Predicting Bounds on Queuing Delay in Space-shared Compurtg Environments

University of California, Santa Barbara

Technical Report Number CS2005-09

John Brevik, Daniel Nurmi, and Rich Wolski

Computer Scienc

e Department

University of California, Santa Barbara
Santa Barbara, California 93106

Abstract

Most space-sharing resources presently operated by high pe
formance computing centers employ some sort of batch qugguei
system to manage resource allocation to multiple users.hig t
work, we explore a new method for providing end-users wigh pr
dictions of the bounds on queuing delay individual jobs @ifbe-
rience when waiting to be scheduled to a machine partitioe. W
evaluate this method using scheduler logs that cover a 9 pear
riod from 7 large HPC centers. Our results show that it is ploles
to predict delay bounds with specified confidence levelofis jn
different queues, and for jobs requesting different rangfepro-
cessor counts.

1. Introduction

Typically, high-performance multi-processor computetgses
are managed usirngpace sharinga scheduling strategy in which
each program is allocated a dedicated set of processotsefoiut
ration of its execution. In production computing settingsers
prefer space sharing to time sharing, since dedicated gsoceac-
cess isolates program execution performance from thetsftdc
a competitive load. Because processes within a partitionato
compete for CPU or memory resources, they avoid the cache an
translation look-aside buffer (TLB) pollution effects thiane slic-
ing can induce. Additionally, inter process communicataaurs
with minimal overhead, since a receiving process can neverd-
empted by a competing program.

For similar reasons, resource owners and administratefermpr
space sharing as well. As long as the time to allocate parstio,
and reclaim partitions from, parallel programs is small,com-
pute cycles are lost to time-sharing overheads, and reseuumn
with maximal efficiency. Thus, at present, almost all prdatuc
high-performance computing (HPC) installations use soonm f
of space sharing to manage their multi-processor and closie
chines.

*This work was supported by grants from the National Science
Foundation numbered CCF-0331654 and NGS-0305390.

Because each program in a space-shared environment runs in
its own dedicated partition of the target machine, a progcam
not be initiated until there are a sufficient number of preoes
available for it to use. When a program must wait before it can
be initiated, it is queued as “job along with a description of
any parameters and environmental inpueg(input files, shell
environment variablestc) it will require to run. However, be-
cause of the need both to assign different priorities tosuaed to
improve the overall efficiency of the resource, most inatahs
do not use a simple first-come-first-served (FCFS) queuisg di
cipline to manage the queue of waiting jobs. Indeed, a nurober
gueue management systems, including PBS [20], LoadLejgler
EASY [16], NQS/NQE [18], Maui [17] and GridEngine [12] each
offers a rich and sophisticated set of configuration opttbas al-
low system administrators to implement highly customizedrp
ity mechanisms.

Unfortunately, while these mechanisms can be used to balanc
the need for high job throughput (in order to ensure machine e
ficiency) with the desires of end-users for rapid turnarotimes,
the interaction between offered workload and local queulisg
cipline makes the amount of time a given job will wait highly
variable and difficult to predict. Users may wait a long time —
considerably longer the the job’s eventual execution tinfer-a
job to begin executing. Many users find this potential forreap
flictable queuing delay particularly frustrating sincepinduction
settings, theycan make fairly reliable predictions of how long a
program will execute once it starts running. Without anigbtb
predict its queue waiting time, however, users cannot phably
to have results by a specific point in time.

In this paper, we present tHgrevik Method Batch Predictor
(BMBP) — a new methodology for predicting bounds, with quan-
titative confidence levels, on the amount of time an indigidab
will wait in queue before it is initiated for execution on aoduc-
tion “batch scheduled” resource. BMBP bases its predistmtly
the observed history of previous waiting times. Thus, ibaat-
ically takes into account the effects of varying workload @us-
tomized local queuing discipline. In addition, we obseivat the
queuing behavior exhibited by all of the machines we exathine

1we will use the term “job” throughout this paper to refer toea d
scription of a program and its execution requirements toatea-

ing system can use to initiate a program once the necessary re
source become available.

in this study { supercomputers operated by the National Science
Foundation and the Department of Energy overygear period) is
highly . In response to hardware and software upgradesiyésil
and configuration changes, changing organizational pigsriuser
turnover, security eventgtc, administrators appear to tune and
adjust their local queuing policies, often in a way that it olovi-

ous to the user community. BMBP attempts to detect thesegehan
points adaptively so that it uses only relevant history t&enzach
prediction.

We verify both the efficacy and generality of BMBP using the
logging information recorded by various batch scheduleaiswere
in use during the time each machine in our study was in operati
All of the installations except the Lawrence Livermore Idatl
Laboratory maintained a variety of queues for each machivie.
presume that a qualitative queuing policy has been puldisbe
the user community for each queteed, jobs in the “Low” queue
at the San Diego Supercomputer Center would be given lovirer pr
ority than those in the “Normal” queue, which would, in tunaye
lower priority than those in the “High” queue). In this wayete
installations attempt to provide their respective usersrooni-
ties with a rudimentary and qualitative prediction cagabgince,
in general, lower priority jobs can be expected to wait lonige
queue.

previous research efforts that treat the problem of predjcjueu-
ing delay in a quantitative way.

Our work differs from these approaches in two significantsvay
First, our goal is strictly to provide a predictive mechamifor
users and application schedulers rather than to investthatdis-
tributional properties exhibited by HPC systems. We foaug on
the problem of prediction at the expense of a complete ttatis
model of system behavior. As a result, BMBP achieves newdeve
of predictive accuracy and quantitative rigor, but it caneasily
be used to build simulations of future or hypothetical systen
the same way previous results can.

Second, BMBP makes a prediction for each individual job’s
queuing delay rather than a statistical characterizatidineoqueu-
ing delay experienced by all jobs. For example, previousrtsf
have focused on describing job behavior using differentmpet-
ric models so that the mean queuing delay can be estimated. It
is difficult to quantify and predict how the delay that will -
perienced by a job that is about to be submitted will compare t
the estimated mean delay. In contrast, BMBP correctly ptedi
bounds on delay for individual jobs (rather than the colecbf
all jobs) with quantifiable confidence levels.

The remainder of this paper details BMBP and describes its

However, in each case the batch scheduler must choose amongvaluation. In so doing, the paper makes the following tweeho

jobs that are waiting in a number of queues, each of whichwvs go
erned by a specific policy. Moreover, the algorithm used to se
lect a particular job at a particular time from amongst theotes
queues is not typically published, and potentially chagginder
administrator control. Thus, while the implementation afitiple
policies for a given machine through multiple queues canigeo

a high level and qualitative expectation of how a specificyidlb

be treated, it substantially complicates the problem of intaka
quantitative prediction for that job.

We examine the predictive power of BMBP when it is applied
to the various queues implemented at each site by detaitimg h
well our new method predicts in a quantitative way the gaalit
tive characteristics attached to each queue. With imppicdrity
mechanisms such as backfilling [15] in use at some of the, sites
however, users have come to expect that processor coundfalso
fects wait time. In particular, jobs in a particular queuguesting
small numbers of processors are believed, typically, ta feai
shorter periods, since they can be “backfilled” into the ntaeh
around larger jobs. We therefore also examine how well BMBP
predicts the bounds on waiting times for jobs based on thaaue
to which they were submitted and the number of processoys the
specified. In all cases — covering ovemillion jobs — the method
makes predictionfor each joh which are “correct” in a very spe-
cific statistical sense which we will discuss below, for tlo&ibds
on the waiting time.

This ability to make predictions for individual jobs diggnishes
our work from other previous efforts. An extensive body of re
search [21, 5, 6, 8, 11, 3, 7, 9] investigates the statigpicgierties
of offered job workload for various HPC systems. By proviglin
a rigorous statistical characterization of job interatittmes and
program execution times, the resulting statistical propgassoci-
ated with queuing time can be derived through simulatiorsiie
these extensive characterization studies, however, we kfiew

contributions.

e We describe a new predictive methodology for bounding
gueuing delay that is quantitative, non-parametric, and ge
eral. As a result, the method works automatically, without
ancillary analysis or human “tuning” for a specific site or a
specific queue.

We evaluate this methodology by comparing its performance
to an alternative parametric approach based on the assump-
tion that the underlying distribution is log-normal. Our re
sults show that our new approach achieves the specified con-
fidence levels in each case while the log-normal approach
does not.

We emphasize that our intention in developing BMBP is to pro-
vide a practically realizable predictive capability foreetual de-
ployment as a user and scheduling tool rather than a newtarzly
methodology. Therefore our reportage focuses on the segeitt-
erated by a work prototype that is currently being integtatéh
various batch scheduling systems, and our results areaitly,
empirical.

2. Related Work

Smith, Taylor, and Foster in [21] use a template-based agpro
to categorize and then predict job execution times. Froraehe
execution-time predictions, they then derive queue detedip-
tions by simulating the future behavior of the batch schexdir
faster-than-real time. Our work differs from this approactwo
significant ways. To be effective, the Smith-Foster-Taph@thod
depends both on the ability to predict job execution timeigaiely
for each job and on explicit knowledge of the scheduling atgm

used by the batch scheduler. Other work [14, 4] suggestsithiat
ing such predictions may be difficult for large-scale prdahrc
computing centers. Moreover, the exact details of the sdhweg
policy implemented at any specific site is typically unpsbéd.
While the algorithm may be known, the specific instance of the
algorithm and the definition of any parameters it requirestae
prerogative of the site administrators and, indeed, mayhbaged
as conditions and site-specific needs warrant. In contastap-
proach uses only with the observed queue delays. By doinigj so,
does not require execution time predictions, and it autmaidt
takes into account any site-specific effects induced by dhall
scheduling policy (whether static or dynamically changing

Downey [5, 6] uses a log-uniform distribution to model the re
maining lifetimes of jobs executing in all machine partitsoas a
way of predicting when a “cluster” of a given size will become
available and thus when the job waiting at the head of the gueu
will start. Our work differs from Downey’s in that we do notais
predictions of the time until resources become free to egérthe
start time of a job. Rather, we work directly from the observe
queuing delays.

Finally, our approach differs from both of these related ap-
proaches in that it attempts to establish rigorous boundten
time an individual job will wait rather than a specific, siaglalued
prediction of its waiting time. We contend that the highlyighle
nature of observed queue delay is better represented totjabte

one end) that we can assert contain the parameter with a speci
fied level of confidenceroughly corresponding to the “probabil-
ity” that our interval has captured the true parameter ofptbp-
ulation. In general, the more confident we wish to be, the wide
the confidence range; for example9@% confidence interval for
the estimated.95 quantile is wider than a80% confidence in-
terval, because the higher level of confidence demands that w
be more certain that the true parameter lies in our interiair

the purposes of this paper, we will typically be consideripgper
confidenceboundson quantiles, which correspond to left-infinite
intervals(—oo, BJ.

To estimate an upper bound, then, we need to choose two val-
ues: the quantile and the desired level of confidence fordhad.
Returning to the example, to say that a particular stasistethod
produces &9%-confidence upper bound on thé)5 quantile is to
say that, if the method is applied a large number of timesyahee
it produces fails to be greater than the5 quantile no more than
1% of the time. We will term an upper-bound predictioncasrect
if the observed value falls below the predicted value; wé teiim
a prediction method on a set of datarrectif the proportion of
correct predictions it makes is at least as great as the itpidns
predicting.

In this work, we (perhaps somewhat unfortunately) have cho-
sen to use the value.95 for each. We have identified th®95
quantile as appropriate for a level of how certain we wishéo b

system users as quantified confidence bounds than as a specifisbout how long a job will wait in the queue. At the same time

prediction, since users can “know” the odds that their jolb fial
outside the range.

3. Problem Definition: Predicting Bounds on
Queuing Delay

While it is appealing to consider the problem of predictihg t
exact queuing delay a given job will experience through sdeze
terministic mechanism, because the scheduling policy dglén
and potentially changing, and because there is no detestigini
model for job interarrival duration or execution time, weexs that
queuing delay must be treated statistically as well. As altahe
best possible outcome (from the job submitter’s perspekisthe
ability to predict bounds on the delay a job will experieraed to
do so with a quantifiable measure of confidence.

95% is fairly standard from the standpoint of statistical irfiece

as a level of confidence. Note that because it is0thé quantile

we are estimating, a user should expect that there is at niost a

20 chance that the actual wait time experienced by a job exceed
the predicted wait time (provided, of course, that the potboln
method is correct in the sense of the above paragraph).

Our aim in producing predictions is not only that they be cor-
rect at leas5% of the time, but also that they be meaningful
to the user. If we were to make extremely conservative predic
tions, based, say, on the maximum wait time ever observeukein t
queue, the percentage of correct predictions would dossile
crease; however, the extremely large predictions producadd
have little utility to someone wishing to use these valuegpfan-
ning purposes. One sees, then, that there is a direct tfabe-o
tween having a high percentage of correct predictions aaseth
predictions reflecting what a “typical” wait time might bef:the

For example, suppose that a scheduler or machine user wouldoredictions are correct at a substantially higher rate trer-

like to know the maximum amount of time a job is likely to wait
in a batch queue before it is executed. In order to be preaise,
quantify the word “likely” to mean that we wish to generatera-p
dicted number of seconds so that we @5§¢ certain that our job
will begin execution within that number of seconds, in thasse
that, over time95% of our predictions will be at least as great as
the actual wait-times of the jobs. If we regard the wait tini@o
given job as a random variable, then, this amounts to finding a
estimate for th@s" percentile, 00.95 quantile of this variable’s
distribution.

Since the distribution of interest is unknown, any of itsgrar
eters in which we might be interested must be estimated;aiigi
from a sample. Standard methods of statistical infererioevals

to use a sample to produce an interval (which may be infinite on 4.

tised, it is a sign that they are overly conservative andefioee
less meaningful than they could be. Thus the fact that, ireigen
only slightly more tha®5% of our predictions are correct for each
queue, as we will see in Section 6, shows that they are meahing
for the purpose for which they are designed.

Note also that, while we have presented the problem in terms
of estimating the upper bound on queuing delay, it can bdasilyi
formulated in terms of produce lower confidence bounds, or tw
sided confidence intervals, at any desired level of configefur
any population quantile.

Inference for Quantiles

In this section, we describe our approach to the problem-of de
termining upper bounds, at a fixed level of confidence, fomgua
tiles of a given population whose distribution is unknowrs de-
scribed previously, our intention is to use this upper boaadch
conservative estimate of the queuing delay, and to repertiéx
gree of conservatism as the quantified confidence level.

4.1 The Brevik Method Batch Predictor

Our approach, which we term tievik Method Batch Predic-
tor (BMBP), is based on the following simple observation:Xif
is a random variable, and,, is theq quantile of the distribution
of X, then a single observationfrom X will be greater thanX,
with probability (1 — ¢). Thus (under suitable assumptions about
independence and identical distribution) we can regardfate
observations as a sequence of independent Bernoulli txidis
probability of success equal §go where an observation is regarded
as a “success” if it is less thaki,. If there aren observations, the
probability of exactlyk “successes” is described by a Binomial
distribution with parameters andn. Therefore, the probability
thatk or fewer observations are greater thipis equal to

@)

k
> (?) (1= "¢

j=

We provide a more complete description of the method in the
Appendix of this paper. However, in short, we can find the smal
est value of for which Equation 1 is larger than some specified
confidence level, and thé" value in a sorted set of observations
(of sufficient size) will be greater than or equal to thig quantile
of the distribution from which the observations were madthwi
the specified level of confidence.

Nonstationarity

In the specific context of batch-queue wait times, one adytai
cannot make the unsupported assumption that the data e i.i
(independent and identically distributed); therefore, ittea men-
tioned above that the wait time forspecific jobis to be regarded
as a random variable with its own specific distribution resuro
the foreground. In fact, we have observed that, over theseour
of a long data trace, the above prediction method, whichnesse
tially regards a specific wait time as simply a particulatanse of

a general “wait time” random variable, is subject to degtiata
We assume that this degradation is because the system girchan
over time making the observation sequence nonstationary.

We circumvent this difficulty in the following way. First, eb
serve that, given an i.i.d. sequence of data from a randorablar
X and a sequence valug that is greater than, sa¥; o5, the prob-
ability that the next valuer;41 is also greater thaX o5 is .05,
which is low but not exceptional; however, the probabilligtthe
next two are greater thal o5 is .0025 — an extremely rare occur-
rence. Therefore, if we are trying to make inferences atiau06
quantile of a data set and we find three measurements in a abw th
exceed their95-quantile estimates, we can be almost certain that
this has taken place due to some nonstationarity in the détarr
than purely by chance from a stationary sequence.

Now, suppose that the data, regarded as a time series, tsxhibi
some autocorrelation structure. If the first autocorretats fairly
strong, three or even five measurements in a row abovedthe
quantile might not be such a rare occurrence, since one higle v
would tend to produce another. For this reason, we conducted
Monte Carlo simulation using log-normal distributions lwitari-
ous values of first autocorrelation in order to identify themer
of consecutive measurements above.fiequantile necessary to
constitute a “rare event,” meaning one that occurs for lhas t
5% of the errors. We then generated a coarse-grained lookup ta-
ble with autocorrelations and “rare-event” thresholds.teNihat
our choice of log-normal distribution does not amounagsum-
ing that the distributions of wait times are log-normal; we ombe
this distribution to give a very rough sense of how many conse
tive incorrect predictions constitute a “rare event,” aarelsterized
above, for heavy-tailed autocorrelated data. As a prdaticd-
ter, the log-normal is an easy distribution to work with, andn
light of Downey’s below-mentioned endorsement of log-nalsn
as well as the fact that log-normals did in fact perform faidell
as prediction models, log-normal distributions seem to bead
choice for our simulation. In any event, it should be noteat th
is not vital to our method that the log-normal be entirelylaate:
Our choice 06% was somewhat arbitrary to begin with, and if the
number produced by this method turns out to give an event that
occurs with3% or 7% probability, it can hardly be construed as a
serious difficulty.

For each queue, we calculate the first autocorrelation gurin
the training period and use the lookup table to find the “erent”
threshold for that data set. When we observe the determimed n
ber of consecutive incorrect predictions, we assume tleati#ta
has changed in some fundamental way so that old data is nerlong
relevant for our predictions. Accordingly, we trim the list as
much as we are able to while still producing meaningful confi-
dence bounds.

For example, it follows from formula 1 above that in order to
produce a5% confidence bound for the)5 quantile the mini-
mum history from which a statistically meaningful inferencan
be drawn is59: Setj; = n — 1, so that the sum gives the prob-
ability thatn — 1 or fewer are less thaX,; the smallest. for
which this sum is at leasb5 is 59. Therefore, for this specific
quantile and level of confidence, upon seeing the assignedeu
of missed predictions in a row (determined by the first auteezo
lation observed during training), we would trim our histeoythe
most recenb9 and start making predictions based on the short-
ened history. Thus our confidence bounds automaticallytadap
the longest history that is clearly relevant to the curreatijztion.

For the data sets considered, our method produces (conserva
tive) predictions for thed5 quantile for each wait time so that, for
each data set, our predictions were correct at l&5tof the time.

The relatively high level of confidence chosen enabled tkdipr
tor to work well in spite of possible effects of non-independe
and short-term nonstationarity in the data.

4.2 Model-Fitting with Log-Normals
In [5], Downey hypothesizes that the job at the head of a FCFS

gueue experiences a delay that is well-modeled lgauniform
distribution; however, in a private communication with thghor,

he expressed a belief that overall wait times are well meddily
log-normaldistributions; note that that a random variafles dis-
tributed log-normally iflog X is a normally-distributed variable.
This observation suggests another approach to the prolflpro-o
ducing quantile estimates for batch-queue wait times;iipalty,

one can fit a log-normal to the data (or, equivalently, a nérma
distribution to their logarithms) using, preferably, thetimod of
maximum likelihood estimation (MLE), and then produce tlee d
sired population quantile from a lookup table or the inverkthe
cumulative distribution function.

In fact, the above method will likely produce accurate quan-
tile estimates for a true log-normal; however, in the inséeref
statistical rigor, as well as an “apples-to-apples” coriguar with
BMBP, we produce confidence upper bounds for quantiles rrathe
than quantile estimates themselves. To this end, we woltktivi
logarithms of the data; since they are assumed to be norneal, w
can use the(’ distribution for confidence bounds on quantiles for
normal populations, given in Table 4.6 of [13].

Generally, model-fitting is done with all of the data avaiégb
and our experiments include the use of full histories to poed
confidence bounds; however, in light of the long-term ndista
arity phenomenon discussed above, we additionally impitede
an estimation scheme incorporating the same history-atiow
strategy that we used with BMBP. The result separates tketsff
of using a binomial approach from the effects of our automati
identification of change points.

5. Evaluation

Our goal is both to determine the statistical correctne 88wiB P
and to investigate its accuracy. Recall that a method iscbif,
provided the number of job predictions is large enough teetff
short-term statistical anomalies, the percentage of comedic-
tions is at least as large as the specified level of confideWd.
examine several different combinations of quantile andidence
level as part of this verification. As a measure of accuraeyger
tail the degree of over-prediction each upper bound geeerato-
tice that a simple prediction method in which the predicepaat-
edly guesses an astronomically large numbgtimes followed
by a single guess of a very small number will generate priedist
that are above the corresponding observatmractly95% of the
time and therefore, under our definitions, is “correct.” @& other
hand, it is not an “accurate” predictor, in a way that we wisi-d
Cuss.

While we plan to deploy BMBP in production computing set-
tings, to first determine its efficacy, we use a trace-basedtev
driven simulation (described in the next subsection). liogglata
from a variety of HPC sites (described in Subsection 5. 9)ndx
the queue name, arrival time, queue delay, and processot cou

decisions based on the predictions furnished, this cosaonly
demonstrates that the method retroactively captures thandigs
that were present at the time of each submission. We belmate t
the correct and accurate behavior of BMBP in this settingy-ho
ever, warrants deployment and “live” evaluation as a nesq.st

We have also been able to obtain preliminary timings for BMBP
from its use in simulation. Using a 1 gigahertz Pentium Hg awv-
erage time required to make a prediction over the approxiyat
1.2 million predictions we examine across all batch queue Isgs i
milliseconds. Clearly BMBP is efficient enough to delivanély
forecasts.

5.1 Simulation Implementation

Our simulator takes as input a file containing historicathat
gueue job wait times from a variety of machines/queue coaibin
tions and parameters directing the behavior of our modets. F
each machine/queue for which we have historical infornmatice
were able to create parsed data files which contain one joi ent
per line comprising the UNIX time stamp when the job was sub-
mitted and the duration of time the job stayed in the queuerbef
executing.

The steady state operation of the simulation reads in adame f
the data file, makes a prediction based on the current modg be
used, and stores the job in a “pending queue”. We then inareme
a virtual clock until one of three things happen.

e The virtual time specified for the job to wait in the pending
expires.

e A new job enters the system according to the virtual clock.

e A specified number of seconds elapses (specified as an in-
put parameter) allowing the prediction method to “refit” its
models.

When the first case occurs, the job is simply added to a growing
list of historical job wait times stored in memory. Althougfie
waiting time for the job is carried in the trace, the predic®
not entitled to “see” the waiting time in the history untilstops
waiting in queue and is released for execution.

When the second case occurs, the current prediction value is
used to make a prediction for the job entering the queue jthe-s
lation checks to see if the predicted time for that job is tgethan
or equal to the actual time the job will spend in the pendingugu
(success), or the predicted time was less than the actualgitb
time (failure). The success or failure is recorded, and tiei$
placed on the pending queue. Note that in a “live” setting $lic-
cess or failure could only be determined after the job cotedle

for all of the jobs submitted to each system. Because we can re its waiting period.
play each submission trace we can compare BMBP to an alterna-

tive approach based on a dynamically fit log-normal distidsu

When the third case occurs, the simulation makes a new pre-

determined by an MLE (as described previously) over the samediction based on the current contents of the historical batter.

job workloads. For each job in each trace we record the predic
tion that the job’s usewould have been giveheither the BMBP

or log-normal prediction system were in place when the job wa
submitted. However, since users might change their sulmiss

This prediction is used for all jobs until another time epdes
elapsed. The reason why we wait a set number of seconds before
making new predictions (case 3) instead of making new predic
tions every time a new job enters the queue (case 2) is to aienul

a real world problem; we do not expect to actually have rigaét

Abbreviation| Detalil

access to job wait time data. Instead, we assume that thefmed
will get an up-to-date “dump” periodically (every five mimstfor

Datastar Power4 P690 parallel computer built

by the IBM Corporation

the results reported in the next section). We note that we hav
simulations for which the epoch length is setitgeconds, simu-

Cray-Dell Dell x86 processors, built by Cray Research

Incorporated

lating the (likely unrealizable) deployment scenario inieththe
predictor state is updated for each job, and the effect orethdts
was minimal.

LANL Los Alamos National Laboratory located in
Los Alamos, New Mexico and operated for th

Department of Energy

11}

Also, because predictions are based on history, we train eac
simulation using an initial fraction10% in this study) of each

NERSC National Energy Research Center located at
the University of California, Berkeley and

operated or the Department of Energy

job sequence. During the training period, the simulatioecekes
as above but does not record the successes or failures ofehe p

02K Origin 2000 parallel computer built by

Silicon Graphics Corporation

dictions begin made; in effect, it is simply putting the sfied
fraction of job wait times in a historical buffer.

Paragon Paragon parallel computer built the

Intel Corporation

When the training period is exhausted, the simulation ertker
result phase. In this phase, the code executes as desarnibkithg

SDSC San Diego Supercomputer Center located
at the University of California, San Diego and

operated for the National Science Foundation

quantile predictions with a given confidence bound, andrding
a success or failure for each job entering the queue. Thdationu

SP SP-series parallel computer built by the

IBM Corporation

also records the ratio of the prediction to the observed tirai
for each job. We use the median of these ratios to measure the

TACC

—

Texas Advanced Computing Center located 4
the University of Texas, Austin and operated {

accuracy of each simulation run (as described in Section 6).
5.2 Batch Queue Data

We obtained 7 archival batch-queue logs from different high
performance production computing settings covering difiema-
chine generations and time periods. From each log, we ¢gttac
data for the various queues implemented by each site. Feysl
tems except the ASCI Blue Pacific system at Lawrence Liveemor
National Laboratory (LLNL), each queue determines, in pidue
priority of the jobs submitted to it. For example, jobs sutted
to theinteractivequeue at the National Energy Research Science
Center (NERSC) are presumably given higher-priority asdes
available processors than those submitted tedfelarlongqueue
in an effort to provide interactive users with shorter queude-
lays.

Typically, a center publishes a set of constraints that kgl
imposed on all jobs submitted to a particular queue. These co
straints include maximum allowable run time, maximum aHow
able memory footprint, and maximum processor count whieh th
batch-queue software enforces. The priority mechanisrd bge
the scheduler to select jobs from across the advertisedegueu
however, is either partially or completely hidden from theeu
community and may change over time. For example, the center
may choose temporarily to give higher priority to long-rimgn
large jobs immediately before a site review or nationallyiblie
demonstration. While the user community may be informedhef t
change and its duration, they may not be told exactly how lit wi
affect the priority given to jobs submitted to other queues.

In this work, we consider only the historical job submission
information associated with each queue and machine. Whhile i
some cases the queue names suggest a potential pricoitias
with the NERSC queues), the logs do not include the priogls-r
tionship between queues explicitly. Furthermore, becadsein-
istrators may change the prioritization in a way that is naeidm
completely explicit, we believe that prediction techngldgased
strictly on observed queuing behavior is desirable.

the National Science Foundation

Table 2. Abbreviations used in Table 1

Table 1 summarizes the log traces we consider in this study.
Column 1 of the table shows the site and machine type of each
trace in abbreviated form. We detail the abbreviations ild2;
we note that each site is a production computing facilityhveit
predominantly scientific computing user community opeataie
ther for the U.S. National Science Foundation or the Depamtm
of Energy. In the second column of Table 1 we show the period of
time covered by each trace (in terms of month and year). GoRim
shows the alphanumeric queue name listed in each log anchnolu
4 indicates the number of records in each trace. In Colummsl5 a
6 we show, respectively, the mean and median queuing detays i
seconds. Finally, column 7 depicts the sample standarctiewi
from each trace.

From the last three columns of the table, it is clear that the
distribution of queue delays for each queue on each machine a
each site is heavy-tailed: In each case, the median wait iSme
significantly less than the average wait time, and the vadas
large relative to the average. A large body of previous wéri2[L,

8, 14, 4] has observed that the interarrival and job exesuiines
for parallel jobs are also typically heavy-tailed.

This collection of data comprises 1.26 million jobs covgrin
years at the San Diego Supercomputer Center, LawrencelBgrke
Laboratory, Lawrence Livermore National Laboratory, Ldaros
National Laboratory, and the Texas Advanced Computing Cen-
ter. It includes a variety of job mixes, machine types, andrjty
schemes (some of which are unknown), and thus it represents a
substantial “sample” of batch-queue user experience mgef
observed queue delay.

6. Results

| Site/Machine | Date | Queue Namg Job Count| Avg. Delay | Median Delay| Std. Deviation|
SDSC/Datastar 4/04 - 4/05 | TGhigh 1488 29589 6269 64832
SDSC/Datastar 4/04 - 4/05 | TGnormal 5445 7333 88 28348
SDSC/Datastar 4/04 - 4/05 | express 11816 2585 153 11286
SDSC/Datastar 4/04 - 4/05 | high 5176 35609 1785 100817
SDSC/Datastar 4/04 - 4/05 | high32 606 13407 251 32313
SDSC/Datastar 4/04 - 4/05 | interactive 5822 1117 1 10389
SDSC/Datastar 4/04 - 4/05 | normal 48543 35886 1795 100255
SDSC/Datastar 4/04 - 4/05 | normal32 5322 24746 1234 61426
SDSC/Datastar 4/04 - 4/05 | normalL 727 48432 1337 97090
LANL/O2K 12/99 - 4/00| chammpq 8102 6156 33 13926
LANL/O2K 12/99 - 4/00| irshared 1012 1779 6 17063
LANL/O2K 12/99 - 4/00| medium 880 11570 1670 21293
LANL/O2K 12/99 - 4/00| mediumd 1552 1448 296 8039
LANL/O2K 12/99 - 4/00| scavenger 50387 1433 7 7126
LANL/O2K 12/99 - 4/00| schammpq 1386 7955 8450 8481
LANL/O2K 12/99 - 4/00| shared 35510 1094 6 6752
LANL/O2K 12/99 - 4/00| short 2639 4417 13 11611
LANL/O2K 12/99 - 4/00| small 14544 22098 67 81742
LLNL/Blue Pacific | 1/02 - 10/02| all 63959 8164 242 18245
NERSC/SP 3/01 - 3/03 | debug 115105 332 42 3950
NERSC/SP 3/01 - 3/03 | interactive 36672 121 1 2417
NERSC/SP 3/01-3/03 | low 56337 34314 6020 91886
NERSC/SP 3/01 - 3/03 | premium 24318 3987 177 15103
NERSC/SP 3/01 - 3/03 | regular 274546 16253 1578 47920
NERSC/SP 3/01 - 3/03 | regularlong 3386 57645 43237 64471
SDSC/Paragon 1/95-1/96 | qll 5755 16319 10205 27086
SDSC/Paragon 1/95-1/96 | g256s 1076 808 7 1477
SDSC/Paragon 1/95-1/96 | g32I 1013 4301 8 12565
SDSC/Paragon 1/95-1/96 | q64l 3425 4324 11 11240
SDSC/Paragon 1/95 - 1/96 | standby 8896 14602 604 35805
SDSC/SP 4/98 - 4/00 | express 4978 1135 22 4224
SDSC/SP 4/98 - 4/00 | high 8809 16545 567 133046
SDSC/SP 4/98 - 4/00 | low 22709 20962 34 95107
SDSC/SP 4/98 - 4/00 | normal 30831 26324 89 101900
TACC/Cray-Dell 1/04 - 3/05 | development 5829 74 9 1850
TACC/Cray-Dell 2/04 - 12/04| hero 48 28636 12 71168
TACC/Cray-Dell 2/04 - 3/05 | high 2110 5392 10 33366
TACC/Cray-Dell 1/04 - 3/05 | normal 356487 732 10 9436
TACC/Cray-Dell 8/04 - 3/05 | serial 7860 2178 10 13702

Table 1. Job submittal traces. The units for the mean, median
are seconds.

and standard deviation measurements

In this section we investigate the efficacy of various method Machine | Queue BMBP | logn logn

for predicting queue delay quantiles with a quantified |lefeion- NoTrim | Trim
fidence. The simulation results are intended to describa¢heal datastar | TGhigh 0.95 0.92* 0.96
results a “live” prediction system would have generated ffad datastar | TGnormal 0.98 0.91* 0.95
been available during the time epoch described by each tnace datastar | express 0.98 0.92* 0.94*
der the assumption that the availability of these predistioould datastar | high 0.97 0.91* 0.97
not affect submission or execution times. While it appesaosmf datastar | normal 0.95 0.93* 0.96
our simulations that it is indeed possible to provide rdéadsti- datastar | normal32 0.97 0.90* 0.98
mates of the bounds on the delay quantile — and to do so in a way Tanl schammpq | 0.97 1.00 1.00
that takes into account the nonstationary nature of eacbsser Tani mediumd 0.97 0.97 0.97
there is considerable variation among the various metlogyikes lani short 091* | 0.86* 0.87*
we tested in terms of their accuracy and computational cost. lani chammpq 0.97 098 0098
— lanl small 0.97 0.98 0.98
6.1 Predicting By Queue Name fani shared 097 1089 093
lanl scavenger | 0.97 0.92* 0.96

We begin by comparing the efficacy of using BMBP for quan- T all 097 1.00 1.00
tile prediction in batch queues to that of parametric infieesbased nersc debug 0.97 0.95 0.95
on the assumption that the data are distributed log-noyntadith nersc interactive 1097 0.87* 0.95
with and without the history-trimming features discussédwe.

In this first set of simulation experiments, the data usedHese EEEE Iorv;/m. 883 882 882
simulations is subdivided according to the queue name decor premium - - -

in each log file but is not further subdivided by processomtou nersc regular 0.97 0.98 0.98
That is, in each case, we predict the bounds on the queuing de- nersc regularlong | 0.97 1.00 1.00
lay for a job submitted to a particular queue without regardtd paragon | §256s 0.97 0.95 0.95
requested number of processors. We report the observeibfrac paragon | q64l 0.98 | 0.98 0.99
of successful predictions for each queue when we predidi.te paragon | qil 0.97 | 1.00 1.00
quantile with an upper confidence level @5%. The results for paragon | standby 0.98 0.99 0.98
simulations covering all of the logging data are shown inl@ab sdsc normal 097]0.93*]0.98
The first column indicates the site, or in the cases where we ha sdsc high 096 |0.9 0.98
investigated multiple machines at a site, the machine narhe. sdsc low 0.97 | 0.90* | 0.98
second column indicates the name of the queue. In columns 3, sdsc express 0.97 0.84* 0.94*
4, and 5 we show the prediction results for BMBP, the log-radrm tacc2 normal 0.99 0.96 0.98
method without history trimming, and the log-normal metkath tacc2 high 0.99 0.97 0.97
the BMBP history trimming technique. Any value that falls-be tacc2 development| 0.98 0.97 0.98
low 0.95 (indicating that the method has failed to provide upper tacc2 serial 0.97 0.89* 0.96
bounds for thé.95 quantile for that queue) is marked with an as-

terisk. In addition, for each of the three prediction methoae Table 3. Simulation results indicating percent-
boldface the technique for which the median predictiororédie- age of correct job wait time predictions for all
scribed in Subsection 5.1 and shown in Table 4) is the lowest. jobs in each queue.

Table 3 indicates, BMBP correctly predicts an upper boumafo

least95% of the jobs submitted to each queue exceptshert

queue at LANL. In this particular queu8% of the jobs occur

at the very end of the log with unusually long delays. It may be rect predictions for th8.95 quantile for each job in each queue on

that if more of the log were available, the eventual correetje- each machine.

tion fraction would be abov8.95 or it may be that the method is

simply unable to adapt quickly enough to the sudden changes i The potential value of such predictions is illustrated igufe 1.
delay. For all of the other queues, the fraction is ab@ws and In the figure, we show the BMBP prediction of the upper bound

for a large majority of the queues, BMBP gives the tightegtarp on the0.95 quantile with95% confidence for February 24, 2005 in
bound (indicated by the boldfaced values). Using a log-mbrm the “Normal” queue on Datastar at SDSC and Lonestar at TACC.
model (even one that is refit evebyminutes) that considers all The black line shows the predicted queue delay for Datasi@r a
previously observed measurements in each prediction woeks the gray line, the delay for Lonestar. The units in the figuee a

for some queues but fails for others. Therefore, using fatbhies seconds, and the-axis is shown on a log scale.
to model the population of queue delays with a log-normal ehod
fails as a general methodology. To test the the robustnebs bi- From between approximately 6:50 AM and 3:25 PM on the

nomial approach used in BMBP against that of the method based24th, a user with a choice between running a job (of any pemres
on assuming log-normal distributions, we show the perfortea count) in the “Normal” queue at SDSC and at TACC would have
of the log-normal using the same history trimming scheme em- been able to predict that the job would have startetRiseconds
ployed by BMBP. While our history trimming method improves or less if submitted at TACC with at lea86% certainty. Simi-
the performance of the log-normal method (both in terms of co larly, the same user could have predicted that the job, ifrstied
rectness and accuracy), there are still queues for which BMdB ~ at SDSC during the san®-hour period, would have started exe-
the only general method of the three which is able to prodoce ¢ cution in less thad days, with the sam@5% certainty. We recog-

Machine | Queue BMBP logn logn TACC and Datastar Upper 95% Predictions

NoTrim Trim Thursday February 24, 2005

datastar | TGhigh 4.55e-02 | 6.39e-02*| 1.92e-02

datastar | TGnormal 2.18e-03 | 9.16e-03*| 6.63e-02

datastar | express 1.02e-02 | 2.89e-02* | 2.85e-02* _ 345678 seconds = 4 Days Tace s

datastar | high 9.886-03 | 1.92e-02*| 7.12e-03 g

datastar | normal 9.43e-03 | 1.11e-02*| 7.78e-03 3 |

datastar | normal32 1.80e-02 | 3.21e-02*| 1.05e-02 g

fan schammpq | 3.93e-01 | 4.51e-02 | 4.69e-02 oo

lanl mediumd 3.56e-02 | 3.33e-02 | 3.19e-02 S

lanl short 5.90e-04*| 2.34e-03*| 1.37e-03* 12 seconds

lanl chammpq 9.22e-04 | 1.01e-03 | 6.80e-04 Midlnight 12:00 PM Midnight

lanl small 4.59e-04 | 3.26e-04 | 1.86e-04

lanl shared 1.25e-03 | 1.07e-02*| 2.02e-02* Figure 1. Predicted queue delay upper

lanl scavenger | 1.35e-03 | 3.15e-03*| 5.58e-03 bounds on SDSC Datastar (black line) and

lin all 4.24e-03 | 1.27e-03 | 1.27e-03 1 TACC Lonestar (gray line) for February 24,

nersc debug 3.48e-02 | 5.47e-02 | 6.07e-02 2005

nersc interactive | 1.08e-02 | 6.48e-02*| 3.03e-02

nersc low 1.37e-02 | 6.73e-03 | 4.62e-03

nersc premium 6.81e-03 | 8.74e-03 | 1.13e-02

nersc | regular 1.39e-02 | 8.46e-03 | 8.75e-03 in time, an upper bound on delay for potential job submissio

nersc regularlong | 2.19e-01 | 5.64e-02 | 5.64e-02 different job sizes in a single queue.

paragon | q256s 1.29e-03 | 4.41e-03 | 8.16e-03

paragon | q64l 2.95e-04 | 3.38e-04 | 3.04e-04 To explore our ability to meet this need, we subdivide thesjob

paragon | qil 9.60e-02 | 5.93e-02 | 4.21e-02 in each queue according to the number of processors speicified

paragon | standby 3.48e-03 | 2.15e-03 | 2.3%e-03 each submission request. Each subdivision correspondatme

sdsc normal 7.93e-04 | 1.20e-03*| 5.76e-04 of processor counts. The specific range values (as showa toph

sdsc high 9.05e-03 | 1.09e-02 | 5.98e-03 row of Table 5) were suggested by Karl Schulz and Jay Boisseau

sdsc low 4.08e-03 | 1.92e-03*| 4.20e-03 of the Texas Advanced Computing Center (TACC) as being the

sdsc express 2.38e-03 | 1.72e-02* | 8.44e-03* ones most meaningful to their user community.

tacc2 normal 4.88e-03 | 2.78e-02 | 2.92e-02

tacc2 high 2.38e-04 | 1.19e-03 | 1.10e-03 Tables 5, 6, and 7 again show the results of predicting the up-

tacc2 development| 3.75e-01 | 3.81e-01 | 3.20e-01 per bound on th®.95 quantile with95% confidence for BMBP,

tacc?2 serial 2.18e-03 | 2.10e-02*| 1.90e-02 log-normal without history trimming, and log-normal witfstory

trimming respectively. As before, boldface values indicttat

Table 4. Simulation results reporting median the method which produced the given result not only was sisece
ratio of actual wait times over predicted wait ful in terms of correct predictions, but is also the most aat
times for three prediction methods. of the three methods, and asterisked values highlight tiheda

to achieve the desire@ 95 fraction of correct predictions. Also,

because subdividing the logging data reduces the numbeip@n

tentially the frequency) of jobs considered by each methosl,
nize that few users have the luxury, at present, of choosihgeen discard any case for which the total number of jobs avail&ble
top-quality resources such as Lonestar and Datastar. Hovesvy less thanl000. Since each of the logs spans a year or more, we

grid computing [10, 2] becomes more prevalent, and muiiéi+si- believe it will be difficult to achieve significant results amfewer
sources such as TeraGrid [19] become more popular, we believ than 4 jobs per day, on the average, of a particular node eent
that the need for effective prediction of this type will bepiantant. submitted. We denote these cases with a *-" in each table.

When job queues are broken down according to processor,count
BMBP is clearly the most effective approach. The method is,
again, generally correct as evidenced by the absence oisasid

With scheduling improvements such as backfilling [15] and dy values in Table 5: BMBP makes the desired percentage ofatorre
namically changing user priorities (often at the behestesidged predictions in each case. In contrast, the log-normal agmbroei-
system administrators or center personnel struggling tet rie ther with or without history trimming, succeeds in some sadsat
requirements of an important demonstration), users of nmdakgtch ~ fails in others. In addition, BMBP is the most accurate ofttiree
systems have come to expect that processor count affeatinque approaches we have tested, as can be seen from the count of the

6.2 Predicting By Queue Name and Processor Count

delay. In particular, it is generally but somewhat anedtiotze- boldfaced values in each table.
lieved that “smaller” jobs (in terms of requested processamt)
are given qualitatively higher priority than larger jobssked on We illustrate the utility of these types of predictions ig&ie 2.

the assumption that it is easier to find “space” for small&ssjo In the figure, we show the upp@&r95 quantile predictions with
Thus, a common user desire is to be able to predict, at any poin 95% confidence generated by BMBP for Datastar at SDSC during

[Machine | Queue [1-4 [5-16] 17-64] 65+ |
datastar | TGhigh 0.95] - - -
datastar | TGnormal 0.98 | - - -
datastar | express 0.98| 0.96 | - -
datastar | high 0.95| 0.97 | - -
datastar | normal 0.97| 0.97 | 0.96 | -
datastar | normal32 0.97 | - - -
lanl schammpq | - - 098 | -
lanl mediumd - - - 0.97
lanl short - - 0.97 | -
lanl chammpq 0.96| 0.96 | 0.97 | -
lanl small 0.96 | 0.95 | 0.98 | 0.98
lanl shared 0.97| 0.97 | - -
lanl scavenger | 0.97| 0.98 | 0.97 | 0.98
lIn all 0.97] 0.98 | 0.98 | -
nersc debug 097 0.97 | - -
nersc interactive 0.97 | - - -
nersc low 0.97| 0.97 | 0.96 | -
nersc premium 0.97 | 0.98 | - -
nersc regular 0.97| 097 | 097 | -
nersc regularlong | 0.96 | - - -
sdsc normal 0.96| 0.96 | 0.97 | -
sdsc high 0.97|1 095|096 | -
sdsc low 0.95| 0.95| 0.96 | -
sdsc express 0.97 | - - -
tacc2 normal 0.98(0.98 | 0.98 | 0.98
tacc2 development| 0.98 | 0.98 | - -
tacc2 serial 0.97 | - - -

Table 5. BMBP simulation results indicating
percentage of correct job wait time predic-
tions.

the month of June, 2004. The black line indicates the number o
seconds predicted for jobs requesting betweand4 processors,
and the gray line shows the predicted time for jobs requgdtin

to 64 processors. A user, furnished with these predictions, evoul
have been able to correctly predict that the worst-case timadt
for larger jobs would bdower than for smaller jobs. We found
this result so surprising that we investigated the logs mitlend
discovered that, in fact, larger jobs were favored for thamth in
terms of queuing delay (we omit this more detailed verifmatue

to space constraints). Thus BMBP, had it been available Jdvou
have been able to forecast correctly the advantage of stibgnit
larger jobs to the interested user.

6.3 Characterizing Queue Delay

The results thus far reported show that, in general, the BMBP

method used with a confidence leveld% provides fast, correct,
and accurate upper bounds for thé5 quantile. As mentioned
previously, the method can predict both upper and lower dsun
for any quantile at a specified confidence level. To furtHesitate
the potential utility of such predictions, we show quankitainds

[Machine | Queue [1-4 [5-16 [17-64] 65+ |
datastar | TGhigh 0.92* | - - -
datastar | TGnormal 0.91* | - - -
datastar | express 0.92* | 0.91* | - -
datastar | high 0.86* | 0.96 | - -
datastar | normal 0.92* | 0.95 | 0.96 | -
datastar | normal32 0.90* | - - -
lanl schammpq | - - 1.00 | -
lanl mediumd - - - 0.97
lanl short - - 0.93* | -
lanl chammpq 0.96 | 0.85* | 1.00 | -
lanl small 1.00 | 1.00 | 1.00 | 0.87
lanl shared 0.90* | - - -
lanl scavenger | 0.98 | 0.94* | 0.95 | 0.87*
lInl all 0.96 | 1.00 | 1.00 | -
nersc debug 095 | 098 | - -
nersc interactive | 0.87* | - - -
nersc low 0.98 [099 | 099 | -
nersc premium 0.94* | 0.95 | - -
nersc regular 098 | 098 | 1.00 | -
nersc regularlong | 1.00 | - - -
sdsc normal 0.86* | 0.99 | 1.00 | -
sdsc high 0.88* | 0.98 | 1.00 | -
sdsc low 0.97 | 099 | 1.00 | -
sdsc express 0.86* | - - -
tacc2 normal 0.95 | 0.96 | 0.92* | 0.93*
tacc2 development| 0.98 | 0.96 | - -
tacc2 serial 0.89* | - - -

Table 6. Log-normal without history-trimming
method simulation results indicating percent-
age of correct job wait time predictions.

Until 2:00 PM, the predicted quantiles all indicate the fzioit
ity of a potentially long (greater thatthour long) queuing delay is
at leasts0%. Later in the day, however, the predicted bounds im-
prove substantially, to the point where the predicted ujyoeind
on the0.5 quantile is approximatelg4 minutes, and there is at
least a75% chance that a job will wait no more thah5 hours
(just before midnight). Given these types of predictionsaib of
the queues at a site and/or multiple sites (both with andowith
categorization by processor count), and the assurancththaare
correct to a specific level of confidence, we believe BMBP will
provide an important new capability to HPC users.

7. Conclusion

High-performance computing centers rely heavily on space-
sharing systems to support their users computational désnan
These systems typically employ a batch scheduler to handlig-m
ple jobs requesting access to the machines, which leadsrtaba p
lem of imposing batch job queue delays on user jobs. Whilesuse
can reliably predict how long their job will take to executece

for the “Normal” queue serving the Datastar machine at SDSC scheduled, they have not previously been able to predictibogy

on May 5th, 2004. Table 6.3 shows the lower bound on0tb8
quantile and the upper bounds on thg, 0.75, and0.95 quantiles
at95% confidence generated every two hours from the logs.

their job will stay in the job queue. In this work, we propose a
novel batch job wait time prediction method which uses asitinp
a historical trace of job wait times, and quantile of intérasd a

Machine | Queue [1-4 [5-16 | 17-64] 65+] .25 5 .75 .95

datastar | TGhigh 096 | - N N Quantile | Quantile | Quantile | Quantile
datastar | TGnormal 0.95 | - - - 44 4769 41058 159844
datastar | express 0.93* | 0.96 | - - 143653 | 301970 | 343518 | 471515
datastar | high 0.97 | 0.99 |- - 140115 | 301970 | 343518 | 471515
datastar | normal 0.96 | 097 | 099 | - 140115 | 301970 | 343518 | 471515
datastar | normal32 0.98 | - - - 28 227527 | 343518 | 471515
lanl schammpq | - - 1.00 | - 44 299676 | 388933 | 521723
lanl mediumd - - - 0.97 42 15788 301970 | 455116
lanl short - - 0.94* | - 22 11323 197811 | 400614
lanl chammpq 0.96 | 0.92* | 1.00 | - 103 4053 168348 | 400614
lanl small 1.00 | 1.00 | 1.00 | 0.97 85 3165 143790 | 400610
lanl shared 0.93* | 0.97 | - - 134 1944 23836 396776
lanl scavenger 0.97 | 0.94* | 0.96 | 0.97 118 1940 23787 396776
[Inl all 0.97 |[1.00 | 1.00 |- 102 1465 23606 396776
nersc debug 0.96 | 0.97 | - -
nersc interactive | 0.95 | - - - Table 8. One day in the life of the datas-
nersc Tow 099 [1.00 [1.00 |- tar/normal queue showing prediction quar-
nersc premium 096 [098 |- - tiles of interest.
nersc regular 0.97 [099 |1.00 |-
nersc regularlong | 1.00 | - - -
*
igzg Eg;na' 8;32* 8:33 1;88 - identically distributed (i.i.d.), and also that it deperatsy onn,
sdsc | Tow 006 [099 | 1.00 | - k. andg.
*

tsad::2 ﬁ);?r;easls 822 0 57 0 57 0 95 Given a desired confidence lev&land quantile of interest,,
Y development 0'99 0'97 — — we can use Equation 2 above to obtain a leVealpper bound for

- . . Xq. Letzy,i = 1,...,n, represent therder statistics that is,
tacc? serial 096 | - - - (zay,), ---» T(n)) PErMUtES the sample so that it is in increasing

: N order. To say that we are confident with le¢ethatz)y > X, is

T_able 7 Log-norm.al W'th trimming method equivalent to saying that tleepriori probability thatr), > X, is
simulation results indicating percentage of greater than or equal 6; by Equation 2, this gives the equation

correct job wait time predictions.

k
confidence bound on the quantile prediction. With this infar > <n> (1= -¢d>C 3)
tion, the BMBP method can produce a prediction for the spetifi i=o \/

quantile at the given confidence level which we have showreto b

both reliable and robust in simulation. Our experiment carad

the BMBP method, a more traditional log-normal method, and a
log-normal method with a history trimming technique empgidy

by the BMBP. The BMBP method was more correct and accurate
in general than either log-normal method both in the caseavhe Datastar 95% Predictions

job wait time data was subdivided by node count ranges and whe June 1. 2004 to Julyol 2004, 1-4 and 17.
all job sizes were considered. ' 64 Processors | —i s

604800 17-64 Processors

taking the smallest for which this equation holds gives, as
a levelC lower bound forX,. We can replace this equation by the

518400

Appendix: BMBP Details

432000

345600

Recall Formula 1 from Section 4, which established, for an g ,_] e
i.i.d. sample(x;) from a random variableX, that the probability gzsgm T (g et S
that k or fewer of ther; are greater thaX, is equal to F 172800 ""‘——'”M

86400

0

k . . une 1 une 14 une 2
> <”> (- @ ’ J e e
=0 \J Figure 2. Predicted queue delay upper
bounds on SDSC Datastar for 1-4 processors
Observe that this calculation is valid (not just asymptatic (black line) and 17-64 processors (gray line)
correct) under the sole assumption that:ithere independent and

equivalent

> <ﬁ>'(1—qylj-qj<l~—0 (4)

j=kt1 \J

which tends to have fewer terms for high quantiles.

Even using the second form of our formula is computation-
ally costly for large sample sizes. In this case, howeverugual
normal approximation to the binomial distribution, basedtie
Central Limit Theorem, is quite accurate in our applicasiopro-
vided that both the expected number of successes and theteape
number of failures is at lea$. According to this approximation,
given a Bernoulli process with probability of succesthe propor-
tion of successes in a sample of sizavill be distributed approx-

imately normally, with meamp and standard deviatio @

Thus the raw number of successes out @fials has approximate
distribution N (np, v/np(1 — p). What this means in our case is
that in order to read off a confidence bound for thguantile of

a population from a sample, we need only take ¢hguantile of
the sample and move up a furthgr,/nq(1 — ¢) order statistics,
wherez™ is the appropriate critical confidence value from the stan-
dard normal table. For example, to finda%-confidence upper
bound forX o, the.9 quantile of a populatiork’, based on a sam-
ple (z;) of size 100, we take the9 quantile of the data, which
iS (900), and movel.645 - /1000 - 0.9 - 0.1 = 15.6 more order
statistics. In order to generate a conservative estimaaound
everything up to the next integer; in this case, then, we dosk
T(916) as a reliabl®5%-confidence upper bound fof o.

While 95% confidence may intuitively seem to give extremely
conservative upper bounds for quantiles, the above exaifthge
trates the phenomenon that the upper bound produced by-the bi
nomial method actually converges, as the sample size isesea
to the quantile itself; note that the abo98%-confidence upper
bound for the9 quantile is the916 quantile of the sample, which
is a remarkably tight bound.

8. REFERENCES

[1] IBM LoadLeveler User's Guide. Technical report, Intational
Business Machines Corporation, 1993.

[2] F. Berman, G. Fox, and T. Herid Computing: Making the
Global Infrastructure a RealityWiley and Sons, 2003.

[3] S.-H. Chiang and M. K. VernorDynamic vs. Static
Quantum-based Processor Allocatidggpringer-Verlag, 1996.

[4] S. Clearwater and S. Kleban. Heavy-tailed distribusiam
supercomputer jobs. Technical Report SAND2002-2378Cdi@an
National Labs, 2002.

[5] A. Downey. Predicting queue times on space-sharinglighra
computers. IrProceedings of the 11th International Parallel
Processing Symposiyipril 1997.

[6] A. Downey. Using queue time predictions for processécation.

In Proceedings of the 3rd Workshop on Job Scheduling Strategie

for Parallel ProcessingApril 1997.

D. G. Feitelson and B. Nitzberdob characteristics of a production

parallel scientific workload on the NASA Ames iPSC/860

Springer-Verlag, 1996.

D. G. Feitelson and L. RudolpHrarallel Job Scheduling: Issues

and ApproachesSpringer-Verlag, 1995.

D. G. Feitelson and L. Rudolpflowards Convergence in Job

Schedulers for Parallel SupercomputeBpringer-Verlag, 1996.

I. Foster and C. Kesselmanhe Grid: Blueprint for a New

Computing InfrastructureMorgan Kaufmann Publishers, Inc.,

1998.

(7]

(8]
El
(10]

(11]

[12]
[13]

[14]

[15]

[16]

[17]
(18]

[19]
[20]

[21]

E. Frachtenberg, D. G. Feitelson, J. Fernandez, andtBnP

Parallel Job Scheduling Under Dynamic Workloads
Springer-Verlag, 2003.

Gridengine home page —

http://gridengi ne. sunsource. net/.

I. Guttman.Statistical Tolerance Regions: Classical and Bayesian
Hafner, 1970.

M. Harchol-Balter. The effect of heavy-tailed job sidistributions
on computer system design. Bmoceedings of ASA-IMS Conference
on Applications of Heavy Tailed Distributions in Economics
Engineering and Statisticgune 1999.

D. Lifka. The ANL/IBM SP scheduling systewlume 949.
Springer-Verlag, 1995.

D. Lifka, M. Henderson, and K. Rayl. Users guide to thgoame

SP scheduling system. Technical Report TM-201, Argonne
National Laboratory, Mathematics and Computer Sciencés[om,
May 1995.

Maui scheduler home pageht t p:

/I www. cl ust erresour ces. com product s/ maui /.

Cray NQE User’s Guide ht t p:

/1 docs. cray. com books/ 2148 3. 3/ htnml - 2148_3. 3.
NSF TeraGrid Projectit t p: / / ww. t eragri d. org/ .

Pbspro home page —

http://ww. al tair.conf software/pbspro. htm

W. Smith, V. E. Taylor, and I. T. Foster. Using run-timesgdictions

to estimate queue wait times and improve scheduler perfucena

In IPPS/SPDP '99/JSSPP '99: Proceedings of the Job Scheduling
Strategies for Parallel Processingages 202—-219, London, UK,
1999. Springer-Verlag.

