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Abstract 1 Introduction

In this paper, we consider the problem of modeling ma- As performance-oriented distributed computing (often

chine availability in enterprise-area and wide-area dis- heralded under the moniker “Computational Grid” comput-
tributed computing settings. Using availability data gath N9 [24, 8, 47]) becomes more prevalent, the need to char-
ered from three different environments, we detail the suit- 2Cterize accurately resource reliability emerges as it
ability of four potential statistical distributions for eh problem. Tpday’s SUCC?SS““' Grid applications uniformly
data set: exponential, Pareto, Weibull, and hyperexponen-€!y on runtime scheduling [9, 43, 2, 4, 46, 1, 16, 50, 13,
tial. In each case, we use software we have developed to de12: 391 to identify and acquire the fastest, least-loaded re

termine the necessary parameters automatically from eachSOUrces at the time an application is executed. While these
data collection. applications and systems have been able to achieve new per-

formance heights, they all rely on the assumption that re-

To gauge suitability, we present both graphical and sta- sources, once acquired, will not fail during applicatior-€x
tistical evaluations of the accuracy with each distributio  cution. In many resource environments such an assumption
fits each data set. For all three data sets, we find that a is valid, but to employ nationally or globally distributeg-r
hyperexponential model fits slightly more accurately than a source pools (e.g. in the way SETI@Home [48] does) or
Weibull, but that both are substantially better choicestha enterprise-wide desktop resources (as many commercial en-
either an exponential or Pareto. We also test the indepen-deavors do [8, 22, 55, 5]) performance-oriented distrithute
dence of individual machine measurements and the station-applications must be able either to avoid or tolerate resour
arity of the underlying statistical process model for each failures.
data set. Designing the next-generation of Grid applications re-
quires an accurate model of resource failure behavior. A
great deal of previous work [38, 31, 25, 29, 32] has studied
the problem of modeling resource failure (or equivalently
resource availability) using statistical techniques. AR
and Elwasif point out in their landmark paper [44], how-
ever, most of these approaches assume that the underlying
statistical behavior can be described by some form of ex-

p— - d b s from the Nationalrgei ponential distribution or hyperexponential distributi@2].
oo e e e e In adidiion they 9o on to note that despite their populariy

(The VGrADS project), and NGS-0305390 as well as the DOE sep ~ Many of these modeling techniques do not accurately reflect
program. empirical observation of machine availability.

These results indicate that either a hyperexponential or
Weibull model effectively represents machine availapitfit
enterprise and Internet computing environments.




Our goal with this work is to develop an automatic ent methods. The diversity of the conditions under which
method for modeling the availability of enterprise-widelan each trace was gathered indicates the generality of our re-
globally distributed resources. Automatic model determi- sults in that regardless of setting or method, either a Weibu
nation has several important engineering applications. Weor hyperexponential distribution appears to model avdilab
plan to incorporate such models into Grid programming ity most effectively. More specifically, using p-valuesrro
systems, such as the Grid Application Development Soft- a variety of goodness-of-fit tests as a metric, an appropri-
ware [7] system, NetSolve [12], NINF [39], and APST [14] ately chosen hyperexponential fits each data set best. How-
to enable effective resource allocation and scheduling.ever, the Weibull model for each set, while slightly less
Commercial enterprise-computing systems such as En-well-fit, offers several attractive properties that maka it
tropia [22], United Devices [55], and Avaki [5] will also be  better choice in some modeling contexts. Our methodology
able to take advantage of automatically determined modelsgenerates both a “best-fit” Weibull and hyperexponential fo
as they tune themselves to the characteristics of a paticul each data set, allowing the user to choose between the two.

site. Moreover, much of the potential benefit offered by Au-  In addition to the impact this work may have on peer-
tonomic computing [30] depends, critically, on the abitity ~ to-peer system design, checkpoint/migration intervagédet
model resource characteristics automatically. mination, and process scheduling, we believe it is particu-

We propose a new approach to modeling machine avail-larly important to the development of credible and effeetiv
ability based on either the Weibull family of distributions Grid and Autonomic Computing [30] simulations. Because
or hyperexponentials depending on the intended use of theGrid dynamics are driven by the dynamic resource sharing
model. We describe how to estimate the necessary paramesf competing users, repeatable “en vivo” experiments are
ters from a given set of availability measurements, and thedifficult orimpossible. Several effective emulation [4%8ica
implementation of our system for doing so automatically. simulation [11, 52, 10] systems have been developed for
To gauge the effectiveness of our modeling methodology, Grid environments. These systems will benefitimmediately
we detail and analyze the degree to which an automaticallyfrom the more accurate models our method produces.
generated model fits three diverse sets of empirical obser- The rest of this paper is organized as follows. Section 2
vations: describes the both the Weibull and hyperexponential distri

i i butions and our method of fitting them to a set of machine
e reboot intervals taken from the student workstations g, »jahility measurements. We discuss how we address both
Ioc'ated.m the Qomputer Science Department of the the problem of parameter estimation and how we treat cen-
University of California, Santa Barbara, sored data. In Section 3 discusses the various data sets we
e processor occupancy duration measured from the Con-US€ in this study. In Section 4 we provide evidence for how
dor [53, 17] deployment at the University of Wiscon- well various distributions fit each data set, and review the
advantages and disadvantages of each in Section 5. Finally,
in Section 6 we discuss the conclusions we draw from this
¢ availability data gathered by Long, Muir, and Golding work and point to future research directions it enables.
in a survey they conducted of Internet hosts, described

in [34] and further analyzed in [44, 45]. 2 Fitting a Distribution to Availability Data

We compare the distributions generated by our method to
both standard exponential and Pareto distributions fitéo th In this study, the two distribution families that consis-
data using the same parameter estimation techniques. tently fit the data we have gathered most accurately are the
Exponential distributions have been studied extensively Weibull and the hyperexponential. Th#geibull distribu-
in fault tolerant computing settings [56, 34, 44, 45, 35]. tionis often used to model the lifetimes of objects, includ-
More recently, peer-to-peer systems have used exponentiaihg physical system components [37, 6]. Hyperexponen-
distributions to as the basis of their availability assump- tials have been used to model machine availability previ-
tions [51, 60, 61]. In other contexts such as process life- ously [38], but their parameters are more numerically dif-
time estimation [28] and network performance [42, 41, 57, ficult to estimate through rigorous statistical techniguas
19, 33] researchers often advocate the use of “heavy-tailed particular, the number of phases (c.f. Section 2.3) to uae is
distributions, especially the Pareto. We also compare thefree parameter that our method determines by fitting succes-
use of both a Weibull and a hyperexponential to that of a sively larger models. Our algorithm terminates when an ad-
Pareto for modeling our data. In both cases, using a va-ditional phase fails to improve the goodness-of-fit. While i
riety of goodness-of-fit metrics, the distributions getedla  practice, the convergence of p-value for a given goodness-
by our method are a significantly better fit for each data set. of-fit test indicates that no additional phases are needed, i
The data sets we study are gathered in three different disprinciple this technique must be considered a heuristic. As
tributed computing contexts, at different times, usindeif a heuristic, however, we find that the quality of the fits gen-

sin, and



erated to be high using a relatively small number of phases.X; are independent and identically distributed (i.i.d.). The
method defines thikelihood functionLZ, depending on the

2.1 Weibull Distributions parameters of the distribution, as the product of the dgnsit
function evaluated at the sample points. Thus in our case,

The density and distribution functiorfs andF,, respec-  Will be a function ofe and3 given by

tively for a Weibull distribution are givenaby L(a,f) = H Flas) = Haﬂfaxiozflef(m/ﬁ)“.
fu(x) = a2 e~ /P 1) i i
Folz)=1— o~ @/ ) Intuitively, maximizing L is equivalent to maximizing the

. . joint probability that each random variable will take on the
The parameter is called theshapeparameter, andis  sample value. Large values of the density function corre-
called thescaleparameter. Whena = 1, the Weibullis  spond to data that is “more likely” to occur, so larger values

equivalent to an exponential distribution. of L correspond to values of the parameters for which the
The conditional distribution function for a Weibull is  data was “more likely” to have been produced. Thus, the
given by MLE for the parameters is simply the choice of parame-

ters (if it exists) which maximize&. Equivalently,we can
maximize thelog-likelihood functionlog L, which is sim-
pler to compute because it converts the above product into
a sum. In practice, Weibull MLE values always exist. Our
approach to computing them numerically is to set the partial
derivatives ofog L equal tod and using standard non-linear
equation solvers to find the critical point corresponding to
the maximum ofog L.

The other common analytic approach to parameter es-
timation is the method omoments In the case of a 2-
parameter Weibull, the moments-based estimator will be the
set of parameters for which the mean and variance of the
distribution is equal to the mean and variance, respegtivel
of the given sample. Moments-based estimators have his-
torically been popular because of their relative ease of cal
culation, but MLEs enjoy more properties which are consid-
ered desirable for estimators. (Specifically MLEs are, un-
der very general conditionasymptotically efficienivhich
means roughly that the variance of an MLE approaches the
theoretical minimum, while moments-based estimators are
not asymptotically efficient in general.)

FX\X>t(CC) =1— e[(t/ﬁ)“(w/ﬁ)ah (3)
which clearly depends onand not just the difference— ¢
whena # 1. When0 < a < 1, the probability that a
component will survive another time unitcreasesast in-
creases. Fon > 1, this probabilitydecreasesand when
a = 1 the distribution is memoryless. Thus a Weibull dis-
tribution is capable of modeling different aging effects; d
pending on its shape parameter.

A hyperexponential, on the other hand, is only capable
of modeling increasing expected lifetime. One can show
this by demonstrating that thezard functionwhich is es-
sentially the rate of failure, is a decreasing function wfdi
for any hyperexponential; this is a straightforward but te-
dious calculus exercise. Intuitively, throughout thetlifee
of a hyperexponentially distributed object, its having-sur
vived as long as it has makes it increasingly conditionally
probable that its lifetime is governed by the longer phases
of the hyperexponential, and so its expected future lifetim
will increase.

2.2 Weibull Parameter Estimation 2.3 Hyperexponential Distributions

Our 2-parameter Weibull, as mentioned above, has pa- Hyperexponentials are distributions formed as the
rameters for shape and scale. Given a set of sample dataveighted sum of exponentials, each having a different pa-
{zx1...x, }, there are many common techniques for estimat- rameter. The density function is given by
ing the two parameters based on some set of sample data, A
including visual inspection (e.g. using a two-dimensional fu(z) = Z[pi o (@)], 2 > 0 (4)
graph) and analytic methods. A commonly accepted ap- = ' o
proach to the general problem of parameter estimation is
based on the principle aghaximum likelihood The maxi- o
mum likelihood estimator (MLE) is calculated for any data Je(w) = Aie (5)
set, based on the assumptions that each of the sample dagefines the density function for an exponential having pa-
pointsz; is drawn from a random variabl¥; an that the ~ rameter\;. Inthe definition off; (), all A; # A; fori # j,
ande:1 p; = 1. The distribution function is defined as

where

1The general Weibull density function has a third paramatetdca-
tion, which we can eliminate from the density simply by subtragtthe k
minimum lifetime from all measurements. In this paper, wdl work FH(I) =1- Zpi LN (6)
with the two-parameter formulation. =



for the same definition of., (x). Thus, to fit a hyperexpo- Fy(s) =1 <ﬂ) a 0

nential to a given data set, the valuekgfeach)\; and each z

pi must be estimated. For a specified valuekofwhich Note that these techniques say nothing about how well a
indicates how many phases will be included in the hyperex- gata sample “fits” a distribution. Rather, it determines wha
ponential), an MLE technique can be used to determine thethe most likely parameterization must be if the sample is
remaining2k — 1 parameters. However, the optimization assumed to come from a specified family of distributions.
problem that arises for even small valuesko often too Thus, for a given data sample, we can find the Weibull,
complex for commonly available computers to solve, espe- exponential and Pareto distributions that are “most likely
cially for larger data sets? As a result, we used the EMpht 5 have generated that sample by finding the MLE param-
software package [21] in place of an MLE procedure for eter estimates for each distribution (using the root-figdin
all estimated hyperexponentials in this paper. EMpht im- method described earlier). For the hyperexponential, how-
plements the estimation maximization (EM) algorithm de- eyer, the distribution that is chosen is appropriate (that i

scribed in [3]. While this technique often yields a good so- |ikely), but cannot strictly be said to be the one that maxi-
lution (as is evidenced by our results) is is not guaranteed t izes likelihood.

converge to an optimal solution.

The number of exponential phases (denoted:pyhat
make up a hyperexponential, however, is a free paramete
that must be specified rather than estimated. Our approach

is is to use EMpht to estimate parameters for successively bIthg d?;a W%.lfjrse mtthl:t;t.study ATfhasbre.s reg:)ur(;ebavall-
larger values of; and then to calculate goodness-of-fit met- .? ”.yms rteeBl sren E%éngs' ”e tnglerswo =2 ¢
rics (as described in Section 4.2) for each. The algorithmI ornia, Santa Barbara ( ) we collected measurements

terminates when an additional phase produces no improve-mc th? time betwe_en ”_‘aCh'”e reboots of _the pubhcally_ ac-
ment in the metrics. cessible workstations in the Computer Science Instruation

We have implemented a software system that takes a Se{aboratory (CSIL). In a second experiment, we measured

of measurements as an ordinary text file and computes bot he process occupancy time observed by a single user of the

the MLE Weibull and the EM-based hyperexponential au- ondor [53] pc_JoI at Fhe University of Wisconsin during a
tomatically. Perhaps unsurprisingly, the quality of the nu two-month period. Finally, we gratefully acknowledge Dr.

merical methods that we use is critical to the success of theDa(;rg" I_Jong froFr)r|1 th;(a Utrg;:/er'jny of Q:tal|f?;_n|a, Santa ?ruz,
method. In particular, the MLE computations involve hun- and or. James Hank at the University ol fennessee for sup-

dreds or thousands of terms (the data sets can be quite larg Iy'gi us V;'th 4t2e ongma;l teft dEata# s$?hto decrilvte thetttesul
requiring robust and efficient techniques. At present, the' [34] and [44] respectively. Each of these data sets mea-

implementation uses a combination of the Octave [40] nu- sures machi.nglavailability ‘T‘ a _djfferent way reflecting the
merical package, Mathematica [36] (for solver qualitydan different deﬂnmoqs of. avallablhty that Grid users may
the afore mentioned EMpht. The resulting system, however,Choose' Our goal in using a plurality of measurement meth-

takes data (as described in Section 3) and automatically de_ods is to determine how sensitive our Weibull-based models

termines the necessary parameters. are to the way in which availability is measured.

r3 Experimental Data

, o 3.1 The UCSB CSIL Data Set
2.4 Exponential and Pareto Distributions
- . . . At UCSB, the computer science students are given un-
The probaplhty densﬂy functlorjs .(de_znoted USING restricted access to workstations located in several rooms
lower-casef with a subscript) and distribution functions o campus. Together, these systems make up the Computer
(upper-casef” with a subscript) for the exponential and  gcjence Instructional Laboratory (CSIL). Physical actess

Pareto distributions are as follows: the CSIL is provided to some (but not all) students 24-hours
a day when school is in session, and via remote access at all
felz) = Xe™ ™" (7)  other times to all computer science students. There are no
Fu(z)=1- sy (8) administrator schedyled reboots_when school is in session,
however software failures, security breeches, and haelwar
_ap? failures result in unplanned restarts by the administeativ
fp(x) - Ia+1 (9)

staff.

What is perhaps most relevant to our study, however, is
2While we were able to make MLE estimates for Weibull and Raret that the power switch for each workstation is not phys!cally
distributions for all data sets using a Pentium IV runninguy, the same  Protected. Thus a St_Udent with access to a mach'ne S con-
numerical algorithms failed for all hyperexponential esttions. sole who does not wish to share that machine with remote




users or background processes can “clean off” the machineonly when they would otherwise be idle.
by power cycling it. Remote users will often choose a new
machine when they are unceremoniously logged out with-  when a process is evicted from a machine because the
out warning, and few background processes are written tomachine’s owner is reclaiming it (e.g. begins typing at the
automatically restart. Indeed, it is reported anecdotayy  console keyboard), Condor offers two options. Either the
many students that the “normal” user response to observeayvicted Condor process is checkpointed and saved for a later
machine slowness is to try a power cycle immediately as arestart, or it is killed. Condor implements checkpointing
potential remedy. through a series of libraries that intercept system calls to
As anarchistic as it may seem, we believe that this modeensure that a job can be properly restarted. Using these li-
of usage and administration accurately reflects failure pat braries, however, places certain restrictions on the syste
terns in enterprise and global desktop computing settings.calls that the job can issue. “Vanilla” jobs, however, are
Users are willing to accept background computing load if it unrestricted but will be terminated (and not checkpointed)
does not introduce unacceptable slowness, but will reclaimduring a resource reclamation. Condor’s extensive docu-
the resources they control (through catastrophic means, ifmentation [18] details these features to a greater extent.
need be) if the externally generated load is “too great.” Ob-
viously each user has a different tolerance level for extlern In this study, we take advantage of the vanilla (i.e
load that may not be known a priori, and individual user pa- terminate-on-eviction) execution environment to build a
tience is likely to be be time and situation dependent. More- condor occupancy sensor for the NWS. A set of sensors
over, it is the combination of user reclamations, admiaistr (10 in this study) are submitted to Condor for execution.
tive restarts, and hardware failures that make up the dveral\yynen Condor assigns a sensor to a processor, the sensor
availability distribution that we observe externally. wakes periodically and reports the number of seconds that
To measure availability in the CSIL, we designed an “up- have elapsed since it began executing. When that sensor
time sensor” for the Network Weather Service (NWS) [58, s terminated (due to an eviction) the last recorded elapsed
47, 59] that reads the time since the last machine rebootjme value measures the occupancy the sensor enjoyed on
from the/ pr oc file system. All CSIL workstations cur-  the processor it was using. The NWS associates measure-
rently run Linux which records the time since reboot in ments with Internet address and port number so if a sensor
the/ pr oc} directory. The NWS is designed to gather and s subsequently restarted on a particular machine (because
maintain dynamic performance measurements from Grid Condor determined the machine to be idle) the new mea-

resources while introducing as little load as possible. We syrements will be associated with the machine running the
deployed the NWS uptime-sensor on 83 of the CSIL work- sensor.

stations and recorded the duration between reboots during
April and May of 2003, which corresponds to the bulk of s gificult to determine how many machines are avail-

Ehe spring c’1’uarter. Thus the resultant data} set captures g within the Wisconsin Condor pool. The number fluc-
production” use period for the CSIL machines and does y,ate5 as new machines are added, users decommission old
not span a quarter break during which a correlated rebo0ty, 5 chines; etc. In our study, however, Condor used 210 dif-
(for quarterly maintenance) is likely. ferent Linux workstations to run the 10 NWS sensors over
the six-week measurement period.
3.2 The Condor Data Set
Notice also that in this study we consider only the avail-

Condor [53, 17] is a cycle-harvesting system designed ability of each machine to a Condor user (the NWS, in our
to support high-throughput computing. Under the Condor case) once the machine is assigned to the NWS. We do not
model, the owner of each machine allows Condor to launchconsider the time between assignments during which a par-
an externally submitted job (i.e. one not generated by theticular machine is either busy because its owner is using
owner) when the machine becomes “idle.” Each owner is it, or because Condor as scheduled other useful work. In
expected to specify when his or her machine can be considthe CSIL data set, these durations are between 120 and 600
ered idle with respect to load average, memory occupancyseconds which is the Linux reboot time, depending on the
keyboard activity, etc. When Condor detects that a ma- machine in question. For Condor, however, the distribution
chine has become idle, it takes an unexecuted job from aof resource unavailability is not as constant. Any complete
gueue it maintains, and assigns it to the idle machine for ex-simulation of the Condor pool as a computational engine
ecution. If the machine’s owner begins using the machinewould require both the distribution of availability and the
again, Condor detects the local activity and evacuates thedistribution of unavailability. In this work, we treat only
external job. The result is that resource owners maintain ex the availability distribution, but we plan a full analysi$ o
clusive access to their own resources, and Condor uses ther@ondor’s dynamics in the near future.



3.3 The Long-Muir-Golding Data Set 4 Analysis

In [34] the authors identify 1170 hosts connected to the . 1€ goal of our study is to determine the value of us-

Internet in 1995 that would cooperatively respond to a vac- "9 Weibull and hyperexponential distributions to model
uous query of the pc. st at d — a system process com- resource availability. Our methodology is to compare the

monly used on systems running the Network File System MLE determined Weibull and EMpht determined hyperex-

(NFS). The hosts were chosen to act as a “cross-section’ponemial to the MLE exponential and Pareto for each of

; . the data sets discussed in the previous section. For refer-
of the Internet connected hosts at the time, and a probin ; .
P g nce, we have included the MLE and EMpht determined

mechanism based on periodic but randomized RPC calls to° \ o
rpc. st at d. A successful response to an RPC constitutes model parameters that were used for all fitted distributions

a “heartbeat” for the machine in question, and failure to re- pliscussed and shown in this work (Table 1). As we noted

spond indicates machine failure. Long, Muir, and Golding in the introduction, both exponential and the Pareto models

use this data to make a convincing argument that availabil-hav_e been used extensively to mpde] resource and process
ity is not accurately modeled by a Poisson process. Morellfetlme. Thus the value we perceive is the degree to WhIF:h
recently Plank and Elwasif [44] and separately Plank and 2 Weibull and hyperexponential model more accurately fits

Thomason [45] have analyzed it extensively in terms of the each data set. ) ,

suitability of Poisson and exponential models in the cantex In each case, we use three different techmqges to eval-
of process checkpoint scheduling. In all three studies, thetat€ model fit: graphical, the Kolmogorov-Smirnov [20]
authors reach the same conclusion which is that the modeléKS) test, and the Anderson-Darling [20] (AD) test. Graph-

under study do not accurately reflect the behavior capturedICaI evaluatlpn is often thg most compelllng metho'd'ol-
by the measurements. ogy [54] but it does not provide the security of a quantified

result. The other two tests come under the general heading
of “goodness-of-fit” testd

3.4 Discussion

4.1 Graphical Analysis of The Availability Mea-

We have chosen to study these three data sets because surements

they measure observable machine availability in different
ways, under different conditions, at different times. Fa t
CSIL data set, students engaged in collaborative and com
petitive activities using the resources at hand strongly in
fluence the measured availability durations. Under Condor,
availability measurements capture the idle-busy distidiou

of resource owners who (in theory) are unaware that Con- 2 Lo X ;
dor is using the resources during idle periods. From the tion 2). The empirical distribution function (EDF) is the

perspective of a Grid or peer-to-peer scheduler, however,CDF of the actual data; it is calculated by ordering the ob-

these two data sets record the same quantities: the amourie"ved values a¥; < X, <--- < X, and defining
of time an application process was able to use a resource 0 v < X1

before it (the process) was exogenously terminated. We in- X ’

clude the Long-Muir-Golding (LMG) data set in our study Fe(z) = q7d/n, Xj <@ <X (11)
to ensure that our results are not biased by the measurement 1, T > Xy

techniques we have used. The CSIL and Condor data sets
measure availability using two different sensors we have de . ) . .
veloped for the NWS monitoring infrastructure. As a result, CDF determined by the MLE estimated Weibull. As Fig-

we wished to use data gathered by a separate group usingnre 1, 2 and 3 show, a Weibull distribution appears to track

different measurement techniques to remove the posgibilit € observed distribution in each case. The track is never
that the NWS is biasing the results in an unforeseen way. perfect, but the shape and scale of the model appear to be

o 7" well suited to the trends in the observed data.

Nc.)t.e.thaF the age of the LN_IG data also indicates the time Similarly, Figures 4, 5, and 6 show the results of fitting
sensitivity (i.e. non—statl'onarlty) of the effects we ofvee a three phase, two phase, and three phase EMpht generated
Clearly the Internet and its usage patterns have evolved sub
stantially since they gathered the data. Observing similar _°The best known goodness-of-fit test is based on the Chi-eduis-

distributions in all three data sets indicates that thectsfe tribution. Both the Kolmogorov-Smirnov and the Andersoarlhg tests
are thought to be more appropriate for continuous disiobstthan the

we are measuring are persistent and potentially fundamench.squared test, which is designed for categorical dattharefore use
tal. these methods in place of the more familiar one.

To gauge the fit of a specific model distribution to a par-
ticular data set, we plot the cumulative distribution func-
tion (CDF) for the distribution and the empirical cumula-
tive distribution for the data set. The form of the CDF for
the Weibull, hyperexponential, exponential and Pareto are
given by equations 2, 6, 8, and 10 respectively (c.f. Sec-

We start by comparing the empirical observations to the




Data Set Weibull Hyperexponential Exponential Pareto
a |8 p1 | p2 | p3s | M A2 A3 A a B
CSIL .545 | 275599| .464 | .197 | .389 | .00000111 | .000195 | .00000832| 2177800 .087 | 1
Condor | .49 | 2403 592 | .408 | NA | .00296 .0000750] NA .00018 .149 | 1.005
Long .61 | 834571| .282| .271| .474 | .000000305 .0000124| .00000139| 78886000 | .079| 1
Table 1. Table of fitted model parameters
1 empirical 1 empirical 1 empirical -
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Weibull fit
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Figure 5. Condor data
with hyperexponential fit

Figure 6. Long data with
hyperexponential fit
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Figure 8. Condor data
with  exponential and
Pareto fits

Figure 9. Long data with
exponential and Pareto
fits



hyperexponential to the CSIL, Condor, and Long datasets  1.2e+07 , , :

. . . . . ' empiricai
respectively. In each figure, the units associated with the ideal - -
x — axis are seconds. As was previously mentioned, the 1e+07 |
choice of number of phases is a value specified by the user
when attempting to fit a hyperexponential using the EMpht 8e+06 |
software. To determine the number of phases to reportin the
visual analysis, we start with a 2 phase hyper exponential, 6e+06 |
test the resulting fit with a Kolmogorov Smirnov test (de-
tailed in the Section 4.2), and then repeat with an increased 4e+06 |
number of phases until the KS test result shows no improve-
ment. As the figures again show, the fitted hyperexponential 2e+06 |
appear to track the EDF functions extremely well, so much
so that the model curve is nearly indistinguishable from the 0 : : : : :

0 1e+06 2e+06 3e+06 4e+06  5e+06 6e+06

EDFs for the CSIL and Condor data.

When viewed against the MLE exponential and MLE
Pareto for each set the superiority of the previous fits is ev-
ident. Figures?, 8, and 9 plot the EDF, exponential, and
Pareto CDFs for each of the data sets.

One of the most obvious discrepancies lies in the upper
tails, which consistently appear too light or too heavy, for for both the CSIL and Long-Muir-Golding data sets, but re-
exponential and Pareto respectively, when compared to oukeal a less-accurate quantile match for the Condor data set.
sample EDFs. Note that we haveensoredthe CSIL data to generate

In a modeling context, “tail behavior” can be important, the Q-Q Plots by using a cutoff point after which we do not
especially if the presence or absence of rare occurrenceghow quantile-quantile relationships. This method is out-
must be modeled accurately. For example, previous re-jined in [20] and has been employed so as to remove obfus-
search [27, 28] reveals Unix process lifetimes to be “heavy- cating data near the extreme upper tails of our sample-distri
tailed” and well-modeled by a Pareto distribution. Thus butions (we show data from quantiles 0.01 to approximately
schedulers and process management systems must be dg:97). Without censoring, we can see that data in the upper
signed for occasionally occurring processes that have veryail makes the resulting Q-Q Plot (shown in Figure 10) diffi-

Figure 10. CSIL Q-Q Plot of uncensored sam-
ple/Weibull quantile relationships

long execution times. cult to interpret as the entire trend of relationships iswr
According to Figures?, 8, and 9, however, a Pareto dis- off by a few unstable data points.
tribution would over-estimate the probability of very leng The reason for this censoring stems from the way in

lived resources by a considerable amount. Indeed, it maywhich each data set is gathered. In particular, resouregs th
be that while Unix process lifetime distributions are heavy are available at the end of the measurement period generate
tailed, if they are executed in distributed or global comput truncated values. This distorted our data in two important
ing environments, many of them will be terminated by re- ways. First, the duration of the measurement period artifi-
source failure since the resource lifetime distributidoti cially created a maximum uptime, when in fact there were
EDFs and their matching Weibull and hyperexponentialfits) several uptimes which continued over this entire period, so
have considerably less tail weight. that the tail of the EDF was cut off; and second, uptimes

Even beyond the differences in the tails, however, we which by chance started near the end of the period were as-
can clearly see that the general shape of the exponentiasigned extremely short values, thus assigning undue weight
and Pareto distributions do not seem to fit the sample CDFsto the left end of the distribution.
well. Figures 14, 15 and 16 show the Q-Q Plots of the dataset

Another well accepted method for graphically determin- quantiles versus the hyperexponential model quantiles. Th
ing how observations fit a theoretical distribution is by gen plots support the original CDF comparison graphs by show-
erating Quantile-Quantile (Q-Q) Plots. In a Q-Q Plot, the ing that the relationships, even in the tails, between our em
ordinates from the EDF and the CDF from the theoretical pirical observations and fitted models are very near to finea
distribution are plotted against one another. To get a feel for the suitability of the Weibull and hyper-

If the observations were exactly drawn from our the- exponential models versus the exponential or Pareto mod-
orized distribution, the resulting Q-Q plot would be very els, we present Q-Q Plots of our sample data against expo-
nearly a line intersecting the origin, having slope 1. As-Fig nential model in Figures 17, 19 and 19. We do not show the
ures 11, 12, and 13 show, our observation quantiles are veryQ-Q Plots for the Pareto fit as the quantile relationships are
close to being linearly related to the fitted Weibull quagil  so far from the ideal linear graph that the plot is difficult to
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Figure 18. Condor
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Figure 13. Long Q-Q Plot
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render. It suffices to say, however, a Pareto distribution in
not indicated by any Q-Q Plot of our data sets.

Q-Q Plots are, themselves, sensitive to the shape of the
tails in the distribution being plotted. This sensitivigyrie-
flected by the sample size used (i.e. the smaller the sample
size, the less accurately the tails may be rendered). To cali
brate the sensitivity of Q-Q Plotting in our setting, we draw ‘ 0
1000 random values from the Weibull distribution we fit to
the CSIL data (shown in Figure 1). We then generate the
Q-Q Plot for this random sample against the actual Weibull
from which it is drawn. This plot corresponds to the ideal
case in that the observed sample comes from the distribution
against which it is plotted. Figure 20 shows the results.

Even in the ideal case, the tails diverge because of thetributions only at the sample points, thereby eliminating a
small number of data points that are likely to be drawn effects the necessary interpolation might introduce in@ Q-
from the tail. Comparing this ideal Q-Q plot to the one Plot. That is, in an EDF, the quantile values that occur be-
shown in Figures 10 in which the actual data is used in un-tween sample data points must be interpolated. The P-P Plot
censored form further supports case for a Weibull fit to the does not require this interpolation because it only evakiat
to the CSIL and Long, Muir, Golding data sets, but leaves each function at the sample data points.
the Condor data set open to suspicion. However, based on As Figures 21, 22, and 23 show, the Weibull/EDF rela-
the visual comparison of the plots in Figure 12 and Fig- tionships are almost linear throughout the probabilitygen
ure 18, the MLE Weibull and EM-based hyperexponential especially for the CSIL and Long datasets. The hyperexpo-
seem clearly better choices than the exponential and Paretonential/EDF relationships are also shown, in Figures 24, 25

In addition to comparing CDFs and empirical quan- and 26, to be quite close to linear.
tiles directly and Q-Q Plots, we also show probability-
probability (P-P Plots) to illustrate distribution fit thatee 4.2 Goodness-of-fit Tests
range or probabilities. P-P Plots are generated by evatyati
the EDF and MLE CDFst each sample poireind plotting Before we present results for the Kolmogorov-Smirnov
them against each other. (KS) and Anderson-Darling (AD) test results, some discus-

If the sample points were exactly drawn from the theo- sion of goodness-of-fit (GOF) tests in general may be help-
retical distribution function, we would see a perfect linea ful.

(i.e. zero-intercept, slope 1) relationship between. Nude Each of these tests is designed to test the hypothesis that
a P-P Plot differs from a Q-Q Plot in that it depicts the dis- our sample observation$z1, 2, ..., z;), are drawn from

Figure 22. Condor P-P Plot of sample/Weibull
percentile relationships
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Figure 26. Long P-P Plot of sam-
ple/hyperexponential percentile relationships

random variables having some specified statistical distrib
tion, by producing a measure of the strength of the evidence
againstthis hypothesis provided by the data.

That is, we wish to examine the question whether

Fo(z) = Fy(x)

whereF,(z) is the EDF of our sample data afj(x) is
a hypothesized and completely specified distribution model
(e.g. MLE Weibull, exponential, or Pareto in this study).
Such tests are set up with null hypothesis

Hj : the data come from the given distribution

and alternative hypothesis

H, : the data do not come from the given distribution

Goodness of fit tests have been designed to test against
this null hypothesis and essentially allow us to ask whether
at a chosen significance lewel(often but rather arbitrarily
set at0.05 or 0.01), wereject Hy at levela. Each test gen-
erates its own test statistic, which we can use to compute a
p-value which essentially measures how common or scarce
such a test statistic would be under the assumption that the
null hypothesis is true. After running a GOF test against
some observed data, we could end up with- 0.07. This
would mean that the probability of getting the same or larger
test statistic from the test using a random sample drawn di-
rectly from the tested distribution &07. Thus, we have
failed to rejectH, at the significance level = 0.05. If p
were less than our chosen significance cutoff point, then we
would rejectH in favor of H,,.

Although we realize the failure to reje&, is in no way
the same as acceptirfd,, we use GOF tests in this study
to lend further evidence that some distributions model our



data better than some other distributions. We have found4.4 Data Characteristics
that GOF tests will, almost certainly, rejddt for large data
sets, since the power of the tests to reveal discrepancies be  \yhen we start using a Weibull distribution to model the
tween the observed data and the test distribution increaseg 5 sets presented in this work, we would like to fully un-
with increasing sample size. Thus we find GOF tests some-yearstand and be able to characterize many aspects of the
what difficult to use for testing large pools of real-world sample data we're working with. We need to know how
data, which by nature cannot be expected to follow precisely o, gata can be characterized in terms of stationarity and
any theoretical distribution function. identical distribution. To kick-start this understandimge
For this reason, we employ a novel application of GOF have performed some common statistical tests that begin to
testing to the data sets in this study, keeping in mind that wehelp us understand these underlying features that may influ-
are presenting these results as further comparative eséden ence further work with the data. For many of these tests,
of how well the various tested distributions fit the observed we are exploiting the fact that we have access to our data
data. Rather than conducting each test using all availablesets as they were originally recorded; grouped by machine.
measurements (which indicates rejection in all cases), weEach of our datasets can be expressed as a combined list
GOF tests on randomly gathered subsamples to determingf availability measurements, or as many sets of availabil-
if rejection is warranted for small numbers of data points. ity uptimes grouped according to the machine from which
By doing so, we exploit the ability of each GOF test to de- were taken.
termine, from a smattering of measurements, whether rejec-  We have, based on intuition about the underlying causes
tion is indicated. for machine reboots and Condor process evacuations, as-
sumed for the length of this paper that our data values are in-
i . dependent. We believe that, for instance, one uptime inter-
4.3 Goodness-of-fit Analysis val on some machine has no effect on the length of the next
uptime interval. We also assume that the data do not follow
, ) any particulatrend in other words, the uptimes should not
For this analysis we use both KS and AD goodness-of- o getting generally longer or shorter as time progresses.

fit tests with randomly chosen subsamples from our datatye combined properties of independence and lack of trend
sets each having size 100. We then repeat the tests, with. )<t te what we will call “stationarity.”

different random subsamples, 1000 times to get a range of To support our assumption that our data are stationary
test results and then we use the average test statistic valu%e have performed on each machineuas test which is

\t/f/)i tzoggg\f;zel 86\/32::' Eiijtes Ci?iosnea dséi]? t%]g?tlr?:![;ztgz g}gtdesigned to detect whether the sequential data within atime
P ordered set appeared “randomly” or whether there was a

:rltzﬁtmtn 'ts\:\';:ﬁ‘pfﬁom'itfﬁ'm-r?h? ai(:ld't'o:] Ol;inlo:]e datfa::ﬁ”:t trend or autocorrelation within the data. The idea of this
othetes only co s INAppropriateness IUrher et is that a trend or positive autocorrelation within a sin

Test results are shown in Table 2 which are the averagegle machine’s ordered set of data will tend to create longer
p-values from the 1000 iterations of the test. and fewer “runs” of consecutive data points above, and also

From the table, it is clear that both the exponential and below, the median than would be expected if the data were
Pareto fail the goodness-of-fit tests for all three data. sets truly random, and a negative autocorrelation would cause
This is not entirely surprising, since the visual fitwas dga  there to be a larger number of such runs due to the tendency
inferior for all three data sets. The hyperexponential is pe of the data to oscillate. Runs test data for the CSIL and
forming significantly better than all of the models for all Condor data sets were remarkably close to the null distribu-
of the data sets, which was expected to eventually happertion. While the Long data set contained significantly more
as the number of phases was arbitrarily increased. For thegnachines{1) to be rejected at thé5 level than would be
Weibull, we fail to reject the null hypothesis at = 0.05 expected under the null hypothesi2(r5), the number of
significance level using the KS test for all three data sets.machines that failed the test because of too few runs was al-
We fail to reject the null hypothesis at = 0.05 signifi- most identical to the number that failed because of too many
cance using the AD test for the CSIL and Long data sets, (16 and15 respectively), so these factors may tend to mit-
but reject for the Condor data set, supporting the graphicaligate and contribute to an overall data set that is alsoyfairl
evidence that the Condor data set is less-well modeled by &stationary.
Weibull than the CSIL or Long-Muir-Golding data. Despite We would also like to know whether the distributions of
the rejection, however, the graphical comparison indgate uptimes for the various machines are all identical. Thege ar
that the Weibull is substantially better than either thecexp no good non-parametric tests available to test for idehtica
nential or Pareto at modeling the observed data, but somedistribution against the most general alternative hypsithe
what worse than a hyperexponential. but we are able to perform the Kruskal-Wallis test for iden-
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Data Set|  Weibull Exponential Pareto Hyperexponentia
AD | KS | AD | KS AD | KS AD KS
CSIL 0.071| 0.36 | O 0.0002 0.0005| 0.59280| 0.47
Condor 0 0.07|0 0 0 0.68291| 0.42
Long 0.132| 041| 0 0.001 0.0005| 0.77247| 0.48

o| oo

Table 2. Table of p-value results from GOF tests

tical location. This test is designed to detect whether a dat of active processes in a program scales to much greater lev-
point’s rank in a combined set is affected by its group mem- els, and checkpoints are sure to traverse over-taxed networ
bership. The testing process showed that we consistenthlinks, the need to control checkpoint-induced load becomes
and stronglyrejectedthe null hypothesis that our data are critical. Indeed, the exponential model under-estimates |
identically distributed. This is not entirely surprisirgince time, particularly in the tail, causing checkpoints to besta

the data-gathering methods for all three data sets made navith greater frequency than necessary. In wide-area net-
attempt to record machines based on some assumed simiwork environment, the cost of checkpointing too frequently
larity with regards to availability. The importance of this is both lost compute time and lost network throughput if the
result lies in the possible uses of the fitted models to indi- checkpoints are sent to a remote site for storage.

vidual machines. Although we can determine good mod-  Process scheduling is similarly affected. Downey and
els for combined sets of machines we cannot, in good con-Harchol-Balter [28] make a convincing case for using
science, apply this model to for any individual machine. Pareto distributions to model Unix process lifetimes. Blase
That is, these models capture the availability distriigio  on non-negligible probability that a randomly chosen pro-
that are available to a user who wishes to introduce a sin-cess will be long lived, they argue that the overhead of
gle process for execution on a randomly chosen machine process migration can be amortized by the benefit of load
The collection of machines with respect to this process is balancing. However, if the machines under consideration
well-modeled, but the availability of an individual mackin  are part of a federated system, as are the machines in our
is not. As we record more data per machine, and are able testudy, processes may substantially outlive machine avail-
perform model fitting methods on the individual machine, ability periods (or periods between resource reclamations
we will be more able to address machine-specific availabil- in the case of Condor). Under these conditions, the value of
ity problems directly. checkpointing and migration is easily amortized since the
alternative is either to restart long-running processes th
are terminated by a failure, or to abandon them altogether.

More theoretically, much of the recent work in peer-
to-peer systems [51, 60, 61] assumes exponential lifetime

From the results presented in this paper, we make sev-models. From an equational tractability standpoint, these
eral observations. First, none of the data are well-modeledsimplifying assumptions are attractive, and simulation us
by either an exponential or a Pareto distribution. The Vlisua ing these models indicates that their use does not pose a
evidence indicates that the fits are poor, and the GOF analsignificant risk to stability or performance. We contend,
ysis seems to confirm that even at a coarse subsamplinghowever, that the effect we observe should be considered
the observed data is likely not to have come from either thein any future peer-to-peer system formulation. The non-
MLE exponential or Pareto we fit. Thus, the tails of the memoryless aspect of the Weibull and hyperexponential dis-
availability distributions are neither as light as wouldd®e tributions implies that past history carries importanoirf
scribed by an exponential, nor as heavy as described by anation about future availability. To our knowledge, no peer
Pareto. While perhaps not surprising, this conclusion may to-peer system accounts for this possibility despite the re
have wide-ranging effects. cent widespread interest in peer-to-peer systems design.

In [44], Plank and Elwasif examine the “cost” of us- In terms of building credible Grid, desktop, and global
ing an exponential model as the basis for optimal check- computing simulations, these results clearly indicate tha
point interval determination. The authors reproduce Long, both Weibull and hyperexponential models of resource life-
Muir and Golding’s analysis [34] and find that an exponen- time must be considered. Enterprise-wide systems like
tial model is unlikely to be accurate. However, they go on those supported by Condor, Entropia [22] and United De-
to determine that using an exponential model produces acvices [55] must certainly consider parameterizations of
ceptable if conservative results for parallel systems. In athese models possible operating regimes. Moreover, Grid
global computing environment, however, where the numbertestbeds such as the Grid Application Development Soft-

5 Discussion
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ware [7, 26] testbed often include desktop resources like 1 , , , ,
the ones we study in the CSIL and Condor data sets. Grid 44|
Simulation packages such as the MicroGrid [49, 15], Sim-
Grid [11], Bricks [52] and Gridsim [10] can more ac-
curately capture federated resource behavior using these
model types. 06

The question of whether to use a Weibull or hyperex- 05
ponential model in simulation and/or analysis is a difficult 04|
one one to address quantitatively. Using reasonably pow- 5|
erful goodness-of-fit tests, the p-values for a hyperexpo-
nential that has been fit with an EM procedure are gen-
erally larger than those generated from an MLE Weibull.
While not a rigorous comparison, comparing p-values in
this way does indicate which of the two models is most
probably the more accurate. In addition, a hyperexponen-
tial has some attractive analytical properties that make it
useful choice in queuing contexts, when analytical sohgio
are needed [23]. For simulation, however, Weibull models
offer potential advantages. Having only two parameters,
“sweeps” of the simulation parameter space are substan-

tially less complex than with a hyperexponential. Recall server operating system is likely to have been some vari-
that ak phase hyperexponential requirgs — 1 parame-  ant of the Solaris operating system from Sun Microsystems.
ters, and that the value & must be chosea priori. In  gince then, many if not the majority of web systems are sup-
our studyk = 3 is complex enough to capture the distribu- ported on machines running some variant of Linux. There
tional behavior, but higher phase degrees may be necessarys Jittle reason to suspect that this shift has produced an
Moreover, the Weibull is a algebraically invertible model jncrease in availability. However, the increased virus and
making visual techniques such as Q-Q plots less complex‘spam” activity combined with the greater proliferation of
to generate. even less stable operating system platforms, may have de-
Regarding the general process of model fitting to empir- creased availability leaving the appropriateness of exen e
ical performance data, Feldmann and Witt provide evidenceponential models (with lighter tails) as an open question fo
that any heavy-tailed distribution can be approximated by the web services community.
a hyperexponential distribution with a sufficient number of  Finally, we have attempted to characterize our data sets
phases [23]. However, their preferred method is to use anin terms of stationarity and identical distribution by con-
MLE technique to determine a heavy-tailed model (either sulting common tests. We failed to reject a null hypothesis
Pareto or Weibull in their paper) and then to use an EM for stationarity, but very strongly rejected a null hypothe
technique to approximate the model with a hyperexponen-sis for identical distribution. However, during these expe
tial. In our experience, fitting a hyperexponential dirgttl ~ ments, we noticed an interesting feature in some of our data
the data using EM provides a better fit, using fewer phasessets, namely that when four outlier machines (those with ex-
than they report. tremely large contributions to the Kruskal-Wallis testista
The applicability of both Weibull and hyperexponential tic) were removed from the Condor data set, the Kruskal
models is startling clear in the analysis of the Long, Muir Wallis test for i.d. jumped from an essentially 0 p-value to a
and Golding data set. This study gives some indication of p-value of 0.2. As can be seen in Figure 27, the removal of
what availability may be like in a web-services based com- outlier machines did not affect the suitability of a new MLE
puting environment. We suspect that with the current wide- Weibull fit to the remaining data. From this observation, we
spread of proliferation of computer viruses, an attempt to suspect that our data may have very discrete subsets of ma-
reproduce the Internet survey for the current Internet will chines that, as a group, may benefit from a model separate
not be successful. However, given the similar nature of from the model for the combination of all machines. We in-
the Weibull fits across data sets, we conjecture that the ef-tend to explore this idea further in the future in the hopes of
fect extends at least to Internet connected hosts and server finding large enough i.d. groups of machines such that pre-
While the reliability of the network fabric has certainlyim  dictions made from group models can be used to accurately
proved since the survey was conducted, we conjecture thapredict behavior of any one group member.
machine availability is unlikely to have undergone a sim-  Automatically determining this clustering of availabil-
ilar improvement. For example, in 1995 the predominant ity is the subject of our on-going research. However, as
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Figure 27. Condor data with with removed
outliers and MLE Weibull fit ( o = 0.493,3 =
2304.8)
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collections of resources, the combination of MLE Weibull which Dr. Plank provided) as the basis for our Internet in-
and EM hyperexponential fitting provides good models au- vestigation and as a control. Dr. Miron Livny, in the Com-
tomatically from NWS-generated availability data. Given puter Science Department at the University of Wisconsin,
the evidence for stationarity, we can gather data and useprovided almost limitless access to the Condor pool at Wis-
both techniques to fit models that are applicable for long consin. Finally, Dr. Allen Downey, at the Olin College of
periods. By doing so, our method provides a dynamic (if Engineering, provided a whole raft of useful suggestions
slowly changing) characterization of resource pools that i and analysis.

useful in several distributed computing contexts.
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