are captured in the three charts below. 
 

   

 
 
Significantly, our hybrid scheduling method is the best method under variety of load 
conditions (competing with actual queue logs from five clusters). It is also robust to 



VGrADS Activities  9 

queue policies of favoring long-running jobs (FL), short-running jobs (FS), and first-
come, first-served (FCFS). 
 
This work and the work in Section 2.1 are a major part of Yang (Ryan) Zhang’s Ph.D. 
dissertation, which should be accepted by the time this report is submitted. 
 
2.3 Fault tolerant MPI: FT-MPI / OpenMPI 
 
The OpenMPI project has been combining the technologies and resources from several 
other projects (FT-MPI, LA-MPI, LAM/MPI, and PACX-MPI) in order to build the 
best MPI library available.  Recent efforts at UTK include improving scalability and 
fault tolerance in OpenMPI.   
In order to support fault tolerant MPI applications, we require a fault tolerant runtime 
environment under the MPI library.  A fault-tolerant runtime environment must detect 
failures, and coordinate with the application to recover from them. Previous work has 
demonstrated that the Binomial Graph topology (BMG) is a good candidate as a 
communication infrastructure for supporting both scalability and fault-tolerance for 
runtime environments.  Recently, we have designed and analyzed a self-stabilizing 
algorithm to transform the underlying communication infrastructure provided by the 
launching service into a BMG, and maintain it in spite of failures. We demonstrate that 
this algorithm is scalable, tolerates transient failures, and adapt itself to topology 
changes (Bosilca et. al. ParCo2009) 
 
2.4 Resource Allocation via Grid Economies 
 
As reported in previous annual reports, researchers at UCSB have embarked on a study 
of economics-based methods for resource allocation and scheduling on grids. The 
inspiration for this study was Ken Kennedy’s observation that application performance 
models (also developed under GrADS and VGrADS) provide a measure of “value” of a 
resource to an application. He suggested that we use this as input to economic models 
that Rich Wolski and collaborators were developing. 
 
Our approach to this idea is the development of auction mechanisms for control of batch 
queued resources. The key problem in this space is extracting accurate information 
about the performance and importance of the individual jobs. If users believe that they 
can improve their private results (e.g. shorten their own wait times) by lying about such 
matters (e.g. underestimating resource usage), they have an incentive to do so. If many 
users react in this way, the queueing system will base its scheduling on false 
information, resulting in sub-optimal global performance. Carefully designed auctions 
to “buy” the batch queue slots can avoid this pathology by ensuring that each user’s best 
strategy is to bid honestly; underbidding will result in not acquiring enough resources, 
while overbidding will cost the user too much (and thus impoverish him or her in future 
bids).   



VGrADS Activities  10 

We have previously reported on several papers by Andrew Mutz, a student working 
under VGrADS PI Rich Wolski, who has been investigating this problem. During 
VGrADS Year 6, Mutz presented a paper at SC08 entitled “Efficient Auction-Based 
Grid Reservations using Dynamic Programming” in which he demonstrated practical 
methods integrated into the Portable Batch System (PBS) implementing a form of 
Generalized Vickery Auction (GVA) for scheduling. Previous papers have 
demonstrated that while GVA with combinatorial bids (i.e. acquiring sets of resources) 
is optimal, computing the necessary payments is an NP-complete problem. Mutz, in 
contrast, accepts simpler bids consisting of the job value (v), run time (t), and deadline 
(d). He then constructs a dynamic programming algorithm that computes the optimal 
schedule (runs the jobs with the highest total value possible) and required payments 
(resolving the auction bids). The diagram below illustrates the algorithm; cells are 
computed from right to left, and from the top of the diagram down. Other results in the 
paper show that this is orders of magnitude faster than computing full combinatorial 
GVA prices.  
 

 
 
This work, as well as previously reported work on grid economies, was also 
incorporated in Mutz’s Ph.D. thesis. 
 
2.5  Optimization of FFT Routines 
 
In past reports we have discussed activities at Rice University to use Just-in-Time (JIT) 
compilers to improve the efficiency of node programs. As the student involved in those 
efforts graduated, the node compiler activity moved to the University of Houston. 



VGrADS Activities  11 

 
Ayaz Ali, a student of VGrADS PI Lennart Johnsson, has published a series of papers 
and a thesis about compilation of the Fast Fourier Transform algorithm for modern 
computer architectures. Because the FFT uses very particular data access patterns and 
non-nearest-neighbor communications, many compiler techniques developed for linear 
algebra and mesh relaxation do not produce good results. However, the variety of 
implementation options available (corresponding to recombinations of the Kroenecker 
product formulation of the FFT) allows many opportunities for optimization. In his 
thesis, Ali presents a code generator framework and search strategy for finding the best 
series of recombinations. As the graph below (taken from the thesis) shows, the optimal 
parameters chosen for a given architecture can vary significantly, as can the size of the 
improvement by choosing an optimal parameter value. 

  
 
 



VGrADS Activities  12 

 
3 Applications (Rice, UCSB, UCSD, UH, UNC, UTK) 
 
VGrADS research has always been driven by the needs of actual applications. Initially, 
we selected four applications (EMAN, EOL, GridSAT, and LEAD) based on our 
experience in the GrADS project and from other sources to help derive requirements for 
Virtual Grid (VG) functionality and to serve as tests of new tools methods. We 
completed our study of EOL – the Encyclopedia of Life – in 2005, having learned 
invaluable lessons about application structure from it (but ultimately concluding that 
integration with vgES would be infeasible). Our work on EMAN – Electron Micrograph 
Analysis - was substantially complete by 2007, but we continue to use its DAGs as test 
cases for new scheduling methods. GridSAT – solving SATisfiability problems on the 
Grid –was arguably our most successful application, having been the first program to 
solve a number of provably hard (and at the time unsolved) logical problems. It was the 
basis for many of the basic requirements for vgES and some excellent scheduling work. 
Work on this program was complete in 2006, when Walid Chrabakh  defended his 
dissertation. We refer the interested reader to previous annual reports for details on 
these applications. The remainder of this section discusses the LEAD application in 
more depth (Section 3.1), as well as three new applications that were developed during 
VGrADS.  GridSolve (Section 3.2), a grid-enabled system for mathematical 
computations, arose from study of fault tolerance mechanisms and UTK’s long-standing 
interest in mathematical software. Similarly, we have developed applications of large-
scale linear algebra (Section 3.3) and fault-tolerant MPI (Section 3.4) in response to 
needs in those communities. To date, these applications have been reasonably 
successful at helping to derive requirements for the VG functionality and vgES 
implementation.  
 
3.1 LEAD 
 
VGrADS collaborated closely with another NSF funded ITR project:  LEAD (Linked 
Environments for Atmospheric Discovery). The goal of LEAD is to build a scalable 
web services cyberinfrastructure for meteorological data and models. The meteorology 
and the web services components of LEAD were developed under a separate ITR award 
(NSF 0315594); the VGrADS team worked with LEAD to apply resource selection, 
scheduling, provisioning techniques, fault-tolerance and runtime adaptation from the 
VGrADS research effort to the LEAD workflow orchestration system. 
 
The unique characteristics of LEAD lie in the dynamic workflow orchestration and data 
management, which allow the use of analysis tools, forecast models, and data 
repositories not only in the current fixed configurations, but as dynamically adaptive, 
on-demand, Grid-enabled systems that can (a) change configuration rapidly and 
automatically in response to weather; (b) continually be steered by new data; (c) 
respond to decision-driven inputs from users; (d) initiate other processes automatically; 
and (e) steer remote observing technologies to optimize data collection for the problem 



VGrADS Activities  13 

at hand. Toward these goals, LEAD research focused on creating a series of 
interconnected, heterogeneous virtual IT “Grid environments” that are linked at several 
levels to enable data transport, service chaining, interoperability, and distributed 
computation. 
 
We collaborated with the LEAD researchers and developers to develop integrated plans 
for the two projects. This process was greatly expedited by the efforts of Lavanya 
Ramakrishnan, who began as VGrADS programmer at RENCI and recently received 
her Ph.D. with LEAD PI Dennis Gannon, and Anirban Mandal, who started as a Ph.D. 
student at Rice and eventually became the VGrADS PI at RENCI. They organized a 
number of meetings and teleconferences, and generally led the development of the 
LEAD/VGrADS integration. 
 
As noted in previous annual reports, we have had meetings with LEAD personnel to 
map out a collaborative strategy. A number of technical issues had to be resolved, 
mostly relating to how VGrADS would interoperate with LEAD’s existing software 
infrastructure. Also, we had to address the fact that LEAD’s definition of workflow is 
based on the BPEL web-service workflow specification that differed from other 
VGrADS applications in implementation details. Every component in the LEAD 
architecture is encapsulated as an individual web service that represents the atomic 
application tasks and the resource and instrument monitoring agents that drive the 
workflow.  Other VGrADS applications do not use such services.  
 
During VGrADS Year 6, we built on our successful incorporation of fault-tolerance and 
runtime adaptation functionalities into the VGrADS/LEAD integration software stack to 
enable resilient execution of LEAD workflows. Resilient workflow execution was of 
paramount importance to LEAD workflows because of deadline constraints (forecasts 
have to be available by a certain deadline). We had demonstrated these resilience 
features previously at SC07. Following this up for our demonstration at SC08 in Austin, 
we incorporated vgES control of cloud computing into the process, allowing what we 
believe was the first demonstration of simultaneous use of TeraGrid, Amazon EC2, and 
local (batch-controlled clusters and cloud systems based on Eucalyptus) resources for a 
workflow set i.e., collection of workflows. This work was a true collaboration, 
involving Lavanya Ramakrishnan (Indiana University), Anirban Mandal (RENCI), 
Gopi Kandaswamy (RENCI), Dan Nurmi (UCSB), Kiran Thyagaraju (Rice), and many 
others. We should particularly mention Yang-Suk Kee, who had been a long-time 
VGrADS participant at UCSD and ISI; early in the process, he left the project for a new 
position at Oracle. Before leaving, however, he successfully developed the necessary 
interfaces from vgES to EC2 and Eucalyptus clouds, enabling the project to succeed. 
Far from a simple port of the vgES interface, this required significant discussion of the 
semantics of “binding” and “virtual reservation” to a cloud and other deep technical 
issues. . In addition, the vgES interface was expanded to represent the resources 
returned to the application layer as a Gantt Chart (i.e., set of resource slots), a format 



VGrADS Activities  14 

used by LEAD workflow orchestration to make scheduling decisions. This enabled  the 
workflow orchestration algorithms in LEAD to seamlessly use VGrADS interfaces. 
 
The figure below (taken from our demo presentation) shows the relevant components of 
the VGrADS/LEAD integration stack and the invocation flow for various components. 
The overall system used nearly every technology that VGrADS had developed over its 
lifetime. Few changes were needed in LEAD itself; in essence, its Execution Manager 
and Workflow Orchestration system required new interfaces to vgES (where previously 
they had directly invoked Globus or the individual systems). However, the interface 
changes allowed the Workflow Orchestration to make application-specific tradeoffs. In 
particular, LEAD requires that a certain percentage of the given workflows complete by 
a given deadline. Given information from vgES, the planner uses a four-phase 
orchestration method to balance the need for performance (finishing before the 
deadline), quality (completing as many workflows as possible), and reliability 
(completing enough tasks). Within VGrADS, we used our Batch Queue Prediction 
(BQP) and Virtual Advanced Reservation (VAR) technology to schedule slots on batch 
queue controlled resources. When it was profitable, we started images on cloud 
(Eucalyptus and EC2) resources to create slots there. Of course, Eucalyptus itself was a 
new system developed as part of VGrADS. The Fault Tolerance and Recovery (FTR) 
system from RENCI was used to determine the amount of task replication needed to 
achieve a given reliability, and to recover tasks that failed. The workflow actually 
executed on machines at four VGrADS sites (UH, UTK, UCSB, and RENCI), one 
TeraGrid site (NCSA), and one commercial cloud computing site (Amazon EC2).  
 



VGrADS Activities  15 

 
 
Below is a snapshot from the demonstration. The LEAD requirement was that one 
workflow (out of eight submitted) must complete within 2 hours. Based on the 
resources reported by vgES, five were scheduled across six sites. The slot at each site is 
represented by the background gray box, and individual tasks within the workflow by 
colored boxes (one color per workflow). The small tasks on UTKEuca (the Eucalyptus 
machine at UTK) are serial preprocessing tasks that could start immediately; the larger 
tasks on other machines are the actual weather simulations running on larger clusters. 
Here, one salmon-colored task was replicated (on Mercury (NCSA)  and EC2) for 
reliability. The bar at the bottom of a task represents its status when the snapshot was 
taken – green for running, dark gray for complete, and red for failed. In this case, one 
workflow (at Mercury) failed but its copy succeeded. In short, vgES helped ensure that 
the system could more than meet the demands of the application in this case. 
 



VGrADS Activities  16 

 
 
The failure in the example above was neither planned, nor a rare event. In fact, we had 
actual task failures in some of our live demos at SC08. However, it is a testament to 
vgES that none of these stopped the application, nor did any cause the experiment to 
miss its deadline.  
 
The SC08 demonstration was described, along with quantitative measurements, in a 
paper accepted at SC09. In many ways, that paper is a fitting capstone to the 
development we have done for VGrADS. 
 
3.2 GridSolve 
 
The GridSolve project attempt to provide a seamless bridge between the between the 
standard programming interfaces and desktop systems that dominate the work of 
computational scientists and the rich supply of resources and services supported by the 
grid. Computational scientists using their accustomed interfaces (e.g., Matlab, Octave, 
IDL, C, Fortran) can easily access grid resources with low effort, by using the OGF 
standard gridRPC API in GridSolve.  Transparent to the user, GridSolve provides 



VGrADS Activities  17 

benefits like resource discovery, scheduling, load balancing and service level fault 
tolerance.  During the last year, GridSolve has added workflow execution mechanisms 
while retaining the ease-of-use that is a main focus of the project.  If a sequence of 
gridRPC calls to grid services is tagged as a workflow (using simple begin and end 
tags), GridSolve will transparently analyze the data dependencies between that service 
calls, infer a task DAG from the dependencies, and schedule and execute that task 
DAG.  Inter-server data transfer and task scheduling are all handled by the workflow 
execution mechanism.  Yinan Li, a graduate student under PI Jack Dongarra, reported 
on this work in "Request Sequencing: Enabling Workflow for Efficient Problem 
Solving in GridSolve” (Li et al GCC2008).  Future work (supported by other sources) 
will focus on scheduling and mapping strategies for this workflow engine.   
 

 
 
GridSolve has also integrated a second workflow execution mechanism as part of a 
collaboration with UC Dublin.  SmartGridSolve (Brady et. al. 2008) allows tasks to be 
mapped collectively and supports the minimization of the execution time of a group of 
tasks collectively.  SmartGridSolve uses a simple extension to GridSolve to delineate a 
sequence of service calls, then infers the task DAG from that sequence and executes the 
DAG.  It has a strong focus on efficient mapping strategies designed to take into 
consideration the communication and communication to improve the performance.    
 



VGrADS Activities  18 

3.3 Linear Algebra: Dynamic Task DAGs for Large-Scale Linear Algebra 
 

 
 
UTK has a long-term interest in providing high-performance mathematical solvers to 
enable computational science.  To that end, we have been revisiting the approaches 
taken by the  LAPACK and ScaLAPACK libraries.  In the current approach, linear 
algebra algorithms are viewed as consisting of tasks that perform operations on tiles of 
data, with data dependencies between the tasks.  The dependencies allow a task DAG to 
be inferred from the sequence of tasks.  If the tasks in the DAG are scheduled 
appropriately, many of the serialization and synchronization points that were in 
LAPACK/ScaLAPACK can be hidden or avoided by overlapping tasks.  Fengguang 
Song, a graduate student under PI Jack Dongarra, applies these ideas in the distributed 
setting by constructing and executing dynamic DAGs on distributed memory multi-core 
machines for linear algebra applications (Song et. al. SC2009).   
 
3.4 FT-LA: Fault Tolerant Linear Algebra 
 
UTK is continuing to explore scalable techniques to tolerate a small number of process 
failures in large-scale computing.  The scientific community has to tackle the problem 
from two directions. First, efficient middleware needs to be designed to detect failures. 
Second, the numerical applications have to be flexible enough to permit the recovery of 



VGrADS Activities  19 

the lost data. At UTK, we successfully developed a Fault Tolerant MPI (FT-MPI) 
middleware and more recently, a Fault Tolerant Linear Algebra (FT-LA) library that 
will efficiently handle several process failures.  The FT-LA approach combines fault-
tolerant techniques for extending the algorithms,  with diskless checkpointing and 
efficient error detecting and correcting codes (Bosilca et. al. JPDC 2009).  This work is 
being developed by UTK graduate student Peng Du under the direction of PI Jack 
Dongarra. 

Our future work in this area (under separate funding) will involve the development of 
scalable fault-tolerant one-sided (Cholesky, LU and QR) and two-sided (Hessenberg, 
tri-diagonalization and bi-diagonalization) factorizations in the context of tile 
algorithms using task DAGs.  In case of failures, the core idea would be to restart the 
computation by mostly using critical information already present in the directed acyclic 
graph generated by those factorizations, which will ultimately considerably decrease the 
checkpoint sizes.  
 



VGrADS Activities  20 

4 Management & Structure 
 
VGrADS includes researchers from Rice University; University of California, San 
Diego (UCSD); University of California, Santa Barbara (UCSB); University of Houston 
(UH); University of North Carolina (UNC); University of Southern California / 
Information Sciences Institute (USC/ISI); and University of Tennessee, Knoxville 
(UTK).  Rice University serves as the lead VGrADS institution.  Keith Cooper serves as 
VGrADS PI.  He is advised by an executive committee, which consists of the key 
researchers leading the main VGrADS research thrusts.  The current members of the 
VGrADS executive committee are: 
 

Keith Cooper (Rice, Chair) 
Jack Dongarra (UTK) 
Carl Kesselman (USC/ISI) 
Chuck Koelbel (Rice) 
Rich Wolski (UCSB) 

 
During VGrADS Year 6, the VGrADS executive committee communicated by e-mail 
and teleconference to review progress and milestones, discuss plans for the future, and 
advise the PI on resource allocation issues. The most significant decisions were 
reallocation of resources as UCSD and ISI completed their work for the project and 
returned unspent funds. These were used to complete work on the final demonstrations 
reported above. 
 
Project design and coordination during our sixth year were enabled through weekly 
technical teleconferences involving researchers from each of the VGrADS sites, one 
developers’ workshop at USC/ISI (9/8-9/09), and communication via VGrADS mailing 
lists.  Research subproject participants also met on a regular basis to exchange ideas and 
develop research plans.  
 
4.1 VGrADS Web Site 
 
During the life of the project, the VGrADS Web site, http://vgrads.rice.edu, was 
updated to reflect recent results, current project directions, and personnel changes. The 
web site will continue to be hosted indefinitely at Rice, although we will not actively 
update it after the end of funding. 
 
 
5 Project Milestones 
 
As recommended by the NSF Site Review team (4/28-29/05), the VGrADS Principal 
Investigators have actively tracked and (where necessary) updated research milestones 
for the project. Here we report on milestones in years 5 (some of which were still in 



VGrADS Activities  21 

progress as of our last report) and 6. All section numbers refer to the 2009 report unless 
otherwise noted. 
 
 
5.1 Year 5 Milestones 
 
We have made excellent progress on Year 5 milestones.  We summarize our activities 
thus: 

i. Execution System/Virtualization: 
• Improve resource selection and binding techniques for flexible resource 

discovery. 
(Done. Described in 2007 and 2008 reports.) 

• Improve resource-scheduling techniques for VGs that consider resource 
efficiency and cost. 
 (Done. Described in 2007 and 2008 reports.) 

• Prototype and evaluate extended VG abstraction over environments with 
diverse resource management paradigms.  
(Done. Described in Sections 1.1.1 and 1.1.2. Some related work 
demonstrated as early as SC06 and described in 2008 report. ) 

• Demonstrate vgES with resource selection, resource binding, VG 
scheduling, for application kernels across large-scale grid platforms with 
diverse resource management paradigms.  
(Done. Described in Sections 1.1, 1.2 and 3.1.) 

• Validate and assess the integrated resource provisioning policies.  
(Done. Described in Section 1.) 

ii. Execution System/Grid Economy: 
• Investigate adaptive pricing algorithms for resource reservations that 

accurately reflect their value when compared with typical best-effort 
queueing service. 
(Done. Described in 2008 report and Section 2.4) 

• Design experiment to investigate allocation efficiency under various 
pricing schemes. 
(Done. Described in 2007 and 2008 reports and Section 2.4.) 

• Target second VGrADS-enabled application (to be determined) as a 
driving application. 
(Done. Described in 2007 report.)  

• Verify using both GridSAT and second application. 
(Done. GridSAT and LEAD described in 2007 report.) 

iii. Execution System/Fault Tolerance: 
• Integrate fault tolerance features into vgES and test on LEAD 

application. 
 (Done. Described in Sections 1.3 and 3.1.) 

iv. Programming Tools/Workflow: 



VGrADS Activities  22 

• Incorporate novel techniques from vgES and fault tolerance work into 
workflow schedulers. 
(Done. Described in Sections 1.3 and 2.1 and 2008 report.) 

• Study new problems in workflow based on grid economies, fault 
tolerance, and dynamic resource behavior. 
(Done. Grid economies discussed in 2008 report. Scheduling for fault 
tolerance described in part in Sections 1.3 and 2.1. Dynamic resource 
behavior is a significant part of the cloud computing work described in 
Section 1.2, as well as the work in 2.2.) 

• Consider compilation approaches to task migration for fault tolerance. 
(Done. FTR work described in Sections 1.3.1 and 1.3.2, while not 
compiler-based, is relevant here. Also, static scheduling described in 
Section 2.1 relies on static information.) 

v. Applications: 
• Evaluate methods for scheduling workflow applications on large-scale 

TIGRE grid. 
(Partially done. TIGRE grid project diverged from VGrADS 
infrastructure, as discussed in 2007 report. TIGRE project completed in 
2008) 

• Explore additional TIGRE applications. 
(Not done. TIGRE grid project diverged from VGrADS infrastructure, as 
discussed in 2007 report. TIGRE project completed in 2008.) 

vi. Education, Outreach, and Training: 
• Continue AGEP program.  

(Done. Two students (Stephanie Diehl and Keisha Cumber attended 
AGEP summer program.) 

• Continue graduate student exchanges. 
(Partially done. No further long-term exchanges were needed to 
complete projects, in the view of the PIs.) 

 
5.2 Year 6 Milestones 
 
As part of our requested No Cost Extension, we developed a set of milestones for 
finishing the project. Most of these are extensions of Year 5 milestones, specialized 
based on our current development. We made excellent progress on those milestones, as 
can be seen below: 

i. Execution System/Virtualization: 
• Extend vgES to manage dynamic “cloud computing” resources. 

(Done. Described in Sections 1.2 and 3.1) 
• Investigate scheduling methods for systems with both allocated clusters 

and cloud computing resources. 
(Done. Described in Sections 1.2 and 3.1) 

ii. Execution System/Grid Economy: 



VGrADS Activities  23 

• Continue investigation of grid economy systems for resource allocation 
and scheduling. 
(Done. Described in 2008 report and Section 2.4.) 

iii. Execution System/Fault Tolerance: 
• Continue investigation of fault tolerance measures for cloud computing. 

 (Done. Described in Section 1.3.) 
iv. Programming Tools/Workflow: 

• Demonstrate workflow schedulers sensitive to fault tolerance and 
performance model considerations. 
(Done. Described in Sections 2.1and 2.2.) 

v. Applications: 
• No additional milestones expected. 

vi. Education, Outreach, and Training: 
• Support 2009 Richard Tapia Celebration of Diversity in Computing. 

(Done. VGrADS PI Koelbel was on Tapia2009 committee, and we 
supported one student attendee (Keisha Cumber).)  



VGrADS Activities  24 

 
 
6 Graduate Student Thesis Abstracts 
 
During its six-year existence, VGrADS graduated eleven Ph.D. students and one M.S. 
student from seven different schools. Of these, two (Buneci and Ramakrishnan) were 
females, which roughly mirrors the 19% of doctorates awarded to women in recent 
years. 
 
In response to NSF reporting requirements, we present here the thesis abstracts for our 
students. Full copies of most of their dissertations are available in the publications 
section of the VGrADS web site, http://vgrads.rice.edu/publications/.    
 
6.1 Ayaz Ali  
(Ph.D., 2008, University of Houston) 
Adaptive Dynamic Scheduling of FFT on Hierarchical Memory and Multi-core 
Architectures 
 
In this dissertation, we present a framework for expressing, evaluating and executing 
dynamic schedules for FFT computation on hierarchical and shared memory 
multiprocessor / multi-core architectures. The framework employs a two layered 
optimization methodology to adapt the FFT computation to a given architecture and 
dataset. At installation time, the code generator adapts to the microprocessor 
architecture by generating highly optimized, arbitrary size micro-kernels using dynamic 
compilation with feedback. At run-time, the micro-kernels are assembled in a DAG-like 
schedule to adapt the computation of large size FFT problems to the memory system 
and the number of processors. 
 
To deliver performance portability across different architectures, we have implemented 
a concise language that provides specifications for dynamic construction of FFT 
schedules. The context free grammar (CFG) rules of the language are implemented in 
various optimized driver routines that compute parts of the whole transform. By 
exploring the CFG rules, we were able to dynamically construct many of the already 
known FFT algorithms without explicitly implementing and optimizing them. To 
automate the construction of best schedule for computing an FFT on a given platform, 
the framework provides multiple low cost run-time search schemes. Our results indicate 
that the cost of search can be reduced drastically through accurate prediction and 
estimation models. 
 
With its implementation in the UHFFT, this dissertation provides a complete 
methodology for the development of domain specific and portable libraries. To validate 
our methodology, we compare the performance of the UHFFT with FFTW and Intel’s 
MKL on recent architectures - Itanium 2, Xeon Clovertown and a second generation 
Opteron. Our optimized implementations of various driver routines compare favorably 



VGrADS Activities  25 

against the FFTW and MKL libraries. Our experiments show that the UHFFT 
outperforms FFTW and MKL on most architectures for problems too large to fit in 
cache. Moreover, our low-overhead multithreaded driver routines deliver better 
performance on multi-core architectures. 
 
6.2 Emma Buneci  
(Ph.D., 2008, Duke University) 
Qualitative Performance Analysis for Large-scale Scientific Workflows 
 
Today, large-scale scientific applications are both data driven and distributed. To 
support the scale and inherent distribution of these applications, significant 
heterogeneous and geographically distributed resources are required over long periods 
of time to ensure adequate performance. Furthermore, the behavior of these applications 
depends on a large number of factors related to the application, the system software, the 
underlying hardware, and other running applications, as well as potential interactions 
among these factors. 
 
Most Grid application users are primarily concerned with obtaining the result of the 
application as fast as possible, without worrying about the details involved in 
monitoring and understanding factors affecting application performance. In this work, 
we aim to provide the application users with a simple and intuitive performance 
evaluation mechanism during the execution time of their long-running Grid applications 
or workflows. Our performance evaluation mechanism provides a qualitative and 
periodic assessment of the application’s behavior by informing the user whether the 
application’s performance is expected or unexpected. Furthermore, it can help improve 
overall application performance by informing and guiding fault-tolerance services when 
the application exhibits persistent unexpected performance behaviors.  
 
This thesis addresses the hypotheses that in order to qualitatively assess application 
behavioral states in long-running scientific Grid applications: (1) it is necessary to 
extract temporal information in performance time series data, and that (2) it is sufficient 
to extract variance and pattern as specific examples of temporal information. Evidence 
supporting these hypotheses can lead to the ability to qualitatively assess the overall 
behavior of the application and, if needed, to offer a most likely diagnostic of the 
underlying problem. To test the stated hypotheses, we develop and evaluate a general 
qualitative performance analysis framework that incorporates (a) techniques from time 
series analysis and machine learning to extract and learn from data, structural and 
temporal features associated with application performance in order to reach a qualitative 
interpretation of the application’s behavior, and (b) mechanisms and policies to reason 
over time and across the distributed resource space about the behavior of the 
application. 
 
Experiments with two scientific applications from meteorology and astronomy 
comparing signatures generated from instantaneous values of performance data versus 



VGrADS Activities  26 

those generated from temporal characteristics support the former hypothesis that 
temporal information is necessary to extract from performance time series data to be 
able to accurately interpret the behavior of these applications. Furthermore, temporal 
signatures incorporating variance and pattern information generated for these 
applications reveal signatures that have distinct characteristics during well-performing 
versus poor-performing executions. This leads to the framework’s accurate 
classification of instances of similar behaviors, which represents supporting evidence 
for the latter hypothesis. The proposed framework’s ability to generate a qualitative 
assessment of performance behavior for scientific applications using temporal 
information present in performance time series data represents a step towards 
simplifying and improving the quality of service for Grid applications. 
 
6.3 Walid Chrabakh  
(Ph.D., 2006, University of California at Santa Barbara). 
GridSAT: A Distributed Large Scale Satisfiability Solver for the Computational Grid 
 
Grid Computing is an emerging field in computer science. Research in this area aims at 
aggregating distributed, heterogeneous and federated resources and make it available to 
Grid applications. In the past two types of applications have been deployed with varying 
degrees of success. The first type of applications is embarrassingly parallel (a bag of 
independent tasks). This category adapts well to a computational grid environment. The 
second category of applications includes mainly scientific code which is tightly coupled 
in nature. This type of applications is very hard to deploy in a grid environment. 
 
In this thesis we present GridSAT, a new grid application. GridSAT is a distributed 
complete Boolean satisfiability solver based on the sequential solver Chaff. In addition 
to its theoretical significance, the satisfiability problem has numerous practical 
applications. SAT solvers are used in many engineering and scientific fields including 
circuit design and model checking. 
 
GridSAT is able to achieve new results by solving faster those problems that were 
previously solved by other solvers. Moreover, it was able to solve problems which were 
left unsolved by other solvers. GridSAT accomplishes these results by achieving two 
goals. The first is parallelizing the sequential solver in a manner which allows it to run 
efficiently on a large collection of resources. GridSAT also uses techniques to enable 
information sharing between the parallel components to avoid redundant work. The 
second goal is to design and implement the application so that it can adapt to the 
dynamic conditions of a computational grid environment. The techniques and design 
used to realize GridSAT can be deployed with other application to achieve new results. 
 
In addition, we show how multiple GridSAT instances can cooperate to run efficiently 
on a common set of resources without explicit synchronization. These experiments 
represent realistic scenarios where many grid applications share a common resource 
pool. 



VGrADS Activities  27 

 
We have also developed a web portal which accepts problem instances through a 
standard web browser and returns status and results while shielding users from 
complexities of running the application manually. 
 
6.4 Anshu Dasgupta  
(Ph.D., 2006, Rice University). 
Tailoring Traditional Optimizations for Runtime Compilation 
 
Runtime compilation, due to its online nature, presents unique challenges and 
opportunities to compiler designers. Since compilation occurs during program 
execution, a just-in-time compiler (JIT) must be judicious in expending compilation 
time. The literature on traditional, offline compilers describes numerous program 
transformation techniques that strive to increase execution efficiency. However, while 
optimization passes for static compilers are well understood and have been thoroughly 
investigated, many such transformation algorithms cannot be implemented on a JIT 
environment due to compilation-time constraints. Further, offline algorithms are not 
designed to exploit information available to an online compiler at program execution 
time. The thesis of the research presented in this document is that program optimization 
techniques designed for traditional, offline compilers can be profitably adapted for a 
runtime compiler by effectively respecting the constraints imposed on compilation time 
and by exploiting the opportunities available in a runtime compilation environment. To 
that end, the dissertation explores the complexity of implementing program 
transformations for a runtime compiler and redesigns two optimization techniques for a 
JIT: register allocation and loop unrolling. The two transformations present contrasting 
challenges when they are included in a runtime compiler. While several offline, 
heuristic allocation algorithms achieve impressive results, they consume large amounts 
of compilation-time that are typically unacceptable for a JIT. We describe the design of 
two allocation algorithms that reduce allocation time while preserving the advantages of 
strong techniques authored for offline compilers. An experimental evaluation of the new 
algorithms demonstrates their effectiveness on a runtime compilation environment. 
While a runtime compiler is limited by the constraints imposed by its environment, 
compiling just prior to program invocation provides certain advantages over an offline 
compiler. In particular, it can examine information only available at program execution 
time. We describe the design of a lightweight runtime value-examining mechanism and 
a loop unrolling algorithm that work in tandem. Our experimental results indicate that 
the runtime unroller achieves significant improvements on floating point, scientific 
benchmarks. In summary, thus, the research described in this dissertation demonstrates 
how compiler optimization algorithms can be effectively tailored for runtime 
compilation. 
 
6.5 Richard Huang  
(M.S., 2005, University of California, San Diego). 



VGrADS Activities  28 

Scheduling Compute Intensive Applications in Volatile, Shared Resource (Grid) 
Environments 
 
While Grid computing has become popular in recent years, understanding Grid 
application performance remains a challenge. In open, shared resource Grid 
environments, applications face heterogeneity in resources and dynamic load on the 
resources. Variance in runtime prediction models leads to further variability in 
application performance. We investigate factors affecting application performance by 
extensive simulation using actual compute intensive applications runtimes and actual 
dynamic resource load. Our main result is that freshness of dynamic resource data does 
not matter for any data fresher than 300 seconds. Application performance varies less 
than 2% within this range. When a single application is scheduled on a volatile 
environment, scheduling optimistically improves performance as the scheduler can 
better tolerate volatility both in task runtime predictions as well as in the resource 
availability. Performance can be further improved by rescheduling tasks running much 
longer than predicted. Tasks running longer than predicted can indicate that the resource 
is overloaded or unavailable. When the number of resources equals or exceeds the 
number of tasks, the handling of tasks that have greatly exceeded their predicted 
runtime is critical for application performance. In some cases, rescheduling such tasks 
can improve application performance by as much as 2 to 3 times. In contrast, when 
there are more tasks than resources and multiple schedulers are competing for a set of 
resources, the opposite policy of allowing a late task to run to completion is preferred. 
This is because there are better resources for which to run that task and therefore 
rescheduling is unproductive. 
 
6.6 Xin Liu  
(Ph.D., 2004, University of California, San Diego). 
Scalable Online Simulation for Modeling Grid Dynamics 
 
Large-scale grids and other federations of distributed resources that aggregate and share 
resources over wide-area networks present major new challenges because they couple 
the behavior of resources and networks. These infrastructures support a new breed of 
applications which interact dynamically with their resource environment, making it 
critical to understand dynamic application and resource behavior to design for 
performance, stability, and reliability. Coupled use means that accurate study of 
dynamic applications, middleware, resource, and network behavior depends on 
coordinated, accurate, and simultaneous simulation of all four of these elements. Thus, 
the long-term challenge is to support scalable, high-fidelity, online simulation of 
applications, middleware, resources, and networks to support enable scientific and 
systematic study of grid applications and environments. That challenge is the focus of 
this dissertation. We define the problems in performing large-scale, high-fidelity, online 
simulation. We consider a number of approaches, and then present our approach in 
detail. Our approach includes a set of techniques which enable the use of real 
application and middleware software, and modeling of essentially arbitrary network and 



VGrADS Activities  29 

resource properties. These techniques include resource virtualization via application 
interception, computation resource simulation based on soft real-time scheduling, and 
packet-level online network simulation. Our studies and experiments show that these 
techniques can support simulation experiments with complex software packages as well 
as resource and network structures. While most of the techniques in our approach are 
inherently scalable, one major challenge is online network simulation – which we 
implement as a parallel distributed discrete-event simulation, well-known to be 
challenging to scale. A range of techniques for scaling our online network are studied. 
Exploiting advanced graph partitioners, we explore a range of edge and node weighting 
schemes based on a variety of static network and dynamic application information. 
While simple approaches do not achieve acceptable load balance, our studies show that 
detailed network structure and behavior can be combined with the graph partitioners to 
achieve both good load balance and parallel efficiency. For example, our improvements 
increase efficiency and scalability by over 100 times, achieving a parallel efficiency of 
over 40\\% on 90-node clusters for a range of experiments. Our online simulation 
techniques are embedded in a working simulation tool, the MicroGrid, which enables 
accurate and comprehensive study of the dynamic interaction of applications, 
middleware, resource, and networks. We present experimental results with applications 
which validate the implementation of the MicroGrid, showing that it not only runs real 
grid applications and middleware, but also accurately models underlying resource and 
network behavior. Our scalability experiments show that our load balance algorithms 
are effective, and the best of them, hierarchical profile-driven load balance, scales well, 
enabling simulation networks of 20,000 routers with 90 cluster nodes. This is the largest 
detailed network simulation ever performed, and corresponds in size to a large ISP’s 
network. Realistic packet level network simulation with tens of thousands of routers 
enables accurate study of grid and network dynamics at unprecedented scale, and we 
believe great opportunities for new insights. 
 
6.7 Anirban Mandal  
(Ph.D., 2006, Rice University). 
Toward a Tool for Scheduling Application Workflows onto Distributed Grid Systems 
 
In this dissertation, we present a design and implementation of a tool for automatic 
mapping and scheduling of large scientific application workflows onto distributed, 
heterogeneous Grid environments. The thesis of this work is that plan-ahead, 
application-independent scheduling of workflow applications based on performance 
models can reduce the turnaround time for Grid execution of the application, reducing 
burden of Grid application development. We applied the scheduling strategies 
successfully to Grid applications from the domains of bio-imaging and astronomy and 
demonstrated the effectiveness and efficiency of the scheduling approaches. We also 
proposed and evaluated a novel scheduling heuristic based on a middle-out traversal of 
the application workflow. A study showed that jobs have to wait in batch queues for a 
considerable amount of time before they begin execution. Schedulers must consider 
batch queue waiting times when scheduling Grid applications onto resources with batch 



VGrADS Activities  30 

queue front ends. Hence, we developed a smart scheduler that considers estimates of 
batch queue wait times when it constructs schedules for Grid applications. We 
compared the proposed scheduling techniques with existing dynamic scheduling 
strategies. An experimental evaluation of this scheduler on data-intensive workflows 
shows that its approach of planning schedules in advance improves over previous online 
scheduling approaches. We studied the scalability of the proposed scheduling 
approaches. To deal with the scale of future Grids consisting of hundreds of thousands 
of resources, we designed and implemented a novel cluster-level scheduling algorithm, 
which scales linearly on the number of abstract resource classes. An experimental 
evaluation using workflows from two applications shows that the cluster-level scheduler 
achieves good scalability without sacrificing the quality of schedule. 
 
6.8 Andrew Mutz  
(Ph.D., 2008, University of California Santa Barbara). 
Eliciting Honest Behavior on Computational Grids 
 
During the last decade, a computing paradigm known as “grid” computing has seen a 
surge in research activity. Drawing inspiration from the electrical power grid, this 
paradigm is an approach to high-performance computing that seeks to serve a large 
number of users from multiple, geographically distinct computing centers. As grids 
exist today, users are competing for overcommitted resources. Without a well-designed 
mechanism to mediate the competing interests of users, the outcome can be chaotic and 
inefficient. Additionally, scheduling decisions are made based on user-submitted 
metadata, data that can be manipulated to increase a user’s share of resources. 
 
This dissertation explores the efficacy of auction-based schedulers as a means for 
mediating these competing interests. In particular, the use of auctions to incentivize 
honest disclosure of job metadata is investigated. We investigate this problem in the 
context of best-effort batch queues and reservation systems. 
 
6.9 Daniel Nurmi  
(Ph.D., 2008, University of California Santa Barbara). 
Statistical Methods for Mitigating Resource Provisioning Dynamism in Large-scale 
Batch-scheduled Systems 
 
Users of high performance computing (HPC) systems generally rely on concurrency to 
achieve performance. Modern users have the ability to draw from a vast array of 
distributed resources due to the ever-increasing quality of connecting software and 
networks. However, as the pool of resources available to users grows, so does the level 
of resource heterogeneity and performance response dynamism. 
 
Historically, users request access to a super-computer’s resources by submitting their 
work and waiting until the system has enough free resources to satisfy the user’s 
request. However, few facilities exist that cater to the substantial class of users who 



VGrADS Activities  31 

require that their work is completed by a specific time, who require that their resources 
are available during a specific time interval, or who require simultaneous access to 
multiple systems. 
 
In this dissertation, we discuss new statistical methodologies to manage resource 
performance dynamism, and abstractions that build upon these methodologies to hide 
resource heterogeneity. In particular, we will show how we have successfully developed 
the methodologies and abstractions necessary to manage and hide provisioning delay of 
HPC resources. 
 
6.10 Lavanya Ramakrishan  
(Ph.D., 2009, Indiana University). 
Multi-Level Adaptation for Performability in Dynamic Web Service Workflows 
 
Large-scale computations from various scientific endeavors are composed as workflows 
that access shared data and high performance systems. Similarly, business applications 
in cloud computing systems use distributed infrastructure as part of mainstream 
business models. Recent advances in grid and cloud computing provide tools to monitor 
and manage execution. However, they do not provide predictable bounds on the Quality 
of Service (QoS) that can be expected in such variable multi-user distributed 
environments. Understanding the dynamic properties of resources and coordinated 
control of resources and workflows is critical especially for deadline-sensitive 
workflows such as weather prediction. 
 
In this dissertation we revisit the software stack that supports the multi-tier services and 
propose and evaluate the WORDS (Workflow ORchestrator for Distributed Systems) 
architecture that abstracts the differences between specific resource models and 
provides a clear separation of concerns between the resource-level and application-level 
tools. In the context of the WORDS architecture we explore interfaces and mechanisms 
necessary for providing predictable quality of service to web service workflows with 
time and accuracy constraints. 
 
We make the following four primary contributions. First, we propose a resource 
abstraction across grid and cloud resource control mechanisms that enables higher-
levels tools to abstract the differences between systems. Second, we propose a 
probabilistic Quality of Service (QoS) model that enables providers to quantify the 
variation in resource availability; both for resource procurement due to competition and 
for the duration of the resource request from failures at various levels. Third, we use 
performability analysis through a Markov Reward Model to quantify the loss in 
performance and study the impact on cost due to availability variations. Finally, we 
propose a multi-phase orchestration approach that balances performance, reliability and 
cost considerations for a set of workflows. 
 



VGrADS Activities  32 

6.11 Zhiao Shi  
(Ph.D., 2006, University of Tennessee, Knoxville). 
Scheduling tasks with precedence constraints on heterogeneous distributed computing 
systems 
 
Efficient scheduling is essential to exploit the tremendous potential of high performance 
computing systems. Scheduling tasks with precedence constraints is a well-studied 
problem and a number of heuristics have been proposed. 
 
In this thesis, we first consider the problem of scheduling task graphs in heterogeneous 
distributed computing systems (HDCS) where the processors have different capabilities. 
A novel, list scheduling-based algorithm to deal with this particular situation is 
proposed. The algorithm takes into account the resource scarcity when assigning the 
task node weights. It incorporates the average communication cost between the 
scheduling node and its node when computing the Earliest Finish Time (EFT). 
Comparison studies show that our algorithm performs better than related work overall. 
 
We next address the problem of scheduling task graphs to both minimize the makespan 
and maximize the robustness in HDCS. These two objectives are conflicting and an 
epsilon-constraint method is employed to solve the bi-objective optimization problem. 
We give two definitions of robustness based on tardiness and miss rate. We also prove 
that slack is an effective metric to be used to adjust the robustness. The overall 
performance of a schedule must consider both the makespan and robustness. 
Experiments are carried out to validate the performance of the proposed algorithm. 
 
The uncertainty nature of the task execution times and data transfer rates is usually 
neglected by traditional scheduling heuristics. We model those performance 
characteristics of the system as random variables. A stochastic scheduling problem is 
formulated to minimize the expected makespan and maximize the robustness. We 
propose a genetic algorithm based approach to tackle this problem. Experiment results 
show that our heuristic generates schedules with smaller makespan and higher 
robustness compared with other deterministic approaches. 
 
6.12 Yang (Ryan) Zhang  
(Ph.D., 2009, Rice University). 
Grid-Centric Scheduling Strategies for Workflow Applications 
 
Grid computing faces a great challenge because the resources are not localized, but 
distributed, heterogeneous and dynamic. Thus, it is essential to provide a set of 
programming tools that execute an application on the Grid resources with as little input 
from the user as possible. The thesis of this work is that Grid-centric scheduling 
techniques of workflow applications can provide good usability of the Grid 
environment by reliably executing the application on a large scale distributed system 



VGrADS Activities  33 

with good performance. We support our thesis with new and effective approaches in the 
following five aspects. 
 
First, we modeled the performance of the existing scheduling approaches in a multi-
cluster Grid environment. We implemented several widely-used scheduling algorithms 
and identified the best candidate. The study further introduced a new measurement, 
based on our experiments, which can improve the schedule quality of some scheduling 
algorithms as much as 20 fold in a multi-cluster Grid environment. 
 
Second, we studied the scalability of the existing Grid scheduling algorithms. To deal 
with Grid systems consisting of hundreds of thousands of resources, we designed and 
implemented a novel approach that performs explicit resource selection decoupled from 
scheduling. Our experimental evaluation confirmed that our decoupled approach can be 
scalable in such an environment without sacrificing the quality of the schedule by more 
than 10%. 
 
Third, we proposed solutions to address the dynamic nature of Grid computing with a 
new cluster-based hybrid scheduling mechanism. Our experimental results collected 
from real executions on production clusters demonstrated that this approach produces 
programs running 30% to 100% faster than the other scheduling approaches we 
implemented on both reserved and shared resources. 
 
Fourth, we improved the reliability of Grid computing by incorporating fault tolerance 
and recovery mechanisms into the workflow application execution. Our experiments on 
a simulated multi-cluster Grid environment demonstrated the effectiveness of our 
approach and also characterized the three-way trade-off between reliability, 
performance and resource usage when executing a workflow application. 
 
Finally, we improved the large batch-queue wait time often found in production Grid 
clusters. We developed a novel approach to partition the workflow application and 
submit them judiciously to achieve less total batch-queue wait time. The experimental 
results derived from production site batch queue logs show that our approach can 
reduce total wait time by as much as 70%. 
 
Our approaches combined can greatly improve the usability of Grid computing while 
increasing the performance of workflow applications on a multi-cluster Grid 
environment. 



VGrADS Activities  34 

II. Findings 
 
During VGrADS Year 6, VGrADS research continued to focus on three inter-
institutional efforts: VGrADS Execution System, VGrADS Programming Tools, and 
Applications. The following sections summarize the findings of each subproject. 
 
1 VGrADS Execution System 
 
vgES Impact: We have released the software to other internal team members; those 
teams are developing advanced workflow scheduling techniques on top of the VG and 
vgDL abstractions. Indeed we have found both the vgDL language and the vgES system 
to be useful abstractions for real-time applications, which allocate resources against 
advance reservation and best-effort batch resources. Moreover, further studies on the 
resource actualization process enable us to redesign vgES as a generic framework for 
resource management and execution environment. The detailed resource instantiation 
mechanisms have been studied.  
 
Flexibility in Discovery: We extended the vgDL to express resource equivalence. This 
extension provides more flexibility in resource selection, which eliminates the iteration 
of resource selection in cases where the selection operation fails. The preliminary 
implementation, which allows the user to specify equivalence for processor type, can 
discover equivalent resources with a small additional overhead of 5 -10%. 
 
Resource Provisioning: Our work with optimal provisioning has shown that resource 
provisioning generally leads to a better application performance than best-effort service 
for applications with large resource requirements and when systems are under high 
utilization. 
 
Virtual Resource Reservations: We find that VARQ is able to “manufacture” a 
probabilistic resource reservation on systems that only support best-effort batch queue 
service.  By predicting when a job should be submitted in the future in order to meet a 
specified deadline, the system ensures that the user will be guaranteed the resources 
during the desired timeframe (i.e. has a reservation).  We find that VARQ reservations 
are often a preferable substitute for “hard” advanced reservations since the latter must 
currently be negotiated manually by members of our research team and the site 
administrators controlling the machines we currently target (e.g. the TeraGrid 
resources).  Lastly, the Slotted Virtual Grid abstraction is essentially an abstract 
reservation that is translated directly (with little alteration) into a hard reservation once 
it is made by hand.  We find that a VARQ reservation can support the SVG abstraction 
fully automatically with no intervention by the user or relevant system administrators, 
and can do so in production grid environments.  
 



VGrADS Activities  35 

Fault Tolerance: Our work on fault tolerance has shown that performance and 
reliability models enable automatic selection of over-provisioning, migration, or restart 
options that hide the details of grid service failures while maintaining the virtual grid 
abstraction. 
 
Cloud Computing:  We find that cloud computing services can be implemented using 
cluster resources locally procured and maintained for scientific research (as opposed to 
being purchased exclusively from “for fee” service providers).  We also find that both 
commercial and Eucalyptus-supported services can be integrated to support the 
VGrADS slot abstraction by the vgES. 
 
Resource Economies:  We find that computationally efficient algorithms for “solving” 
GVA allocation problems can be developed and used to design novel reservation 
protocols for batch-controlled systems.  These protocols are incentive compatible (truth-
revelation about resource requirements is a dominant strategy) and budget-balanced.  
They can also be implemented using existing open-source tools such as PBS. 
 
Resource Specification Generation: We constructed an empirical model for resource 
specification generation that enables vgES to return an appropriate VG, leading to good 
application performance for arbitrary applications expressed as Directed Acyclic 
Graphs (DAGs). 
 
2 VGrADS Programming Tools 
 
Scheduling Workflow DAGs: We have shown that the two-phase scheduling strategy 
of choosing a VG, then scheduling to the resources in that VG, gives good results on a 
variety of real-world and randomly-generated DAGs. Moreover, we have found that the 
reduction in grid size that VG selection provides makes it feasible to use more advanced 
scheduling heuristics, thus producing improved schedules. We have demonstrated that 
list-based scheduling algorithms produce excellent results, particularly when coupled 
with selection of clusters using the estimated aggregate computing power. These results 
can be applied to either static (compile-time) or dynamic (run-time) scheduling. 
 
Scheduling Applications onto Batch Queues: We have shown that accurate 
predictions of batch queue wait time are possible (albeit with unavoidably large error 
bounds in some cases). We have used these predictions in conjunction with predictions 
of computation and communication time to schedule the EMAN application. This 
scheduling mechanism produced integer factor improvements in turn-around time. In 
separate work, we showed that careful partitioning of a workflow into separate batch 
queue submissions could result in significant reductions in total (observed) wait time. 
Our scheduling algorithm based on this observation was remarkably robust under 
varying batch queue load policies, despite a lack of knowledge of those details.  
 



VGrADS Activities  36 

Scheduling for Reliability: We have shown how applications can trade off reliability 
(probability of successful completion) and performance by a novel scheduling 
algorithm. The insight of the algorithm is that using resources with minimal {execution 
time}×{failure rate} maximizes reliability for any given makespan. Therefore, ordering 
processors by this quantity when choosing resources to use allows the application to 
optimize its reliability for a given deadline (or its execution time for a given reliability). 
This method can be applied to a variety of schedulers. 
 
Resource Economies:  We find that computationally efficient algorithms for “solving” 
GVA allocation problems can be developed and used to design novel reservation 
protocols for batch-controlled systems.  These protocols are incentive compatible (truth-
revelation about resource requirements is a dominant strategy) and budget-balanced.  
They can also be implemented using existing open-source tools such as PBS. 
 
Fault-tolerance: From our experiments with various parameters for fault tolerance on 
slots, we have inferred that increasing reliability increments increases the median 
replication factor and the number of cases of replication failures, implying that replication 
techniques would be effective for moderate reliability increments. We can also infer that 
higher reliability of slots results in smaller median replication factors and fewer replication 
failures. We can also infer that lower reliability increments and higher slot reliabilities are 
desirable in order to increase the replication success rate. 
 
Combined fault-tolerance and scheduling: From our experiments with combined fault-
tolerance and scheduling on a set of workflows, we can infer that the over-provisioning 
mechanism can increase the workflow success probability by around 25% while 
lightweight checkpointing-restart can increase the success probability by around 12%. We 
have also shown that, using the combined techniques, we can obtain increased reliability 
with insignificant (5-6%) performance penalties. 
 
 
3 Applications 
 
LEAD: We successfully demonstrated the applicability of the VG abstraction and 
VGrADS scheduling and fault-tolerance techniques to the workflow from an important 
meteorological application. This can (in principle) address LEAD’s requirement for 
transparent resource selection, monitoring and runtime adaptation. We have verified 
that our fault-tolerant scheduling techniques provide a means to enhance LEAD’s 
reliability and quality of service requirements. 
 
EMAN: We demonstrated how a workflow application could be effectively scheduled 
to use multiple clusters, each managed by an independent batch queue. We showed how 
this scheduling could lead to substantial improvements in turn-around time. 
 



VGrADS Activities  37 

GridSolve: We demonstrated a user-friendly interface to software running on 
distributed grid resources.  Experimental results show that workflow computation is 
suitable to a certain subset of large grained tasks and can provide a performance gain in 
that situation. 
 
Linear Algebra: Dynamic Task DAGs for Large-Scale Linear Algebra: Task-based 
distributed linear algebra algorithms were shown to be competitive with other 
approaches, and were proved to be scalable.  In some algorithms, higher communication 
overheads reduce performance, but this is expected to have a lower impact as the 
number of cores per node increases. 
 



VGrADS Activities  38 

III. VGrADS Education, Outreach, and Training Activities 
 
The following sections describe VGrADS Education, Outreach, and Training (EOT) 
activities during VGrADS Year 6. 
 
1 Training and Development Activities 
 
Much of the VGrADS training effort has gone toward training and development at the 
college, post-graduate, and professional levels. 
 
1.1 Inter-institutional Collaboration 
 
The VGrADS project has provided opportunities for graduate students to become 
involved in an exciting and important research project.  Through participation in 
VGrADS project meetings, email, and phone conversations, students have been able to 
interact with, learn from, and contribute toward the research of off-site VGrADS 
participants.  The multi-site nature of this project has given students first-hand exposure 
to a wider range of research approaches and specialty areas than would typically be 
possible.  Notably, this includes discussion and collaboration with several world-
renowned researchers from other institutions with whom they would not normally 
interact. These students bring their insights back to other students in their research 
groups who are not exposed to as many “outside” collaborators, enriching the 
experience for other graduate students as well. 
 
An important part of this interaction was student attendance at small-group workshops, 
which we call developer workshops. The demonstrations (at SC06, SC07, and SC08) of 
end-to-end VGrADS capabilities led us to emphasize these meetings rather than student 
exchanges as we did in early years of the project. The developer workshops are working 
meetings, producing detailed plans and software artifacts for use in our experiments and 
demonstrations. This year, we held one such meeting at ISI on September 8-9, 2008 to 
integrate cloud computing, virtual grid development, fault tolerance, and scheduling on 
the LEAD application. The students involved received significant experience in 
collaborative work and distributed software development, as well as a broader exposure 
to the project than they would ordinarily have had. Of course, the developer workshop 
also had a great positive effect on the demonstrations described elsewhere in this report. 
 
1.2 Distributed Software Engineering 
 
The VGrADS project has provided students with a chance to build a very large-scale 
system in which all of the components must work together efficiently.  The students 
have learned goal-setting and management techniques for distributed teams, and have 
learned how to use a variety of group communication techniques to make distributed 
teams effective.  Since research groups are developing components of the system at 



VGrADS Activities  39 

various VGrADS sites, the project has also provided an opportunity for participants to 
collaborate closely with researchers with different expertise. 
 
1.3 Courses 
 
With support from their institutions, VGrADS PIs have developed and taught a variety 
of courses that cover Grid technologies and other aspects of high performance parallel 
and distributed computing. In the Spring 2009 semester, PI Jack Dongarra taught CS 
594 Scientific Computing for Engineers at UTK, which covered current trends in high-
end computing systems and environments, parallel programming, aspects of Grid 
computing, and other topics relevant to scientific computing. The same course had been 
taught in earlier years as well. For more information on this course and its contents, see 
the course web page at http://www.cs.utk.edu/~dongarra/WEB-PAGES/cs594-
2009.htm. We refer the reader to previous annual reports for descriptions of other 
courses taught at UCSB (2005), UCSD (2005), UTK (2006, 2007 and 2008), and UH 
(2007 and 2008). 
 
1.4 Students Produced 
 
One of the great successes of VGrADS has been its production of graduate students. 
During the six years of the project, we have graduated 12 students, including two 
women. Those students are: 

• Ayaz Ali (Ph.D., 2008, University of Houston). 
Thesis title: “Adaptive Dynamic Scheduling of FFT on Hierarchical Memory 
and Multi-core Architectures” 

• Emma Buneci (Ph.D., 2008, Duke University). 
Thesis title: “Qualitative Performance Analysis for Large-scale Scientific 
Workflows” 

• Walid Chrabakh (Ph.D., 2006, University of California at Santa Barbara). 
Thesis title: “GridSAT: A Distributed Large Scale Satisfiability Solver for the 
Computational Grid” 

• Anshu Dasgupta (Ph.D., 2006, Rice University). 
Thesis title: “Tailoring Traditional Optimizations for Runtime Compilation” 

• Richard Huang (M.S., 2005, University of California, San Diego). 
Thesis title: “Scheduling Compute Intensive Applications in Volatile, Shared 
Resource (Grid) Environments” 

• Xin Liu (Ph.D., 2004, University of California, San Diego). 
Thesis title: “Scalable Online Simulation for Modeling Grid Dynamics” 

• Anirban Mandal (Ph.D., 2006, Rice University). 
Thesis title: “Toward a Tool for Scheduling Application Workflows onto 
Distributed Grid Systems” 

• Andrew Mutz (Ph.D., 2008, University of California Santa Barbara). 
Thesis title: “Eliciting Honest Behavior on Computational Grids” 



VGrADS Activities  40 

• Daniel Nurmi (Ph.D., 2008, University of California Santa Barbara). 
Thesis title: “Statistical Methods for Mitigating Resource Provisioning 
Dynamism in Large-scale Batch-scheduled Systems” 

• Lavanya Ramakrishan (Ph.D., 2009, Indiana University). 
Thesis title: “Multi-Level Adaptation for Performability in Dynamic Web 
Service Workflows” 

• Zhiao Shi (Ph.D., 2006, University of Tennessee, Knoxville). 
Thesis title: “Scheduling tasks with precedence constraints on heterogeneous 
distributed computing systems” 

• Yang (Ryan) Zhang (Ph.D., 2009, Rice University). 
Thesis title: “Grid-Centric Scheduling Strategies for Workflow Applications” 

The abstracts of their theses are included as an appendix to the “Activities” section of 
this final report. 
 
2 Outreach Activities 
 
The Outreach component of VGrADS has continued its efforts to broaden the impact of 
the project. 
 
2.1 Collaboration with Alliances for Graduate Education and the Professoriate 

(AGEP) 
 
AGEP (http://rgs.rice.edu/grad/agep/index.cfm) is a program of the NSF EHR 
directorate that funds a number of activities at Rice (and other universities) to provide a 
year-round community experience for Science/Math/Engineering (SME) students from 
under-represented groups. Most relevant for VGrADS activities is the Rice AGEP 
summer program, which provides hands-on research experience to undergraduate 
students in SME disciplines with an eye toward giving the students a solid foundation 
for the remainder of their undergraduate course work, developing professional 
relationships, and gaining a sense of what graduate school will be like, particularly at 
Rice University. VGrADS leverages this program to provide an opportunity for 
outreach to under-represented groups by having VGrADS researchers serve as mentors 
for these summer students. AGEP leverages VGrADS to reach more students, through 
our direct funding of additional participants. 
 
We sponsored two female undergraduates during summer 2008. Out of many 
applicants, we selected Keisha Cumber (from Johnson C. Smith University in Charlotte, 
NC) and Stephanie Diehl (from Case Western University). Both are freshmen.  They 
worked under the joint mentoring of Chuck Koelbel and Vivek Sarkar (a non-VGrADS-
affiliated professor of CS) on projects related to parallel and distributed computing. 
After some tutorial material, they studied the mapping of task graphs representing 
scientific algorithms (Gaussian elimination and matrix multiply) onto multicore 
processors using the Habanero language developed by Sarkar. The project was 
successful, leading to a presentation by Cumber at the Tapia 2009 conference in 



VGrADS Activities  41 

Portland, OR. Diehl returned to Rice for another AGEP experience in summer 2009, not 
directly funded by VGrADS. 
 
In summer 2009, we sponsored one female student, Loren Micheloni. Under the 
direction of VGrADS co-PI Chuck Koelbel, Loren, now a senior in the computer 
science program at the University of Texas - Austin, implemented matrix multiplication 
on multicore processors using Habanero. Our original plans had been to use this routine 
as the basis for more interesting graph algorithms – specifically, Dijkstra’s and 
Warshall’s algorithms – but due to equipment failures we were unable to complete that 
more ambitious project. However, Loren certainly learned a lot during the summer and 
returned to Austin enthused about parallel computing. 
 
2.2 Participation in Conferences Focused on Diversity in Computer Science 
 
As planned, VGrADS outreach-based conference participation has focused on 
supporting activities at the Grace Hopper Celebration of Women in Computing and at 
the Richard Tapia Celebration of Diversity in Computing.  Since our last annual report, 
the Tapia 2009 conference was held in Portland, OR on April 1-4, 2009. VGrADS PI 
Chuck Koelbel served on the program committee, co-chairing the posters competition 
(as he did in 2007). VGrADS also supported the travel of Keisha Cumber to present her 
summer project described in Section 2.1. We had offered to support Stephanie Diehl as 
well, but she was unable to attend due to course commitments. 
 
 
2.3 Participation in NSF-funded Computer Science Computer and Mentoring 

Partnership 
 
VGrADS PIs have continued to participate in the NSF-funded Computer Science 
Computer and Mentoring Partnership (CS-CAMP) project (http://ceee.rice.edu/cs-
camp/). VGrADS PIs Keith Cooper and Richard Tapia are PIs of the CS-CAMP project.  
MS CS-CAMP, an extension of the original CS-CAMP program for high school girls, is 
designed for middle school girls.  With support from VGrADS, Tapia (with the help of 
Michael Sirois) was able to host the summer program in both 2007 and 2008. Both 
years attracted between 30 and 45 students. 
 
MS CS-CAMP is a one-week version for middle school girls of the successful two-
week CS-CAMP program for high school females.  Both programs are designed to 
encourage and motivate females to think about computer science as a possible career 
choice, and to arm them with skills to help them succeed in high school computer 
science classes.  The students participated in a wide variety of sessions related to 
computer science, involving robotics, programming in Scheme, logic, and – of course – 
grid computing. 
 



VGrADS Activities  42 

VGrADS PIs Keith Cooper, Richard Tapia, and Chuck Koelbel, who were involved in 
planning the new program, participated in sessions during both years of the camp.  
 
2.4 Open Education Cup Competition 
 
As an experiment at SC08, Rice University (with sponsorship from several industrial 
partners) announced the Open Education Cup. This was a competition to create 
educational modules for use by everyone who wanted to teach and learn about High 
Performance Computing (HPC) and parallel computing. Recognizing that parallel and 
distributed computing play a large and growing role in science and engineering, and 
recognizing that study and education materials are often unavailable or expensive, we 
took the initiative to help create creating Open Educational Resources (OER) in the area 
of HPC. 
 
The idea behind OER is to make high-quality educational material freely available to 
teachers and learners so that they can master and enhance the material, in the same way 
that the Open Source movement has furthered the production of software. Once OER 
content exists, it can be picked up, used, and improved by a large and growing 
community. This creates a vibrant “ecosystem” for teaching and learning about a topic. 
If the parallel computing community embraces OER and starts sharing its knowledge, it 
can rapidly build the workforce it needs, disseminate new information, and take the 
field to new heights. To encourage this, the Open Education Cup offered cash prizes 
and NVIDIA graphics cards as inducement to create such content. All submissions were 
published under the Creative Commons license (a form of open source copyright) in the 
Connexions project (http://www.cnx.org/) at Rice University, a technology platform 
supporting OER for authors, educators and learners. 
 
VGrADS PI Chuck Koelbel, in collaboration with Jan Odegard (also at Rice) 
spearheaded the Open Education Cup, organizing and publicizing the competition. In 
particular, Koelbel penned the introductory module for the competition, available at 
http://cnx.org/content/m18099/latest/. Koelbel and Odegard served as judges for the 
submissions as well. Although the contest did not attract as many submissions as we 
had hoped, and therefore will not be repeated next year, it did attract substantial 
attention and encouraged a good deal of discussion of open education at the conference. 
 
2.5 Computer Science Community Interactions 
 
VGrADS researchers have presented (and will continue to present) VGrADS research 
results and ideas in a variety of forums, including technical computer science 
presentations, presentations to applications groups, and presentations to students. 
 
The VGrADS project had a variety of professional outreach activities at the annual 
SC08 Conference (Austin, TX, November 15-21, 2008).  Other sections of this report 



VGrADS Activities  43 

detail the research advances that were reported there.  VGrADS researchers also gave a 
number of talks with accompanying demonstrations in exhibit booths, including: 

• Chuck Koelbel (Rice), Rich Wolski (UCSB), Anirban Mandal (RENCI), Dan 
Nurmi (UCSB) and Lavanya Ramakrishnan (IU) gave overviews of the 
VGrADS project in the GCAS booth (a collaboration of Rice, UH, and Texas 
A&M), SDSC booth, and RENCI booth.  

• Lavanya Ramakrishnan (IU), Anirban Mandal (UNC), and Dan Nurmi (UCSB) 
led a team of students and staff in demonstrating the LEAD application running 
with VGrADS for both performance and fault tolerance. 

• Andrew Mutz and Rich Wolski (both UCSB) presented the VGrADS-related 
paper “Efficient Auction-based Grid Reservations using Dynamic 
Programming” 

• Emma Buneci (Duke) and Dan Reed (Microsoft) presented the paper “Analysis 
of Application Heartbeats: Learning Structural and Temporal Features in Time 
Series Data for Identification of Performance Problems” based on Buneci’s 
thesis.  

• Lamia Youseff (UCSB), a student of Rich Wolski, presented her work on 
“Paravirtualization Performance and Programming Support for Next Generation 
HPC System” at the Doctoral Showcase. 

• Chuck Koelbel (Rice) helped organize and gave presentations about the “High 
Performance Computing Cup”, a competition to create educational material 
about parallel computing.  

Most of these demos attracted reasonable audiences, and represented good outreach to 
the high-performance computing and research communities by the project.  



VGrADS Activities  44 

 
IV.  VGrADS Contributions 
 
1.  Contributions within Discipline 
 
VGrADS activities and findings during Year 6, which are described in more detail in 
the “Activities” and “Findings” sections of this report, included research results and 
associated implementations that will ultimately contribute toward computer science 
research, particularly in the area of distributed, heterogeneous computing.  Research 
highlights include: 
 

• VGrADS researchers have continued development of the Virtual Grid Execution 
System (vgES) for managing the abstractions that are key to our work. Key 
contributions in past years included the introduction of slotted virtual grids, 
which allow unified management of reserved resources and resources controlled 
by batch queues and resource equivalence, by which an application can identify 
trade-offs between processor architectures.  
 
In VGrADS Year 6, VGrADS researchers extended the implementation of 
virtual grids to include cloud computing instantiations. They showed that unified 
grids containing TeraGrid and EC2 resources, as well as local batch-queued and 
cloud resources, could be used to address deadline-driven scientific applications. 
They verified that the VGrADS abstractions were capable of implementing 
advanced applications. 

 
• VGrADS researchers developed a temporal reasoning framework to support 

performance validation and diagnosis of long-running grid applications for 
virtual grids. In particular, this reasoning framework supports monitoring of grid 
applications, allowing them to identify changes in conditions that require 
adaptation. The framework’s qualitative performance analysis can help bind 
expectations of grid applications with resource behavior in the Virtual Grid 
Execution System. 

 
• VGrADS researchers developed fault-tolerance and recovery algorithms for 

reliable execution of scientific workflows on computational grids and validated 
them using meteorological workflows from LEAD. In particular, the fault-
tolerance techniques increase the reliability of workflow executions through 
over-provisioning and migration of workflow steps.  

 
• VGrADS researchers have continued development and evaluation of grid 

scheduling heuristics. We previously presented a two-phase strategy of a simple 
virtual grid selection phase (picking “good” resources to run on) followed by 
good scheduling heuristics (such as the HEFT algorithm) for optimizing 
workflow application performance. We also developed schedulers that combine 



VGrADS Activities  45 

estimations of application performance and batch queue wait times to generate 
high-quality schedules in slotted virtual grid environments. This year, we 
developed additional methods for executing workflow applications on batch 
queue controlled resources, and (in separate work) integrated overprovisioning 
and checkpointing into list-based schedulers. 

 
• VGrADS researchers have investigated the feasibility of implementing cloud-

computing services in research and scientific computing contexts.  Commercial 
cloud-computing services are well suited to web-service deployment and large-
scale text search.  Eucalyptus demonstrates that these services can be provided 
by existing, locally deployed clusters that are servicing a scientific user 
community. 

 
• VGrADS researchers have demonstrated that effective batch-scheduling 

protocols with provable incentive properties (e.g. incentive compatibility) can be 
developed, both from a theoretical perspective and in implementation. 

 
• VGrADS researchers have studied the feasibility of traditional compiler 

optimizations for grid computing systems. Previous reports have documented 
the effectiveness of optimizations such as register allocation in the context of 
just-in-time compilation. This year, we have studied the requirements of system-
specific auto-tuning of FFT software, which can be used to significantly 
improve individual node performance in a grid environment. This work supports 
the VGrADS philosophy of using local compilation to enable heterogeneous 
executables. 

 
• VGrADS researchers have developed the FT-MPI library to provide process-

level fault tolerance based on the MPI 1.2 standard, with excellent performance 
(comparable to MPICH2 or LAM). This work is being incorporated in the 
OpenMPI project, which is creating a completely new MPI-2 implementation 
using the best library technologies and resources available. New work this year 
has included evaluation of the Binomial Graph Network as a basis for fault-
tolerant message passing layers. 

 
2) Contributions to Other Disciplines  
 
As indicated in the VGrADS highlights listed under “Contributions within Discipline,” 
many of the ideas and associated implementations developed under the VGrADS 
project are relevant to application researchers interested in or currently using grid 
computing.  The VGrADS project has also supported the development and/or 
enhancement of software packages that are used by a variety of application groups, 
including those application groups directly collaborating with VGrADS researchers.   
 
3) Contributions to Human Resources Development 



VGrADS Activities  46 

 
The VGrADS project has provided computer science research opportunities for 
graduate students and postdoctoral associates, including individuals from 
underrepresented groups. Through participation in VGrADS project meetings, email, 
and phone conversations, students and postdoctoral associates have been able to interact 
with, learn from, and contribute toward the research of off-site VGrADS participants.  
The multi-site nature of this project has exposed participants first-hand to a wider range 
of research approaches and specialty areas than would typically be possible. Notably, 
this includes discussion and collaboration with several world-renowned researchers 
from other institutions with whom the students would not normally interact. 
 
With support from their institutions, VGrADS PIs continue to develop and teach a 
variety of courses that cover Grid technologies and other aspects of high performance 
parallel and distributed computing.  Most notably, this includes the Computational 
Science for Engineers course that VGrADS PI Jack Dongarra has regularly taught since 
2007. 
 
VGrADS researchers and staff have been actively involved in efforts to encourage 
middle-school and high-school students, undergraduates, and graduate students from 
underrepresented groups to pursue careers in science, math, and technology fields.  The 
programs and activities for students from underrepresented groups, which are described 
in more detail under “Outreach Activities,” have included summer research experiences 
for undergraduates; mentoring programs for graduate students, undergraduates, and 
middle- and high-school students; seeking funding for fellowships to increase diversity; 
and participation in conferences devoted to increasing diversity in computer and 
computational science. 
 
VGrADS researchers have presented VGrADS research results and ideas in a variety of 
forums, including technical computer science presentations, presentations to 
applications groups, and presentations to students.  In particular, the VGrADS project 
was involved in a variety of outreach activities at the SC08 conference in Austin, TX 
(November 15-20, 2008).  VGrADS activities at SC08 are discussed under both 
“Outreach Activities” and “Project Activities.” 
 
4) Contributions to Resources for Research and Education 
 
There is nothing to report at this time. 
 
5) Contributions Beyond Science and Engineering 
 
There is nothing to report at this time. 
 
 
 


