
D Project Description

The Grid [32]—the use of the global information infrastructure as an active computational resource to solve
real-world problems—is gaining wide acceptance as the next step beyond the Internet. It promises on-
demand access to and integration of distributed data archives, scientific instruments, computing resources,
and advanced services in a way that is more flexible and powerful than has been previously possible. As
a result, the Grid is becoming a critical tool within many scientific communities and is being adopted by
a growing range of industries and commercial endeavors. This rise to prominence is being supported by
ambitious research programs in Grid middleware that target key technical challenges, such as security, re-
source discovery, and resource management, and by projects such as the NSF TeraGrid and NSF Middleware
Initiative (NMI) that are creating hardware and software infrastructure.

Impressive Grid applications have been demonstrated (e.g. [28, 32, 37, 49, 78, 19, 6, 4, 16]), and major
application frameworks are being constructed (e.g. the Grid Physics Network (GriPhyN) [39, 18] and the
National Earthquake Engineering Simulation Grid (NEESgrid) [63, 72]). Still, because Grid program de-
velopment is complex, it remains the exclusive province of large teams of specialists. Before the Grid can
realize its true potential for both science and industry, major research advances are needed in programming
models and tools for developing Grid applications and services.

Recognizing this need, we initiated the Grid Application Development Software (GrADS) Project to
conduct fundamental research on software tools, programming models, and run-time services for scientific
Grid computing. Over the past three years, this NSF-supported research has produced the foundation for
an evolving compilation and execution infrastructure, GrADSoft, that we have used to conduct a range of
experiments with several applications [64, 73, 20, 24, 57], thus validating the basic GrADS approach while ex-
posing a number of remaining challenges. Principal among these critical problems are the difficulty of quickly
and scalably identifying appropriate resources and the need for more powerful programming abstractions.

To address these issues, we propose the Virtual Grid Application Development Software (VGrADS)
Project, a five-year research effort that will substantively broaden and deepen both the research agenda and
technology base established under GrADS. VGrADS will develop new strategies that reduce development
effort for current classes of Grid services and applications and enable development of new services and
applications that realize the Grid’s full power. By design, these strategies will scale to handle larger Grid
configurations and meet increased user demands.

A key lesson from GrADS is that the complexity of the Grid resource environment induces complexity
in software development and execution. Resource heterogeneity, dynamically fluctuating loads, and the
interaction between local users and resource policies substantially complicate the development process. In
addition, the number and diversity of Grid resources make effective resource selection challenging. To obtain
acceptable resource utilization and application performance, expert programmers currently must develop
sophisticated, ad hoc heuristics that require much tuning and debugging to be effective. To ease this problem,
VGrADS will adopt the concept of virtual grid (vgrid) architectures as a fundamental organizing principle.
Vgrids cleanly separate high-level programming tools, applications, and services from the complexity of
dynamic Grid scheduling and resource management. This approach is analogous to one that has proven
effective in sequential and parallel computing contexts, where optimizations target abstract uniprocessors
and multiprocessors rather than the physical resources themselves. The same concept will form the basis of
our approach to simplifying the task of Grid application development. Creating, refining, and implementing
successful vgrids requires a large-scale, integrated attack at all levels of the system hierarchy.

As depicted in Figure 1, VGrADS will abstract the Grid into (1) physical resources (e.g. data archives,
computing systems, and instruments); (2) abstract resource classes with specified attributes, formed by
aggregating and conditioning physical resources; (3) vgrids, composed of components from abstract classes;
and, finally, (4) a set of abstract programming models and development tools that target vgrids as application-
and service-visible execution interfaces.

VGrADS research will focus on two major areas: execution environments and programming tools.
Execution environment research will explore the synthesis, coordination, and measurement of vgrids, lever-
aging, where possible, emerging Grid services. The goals of this work are to explore (1) virtualization of
resource and Grid service aggregates; (2) intelligent, rapid resource selection and management in complex,
heterogeneous environments; (3) performance measurement and tuning to achieve high individual applica-
tion performance; and (4) fault-resilience through replication and intermediate program state management.

Project Description Page 1 of 15

Current
GrADS

research

Applications and Users

Specific
Resources

Resource
Classes

Virtual
Grids

Programming Models

P
ro

g
ra

m
m

in
g

 T
o

o
ls

E
xe

cu
ti

o
n

 E
n

vi
ro

n
m

en
t

Abstract component machine

Abstract parallel machine

ClusterClusterClusterCluster
Data

Archive RadarNetwork
Micro-
scope

Data
IA64

Clusters
Pentium
Clusters

Low
Quality

Low
Reliability

Reliable, Unix
Compute-intensive,

MPI Env.

Cycle
Harvesting

Best Effort Bandwidth
from Replicated Data

Archive

TeraGrid
compatible

Figure 1: VGrADS virtual machine layers. The shaded region in Figure 1 represents the subset of Grid
abstractions that have been the subject of GrADS research to date.

The resulting system will enable the nimble adaptation of applications to changing Grid conditions.
In execution system design, fundamental Grid components (resources or well-defined Grid services) are

aggregated into resource abstraction classes. The resource selection and management infrastructure culls
resources from these classes into vgrid structures that support the requirements of the application through
higher-level programming tools. Thus, resource abstraction classes organize the diversity of resources that
are available, and vgrids implement structure (specified by applications’ needs) on those resource classes. To
allow adaptation as Grid conditions change, the execution system abstractions include facilities to monitor
application and resource performance at all levels. Finally, schedulers (based on abstracted resources) adapt
and control application execution based on performance as measured and forecast by the infrastructure.

Programming tools research will explore the mapping of two distinct, high-level programming models to
vgrids. The abstract parallel machine model treats a computation as a collection of parallel tasks without
concern for mapping that computation to the actual hardware. The abstract component machine model,
on the other hand, represents a computation as a (possibly dynamic) graph of component invocations with
specific data dependencies. In this model, applications and services might be high-level scripts that invoke
operations from a component integration framework. The VGrADS execution system, working on behalf of
the application, will use vgrids to instantiate both of these programming models.

By carefully formulating layers of abstraction to enable efficient interaction, VGrADS will dramatically
broaden the scope and scale of applications that can exploit Grid capabilities. By leveraging abstraction to
improve ease of use, VGrADS will increase the number of programmers who can create Grid applications.
By implementing those abstractions efficiently and portably, VGrADS will expand the computational envi-
ronments where those applications can succeed. By fostering research, education, and technology transfer,
VGrADS will change the way scientists, engineers, and other professionals solve their everyday problems.

D.1 Results from Prior NSF Work (GrADS Project)

Since 1999, the GrADS project [NSF award 9975020, “Next Generation Software: Grid Application De-
velopment Software (GrADS)”, $7,278,015, Oct 1999-Sep 2004; NSF award 0103759, “NGS: GrADS: Effi-
cient Script-Based Application Development for Networked High Performance Computing Environments”,
$1,300,000, Oct 2002-Sep 2003] has conducted fundamental research on the technologies needed to make the
Grid usable as a computationally-rich problem-solving system [48, 13, 27]. To date, GrADS has produced a
coherent vision for an execution environment and application development tools that will make it far easier to
produce Grid-ready applications in the future. Figure 2 illustrates the program development structure that

Project Description Page 2 of 15

GrADS
Compiler

GrADS
Libraries

PCPC
PC

PC
Performance
Contract

Iterative
runtime process

P
S
E

Binder

Realtime
Monitor

Performance
Contract
Violation

Service
Negotiator

Scheduler

Grid
Runtime
System

Appli-
cation

Config-
urable
Object

Program

PC PC
Software

Components

PCPC
PC

Performance
Feedback

Negotiation

GrADS Execution
Environment

GrADS Program
Preparation System

Figure 2: GrADS Program Preparation and Execution Architecture

has been pioneered by the GrADS project. In the GrADSoft architecture, the discrete steps of application
creation, compilation, execution, and post-mortem analysis have been replaced with a continuous process of
adapting applications to an evolving set of Grid resources and problem-specific requirements.

Two key concepts are central to this approach. First, applications are encapsulated as configurable object
programs (COPs), which can be optimized rapidly for execution on a specific collection of Grid resources.
In the current GrADS system, a configurable object program includes: (1) code for the application (e.g. an
MPI program); (2) a mapper, which determines how to map the constituent application tasks to a given set
of resources; and (3) an executable performance model, which uses the mapper to estimate the application’s
performance on a set of resources. Second, the system relies upon performance contracts that specify the
expected performance of modules as a function of available resources. The GrADS research program has
studied both the execution and program preparation components of this architecture.

GrADS Execution Environment. The right side of Figure 2 depicts actions when a COP is delivered
to the execution environment. The GrADSoft infrastructure first determines which resources are available
and secures an appropriate subset for the application. Using annotations from performance contracts and the
COP’s mapper and performance model, service negotiators broker the allocation and scheduling of module
components on Grid resources. Next, the infrastructure invokes the binder to tailor the COP to the available
resources. The binder also inserts sensors and actuators to let the performance monitor control application
execution. The launcher (not shown) then presents the tailored COP to the run-time system for execution.

During program execution, a real-time monitor tracks program behavior and validates observed behavior
against performance contract expectations. If a performance contract is violated, the monitor responds by
interrupting execution through an actuator, triggering several possible actions. The actuator can invoke
the binder with more data (from performance monitoring) to improve behavior in the current execution
context, negotiate a new execution context where the existing executable is more likely to satisfy the old
contract, or do both by negotiating a new context and tailoring the COP for it. Dynamic forecasts of resource
performance and Grid capacity reduce renegotiation overhead. Thus, this closed loop system ensures that
execution of the application meets the specifications of its performance contracts in the constantly changing
Grid environment.

GrADS Program Preparation System. The left side of Figure 2 depicts the tools used to construct
COPs. GrADSoft supports two paths for application development. In the first, the developer uses high-level
problem-solving environments (PSEs) or services to assemble Grid applications from a toolkit of domain-
specific components. In the second, the developer builds the specialized components that form these PSE
toolkits (e.g. a library for solving PDEs) or creates new modules for their specific problem domain.

The program preparation system provides tools to assist in either scenario. These tools automatically
construct performance models and mappers. They integrate modules written in derivatives of standard
languages with Grid-specific extensions (e.g. data or task distribution primitives) into larger components,
libraries, and applications with a coordination language. They create malleable modules, annotated with

Project Description Page 3 of 15

information about their resource needs and predicted performance for a variety of resource configurations.
The focus of this research is on tools to free the user from many of the low-level concerns that arise in

Grid programming using the GrADSoft infrastructure, and to permit the user to concentrate on high-level
design and performance tuning for the heterogeneous distributed computing environment.

GrADS Project Status GrADS has realized several important research achievements. First, we have
adapted six (mostly kernel) applications for Grid execution. These applications were chosen to drive the
research rather than as exemplars of ideal Grid applications. The applications include: (1) a version of the
LINPACK benchmark, which was chosen as an exemplar of a tightly coupled application that amplifies the
importance of good scheduling and performance modeling [65, 64]: (2) the Cactus numerical relativity toolkit,
which was used to study scheduling and migration of large computational components in problem-solving
systems [74, 4, 3, 73]; (3) the gene sequence matching application FASTA, which has driven the application
of the GrADS scheduling approach to problems requiring fixed-location resources such as databases; (4) a
general class of iterative stencil applications, which we used to develop and demonstrate a novel decoupled
scheduling strategy for GrADS [24, 26, 25] as well as for exploring rescheduling [79, 80]; (5) GrADSAT, a
satisfiability application for circuit design, which requires dynamic scheduling of new tasks at run time [20];
and (6) an HPF version of the mesh generation benchmark tomcatv, which was used to explore task graph
clustering as a high-level mapping strategy [57]. (A recent version of our HPF compiler, developed for the
POEMS project [1, 2], produces SPMD task graphs.) These application studies led to many insights and
numerous publications. The Cactus work led to a Gordon Bell prize at SC’01.

Second, we designed and constructed a prototype execution system based on the preliminary application
studies. It takes a COP and matches it to available resources [83, 84] using an optimization procedure
that calls the application performance model as an objective function [25, 100]. Next, it launches the COP
on the Grid via Globus and monitors execution to check if performance is acceptable [90, 89, 53, 60]. The
GrADSoft prototype was demonstrated at SC’02 on FASTA and GrADSAT (described above). All six
applications currently work in this prototype. The prototype does not yet handle contract violations or
perform rescheduling; both will be incorporated by SC’03.

Third, we have developed several prototype tools for constructing GrADS applications. These include
a tool to import Condor ClassADs [85] for application and resource mapping [52], initial designs of Grid-
enabled libraries [61, 29, 62], a prototype system to construct performance models from application binaries
[58], and a prototype tool to build mappers and performance models from application task graphs [57].

Finally, to support research and empirical evaluation, we have constructed two research testbeds. The
MacroGrid consists of Linux clusters with GrADS software installed at several participating GrADS sites.
This testbed has been used to validate the prototype framework [96] and for the application studies de-
scribed above. (Some of the software systems developed for the MacroGrid, such as the VO-grid information
system [83], have been incorporated into the NSF Middleware Initiative (NMI) and other standard Grid
middleware.) The MicroGrid is a software testbed that runs on clusters and permits experimentation with
extreme variations in network traffic and loads on compute nodes [81]. This software, which will make it
possible to validate the rescheduling function of GrADSoft, will have an initial public release in May 2003.

GrADS also spawned a significant body of work [88, 87, 11, 22, 38, 47, 50, 99, 86, 98, 77, 5] not discussed
here. The GrADS web site (http://hipersoft.cs.rice.edu/grads/) contains preprints of most of these
papers.

D.2 Proposed New Research

As many have noted, the long-term success of any technology rests on its ultimate invisibility. New technolo-
gies are successful when they empower and enable new human activities rather than enmeshing their users in
the details of the technology. Desktop software packages and the web empowered millions of new computer
users, few of whom understood or even desired to understand how the underlying systems work. The Grid,
in its current nascent state, bears many similarities to earlier technologies—the potential is great, but its
impenetrable complexity limits its use to only a small cadre of sophisticated users and software developers.

Despite these usability limitations, the Grid’s enormous potential has catalyzed large investments in Grid
technology and infrastructure by both industry and government. These investments have focused on the
development of low-level, interoperable protocols, services, and software packaging, much as early Internet
development did. The result is some degree of interoperability and technology invisibility. However, the

Project Description Page 4 of 15

critical issues that VGrADS will address (e.g. simplified Grid application development, user-friendly services,
and resilient execution contexts on the changing Grid) have been the subject of only limited research.

These observations motivated GrADS, which explored and validated the power of intelligent resource
selection services, automatic application scheduling and adaptation, and quantitative performance contracts
to track and control application behavior. While this research has generated important new results, it also
exposed the key challenge for VGrADS—the explosion of complexity in the Grid resource environment makes
timely collection of resource status and rapid, intelligent choices for adaptation by compilers and schedulers
difficult.

VGrADS will simplify application and Grid service development by introducing a powerful set of appro-
priate abstractions and service constraints. These abstractions will constrain the execution context from
above with performance contracts and from below with virtualized resource capabilities. In VGrADS, we
will explore this approach using resource abstraction classes, vgrids, and program preparation schemes for
vgrids. We will collaborate with discipline scientists on a spectrum of Grid applications to drive research,
development, and testing of the VGrADS software infrastructure. Figure 1 depicts this vision, with the Grid
represented by a layered collection of abstractions and associated service provisions.

At the lowest level of Figure 1, physical resources form building blocks for resource classes, each with an
associated set of well-defined characteristics. As the Grid grows to include millions of heterogeneous systems,
identifying resources with appropriate attributes for an application (e.g. a 32-node x86 Linux cluster with 4
GB node memories) becomes increasingly problematic. Hence, abstracting irrelevant detail and simplifying
resource identification are critical to Grid scaling. This is particularly true for dynamically selecting resources
in adaptive VGrADS applications.

The vgrid layer is the heart of Figure 1, providing hierarchical views of distributed resource collections,
their properties, and their structure. Above the vgrid layer, programming tools and abstractions target sim-
plified (and perhaps customized) vgrid resource views. Below the vgrid layer, resource managers, schedulers,
and run time systems condition and ensure expected behaviors (or ranges of behaviors) for resource and
service collections and classes. Thus, a vgrid provides programming tools and applications with timely and
scalable access to both resource information and resources. As a result, vgrids provide a simpler information
target for resource monitoring, application performance monitoring, and performance prediction.

The multi-level abstraction of Figure 1 is consistent with current Grid research trends toward higher-level
virtualized services (e.g. reliable storage) [33]. It realizes the principle of invisibility described earlier, enables
separation of concerns, eases the burden of Grid programming and increases the number of resources that
can be incorporated effectively. The research challenge lies in determining appropriate abstractions, resource
definitions, policy implementations, and programming interfaces.

The VGrADS project will focus on understanding appropriate vgrid abstractions for application use,
and the types of virtualization (i.e. specifications and abstraction schemes) that most benefit application
development. Our approach will be experimental, resting on two principles: (1) deep engagement with do-
main scientists who are developing large-scale Grid applications and (2) iterative specification, development,
testing, and experimental assessment of the vgrid infrastructure. Figure 3 illustrates this process, which is
similar to that used in the successful GriPhyN project. Research is guided by the challenges faced by domain
scientists in multiple areas (see § D.2.3), each chosen to expose a unique set of Grid problems. Applica-
tion work highlights aspects of the evolving system that should be the subjects of additional research. The
MicroGrid and MacroGrid testbeds, together with new VGrADS software, will form the basis for rigorous
experimentation with the applications. This process will produce software prototypes and infrastructure
suitable for use by the scientific community.

An iterative cycle of research, prototype development and experimental assessment with large-scale ap-
plications is central to our research plan. As Table 1 in § D.4 shows, during the five year project lifetime, we
plan to complete two major cycles of research and testing, culminating in a public software release for each
cycle. In the remainder of this section, we describe the VGrADS execution system, program preparation
system, and initial application suite.

D.2.1 VGrADS Execution System (Chien, Berman, Casanova, Dongarra, Kesselman, Reed, Wolski)

The VGrADS execution system, as shown in Figure 1, consists of two key elements: layered resource abstrac-
tions (vgrids, resource abstraction classes, and individual resources) and execution system technologies that
provide critical capabilities atop those abstractions (scheduling, on-line performance monitoring and fault

Project Description Page 5 of 15

Informs

Refines

Exploits

Enables

Discipline Science

Better-Educated
Students & Staff

Better Insight
Into Needs

New and
Enhanced

Science

F
e
e
d
b
a
c
k

F
e
e
d
b
a
c
k

Computer Science
Research
Insights

Better-Educated
Students & Staff

Software
Tools

Prototype
Implementation

Validated
Ideas

Define

Enable

Grid
Applications

Application
Requirements

Grid Testbed
Development

Virtual Grid
Research

Application
Experiments

Virtual Grid
Development

Figure 3: VGrADS Collaborative Engagement.

tolerance). While we discuss these separately to highlight key technical differences, they will interoperate
within a uniform services model (such as OGSA [33]) to form a comprehensive execution environment.

Resource Virtualization. VGrADS resource virtualization (with corresponding resource quality and per-
formance guarantees) enables separation of concerns, easing the burden of Grid programming and simplifying
resource inclusion [83]. The system we propose employs a two-layer approach to resource virtualization. First,
resource inspection, characterization, conditioning, and classification are combined, enabling categorization
of available resources into resource abstraction classes. Resources within the same class are deemed equiva-
lent with respect to the categorizing attributes, which may be static (e.g. operating system type or machine
architecture), dynamic (e.g. forecast available processing speed or I/O performance), or both.

Second, application, user, resource, and site administration data and policies are used to select resources
from various classes and assemble them to form vgrids that meet specific application needs. Performance
contracts—a powerful abstraction developed as part of GrADS—specify the topologies for vgrid structures
and provide a mechanism for monitoring their stability. Intuitively, resource abstraction classes characterize
the available “raw material,” and vgrids impose a structure over that material as mandated by application
and user requirements.

Virtual Grids. A vgrid is a collection of resource aggregates that is considered when the scheduler
instantiates an application’s specific abstract parallel machine or abstract component machine (see §D.2.2).
Vgrids can be constructed for individual users, applications, or virtual organizations. Vgrids are a scoping
and organizing mechanism to manage the tremendous resource complexity of emerging Grid environments.

More specifically, vgrids structure the sets of resources most relevant to an application, and they provide
the needed behavioral guarantees for resource ensembles and their interactions. For example, if an application
needs a specified amount of physical memory, a vgrid may aggregate that capability from the resources
belonging to different resource abstraction classes, each specifying resources having a different memory
capacity and reliability. Individual resource characteristics are embodied in the classifications, allowing the
vgrid to compose these characteristics to meet the application needs.

Vgrid specifications should include resource requirements (e.g. reliability, tightly-coupled performance or
large memory) user policy requirements (e.g. access permissions, priority or storage quota), compatibility
with historical user and application usage patterns, and proximity to critical data collections. Clearly,
there are competing tensions between resource breadth (inclusiveness) and efficient selection (exclusivity).
Consequently, vgrids will contain rich hierarchical structure, enabling program preparation tools, run-time
schedulers, and applications to work at different levels of abstraction, balancing rapid decision making against
fine-grained control when selecting resources.

For example, a data-intensive application might require a large, central data node and a set of well-
connected compute nodes (i.e. a master/slave organization). The vgrid for such an application would provide
a set of “aggregates” each of which is a data node (with replicas of the desired data) well-connected to
compute resources, where the compute sites are not necessarily well-connected to each other (i.e. in a “star”
topology). Such a vgrid dramatically simplifies resource selection for the application.

Project Description Page 6 of 15

Resource Abstraction Classes. Resource abstraction classes categorize the raw capabilities of phys-
ical resources while eliding the unmanageable detail arising from the wide diversity that organizing them
as a Grid brings. For example, there are many thousands of hardware configurations in even a small slice
of the Internet [76]. Without abstractions, this explosive diversity will require application developers and
run-time systems to identify and track physical resource locations, attributes and behaviors, system software
versioning, etc.—a daunting task.

As part of VGrADS, we will develop scalable techniques for dynamically creating and maintaining resource
abstraction classes. By providing a hierarchical approach to managing the Grid, these abstraction classes
will reduce the complexity of resource discovery and acquisition, as they will pool resources into logical
collections from which useful aggregates, with known properties, may be built.

Resource abstraction classes can be formed based on simple static properties such as software or hardware
configuration, physical connectivity, ownership and location, more complex static properties such as cluster
structure and batch scheduling capabilities, or dynamic properties such as availability, deliverable compute
performance or deliverable communication performance. These characteristics can be derived by inspection,
statistical characterization, prediction (e.g. NWS-like forecasting techniques [97, 95]), or by declaration from
an appropriate, trusted authority. These properties can also be negotiated, arising from service-level agree-
ments and Grid protocols such as SNAP [23]. In some cases, effective resource classification may leverage
extant software virtualization technologies. Thus, to support resource abstraction classes we will explore
use of commercially available virtual machines (e.g. VMWare, J2EE, and Connectix) to deliver performance
as a commodity and reduce the overhead of software configuration management for Grid resources. We
will also investigate mechanisms to ensure performance stability guarantees that are most appropriate for
constructing resource abstraction classes. As such, our work will balance optimized local system efficiency
and overall Grid resource stability—a tradeoff unexplored by previous research.

Execution System Services. In addition to vgrid resource abstractions (and underlying Grid informa-
tion services, security, and resource access mechanisms), the VGrADS execution system must provide system
services to support COPs executing on an abstract parallel or component machine, while meeting the ex-
pectations of a performance contract using the underlying vgrid resources. Key services include on-line
performance monitoring, fault tolerance, and scheduling for vgrids. Scheduling services enable rapid, effi-
cient resource selection within a vgrid; fault tolerance services enhance the reliability of a Grid resource; and
performance monitoring services enable application adaptation based on surprising realized performance.

On-line Performance Provisioning. Our GrADS experiments show that understanding Grid per-
formance requires on-line assessment of multilevel interactions among applications and changing Grid re-
sources. Given this assessment, dynamic adaptation is often necessary to deliver soft performance “guaran-
tees” to Grid applications. The VGrADs framework provides simplifying abstractions for multilevel perfor-
mance inspection, exporting critical monitoring information for use by programming tools.

Within this framework, we will develop novel techniques for on-line performance evaluation and adaptive
multilevel assessment for physical resources, resource abstraction classes, and vgrids. By evaluating these
models in terms of their published accuracy, the scheduler can select appropriate vgrids for application exe-
cution (e.g. based on a balance of performance and reliability) and validate run-time behavior by comparing
observed and model-predicted behavior. Additionally, these models will enable post-mortem analysis for
construction of new vgrids.

Our new models will combine work on application signatures (compact representations of trajectories
within behavioral metric spaces) [53] and performance estimates for time to completion. We will explore
statistical techniques that enable scalable performance and reliability estimation for vgrids containing tens
or hundreds of thousands of entities, while explicitly balancing measurement overhead and specificity. Given
performance models and intelligent measurement, on-line evaluation and remediation will trigger multilevel
adaptation based on an extended notion of the original GrADS performance contract. We will build on
non-parametric adaptive statistical techniques for reasoning about time varying behavior, fuzzy logic for
decision making, genetic programming techniques for evolving new control systems, and market economics
for decision making.

Reliability Provisioning. The large-scale Grid differs from parallel systems in having greater behav-
ioral uncertainty, both in expected performance and reliability. Just as performance provisioning reduces
application complexity by associating software performance guarantees with the underlying vgrid, reliability

Project Description Page 7 of 15

provisioning enables long-running Grid applications atop intrinsically unreliable components.
To provide reliable vgrids, we will explore techniques for fault tolerance and computation migration.

Fault tolerance techniques can help exploit the computational resources of the Grid without compromising
its highly flexible design. Similarly, vgrids hide the identity of physical resources, enabling migration of
application components while preserving the vgrid.

We will develop reliability scaling models based on measured behavior of Grid components. To enable
resource classification on the basis of reliability, we will exploit our measurement infrastructure, based on
both active probing of Grid resources and passive measurement [60] as well as commercial packages to
populate a database of failure intervals and modes. This work will also use measures of system failure and
recovery modes (e.g. software memory and recoverable disk errors, temperature sensors, and network errors),
to develop predictive techniques for failure modes.

Using this failure database, we will develop scaling models that estimate component and aggregate
availability. The resulting scaling models will enable construction of vgrids which meet a variety of reliability
specifications. These vgrids can then be combined with fault-tolerant MPI libraries, in-memory checkpointing
and recovery, and task migration to meet a desired level of application reliability. Intuitively, this approach
shifts computations to new resources when a current resource fails or cannot meet performance guarantees.

Virtualized Scheduling and Resource Selection. Effective resource selection and scheduling (of
both data and computation) are critical performance factors for Grid applications that demand high appli-
cation performance with maximum resource efficiency, and that acquire resources dynamically. Moreover,
Grid resource selection mechanisms must be fast and robust because they can dramatically increase the
application’s run-time overhead.

Current Grid systems have limited ability to make appropriate resource selection, mapping, and schedul-
ing decisions, adopting ad hoc heuristics that are limited to simple applications and do not scale to large,
complex Grid resource environments. Vgrids will provide flexible abstractions and hierarchical structure that
let the VGrADS schedulers focus on the available computational resources to make rapid, and intelligent
resource selections in large, complex Grid resource environments.

A VGrADS application identifies its resource requirements and selects a vgrid constructed from suitable
resources (in terms of desired performance, reliability, etc.). The application manager (which contains the
scheduler) then selects appropriate resources from the vgrid (based on current performance data and available
predictions and guarantees) and negotiates with resource managers to gain access to these resources. Early
GrADS experience indicates that resource virtualization is critical to enable better scheduling decisions [26,
64, 83]. We will build on these results, developing virtualized scheduling and resource selection strategies
that accommodate a range of application-centric performance notions (e.g. turnaround time, throughput or
reliability), resources with multiple usage modes and policies (e.g. sharing model, priorities and reservation
systems), and optimization of system utilization for local efficiency metrics.

Grid Economies and Policy. In addition to this application-centric approach to resource selection
and scheduling, Grid resource management must also balance application demands against excessive resource
consumption, which can lead to congestive system collapse. Resource classification is critical to decentralized
scheduling, allowing resources to be treated as commodities, enabling a scalable approach to dynamically-
priced, decentralized resource economies. Our recent work indicates that economic-based scheduling has
provable stability qualities that are critical to meeting these challenges [99, 98]. We will explore novel
selection and allocation policies, based on economic and social science models, that promote scalable, stable,
and performance-efficient scheduling. Building on this work, we will develop VGrADSBank, a scalable
distributed resource pricing exchange. VGrADSBank will use resource abstraction classes as a baseline
abstraction and will be integrated as an extensible part of the Grid information system to support a variety
of approaches to economic-based scheduling.

D.2.2 Programming Tools (Kennedy, Cooper, Dongarra, Johnsson, Koelbel, Torczon)

Programming tools research will seek to raise the level of abstraction at which the programmer sees the Grid,
thereby reducing the difficulty and increasing the accessibility of Grid application development. Initially,
we will explore two models as targets for programming: the abstract parallel machine and the abstract
component machine. A critical challenge will be to map these models efficiently to the abstractions provided
by the VGrADS execution system. This work will build on the strategies for constructing mappers and

Project Description Page 8 of 15

performance models that we developed for the current GrADSoft prototype.

Abstract Parallel Machine. The abstract parallel machine model treats computations as collections
of parallel communicating tasks without any consideration of the mapping to physical hardware or load
balancing. Each task can run on any computational element, and each task can communicate with any other
(i.e. full communication connectivity). Intuitively, the abstract parallel machine idealizes actual parallel and
distributed computer systems by letting the programmer ignore the performance of the computational and
communication resources.

The programming tools must map this idealized model onto a vgrid formulated by the execution sys-
tem (§D.2.1). The key challenge is automating the process of load matching—mapping the computational
components onto resources in a way that minimizes some objective function (e.g. time to solution or cost).
Successful load matching will require the execution system to expose the abstract performance structure to
the programming tools in a way that hides unnecessary resource detail, while providing critical data via
abstraction interfaces. Because these interfaces are the essential mechanism for providing performance and
reliability estimates for computation, communication and memory availability, their design must optimize
the trade-off between detail and abstraction.

The GrADS project (indicated in gray in Figure 1) explored a specific instance of this problem—mapping
applications written for an abstract parallel machine to a specific instance of a vgrid (a reliable x86, Unix,
MPI environment; characterized by compute speed, memory availability, and with complete communication
connectivity [83]). VGrADS will build on these results and on experience with the MEAD application (see
§ D.2.3), to formalize, extend, and refine this approach. The work will include research on improved tools for
constructing executables, mapping executables and computations onto a vgrid instantiated by the execution
system, and moderating execution to improve performance and reliability.

Mapping Applications to Virtual Grids. In GrADS, the basic strategy for mapping both task and
data parallelism was to model a parallel program as a task graph, which was then aggregated onto real
compute resources using graph clustering [51, 8, 46]. A fundamental new challenge in VGrADS is to develop
mapping techniques that effectively exploit the virtualization strategies in the execution system. To do this,
the mapper must construct a virtualized task graph whose computations are grouped into granules—small
tasks that represent the minimal amount of work suitable for execution on a single vgrid node.

The VGrADS mapping function will be split across two phases: mapper construction and mapper execu-
tion. Mapper construction consists of all those activities that can be performed statically through program
analysis, without knowledge of the available Grid resources. Mapper execution occurs at program launch
time or at run-time (in response to a performance contract violation).

The constructor must first examine the application to identify and parameterize the space of vgrids that
are acceptable for execution. Next, it will refactor computations to control granule size. In effect, this
virtualizes the tasks, creating a virtualized task graph. Granules should be large enough to maintain a good
ratio of computation to communication, or be composable so that grain-size can be determined dynamically.
This strategy simplifies the scheduler’s task by letting it assume a roughly uniform granule size. Choosing
sizes effectively is a key research challenge.

When the mapper executes, it aggregates granules into groups to run on specific resources within the
instantiated vgrid. It must use performance models of the application and performance forecasts for the in-
stantiated vgrid to assess the expected application performance. Knowledge from these models and forecasts
will let the mapper make intelligent decisions on how to aggregate granules and where to execute them in
the vgrid chosen by the scheduler.

The interaction between mapping strategy and scheduling and between performance modeling and fore-
casting highlights the need for an integrated approach to the VGrADS suite of problems. It also shows how
critical the abstractions and interfaces are to the capabilities of the resulting system.

Performance Modeling. Both mapping and scheduling of an abstract parallel programming need
performance models to evaluate the trade-offs between different maps and schedules. The construction of
accurate performance models is a daunting challenge. In VGrADS, we will exploit prior experience in the
GrADS project along with ideas generated in other systems, such as POEMS [2], to build performance
models as required. This work will exploit both the on-line performance monitoring capabilities from vgrid
services and application-specific performance models.

The GrADS system builds hybrid performance models by combining static estimates, measurements of

Project Description Page 9 of 15

actual execution, and dynamic forecasts of resource performance. It uses tuning runs on an instrumented
executable to determine the performance sensitivity of computational kernels to varying data sizes [58]. Using
this data, it constructs an executable model that replaces execution of kernels with estimates, determines
the scaling effects, and replaces communication with estimates of the communication time. The resulting
models were sufficiently accurate to use in mapping tasks to uniform computational nodes.

To extend this to heterogeneous vgrids and to model the effects of granule aggregation, we will need
to involve both the mapper and resource performance forecasts from the execution system. Single granule
models can be built as in GrADS. To construct global performance models, the VGrADS tools will invoke
the mapper, using cost-of-communications estimates from the instantiated vgrid. The mapper will cluster
granules onto specific resources. At this point, the tools can construct and run an integrated performance
model for the mapping to obtain a more precise estimate of execution time. Once again, the interplay between
application-specific performance models and vgrid-specific performance predictions makes the modeling task
a challenging research problem.

Moderating Execution Performance. The VGrADS toolset will also include components that aim
to improve the performance of an executing configurable object program (COP) and moderate its perfor-
mance variability. This work will be applied in the compilation tools that construct COPs and in the binder
and mapper at run time.

At COP-construction time, the tools will use automatic strategies to pre-tune codes to vgrid parameters
well in advance of execution. To this end, they will apply the ideas of telescoping languages (described
more fully under “Library Preparation and Installation”) to identify opportunities for optimizing sequences
of operations. In addition, they will build on strategies pioneered in CMSSL [44, 45], FFTW [35, 36],
UHFFT [56, 61, 62], SPIRAL [66] and ATLAS [92] for tailoring code to the specific machines on which an
application will run, without the overhead of launch-time optimization.

Immediately before execution, the binder has a final opportunity to further tailor the code for a specific
computational node. We will use a virtual machine strategy to extend COP execution to new hardware
architectures, coupling fast emulation with bind-time and run-time tailoring to achieve acceptable perfor-
mance. We will also explore hybrid mapping strategies that ship object code to the data when doing so
reduces communication volume.

Abstract Component Machine. Hiding the details of parallelism from the user is one way to provide
a higher level of abstraction. We will explore a strategy that embeds parallelism within professionally-
developed software components that target either an abstract parallel machine or a vgrid directly. These
components could be realized either as Grid services or as constituent application code that is pre-staged
onto some collection of compute resources. Applications constructed in this way can be seen as programs for
an abstract component machine whose atomic operations invoke these components. For example, it should
be possible to build an application as a MATLAB program that invokes Grid-deployed numerical solver
components. We will use the abstract component machine model as the basis for two of our application
collaborations described in § D.2.3: Bioimaging (GEMS) and the Encyclopedia of Life (EOL).

As a part of this effort, we will explore the construction of problem-solving systems based on compo-
nent integration frameworks for Grid execution. As a by-product, we will produce a prototype component
integration framework that supports the development of applications via scripting languages that invoke
high-level domain-specific components. The Common Component Architecture (CCA) [7] is an excellent
starting point for our specification. To achieve reasonable performance, however, these applications will
require careful mapping of components onto the chosen vgrid along with extensive cross-component opti-
mization (probably in the binder). This strategy should enable new levels of scalability for applications such
as GEMS and EOL while eliminating the need for expert system-level programmers.

Workflow Model. Many of the strategies for component machine implementation build on previous
Grid projects focused on workflow-style applications and on our previous work in the GrADS project. In
projects like GriPhyN [39], workflow is represented as a directed acyclic graph (DAG) in which the compo-
nents to be used are nodes and the edges represent dependencies due to data transmission.

This DAG-based workflow approach is quite effective for certain applications, but it hides significant
opportunities for improvement. Task graph clustering strategies like those described for the VGrADS abstract
parallel machine might group pairs of tasks onto the same virtual resource, eliminating the opportunity to
pipeline the execution as a way of exploiting overlap. To fit a pipelining strategy into the mapper, the

Project Description Page 10 of 15

constructor should consider it as an alternative to whole-file transfer between components.
In cases where the program execution structure depends heavily on the input, the VGrADS scheduling

mechanisms will use dynamic scheduling and rescheduling. For example, the GrADSAT application (§ D.1)
requires spawning and scheduling of new tasks at run-time. This data-dependent execution profile presents an
important challenge — the mapper must group tasks and granules to a granularity that improves performance
without precluding the advantages of dynamic dispatch. Again, choosing the right granularity is critical.
It requires the appropriate interfaces to share information between the execution system and the program
preparation system. Our work on the GEMS application will employ the workflow model (§ D.2.3).

Component Services Model. To implement the abstract component machine, the binder must be
able to link and tailor executables efficiently. In § D.1 we discussed how the GrADS binder prepares the COP
for execution, including tailoring code to the resources on which it will execute. In VGrADS, the binder must
accommodate a grid services model where some software components and data archives are pre-installed on
the Grid. This “just-in-time” service model will complicate both binding and program launch. However,
it has the advantage of encouraging late-stage optimization [22] and the use of ATLAS-style tuning [92] of
individual components to the resources on which they are installed.

A key challenge of this effort is to integrate a COP using information (mappers and performance esti-
mators) specific to the components but in a way that exploits the scalability of vgrids. Under the services
model, the VGrADS execution system will not only indicate which Grid resources can execute a specified set
of software components but also provide a performance model for each component on each resource. These
attributes must be transparent across the vgrid layer so that the mapper can invoke a global constructor to
combine them into a performance model for the entire application. This process will also involve integration
of performance models for virtualized resources provided by the VGrADS execution system. In some cases,
the integrated performance model itself may need to run on the Grid.

Library Preparation and Installation. To support the component services model, VGrADS needs
mechanisms for installing component libraries on specific Grid computational resources and registering them
with Grid information services. It must be possible for the launch-time mapper to evaluate and exploit
combinations of components that can be optimized to run together on that resource with higher performance
than if they are used individually. To accomplish this, we plan to build on the telescoping languages
strategy [47, 59], which speculatively optimizes sequences of component invocations when the component
library is created. The goal is to produce highly-optimized library services for specialized contexts that are
likely to occur frequently in programs using the library.

For VGrADS, this optimization would occur when the library is installed on a particular platform. At
that time, knowledge of the target platform allows intense optimizations such as ATLAS-style performance
tuning [92] as well as more standard transformations [22]. The optimizing installation process will be
computationally intensive, but it only needs to be done when new libraries are installed—perhaps a few times
per year. After installation, the tools must register the target machine with the VGrADS information system,
to indicate that it offers the library and provides performance models and mappers for the components. This
lets the vgrid layer serve this information to the abstract component machine mapper.

D.2.3 Application Partnerships

The potential applications of Grid technology span the entire continuum of computational science and
engineering. Hence, we believe it is critically important to choose a set of “driving applications” that
represent distinct, representative points along the continuum. The three target applications, drawn from
biology and engineering, all contain a significant number of interacting computation and data management
components, and they typify the Grid needs of the next generation of computational science applications.

These driving applications will guide both VGrADS research and software development, yielding a flexible,
robust vgrid infrastructure. Equally important, the domain scientists associated with each application are
committed to deep and substantive collaborations with the VGrADS team.

As previously noted, our research and development model, illustrated in Figure 3, is an iterative one.
Insights from experiments will shape and inform successive generations of VGrADS software. Based on
experiences and deployment, we will add new applications during years 4 and 5 of the effort. For this use,
we will choose scientifically important applications that can drive VGrADS development into new areas.

Project Description Page 11 of 15

Grid Enabled Molecular Structure determination (GEMS). (Lead Scientist: Wah Chiu (Baylor);
VGrADS Lead: Lennart Johnsson (Houston)) The determination of 3-D structure of large macromolecu-
lar complexes (“particles”) made up of multiple molecular components is an important goal in structural
genomics and proteomics. Electron cryomicroscopy that has been successfully applied to virus pathogens
[14, 102, 101, 43, 21] also has the potential to reveal folds of individual molecular components and their in-
teractions responsible for the normal and abnormal states of the complex in proteomics research [34, 75].
Biochemical and electron cryomicroscopy improvements in combination with the Grid hold the promise for
macromolecular structure determination to become a high throughput and high accuracy technology for
structure determination, data mining, sharing and visualization in proteomics research.

In electron cryomicroscopy each microscope can produce several terabytes of data a year and many groups
have multiple microscopes. The frames from the microscopes are deposited in a database for access by a
suite of software tools designed to perform reconstruction, mining, and visualization of 3-D structures. A
project may require thousands or tens of thousands of frames with dozens to thousands of particles per
frame. Depending upon the object, structure determination may need tens of thousands to millions of
particle images. The computational requirements for this phase alone range from petaflops to exaflops.

The processing steps for structure determination are: localization of particle images within frames, power
spectrum characterization on a per-frame basis, initial structure determination, and a complicated iterative
refinement process. Multiple iterations of image deconvolution and structure refinement are necessary, with
the number of cycles depending on the structure and desired resolution. Some of the stages have modest par-
allelism and computational requirements while others are highly parallel and require extensive computation.
Furthermore, some stages operate on frames, others on particles or collections of particles. This poses chal-
lenges for developing the VGrADS resource abstractions, vgrids, component machine models, and parallel
machine models. The VGrADS resource abstractions, together with the mapping and launch mechanisms,
will facilitate the use of the Grid for GEMS and similar applications with diverse computational and data
resource needs. The database represents a fixed Grid resource, whereas the various computational resources
can be selected to optimize use of available Grid resources while meeting component needs.

Initially, we will develop and evaluate VGrADS resource abstractions by creating COPs for the structure
determination package EMAN [54, 55] developed at Dr. Wah Chiu’s National Center for Macromolecular
Imaging. EMAN is designed to automate as much of the single particle reconstruction process as possible
and contains a number of tools for post-processing the reconstructed volumes [42].

Encyclopedia of Life (EOL). (Lead Scientist: Mark Miller (SDSC); VGrADS Lead: Fran Berman
(SDSC)) EOL [30] is an ambitious collaboration led by the San Diego Supercomputer Center to analyze and
archive the three-dimensional structure and function of protein sequences from all publicly available genomes.
EOL will have dramatic impact on fundamental and pharmaceutical discovery research as it integrates all
information about proteins across the biological scales. There is a natural synergy between EOL and GEMS,
as results obtained in GEMS calculations can be stored in EOL’s federated data archive.

The main computational EOL activity is the characterization and functional description of protein se-
quences from all publicly accessible genomes—currently over 800 genomes. Using current algorithms and
technology, this calculation will require approximately 800 processor years. The number of raw DNA se-
quences is doubling every 6-8 months. Hence, leveraging available Grid resources is critical to EOL’s success.

EOL sequence characterization is a loosely coupled application—each genome and each sequence within a
genome can be characterized independently. These computations are often I/O intensive and require access
to biological sequence databases (which must be distributed, replicated, and updated periodically), thus
requiring data-aware scheduling strategies. More importantly, each sequence characterization involves 5 to
10 different steps, where each step is potentially a data parallel application (i.e. a parallel work flow). Such
mixed parallelism is known to pose difficult problems [17, 12, 31, 91, 82], and will be an excellent test for
VGrADS technology. Due to mixed parallelism, EOL requires both VGrADS machine models: the abstract
component machine model to describe the application at a high level, and the abstract parallel machine
model at a low level. We will apply the VGrADS programming tools and methodology to EOL to obtain a
version of the application that is amenable to adaptive execution on the Grid.

From an execution perspective, mixed parallelism raises challenges in terms of application scheduling,
and several heuristics have been proposed in the literature [67, 68, 70, 71, 15, 9, 10]. Due to the nature of
Grid environments (e.g. dynamic performance characteristics, interconnection over complex networks) it is
extremely difficult to apply these techniques directly to EOL. The vgrid concept provides both the level of

Project Description Page 12 of 15

abstraction and the hierarchical structure necessary to reason about resource selection. We will leverage
previous scheduling research results to develop new scheduling strategies targeted to vgrids.

Modeling Environment for Atmospheric Discovery (MEAD). (Lead Scientist: Brian Jewett (UIUC);
VGrADS Lead: Dan Reed (NCSA)) MEAD [94, 93] is a scalable research framework for exploring ensemble
prediction and conducting parameter studies to better understand the behavior of severe weather phenomena
(e.g. heavy rain producing mesoscale convective systems, damaging supercell/tornadic storms and destruc-
tive hurricanes [69]). In both cases, one must conduct a large suite of simulations and compare the results.
These comparisons may be used to provide probability forecasts and estimates of forecast skill, to determine
the sensitivity of severe weather structure and evolution to environmental conditions, and to understand the
dynamic physical processes that lead to the development and decay of weather phenomena.

The number of simulations in a suite has typically been constrained by the computational and labor-
intensive nature of the process. Computational needs for any particular simulation in a research environment
are within the capabilities of a mid-sized system. However, when hundreds of simulations are needed for a
study (e.g., such as one being undertaken to study potential tornado development resulting from a positive
interaction of individual storm cells [41, 40]), the computational requirements become 100 to 1000 times
greater. Further, the analysis, data mining, and visualization support needed to glean insights from the
resulting tens of terabytes of data present a significant data management challenge, one for which current
software tools are ill-suited.

With the advent of the Grid and the NSF-funded TeraGrid, it is now feasible to conduct these simulation
suites and subsequently analyze, mine, and visualize them, as well as store the results of all components at
distributed sites. For example, coupled atmospheric and ocean models can be executed on different platforms
and can be linked effectively across the Grid. The goal of the Alliance MEAD expedition is the development
and adaptation of the cyberinfrastructure for this task. Portal Grid and web infrastructure will enable
launching of hundreds of individual Weather Research and Forecasting (WRF), Regional Ocean Modeling
System (ROMS), or coupled WRF/ROMS simulations on the Grid, in either ensemble or parameter mode.
Discovery and use metadata coupled to the resulting terabytes of data will then be made available for further
study and for educational purposes. A researcher using the MEAD work flow environment will be able to
configure and integrate model simulations, manage resulting model and derived data, and analyze, mine,
and visualize this data using a collection of software that can run on a variety of Grid platforms.

MEAD provides a third set of problems for Grid execution – ensemble scheduling, time to completion
estimation, and resource management. In conjunction with MEAD, VGrADS will not only enable suites
with large numbers of simulations to be carried out but also enable suites of suites for studying the vast
array of weather scenarios that are possible in nature.

D.3 Broader Impacts

The PIs are firmly committed to integrating education, human resource development, and technology trans-
fer programs into VGrADS. In education and human resources, we will extend the successful Education,
Outreach, and Training (EOT) programs of our previous center-style collaborations (i.e., CRPC, the Al-
liance and NPACI) to introduce Grid computing concepts. These EOT efforts will be led by Richard Tapia
and Cynthia Lanius at Rice University, with participation from personnel at all sites. In technology transfer
we will extend our contacts with academia, government, and industry to highlight VGrADS technology and
distribute software and ideas. Although the distribution efforts will focus on the VGrADS software repository
at Rice University, all sites will contribute (e.g., via participation in the National Middleware Initiative).

D.3.1 Education, Outreach, and Training (Tapia, Berman, Cooper, Kennedy, Koelbel, Reed, Wolski)

In the VGrADS effort, we will pursue projects that address graduate, undergraduate and pre-college educa-
tion, with special attention to the needs of underrepresented groups.

Richard Tapia, who has received several national awards for his work in this area, has designed the
VGrADS EOT program to focus on supporting Minority Students in Majority Institutions (MSMI). These
students are a substantial pool of talent available to expand the ranks of science and technology workers.
However, due to their backgrounds they are often not encouraged to pursue the careers they are capable
of. For example, the valedictorian of a weak urban high school who is accepted into a top-tier college most
likely will start far behind her classmates academically. Yet she may have the talent to succeed if only given

Project Description Page 13 of 15

adequate encouragement and help in catching up. One way that we will encourage our MSMI students is
by aggressively supporting two key meetings devoted to increasing diversity in computer and computational
science. The Grace Hopper Celebration of Women in Computing (http://www.gracehopper.org/) is a well-
regarded series of conferences designed to bring the research and career interests of women in computing
to the forefront. The Richard Tapia Celebration of Diversity in Computing (http://www.ncsa.uiuc.edu/
Conferences/Tapia2003/) is a similar conference series dedicated to the growth of diversity in computing
and related disciplines. Several VGrADS PIs have been associated with both conferences, including Fran
Berman and Ken Kennedy as invited speakers. For both conferences, we will make special efforts to submit
appropriate tutorials, panels, and papers based on the VGrADS research. More concretely, VGrADS will
fund the travel of appropriate graduate and undergraduate students to the conferences to enhance their
knowledge, reputations, and contacts. MSMI programs like the one we propose support these talented
students, directly attacking the attrition of good people from the science and engineering workforce.

At the pre-college level, VGrADS personnel will provide content to existing programs. In particular,
Cynthia Lanius, Richard Tapia, and Keith Cooper are the PIs of the Computer Science Computer and
Mentoring Partnership (CS-CAMP) project (http://ceee.rice.edu/cs-camp/index.html). This project
seeks to enhance the interest and persistence of female students in pre-college computer science. The Rice
PIs are committed to making presentations at CS-CAMP sessions for teachers and high-school girls and
helping provide curriculum materials. As they become available, the EOT/PACI network will be used to
disseminate these materials nationally. In addition, SDSC has its own education and outreach programs, and
will disseminate and integrate the VGrADS materials into its existing programs. NCSA will ask VGrADS
personnel to participate in other NSF supported workshops, including the National Computational Science
Institute (http://www.computationalscience.net/), to share the tools and resources with faculty through
regional summer workshops and the annual SC conference.

At the undergraduate level, VGrADS activities will bring Grid computing into the classroom through
new courses, involve students directly in the research programs of the PIs, and build support communities for
student participants to improve retention of those students in technical degree programs. Different activities
will target non-technical students and computer science and engineering majors.

For the non-technical student, we will focus on general education courses in technology. Ken Kennedy
is developing a course, Information Technology Architectures, that teaches the high-level principles of de-
signing and building information technology systems without extensive programming. This course will be a
cornerstone of Rice’s general education offerings in computer science. Once this course is tested at Rice, we
will work to establish similar courses at other VGrADS sites.

For science and engineering students, we will focus on promoting graduate study among students at
our own institutions, targeting women and underrepresented minorities in particular. We will expand Rice
University’s existing AGEP program (http://rgs.rice.edu/Grad/agep/), which is itself an extension of
the CRPC’s very successful “Spend a Summer with a Scientist” program. This program brings undergraduate
students to Rice to participate in summer research with established faculty and other activities to help them
in entering scientific careers. We will fund up to four additional AGEP participants who will work on Rice
VGrADS research. By aggressively recruiting the students from other VGrADS institutions, we hope to
establish “core groups” at those sites to support others there. We also intend to apply for REU supplements
which will be used to incorporate students into other programs. For example, SDSC’s summer program
offers special seminars and short courses for students, in addition to their normal research opportunities.
VGrADs REU students located at UCSD will be welcomed and integrated into the SDSC REU program.

At the graduate student level, VGrADS will enhance the usual graduate studies for these students in
several ways. Most importantly, we will initiate an active long-term exchange of graduate students among
research groups to broaden their backgrounds and improve the research in both the “sending” and “receiving”
groups. Also, we will solidify the collaborations arising from these trips by encouraging students to present
their work at regular VGrADS participant workshops. The VGrADS project will directly fund over a century
of graduate student study. As VGrADS matures, we will develop a standard academic course on Grid
architectures and programming systems suitable for both graduate and undergraduate students. A model
for this course will be Wolski’s current Grid Computing seminar, in which the students last year wrote
adaptive Grid programs using the GrADS-developed VO-Grids abstraction and Grid Economies prototype.
Eventually, we expect that this course will be offered at each of the participating VGrADS institutions.

Project Description Page 14 of 15

D.3.2 Technology Transfer (All PIs)

VGrADS will tie its technology transfer activities to its software development cycle. Sites already collaborate
in developing software, sharing the code base through CVS. We also maintain an active set of public web
pages with current project status and publications. VGrADS will extend this system to make public releases
of the software available through web browsers and FTP servers. Ensuring the quality and consistency of
these releases and their documentation will be the primary responsibility of the software development team.
As explained in §D.4, this team consists of two programmers (at Rice) over and above the research program-
mers needed to make progress on the experimental software and applications projects in VGrADS. After a
public release, access points will be widely advertised by references in our publications, announcements to
appropriate newsgroups and mail lists, and tutorials.

Beyond this, VGrADS researchers will work to incorporate appropriate pieces of its software into widely-
used toolkits as our system matures. Because most VGrADS researchers are also members of national and
international Grid collaborations, each focused on building and deploying production Grid infrastructure,
there are myriad opportunities for technology transfer. For example, the NSF Middleware Initiative, which
involves Kesselman, Wolski and researchers from the Alliance and NPACI, provides a vehicle for software
hardening, documentation, packaging, and transfer. Similarly, Reed is PI for NEESgrid, a national col-
laboratory and Grid infrastructure for earthquake engineering research, where Kesselman is the leader of
software integration. Finally, Berman and Reed are the PIs for the TeraGrid, which is building and deploying
production Grid infrastructure atop nationally distributed supercomputing and data storage systems.

Because simply publishing software and research ideas does not lead to their adoption, we will actively
present tutorials and demonstrations of VGrADS technology. The annual SC’XY (formerly Supercomputing)
conference will be our primary outlet for this. Every year, we will showcase our latest and greatest work in
demos on the SC’XY exhibit floor. Before the VGrADS software is publically distributed, we will submit
general tutorials on Grid computing—which the SC’XY conference committees have consistently requested.
After public releases of our software, we will augment those offerings with tutorials on using the VGrADS
system itself. We will repeat these tutorials at other meetings, including the Richard Tapia Celebration
of Diversity in Computing, whose organizers have indicated that they would welcome such presentations.
The NCSA EOT Division will work with key VGrADS personnel to offer Access Grid seminars on project
activities, tools, resources, and materials with the national community. The EOT staff will also work with
these personnel to add their content to NCSA training workshops throughout the year. All of these venues
will give us opportunities to find new applications partners and encourage the use of our methods.

Technology transfer will also involve industry. All of the VGrADS personnel have connections with
some industrial application users and computer industry vendors who are interested in Grid computation.
The NCSA Private Sector Program (http://www.ncsa.uiuc.edu/About/PSP/) and SDSC’s Science and
Technology Outreach Program (http://www.sdsc.edu/Partners/STO/) are excellent examples of this. We
plan to aggressively pursue these connections to ensure that VGrADS solutions are applicable to (and adopted
by) real-world systems. On another level, VGrADS personnel are involved in many standards-setting and
advisory bodies that will benefit from their expertise in Grid computation. In particular, Chien serves
on the Steering Committee of the Global Grid Forum (GGF, http://www.gridforum.org/), arguably the
best-known organization for Grid computing today. Kesselman chairs one GGF Working Group, as well
as being a principal author of Globus, the most popular Grid toolkit. Dongarra and Koelbel serve on
the National Academy of Sciences study of the Future of Supercomputing (http://cstb.org/project_
supercomputing/), which includes Grid computing in its scope. These affiliations will give us excellent
connections for moving VGrADS technology into widespread use.

Project Description Page 15 of 15

D.4 Management Plan

Our strategy for managing the VGrADS effort is modelled after the strategy employed by the Center for
Research on Parallel Computation (CRPC)—a successful, geographically-dispersed Science and Technology
Center—and by the GrADS project. The strategy is based on an ongoing, cyclic pattern of review, planning,
and implementation. This approach, which was reviewed and endorsed by the National Academy of Public
Administration, allowed the CRPC to both adapt to changes in personnel and institutions and adopt new
research directions while remaining focused on its central mission.

Management Structure. VGrADS will include researchers from seven institutions: Rice University; Uni-
versity of California, Santa Barbara; University of California, San Diego; University of Houston; University
of Illinois, Urbana-Champaign; University of Southern California, Information Sciences Institute; and Uni-
versity of Tennessee, Knoxville. Rice University will be the lead institution, with Ken Kennedy serving as
Director. He will be assisted by an Executive Director, Linda Torczon; a Director for Education, Outreach,
and Training, Richard Tapia; an Executive Committee (EC); a Facilities Committee (FC); and an Educa-
tion, Outreach, and Training Committee (EOTC). Figure 4 depicts the reporting relationships among these
individuals and committees; the individuals and committees have the following roles:

• The Director is responsible for oversight, planning, budgetary decisions, and reporting VGrADS ac-
tivities to the NSF. The Director receives advice and assistance from the individuals and committees
shown in Figure 4.

• The Executive Director is responsible for implementing decisions made and policies set by the Director,
coordinating regular reports required by NSF, planning site visits requested by NSF, and facilitating
communication between the Director and the individuals and committees that advise him.

• The Director for Education, Outreach, & Training is responsible for planning, implementing, and
assessing VGrADS education, outreach, and training (EOT) programs. He will be assisted by Cynthia
Lanius (Rice), who will run the day-to-day VGrADS EOT operations.

• The Executive Committee (EC), chaired by Ken Kennedy, will convene regularly via teleconferences,
e-mail, and physical meetings to plan research, education, outreach, and technology transfer pro-
grams; review progress; and approve major budgetary commitments. The EC will consist of Ken
Kennedy (chair), Keith Cooper, Charles Koelbel, Richard Tapia, and Linda Torczon (Rice); Rich Wol-
ski (UCSB); Fran Berman, Henri Casanova, and Andrew Chien (UCSD); Lennart Johnsson (UH); Dan
Reed (UIUC); Carl Kesselman (USC-ISI); and Jack Dongarra (UTK).

• The Facilities Committee (FC), chaired by Carl Kesselman, will convene as required via teleconferences
and e-mail to establish policies for managing the VGrADS testbed and to assist in scheduling large
experiments on the VGrADS testbed. The FC will include a representative from each VGrADS site
that hosts equipment made available as part of the VGrADS testbed.

Executive Director
Linda Torczon

Director
Ken Kennedy

Director for Education,
Outreach & Training

Richard Tapia

Executive
Committee

Facilities
Committee

Education, Outreach,
& Training
Committee

Figure 4: Management Structure

Management Page 1 of 3

• The Education, Outreach, and Training Committee (EOTC), chaired by Richard Tapia, will convene
via teleconferences and e-mail to review and plan VGrADS EOT programs, including efforts to encour-
age minorities and women to pursue careers in computer science. It will also coordinate EOT efforts
among VGrADS sites. The EOTC will include a representative from each VGrADS site.

Each VGrADS site will have both a senior researcher and an administrative contact to assist in operational
matters, including reporting and budgeting. Researchers and administrative personnel will communicate
regularly through e-mail, the World Wide Web, teleconferences, and physical meetings.

In addition, all sites will have postdoc researchers, research programmers, and graduate students per-
forming the bulk of the technical work. The proposed budget includes 11 technical staff (approximately 8
FTEs) and nearly 20 students, many of whom already work on GrADS. Weekly technical teleconferences and
e-mail exchange among VGrADS technical participants will encourage discussion between researchers at the
various sites and provide a forum for coordinating VGrADS software development and integration efforts.

The PIs bring to the task a wealth of prior experience in managing large, collaborative, distributed
research projects, including the CRPC, the PACI partnerships, and collaboration on the GrADS project.

Review, Planning, and Implementation. The VGrADS research and development activities will be
organized into three types of activities. The basic research activity will draw upon our preliminary research
and implementation experiences to develop principles and new research directions. The infrastructure de-
velopment activity will develop the VGrADS software base, incorporating the results of our research, and
providing a basis for experimental verification of our ideas and for technology transfer. The application
evaluation activity will involve joint investigations with application partners associated with one of the
VGrADS sites to develop compelling Grid-enabled applications using VGrADS software. The MicroGrid
and MacroGrid testbeds from GrADS will be used to test, tune, and monitor these applications.

To coordinate activities among the various projects and sites, VGrADS will hold two internal workshops
per year. All VGrADS participants, including students, will be invited. The workshops will serve as forums
to review what has been accomplished, refine the overall design of the system based on what has been
learned, and assess new ideas and technologies. The EC will hold a planning session after each workshop
to address higher-level technical issues, compare progress against VGrADS research and EOT milestones,
initiate and/or terminate projects, consider new target applications, revise research and EOT milestones
as required to reflect new directions, and deal with issues of policy or resource allocation. The internal
workshops and planning sessions embody the management strategy over short time periods: review, plan,
and implement.

Initial VGrADS research and EOT milestones are listed in Table 1; this chart (and elaborations and
revisions of it) will form the basis of our day-to-day and longer-term management. Similar charts are
already used to organize the GrADS weekly teleconference, and this practice will continue. They will also
be used by the EC in its discussions of high-level strategy.

Software Management. The proposed VGrADS budget includes funds for a senior software manager and
a programmer. In addition to providing programming support for the VGrADS effort, these two software
professionals will coordinate the overall VGrADS software effort among sites, produce VGrADS software
distributions, and oversee the online repository of VGrADS source available from the VGrADS Web site.
Both software professionals will attend the VGrADS technical teleconferences and internal workshops.

The software management team will be primarily responsible for maintaining the two public releases
of VGrADS software planned during the project. VGrADS 1.0 is expected to include a prototype vgrid
scheduler, the first version of VGrADSBank, a distributed binder/launcher, and a prototype mapper con-
structor based on clustering. VGrADS 2.0 is expected to include second-generation versions of all those,
plus an integrated performance signature/temporal logic/statistical characterization toolkit for performance
monitoring, novel fault-tolerance support, and a library optimizer and installer.

Dissemination of Results. VGrADS will disseminate research results through the standard academic
venues (publication in journals and conferences, a VGrADS web site, external talks). VGrADS software
artifacts will be available from a repository on the VGrADS Web site. VGrADS will host workshops and
tutorials for the scientific community on topics related to VGrADS research. The workshops will bring
VGrADS participants together with potential users, collaborators, and other researchers to discuss problems
and progress in the area.

Management Page 2 of 3

Year 1 Year 2 Year 3 Year 4 Year 5

VGrADS Software

Releases

VGrADS 1.alpha

(internal)

VGrADS 1.0

(public)

VGrADS 2.alpha

(internal)

VGrADS 2.0

(public)

Virtualization

• Prototype resource

virtualization

• Virtual scheduling

requirements study

• Prototype virtual

scheduler (vsched)

• Novel vsched

strategies for target apps

• Integrate vsched

strategies into VGrADS

• Validate vsched on

apps

• Evolve virtualization

approaches based on

applications experience

• Complete vsched

validation on apps

• Extend to new apps

Performance

• Temporal logic

reasoning for contracts

and signatures

• Genetic programming

for performance control

• Initial tunable

performance/fault-

tolerance capabilities

• Integrated signature/

temporal logic/statistical

characterization

• Extended application

validation and

assessment

Grid Economy

• Dynamic commodity

pricing for resources

• VGrADSBank

(commodity pricing) for

applications

• VGrADSBank

stability and scalability

studies

• Revised

VGrADSBank based on

studies

• Validate and extend

VGrADSBank

E
x
ec

u
ti

o
n

 S
y
st

em

Fault Tolerance

• Experimental

measurements of Grid &

cluster reliability

• Prototype fault-

tolerance library

• Non-transparent

coordinated checkpoints

• Fault tolerance tested

in applications

• Consider novel

techniques

• Novel techniques

(diskless checkpointing,

caching, dynamic

loading) developed

• Extend validation and

assessment

Abstract Parallel

Machine

• Design virtualizing

mapper constructor

• Prototype hybrid

performance modeler

• Prototype virtual task

graph clustering mapper

• Initial validation with

applications

• Integration of

VGrADSBank and

fault-tolerance into

mapper constructor

• Final validation with

applications

• Extend to new apps

P
ro

g
ra

m
m

in
g

Abstract

Component

Machine

• Design distributed

binder/launcher

• Design workflow

application support

• Build executables

remotely with pre-

installed libraries

• Cluster workflow map

• Prototype library

installer

• Initial validation with

applications

• Library installer with

component tuning

• Execute COPs on

heterogeneous nodes

• Library

installer/optimizer

validation on apps

Applications

• Model, implement,

and instrument apps on

GrADSoft.

• Implement apps on

VGrADS , compare to

GrADSoft

• EOL study on vsched

• Stress test VGrADS

1.0 implementations

• MEAD study on abs.

parallel machine

• Select second-

generation applications

• GEMS study on perf

toolkit, component mach

• Implement and

evaluate apps on

VGrADS 2.0

• Extend to new apps

Education,

Outreach, &

Training

• Host first VGrADS

AGEP participants

• VGrADS participation

in Hopper Conference

• VGrADS material

added to AGEP, CS-

CAMP, PACI programs

• VGrADS participation

in Tapia Conference

• Rollout of AGEP to

other sites

• VGrADS participation

in Hopper Conference

• Expand VGrADS

material in EOT progs.

• VGrADS participation

in Tapia Conference

• Continue VGrADS

AGEP experience

• VGrADS participation

in Hopper Conference

B
ro

a
d

er
 I

m
p

a
ct

s

Technology

Transfer

• SC tutorial on Grid

computing,

• SC demonstrations of

GrADSoft

• SC tutorial on Grid

computing

• Migrate VGrADS

ideas to mainstream

Grid (e.g. OGSA, NMI)

• SC tutorial on

VGrADS 1.0

• SC tutorials. Topics

TBD by public interest

• Approach industrial

partners for VGrADS

joint developments

• SC tutorial on

VGrADS 2.0

• Migrate VGrADS

ideas to mainstream

Grid (e.g. OGSA, NMI)

T
able

1:
M

ilestones
for

the
V

G
rA

D
S

project

M
an

agem
en

t
P
ag

e
3

o
f
3

