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Abstract

In this paper, we examine the problem of predicting ma-
chine availability in desktop and enterprise computing en-
vironments. Predicting the duration that a machine will
run until it restarts (availability duration) is critically use-
ful to application scheduling and resource characterization
in federated systems. We describe one parametric model
fitting technique and two non-parametric prediction tech-
niques, comparing their accuracy in predicting the quan-
tiles of empirically observed machine availability distribu-
tions.

We describe each method analytically and evaluate its
precision using a synthetic trace of machine availability
constructed from a known distribution. To detail their prac-
tical efficacy, we apply them to machine availability traces
from three separate desktop and enterprise computing en-
vironments, and evaluate each method in terms of the ac-
curacy with which it predicts availability in a trace driven
simulation.

Our results indicate that availability duration can be
predicted with quantifiable confidence bounds and that
these bounds can be used as conservative bounds on lifetime
predictions. Moreover, a non-parametric method based on
a binomial approach generates the most accurate estimates.

∗This work has been supported by grants from the National Science
Foundation numbered EIA-9975020 (The GrADS project), CCR-0331645
(The VGrADS project), and NGS-0305390 as well as the DOE SciDAC
program.

1 Introduction

The rapid proliferation of Computational Grid comput-
ing [14, 4] combined with the commercial (if illegal) suc-
cess of peer-to-peer file sharing systems has sparked an in-
terest in the use of “volatile” desktop machines as an aggre-
gated compute and storage platform. Enterprise computing
systems such as those developed by Entropia [12], United
Devices [25], and Avaki [2] provide various technologies
designed to harvest compute power from personal com-
puters in a commercial setting. Grid computing systems
such as Condor [24], Globus [13], GrADSoft [3], and Net-
Solve [7] make it possible to combine user-controlled re-
sources (workstations, personal computers, etc.) with large-
scale clusters and machines to form an integrated comput-
ing environment. Finally, community-driven efforts such
as SETI@home [23] and the Bovine RC5 effort [6] have
demonstrated a significant use of spare compute cycles,
promising significant new results.

Part of the challenge to using “desktop” or user-
controlled resources comes from their their relative volatil-
ity as compared to their shared and managed counterparts.
The “owner” of a desktop machine typically exercises ulti-
mate control over the processes that run on it, its connec-
tivity to the network, and its reboot cycle. While system
administrators may go to great lengths to ensure that shared
server resources (computational or storage) are highly avail-
able, they rarely can exercise the same degree of control
over resources that are assigned to individual users.

In this paper, we describe a methodology for predict-
ing machine availability from monitoring data in distributed
computing environments. Specifically, we focus on the abil-
ity to estimate a specifiedquantile for the distribution of
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availability, and aconfidence levelassociated with each es-
timate. Thus we can phrase the problem as follows:

From a set of availability measurements taken
from a resource (or set of resources that are as-
sumed to be homogeneous), and given a desired
percentilep and confidence levelc, what is the
largest availability durationt for which we can
say with confidencec that p percent of the avail-
ability time measurements are greater than or
equal to?

The answer to this a question for a given data set, per-
centile of interest (and takeq = 1 − p), and desired con-
fidence level, is a lower bound estimate of theqth quantile
from the data set. While not a prediction of the exact avail-
ability duration, using an estimate of a quantile provides a
lower bound on how long a machine (or collections of ma-
chines) is likely to be available, and the confidence measure
provides a quantitative (but probabilistic) “guarantee” of the
estimate’s accuracy. For example, a scheduler may wish
to establish the availability duration that is smaller thanall
but 1% of the possible durations, and to be certain of that
number with 95% confidence. It is our belief that applica-
tion schedulers such as those described in [8, 18, 21, 5, 1]
can use these estimates to make automatic decisions about
where and for how long to run distributed application com-
ponents.

Our goal is to develop such a quantile estimation
methodology that supports “live” predictions of availability
so that schedulers (be they human or automatic scheduling
programs) can make decisions dynamically. As such, we
compare one (parametric) automatic model fitting technique
based on Maximum Likelihood Estimation (MLE) and two
non-parametric techniques in terms of how well they bound
the observed quantile of a given value in a trace-driven sim-
ulation.

We apply each method to machine availability data gath-
ered from three different distributed computing environ-
ments. At the University of California, Santa Barbara, we
have instrumented the student-accessible machines in the
Computer Science Department to record their available and
unavailable periods. We have also developed a method for
recording processor occupancy duration under Condor [24]
– a cycle-harvesting system developed and deployed at the
University of Wisconsin. Finally, to ensure that our mea-
surement implementation does not introduce an unforeseen
bias, we analyze availability data from a 1995 survey of In-
ternet hosts conducted by Long, Muir and, Golding at the
University of California, Santa Cruz [15]1.

1We gratefully acknowledge Dr. Divikant Agrawal at the University of
California, Santa Barbara, Dr. Miron Livny at the University of Wisconsin,
and Dr. Darrell Long at the University of California, Santa Cruz for their
support of this work.

As motivation for the usefulness of the three techniques
when applied to empirical data, we begin with a short ver-
ification experiment which performs lower bound quantile
estimate using each method on a synthetic, fixed Weibull
distribution. For each empirical data set, we then perform
an experiment where individual machine availability traces
are split into a training set, (which we use to estimate the
quantile lower bound) and an experimental set which is used
to verify the accuracy of the estimate. Because the training
set precedes the experimental set in each machine trace, our
results detail how well each estimation methodpredictsma-
chine availability for that machine during the time period
covered by the experimental set.

The remainder of this paper is organized as follows. The
next section, Section 2, describes three techniques for pro-
ducing lower confidence bounds for quantiles. Section 3 de-
scribes the data sets we use to investigate these methods. In
Section 4 we compare the three estimation methods empir-
ically. Finally, we conclude our investigation in Section 5.

2 Inference for Quantiles

In this section, we examine the problem of determining
lower bounds, at a fixed level of confidence, for quantiles
for a given population whose distribution is unknown. More
typically, statistical inference aims to find confidenceinter-
vals, but for our application, we are only concerned with
lower bounds, and placing all of the potential error on the
bottom end of the interval allows us to produce somewhat
more accurate values. At the same time, it provides a min-
imum “quality of service” guarantee with a quantifiable es-
timate of the probability that the guarantee will be violated.

For example, if a scheduler or machine user would like
to know the minimum amount of time a machine is likely to
run before it reboots, the0.05 quantile of thetrueavailabil-
ity distribution provides this number with 95% confidence.
That is, random variation will cause the machine availabil-
ity to be less than the0.05 quantile 5 times out of 100,if
the quantile is exact. In practice, we do not know the ex-
act distribution, so the quantile must be estimated. There
are a variety of techniques for estimating quantiles (three
of which we describe in this section) but to be used as a
guarantee, we require a confidence value for the estimated
quantile itself. That is, since the exact quantile is an uncer-
tain, we model it as a random variable, and calculate a con-
fidence bound for the quantile in order to make a guarantee.
By choosing the lower confidence bound, we ensure that the
true quantile is larger than the bound value with a specified
confidence. Thus, machine availability will be larger than
this bound with the specified confidence – it is, in effect,
a conservative estimate (high confidence) of a conservative
estimate (low quantile) of the availability.

While we are using the quantile to give us a minimum
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availability estimate, and a lower confidence bound to give
us a minimum quantile estimate, all of the methods outlined
below can be adapted easily to producing confidence inter-
vals (or, of course, upper bounds).

2.1 Parametric Approach: Model Fitting

Perhaps the most intuitive method for making quantile
inferences uses an optimization-based model-fitting tech-
nique to compute a “good” continuous model for a given
data set, and then computes confidence intervals for the nec-
essary parameters as a way of bounding the estimate of each
quantile. For example, the machine availability data de-
scribed in Section 3.1 seems to be modeled reasonably well
by a distribution from the Weibull family [17]. The den-
sity and distribution functionsfw andFw respectively for a
two-parameter Weibull distribution are given by

fw(x) = αβ−αxα−1e−(x/β)α

(1)

Fw(x) = 1 − e−(x/β)α

(2)

Using a Maximum Likelihood Estimation (MLE) technique
to estimate the parameters from the data, the resulting
Weibull density function is

Fw(x) = 1 − e−(x/249105)0.536852

. (3)

That is,α = 0.536852 andβ = 249105. A comparison
of the empirical data set to the MLE-determined Weibull is
depicted in Figure 1. Notice, however, there is enough dis-
crepancy between the MLE Weibull model and the actual
empirical data, especially near the left end of the distribu-
tion, that using model-based quantiles may be inadequate.

Moreover, it is possible to calculate confidence intervals
for the parametersα andβ. MATLAB [16], which we use
for all MLE and parameter confidence interval computa-
tions in this paper, uses the Fisher Matrix Method for com-
puting independent confidence bounds on each parameter of
a distribution at a specified confidence levelσ. In this work,
we use the simplifying assumption that the true Weibull
model is bounded by the two Weibull models corresponding
to the computed lower and upper parameter pairs. Further-
more, since each parameter confidence interval is computed
independently, we take the region between the two bound-
ing distributions as theσ2 confidence region. The resulting
graphs are shown in Figure 2.

We generate these graphs using the endpoints of the
confidence range for each parameter. In this example,
the 94.868% confidence range for the parameterα is
(0.51795 ≤ α ≤ 0.55574) and for β the range is
(109710 ≤ β ≤ 678720). We consider the bounded re-
gion to be 94.868% confident onα, and 94.868% confident
on β, which gives us a94.8682 = 90% confidence region.
If the data were generated by a Weibull, the parameters of

that Weibull would have only 10% chance of being outside
this range (5% chance of being below the lower, 5% chance
of being above the upper).

However, as Figure 1 demonstrates, even using MLE to
determine the parameters yields a Weibull distribution that
is only approximate. Thus, in practice, the confidence in-
terval for the fitted Weibull may not accurately predict the
number of values that actually fall inside and outside the
interval.

In this example, we have presented a confidence range
for the Weibull based on confidence intervals calculated for
the parameters. Again, for the practical purposes of pre-
diction, we are only interested in ensuring that the machine
availability measures are larger than the “leftmost” distri-
bution with a given confidence level. Because the range,
in this example, is a 90% confidence interval and is sym-
metric, we would expect no more than 5% of the measured
values to fall below the left boundary. Using this technique,
we can calculate such graphs for any given confidence range
allowing the left edge to be tuned as needed.

2.2 Non-parametric Methods

It is also possible to determine quantiles and confidence
intervals for them without first hypothesizing an underlying
distribution (such as a Weibull). The advantages of using
these methods is that they do not rely on the specific prop-
erties of a particular distribution (e.g. the shape) and that
they do not require a potentially large number of parameters
to be estimated (each with its own concomitant estimation
error).

Moreover, the complexity associated with determining
the bounding curves increases exponentially with the num-
ber of parameters in the model. In the case of a two-
parameter Weibull, for example, four curves are generated
by the confidence intervals on the parameters corresponding
to all possible combinations of low and high values for the
parametersα andβ respectively. For ank phase hyperexpo-
nential distribution (which may have a more conforming fit
than a Weibull as we note in [17]) the number of parameters
that must be estimated is2k − 1 yielding 22k−1 different
curves. In the Weibull case, it is obvious from the definition
of the density function that the high estimates for bothα and
β will yield the lowest-valued quantiles and similarly that
the lowest values forα andβ yield the largest quantiles. For
other distributions such as a hyperexponential the choice is
less clear making an automatic implementation (that will be
part of a scheduler) difficult. For these reasons, we exam-
ine two methods which are based on the data set itself and
not an assumption about the distribution from which it may
have been drawn.
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Figure 1. Empirical and MLE fitted Weibull
CDFs of machine uptime data gathered from
CSIL lab at UCSB ( α = 0.536852 and β =
249105).
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Figure 2. 90% Confidence Interval Graphs
for Weibull shown in Figure 1 ( α = 0.536852
and β = 249105)

2.3 Resample Method

The first method, which we term theResample Methodis
based on the standard result that, for givenq and sample size
n, theasymptoticdistribution of the sampleqth quantile is
normal with meanXq, the true populationqth quantile and
variance:

1

[f(Xq)2]

q(1 − q)

n
(4)

wheref(Xq) is the populationdensityfunction, evalu-
ated atXq (Cf. [11], pp. 367 ff.). In principle, then, to estab-
lish a 95% lower confidence bound for a specific quantile,
one could use the sample quantile, calculate the standard
error from the variance given in this equation, and subtract
1.645 (or a suitable criticalt-value for the normal distribu-
tion) times the standard error from the sample mean.

To use this result non-parametrically we can only try to
make a ”safe” estimatef(Xq) using histograms from our
data and our estimate forXq even with reasonably large
sample sizes. Since our estimated value off(Xq) is small,
and this expression appears in the denominator, our formula
for the variance is extremely sensitive to small variationsin
our estimate, rendering this histogram-based impracticalin
practice.

This difficulty is circumvented by using resampling
methods and creating the distribution of sample quantiles
artificially. The distribution of these quantiles should be,
again, asymptotically normal. To the extent that this dis-
tribution approaches the asymptote, then, one constructs a
level-C lower bound forXq as the(1−C)th quantile of the
resampled quantiles.

2.4 The Binomial Method

The second method, which we term theBinomial Method
is based on the following simple observation: LetX be a
random variable, letq be a real number between0 and1,
and letXq be theqth quantile of the distribution ofX . Then
a single observationx from X will be less thanXq with
probabilityq.

Given an independent sample(x1, x2, ...xn) fromX , we
can thus make inferences aboutXq directly, without making
any assumptions about the actual distribution ofX . The
method is as follows. The probability that none of thexi are
less thanXq is equal to(1 − q)n. Similarly, the probability
that exactly onexi less thanXq is n · (1 − q)n−1 · q, and
the probability that exactlyj of thexi are less thanXq is
(

n
k

)

· (1 − q)n−j · qj . Therefore, the probability that k or
fewer of thexi are less thanXq is equal to

k
∑

j=0

(

n

j

)

· (1 − q)n−j
· qj (5)

Observe that this calculation is valid (not just asymptoti-
cally correct) under the sole assumption that thexi are i.i.d.
and depends only onn, k, andq.

Given a desired confidence levelC and quantile of in-
terestXq, we can use Equation 5 above to obtain a level-C

lower bound forXq. Let x(i), i = 1, . . . , n, represent the
order statistics; that is, (x(1), x(2), ..., x(n)) permutes the
sample so that it is in increasing order. To say that we are
confident with levelC thatx(k) < Xq is equivalent to say-
ing that thea priori probability thatx(k) ≥ Xq is less than
or equal to1 − C; by Equation 5, this gives the equation
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k
∑

j=0

(

n

j

)

· (1 − q)n−j
· qj

≤ 1 − C (6)

taking the largestk for which this equation holds gives
xk as a level-C lower bound forXq.

It should be noted that the usual normal approximation to
the binomial does not produce accurate results for relatively
small sample sizes and extreme quantiles such asX.05 with
which we will typically concern ourselves.

We have investigated the possibility of enhancing the bi-
nomial method by applying linear interpolation between the
two order statistics whose associated sums surround(1−C)
for the confidence levelC of interest. As we will see in Sec-
tion 4, this has proven to be very successful, since for small
quantiles, both the our model and empirical CDFs tend to
be quite linear. Further, for data sets which are smaller than
the minimum size (59 forX.05) which would allow us to
use the binomial method conventionally, we have also in-
vestigated the possibility of using linear interpolation with
absolute population minima, the results of which are shown
in Section 4.

3 Experimental Data

The data we use in this study measures resource avail-
ability in three different settings. At the University of Cal-
ifornia, Santa Barbara (UCSB) we collected measurements
of the time between machine reboots of the publicly acces-
sible workstations in the Computer Science Instructional
Laboratory (CSIL). In a second experiment, we measured
the process occupancy time observed by a single user of the
Condor [24] pool at the University of Wisconsin during a
two-month period. Finally, we gratefully acknowledge Dr.
Darrell Long from the University of California, Santa Cruz,
and Dr. James Plank at the University of Tennessee for sup-
plying us with the original test data used to derive the results
in [15] and [19] respectively. Each of these data sets mea-
sures machine availability in a different way reflecting the
different definitions of “availability” that Grid users may
choose. Our goal in using a plurality of measurement meth-
ods is to determine how sensitive our quantile prediction
methods are to the way in which availability is measured.

3.1 The UCSB CSIL Data Set

At UCSB, the computer science students are given un-
restricted access to workstations located in several rooms
on campus. Together, these systems make up the Computer
Science Instructional Laboratory (CSIL). Physical accessto
the CSIL is provided to some (but not all) students 24-hours
a day when school is in session, and via remote access at all
other times to all computer science students. There are no

administrator scheduled reboots when school is in session,
however software failures, security breeches, and hardware
failures result in unplanned restarts by the administrative
staff.

What is perhaps most relevant to our study, however, is
that the power switch for each workstation is not physically
protected. Thus a student with access to a machine’s con-
sole who does not wish to share that machine with remote
users or background processes can “clean off” the machine
by power cycling it. Remote users will often choose a new
machine when they are unceremoniously logged out with-
out warning, and few background processes are written to
automatically restart. Indeed, it is reported anecdotallyby
many students that the “normal” user response to observed
machine slowness is to try a power cycle immediately as a
potential remedy.

As anarchistic as it may seem, we believe that this mode
of usage and administration accurately reflects failure pat-
terns in enterprise and global desktop computing settings.
Users are willing to accept background computing load if it
does not introduce unacceptable slowness, but will reclaim
the resources they control (through catastrophic means, if
need be) if the externally generated load is “too great.” Ob-
viously each user has a different tolerance level for external
load that may not be known a priori, and individual user pa-
tience is likely to be be time and situation dependent. More-
over, it is the combination of user reclamations, administra-
tive restarts, and hardware failures that make up the overall
availability distribution that we observe externally.

To measure availability in the CSIL, we designed an “up-
time sensor” for the Network Weather Service (NWS) [26,
22, 27] that reads the time since the last machine reboot
from the/proc file system. All CSIL workstations cur-
rently run Linux which records the time since reboot in
the/proc}directory. The NWS is designed to gather and
maintain dynamic performance measurements from Grid
resources while introducing as little load as possible. We
deployed the NWS uptime-sensor on 83 of the CSIL work-
stations and recorded the duration between reboots during
Feb and Oct of 2003, which corresponds to 2-3 quarters of
the school year, one of which being the summer quarter.
Thus the resultant data set captures a “production” use pe-
riod for the CSIL machines as well as a period of relatively
low resource usage.

3.2 The Condor Data Set

Condor [24, 9] is a cycle-harvesting system designed
to support high-throughput computing. Under the Condor
model, the owner of each machine allows Condor to launch
an externally submitted job (i.e. one not generated by the
owner) when the machine becomes “idle.” Each owner is
expected to specify when his or her machine can be consid-
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ered idle with respect to load average, memory occupancy,
keyboard activity, etc. When Condor detects that a machine
has become idle, it takes an idle job from a queue it main-
tains, and assigns it to the idle machine for execution. If the
machine’s owner begins using the machine again, Condor
detects the local activity and evacuates the external job. The
result is that resource owners maintain exclusive access to
their own resources, and Condor uses them only when they
would otherwise be idle.

When a process is evicted from a machine because the
machine’s owner is reclaiming it (e.g. begins typing at the
console keyboard), Condor offers two options. Either the
evicted Condor process is checkpointed and saved for a later
restart, or it is killed. Condor implements checkpointing
through a series of libraries that intercept system calls to
ensure that a job can be properly restarted. Using these li-
braries, however, places certain restrictions on the system
calls that the job can issue. “Vanilla” jobs, however, are
unrestricted but will be terminated (and not checkpointed)
during a resource reclamation. Condor’s extensive docu-
mentation [10] details these features to a greater extent.

In this study, we take advantage of the vanilla (i.e
terminate-on-eviction) execution environment to build a
Condor occupancy sensor for the NWS. A set of sensors
(10 in this study) are submitted to Condor for execution.
When Condor assigns a sensor to a processor, the sensor
wakes periodically and reports the number of seconds that
have elapsed since it began executing. When that sensor
is terminated (due to an eviction) the last recorded elapsed
time value measures the occupancy the sensor enjoyed on
the processor it was using. The NWS associates measure-
ments with Internet address and port number so if a sensor
is subsequently restarted on a particular machine (because
Condor determined the machine to be idle) the new mea-
surements will be associated with the machine running the
sensor.

It is difficult to determine how many machines are avail-
able within the Wisconsin Condor pool. The number fluc-
tuates as new machines are added, users decommission old
machines, etc. In our study, however, Condor used 210 dif-
ferent Linux workstations to run the 10 NWS sensors over
a 5 month measurement period.

Notice also that in this study we consider only the avail-
ability of each machine to a Condor user (the NWS, in our
case) once the machine is assigned to the NWS. We do not
consider the time between assignments during which a par-
ticular machine is either busy because its owner is using
it, or because Condor as scheduled other useful work. In
the CSIL data set, these durations are between 120 and 600
seconds which is the Linux reboot time, depending on the
machine in question. For Condor, however, the distribution
of resource unavailability is not as constant. Any complete
simulation of the Condor pool as a computational engine

would require both the distribution of availability and the
distribution of unavailability. In this work, we treat only
the availability distribution, but we plan a full analysis of
Condor’s dynamics in the near future.

3.3 The Long-Muir-Golding Data Set

In [15] the authors identify 1170 hosts connected to the
Internet in 1995 that would cooperatively respond to a vac-
uous query of therpc.statd – a system process com-
monly used on systems running the Network File System
(NFS). The hosts were chosen to act as a “cross-section”
of the Internet connected hosts at the time, and a probing
mechanism based on periodic but randomized RPC calls to
rpc.statd. A successful response to an RPC constitutes
a “heartbeat” for the machine in question, and failure to re-
spond indicates machine failure. Long, Muir, and Golding
use this data to make a convincing argument that availabil-
ity is not accurately modeled by a Poisson process. More
recently Plank and Elwasif [19] and separately Plank and
Thomason [20] have analyzed it extensively in terms of the
suitability of Poisson and exponential models in the context
of process checkpoint scheduling. In all three studies, the
authors reach the same conclusion which is that the models
under study do not accurately reflect the behavior captured
by the measurements.

3.4 Discussion

We have chosen to study these three data sets because
they measure observable machine availability in different
ways, under different conditions, at different times. For the
CSIL data set, students engaged in collaborative and com-
petitive activities using the resources at hand strongly in-
fluence the measured availability durations. Under Condor,
availability measurements capture the idle-busy distribution
of resource owners who (in theory) are unaware that Con-
dor is using the resources during idle periods. From the
perspective of a Grid or peer-to-peer scheduler, however,
these two data sets record the same quantities: the amount
of time an application process was able to use a resource
before it (the process) was exogenously terminated. We in-
clude the Long-Muir-Golding (LMG) data set in our study
to ensure that our results are not biased by the measurement
techniques we have used. The CSIL and Condor data sets
measure availability using two different sensors we have de-
veloped for the NWS monitoring infrastructure. As a result,
we wished to use data gathered by a separate group using
different measurement techniques to remove the possibility
that the NWS is biasing the results in an unforeseen way.

Note that the age of the LMG data also indicates the time
sensitivity (i.e. non-stationarity) of the effects we observe.
Clearly the Internet and its usage patterns have evolved sub-
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stantially since they gathered the data. Observing similar
distributions in all three data sets indicates that the effects
we are measuring are persistent and potentially fundamen-
tal.

4 Analysis

To investigate the effectiveness of the techniques de-
scribed in the previous section, we compare the predic-
tive performance of a two-parameter Weibull model which
we termthe Weibull method(c.f. Section 2.1) to the non-
parametricResample methodand theBinomial method. Our
first test attempts to verify the predictive power of each
method using a synthetic distribution of availability mea-
surements generated from a known distribution. This inves-
tigation compares each method’s ability to recover a lower
bound on given quantile (which is known exactly for the
distribution) using different sample sizes. It also illustrates
the smallest sample size for which these methods can gener-
ate accurate results. We then apply the methods to machines
culled from the data sets described in Section 3 and detail
their relative accuracy.

4.1 Verifying Predictive Power

In this section, we verify the efficacy of the three meth-
ods to estimate a specific quantile lower bound given a sam-
ple from a known distribution. Based on the results indicat-
ing that machine/process lifetime data typically can be mod-
eled using a heavy tailed distribution such as that shown in
Figure 1, we can characterize synthetic machine availabil-
ity using such a distribution. As a population distribution
we choose use a two-parameter Weibull distribution with
a shape parametera = 0.540976 and a scale parameter
b = 283068 as we believe it is typical of an accurate heavy-
tailed model for availability measurements. Thus, the dis-
tribution of the population is known exactly, and samples
drawn from it are consistent with observed machine avail-
ability [17].

From this population distribution, we can calculate quan-
tiles numerically. For example, the 0.05 quantile for the
Weibull we use in this study is1167.9. Hypothetically, any
machine with this availability distribution will “survive”
longer than1167.9 time units “95% of the time” since the
probability of a value being larger than the 0.05 quantile is
95%.

We can determine the accuracy (as a function of sam-
ple size) associated with a given quantile bound estima-
tion method by repeatedly sampling the synthetic popula-
tion distribution with a fixed sample size, using the sample
to estimate a quantile lower bound, and then comparing the
estimate to the actual known quantile. If we repeat this pro-
cedure for a large number of random samples, we can record

the percentage of the estimates that are above or below the
true estimate as a measure of confidence in the estimate.

For example, we can draw1000 samples of size 100 from
the population distribution. For each sample, we calculate
the 0.05 quantile lower bound with 95% confidence using
a particular method (Weibull, Resample, or Binomial). We
then calculate the percentage of the1000 estimates gener-
ated by the method that are below the true 0.05 quantile for
the synthetic population distribution.

In the synthetic case, we also examine how well a para-
metric model captures the true quantile (instead of the lower
bound). Since we have chosen a two-parameter Weibull
for the population distribution and we are using a two-
parameter Weibull as the parametric model, this method
(termed theQuantile method) represents the most ideal
parametric setting. Our expectation is that 50% of the
Quantile Method estimates will be below the true quantile.
The motivation for this expectation is that sample quantiles
should be asymptotically normal [11] with center at the true
quantile, and even if the lower bound is skewed because of
a small sample size, the center may be better represented.
However, as Table 1 and Figure 3 reflect, even for sample
sizes as large as 100, the sample .05 quantile shows sub-
stantial bias (and in fact its distribution is still noticeably
skewed as well). For the quantile lower bound methods, we
expect the percentage of values to be equivalent to one mi-
nus the confidence level. For example, if we are estimating
the lower bound of the 0.05 quantile with 95% confidence,
we expect 95% of the estimates to be below the true quantile
(if the confidence bound is accurate).

Table 1 shows the results generated by calculating the
0.05 quantile estimate using three different methods and a
variety of sample sizes. In each case, we apply the relevant
method to a sample drawn from the synthetic population to
obtain an estimate for the 0.05 quantile, and then we record
whether the estimate is above or below the true 0.05 quan-
tile 1167.9. The first column shows the sample size, and
the percentage of 1000 samples that are above the true 0.05
quantile are shown in the remaining columns.

From this table it is clear, not surprisingly, that sample
size dramatically affects the accuracy associated with an es-
timation method. It is, in fact, striking that the Binomial
Method captures the desired percentage of quantiles for a
sample as small as 20. The Resample Method shows rea-
sonable success using 100 samples, but drops dramatically
when sample sizes are below 50. The Weibull Method, our
only parametric lower bound estimation technique, shows
a very low success rate, even with sample sizes as large as
100. For instance, the Weibull Method, using samples of
size 100, resulted in a mere 53.3% of the computed lower
bound values<= the true distribution quantile even when
the population distribution itself is Weibull. In contrast, Re-
sample Method starts showing significant failure with sam-
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Subsample Size Weibull Method Binomial Method Resample Method Quantile Method
100 53.3 95.0 91.2 54.3
50 51.1 96.7 93.2 56.5
20 48.1 94.0 62.6 59.2
10 47.0 86.0 50.3 49.0

Table 1. Percent estimated 0.05 lower bounds (Weibull, Bino mial, and Resample Methods) and 0.05
quantile (Quantile Method), for four different subsample s izes, that are less than or equal to the true
0.05 quantile from a set Weibull distribution a = 0.540976, b = 283068.

Subsample Size Weibull Method Variance Binomial Method Variance Resample Method Variance
100 255110 175510 263100
50 499760 204790 484990
20 2730100 340710 17514000
10 13234000 1194300 51805000

Table 2. Variances of quantile lower bound estimates for two methods for four difference subsample
sizes.
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Figure 3. CDF of 0.05 quantiles from 1000
subsamples (100 samples each) from a set
Weibull distribution with a fitted normal CDF.
The mean of the quantiles was 1391.8, the
true population quantile was 1167.9, indicat-
ing considerable bias.

ple sizes below 50, while the Binomial Method results in
high success rates until the sample size is extremely small,
somewhere between 10 and 20 samples.

This sample size estimate is important because it in-
dicates the minimum number of measurements a particu-
lar machine must have before an estimate, or a confidence
bound on an estimate, can be trusted. In the remainder
of this study, we will assume that predictions should be
made using as little data as possible. Moreover, because
a Weibull model does fit true machine trace data well, we
believe a sample size of 20 will give us reliable results for
non-synthetic trace data.

Table 2 shows a comparison of the variance of the esti-
mators from the three quantile bound estimation methods;
in addition to the percentage of reliability that an estima-
tor provides, it is desirable that the variance of this estima-
tor be relatively small, so that it is not overly susceptible
to sampling variation. Notice that at every sample size in
the table, the variance of the Binomial Method estimator is
considerably smaller than that of the Resample Method and
Weibull Method estimators. Thus, not only does the Bino-
mial Method produce more reliable confidence bounds over
the full range of sample sizes, but the numbers obtained are
“tighter” in the sense of being less variable from one ran-
dom sample to the next.

4.2 Empirical Results

From our verification experiment, we have learned that
our methods for predicting lower bounds on quantiles

8



are empirically functioning as theorized but also that the
method based on binomials gives us accurate results at a far
smaller sample size than the method of resampling. While it
is clear that these results hold up for a well-behaved model
distribution, the next step is to explore the usefulness of our
technique with the real world lifetime data outlined in Sec-
tion 3.

In our experiment, we apply each of the estimation meth-
ods to availability traces for individual machines. For each
machine, we divide availability times into atraining period
and anexperimental periodwhich follows it chronologi-
cally. The training period data is used to derive a lower-
bound estimate (from each of the three estimation methods)
that is then tested against the experimental period. Thus,
the results of this study demonstrate how well each method
uses observed data (occurring during the training period) to
predict future values (in the experimental period) for indi-
vidual machines.

From our verification experiment, we noticed that 20
samples were sufficient for making an accurate lower bound
estimate using the Binomial Method, and therefore use ma-
chines whose training and experimental periods contains 20
measurements or more. We theorize that both methods, if
functioning properly, should result in estimates similar to
those we observed in the verification experiment. The need
for data parsimony is also demonstrated by this experiment.
In each of the three data sets (CSIL, Condor, and Long-
Muir-Golding) there were few machines with more than 40
availability measurements over the observation period cov-
ered by each data set.

Table 3 shows the result of our experiment for the three
lower bound quantile estimation methods and three differ-
ent data sets. The values reported are percentages of in-
dividual machine traces in each set where the method was
“successful.” For a given machine trace and method, we
record a success if the method estimate from the training
period is<= 95% to 100% of the measurements from the
experimental period.

The results of this experiment are very close to the results
we observed from our verification experiment and clearly
show that even when using real machine and process life-
time data, with as little as 20 measurements upon which to
base an estimate, the Binomial Method finds a value<=
95% of future values for 87.5% to 98.9% of the machine
traces. The Resample Method, under the same conditions,
only made correct estimates for 53.4% to 62.4%of the ma-
chines. The Weibull Method shows the same approximate
success rate we would expect on the CSIL and Long data,
but leapt to a dramatic 95.92% for the Condor data. The
reason for this high success rate, unfortunately, most likely
stems from the fact that the Condor data is not very well
modeled using a Weibull distribution and made extremely
conservative estimates during the experiment. In total, out

of 202 combined experiments, the Binomial Method pro-
duced a valid lower bound for the.05 quantile a total of
96.0% of the time, while the Resample and Weibull Meth-
ods succeeded in only 57.5% and 75% of the cases respec-
tively.

We emphasize that the strength of the result using the Bi-
nomial Method is not just the high success rate, but the fact
that the success rate is so close to the target of95%. (In fact,
the observed percentage provide no evidence at any signif-
icance level[P = .628] of a global success rate different
from exactly95%.) The method has thus produced lower
bounds that are meaningful at the desired level of confi-
dence, rather than being too conservative and producing a
success level too close to100%. This converse can be seen
in the case of the Weibull Method on Condor data, where we
obtained a very high success rate, but the estimates them-
selves were extremely conservative. As such the success
rate actually exceeds the 95% target, which indicates that
this method is not exhibiting evidence that the confidence
level can be meaningfully specified.

4.3 Discussion

Our experiment has allowed us make predictions that ad-
dress the question of how long we expect a machine or pro-
cess to live 95% of the time. It is noteworthy that the Bi-
nomial Method is making successful predictions 96.0% of
the time using only 20 measurements. However, the pre-
dictions we investigate are unconditional. As a result, they
predict how long a machine will be available at the time it
reboots. In practice, a scheduler would want a prediction
of remaining availabilityfrom any arbitrary point in time.
Since the underlying population distributions are not likely
to be “memoryless” the conditional prediction of remaining
lifetime will depend on how long a particular machine has
been running at the time the prediction is made. Moreover,
the population distributions do seem to be well-modeled by
heavy-tailed distributions such as a Weibull or hyperexpo-
nential [17], the unconditional estimates we generate in this
study are necessarily conservative. That is the longer a pro-
cess has already “lived,” the longer it is likely to live, and
therefore the expected availability from a random point in
time is longer than the expected total availability from its
last restart. Note also that while we can control the confi-
dence bound on the unconditional prediction, and that the
Binomial Method yields the tightest bounds, we cannot yet
quantify how conservative the unconditional prediction is
with respect to a conditional one. As part of of our fu-
ture work, we are investigating similar methods for making
instantaneous conditional predictions that are less conser-
vative, but which require the scheduler to interact with the
predictive methodology.
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Data Set Number of Machines % Weibull Success % Binomial Success % Resample Success
CSIL 16 56.25 87.5 62.5
Condor 97 95.92 98.9 60.2
Long 83 57.95 94.3 53.4

Table 3. Percent of machine traces from each set for which the given method estimate was <= 95%
to 100% of the experimental period measurements.

5 Conclusions

In this work, we have shown three methods for establish-
ing a confidence lower bound on a population quantile from
a population sample. To gauge the effectiveness of each
method, we performed a verification experiment that used
the methods to form confidence bounds using random sam-
ples of fixed size from a known population distribution. For
the 0.05 quantile, our experiment strongly indicated that the
Binomial Method performed far better than the Resample
Method and Weibull Method on small subsample sizes. We
attribute the fact that the Resample Method fails to perform
well with small sample size to the underlying assumption of
the method, which is that subsample quantiles from a pop-
ulation are asymptotically normally distributed. The poor
performance of the Weibull Method indicate that the param-
eter estimate technique (MLE) is very sensitive to variations
in the given data, and as such produce models from small
subsample sizes that do not accurately capture the true pop-
ulation distribution. Our verification experiment showed
that with samples as small as 20, the Binomial Method is
the only tested method that successfully estimates a lower
bound on the 0.05 population quantile.

With these results in hand, we performed a similar exper-
iment using real process and machine uptime data collected
from three separate sources. In this experiment, we split a
machine or process lifetime trace into a training set of size
20, and an experimental set of at least size 20. We then use
our three lower bound quantile estimation techniques on the
training period and count how many of the measurements
from the experimental period were greater than our lower
bound estimate. The results of this experiment are simi-
lar to our verification experiment, revealing the fact that the
neither the Resample Method nor the Weibull Method cap-
tures, with only 20 samples, the true 0.05 population quan-
tile, while the Binomial Method correctly estimates a lower
bound the expected number of times during the experimen-
tal period. We performed this test on 202 different, indi-
vidual machine and process lifetime traces and found that
for 96.0% of the traces the Binomial Method is correctly
producing a lower bound, while the Resampling Method
only produced a lower bound for 57.4% of the traces. The
Weibull Method produced success 56-58% of the time for

the machine availability data sets, and produced a somewhat
high 95.92% success rate for the Condor data set which un-
fortunately is due to the inappropriateness of the Weibull
model when applied to Condor traces and results in an un-
usable conservative quantile estimates.

Although we have produced a very effective method
for estimating lower bound quantile estimates (Binomial
Method), we realize that these estimates, as 95% confidence
lower bounds, will be quite conservative. For the purpose
of determining the future lifetime of an existing process,
our estimates will be particularly conservative, due to the
heavy-tailed nature of the distribution of availability mea-
surements. In future work, we will attempt to adapt the
methods of the current work in order to address data dis-
tributions of this type.

References

[1] B. Allcock, I. Foster, V. Nefedova, A. Chervenak, E. Deel-
man, C. Kesselman, J. Leigh, A. Sim, and A. Shoshani.
High-performance remote access to climate simulation data:
A challenge problem for data grid technologies. InProceed-
ings of IEEE SC’01 Conference on High-performance Com-
puting, 2001.

[2] The Avaki Home Page.http://www.avaki.com, Jan-
uary 2001.

[3] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster,
L. J. Dennis Gannon, K. Kennedy, C. Kesselman, D. Reed,
L. Torczon, , and R. Wolski. The GrADS project: Software
support for high-level grid application development.Inter-
national Journal of High-performance Computing Applica-
tions, 15(4):327–344, Winter 2001.

[4] F. Berman, G. Fox, and T. Hey.Grid Computing: Making
the Global Infrastructure a Reality. Wiley and Sons, 2003.

[5] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail,
M. Faerman, S. Figueira, J. Hayes, G. Obertelli, J. Schopf,
G. Shao, S. Smallen, N. Spring, A. Su, and D. Zagorodnov.
Adaptive computing on the grid using apples.IEEE Trans-
actions on Parallel and Distributed Systems, 14(4):369–382,
April 2003.

[6] The bovine rc5-64 project –
http://distributed.net/rc5/.

[7] H. Casanova and J. Dongarra. NetSolve: A Network Server
for Solving Computational Science Problems.The Inter-
national Journal of Supercomputer Applications and High
Performance Computing, 1997.

10



[8] H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The
AppLeS Parameter Sweep Template: User-Level Middle-
ware for the +Grid. InProceedings of IEEE SC’00 Con-
ference on High-performance Computing, Nov. 2000.

[9] Condor home page –
http://www.cs.wisc.edu/condor/.

[10] The Condor Reference Manual. http://www.cs.
wisc.edu/condor/manual.

[11] H. Cramer. Mathematical Methods of Statistics. Princeton
University Press, 1946.

[12] The Entropia Home Page.http://www.entropia.
com.

[13] I. Foster and C. Kesselman. Globus: A metacomputing in-
frastructure toolkit.International Journal of Supercomputer
Applications, 1997.

[14] I. Foster and C. Kesselman.The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann Publishers,
Inc., 1998.

[15] D. Long, A. Muir, and R. Golding. A longitudinal survey
of internet host reliability. In14th Symposium on Reliable
Distributed Systems, pages 2–9, September 1995.

[16] MATLAB Home Page. http://www.mathworks.
com.

[17] D. Nurmi, J. Brevik, and R. Wolski. Modeling machine
availability in enterprise and wide-area distributed comput-
ing environments. Technical Report CS2003-28, U.C. Santa
Barbara Computer Science Department, October 2003.

[18] A. Petitet, S. Blackford, J. Dongarra, B. Ellis, G. Fagg,
K. Roche, and S. Vadhiyar. Numerical libraries and the
grid. In Proceedings of IEEE SC’01 Conference on High-
performance Computing, November 2001.

[19] J. Plank and W. Elwasif. Experimental assessment of work-
station failures and their impact on checkpointing systems.
In 28th International Symposium on Fault-Tolerant Comput-
ing, pages 48–57, June 1998.

[20] J. Plank and M. Thomason. Processor allocation and check-
point interval selection in cluster computing systems.Jour-
nal of Parallel and Distributed Computing, 61(11):1570–
1590, November 2001.

[21] M. Ripeanu, A. Iamnitchi, and I. Foster. Cactus application:
Performance predictions in a grid environment. Inproceed-
ings of European Conference on Parallel Computing (Eu-
roPar) 2001, August 2001.

[22] J. Schopf and J. Weglarz.Resource Management for Grid
Computing. Kluwer Academic Press, 2003.

[23] SETI@home. http://setiathome.ssl.
berkeley.edu, March 2001.

[24] T. Tannenbaum and M. Litzkow. The condor distributed pro-
cessing system.Dr. Dobbs Journal, February 1995.

[25] The United Devices Home Page.http://www.ud.com/
home.htm, January 1999.

[26] R. Wolski. Experiences with predicting resource perfor-
mance on-line in computational grid settings.ACM SIG-
METRICS Performance Evaluation Review, 30(4):41–49,
March 2003.

[27] R. Wolski, N. Spring, and J. Hayes. The network weather
service: A distributed resource performance forecasting ser-
vice for metacomputing.Future Generation Computer Sys-
tems, 15(5-6):757–768, October 1999.

11


