
Predicting Bounds on Queuing Delay in Space-shared Computing Environments
University of California, Santa Barbara Technical Report Number CS2005-09

John Brevik, Daniel Nurmi, and Rich Wolski∗

Computer Science Department
University of California, Santa Barbara

Santa Barbara, California 93106

Abstract

Most space-sharing resources presently operated by high per-
formance computing centers employ some sort of batch queueing
system to manage resource allocation to multiple users. In this
work, we explore a new method for providing end-users with pre-
dictions of the bounds on queuing delay individual jobs willexpe-
rience when waiting to be scheduled to a machine partition. We
evaluate this method using scheduler logs that cover a 9 yearpe-
riod from 7 large HPC centers. Our results show that it is possible
to predict delay bounds with specified confidence levels for jobs in
different queues, and for jobs requesting different rangesof pro-
cessor counts.

1. Introduction

Typically, high-performance multi-processor compute resources
are managed usingspace sharing, a scheduling strategy in which
each program is allocated a dedicated set of processors for the du-
ration of its execution. In production computing settings,users
prefer space sharing to time sharing, since dedicated processor ac-
cess isolates program execution performance from the effects of
a competitive load. Because processes within a partition donot
compete for CPU or memory resources, they avoid the cache and
translation look-aside buffer (TLB) pollution effects that time slic-
ing can induce. Additionally, inter process communicationoccurs
with minimal overhead, since a receiving process can never be pre-
empted by a competing program.

For similar reasons, resource owners and administrators prefer
space sharing as well. As long as the time to allocate partitions to,
and reclaim partitions from, parallel programs is small, nocom-
pute cycles are lost to time-sharing overheads, and resources run
with maximal efficiency. Thus, at present, almost all production
high-performance computing (HPC) installations use some form
of space sharing to manage their multi-processor and cluster ma-
chines.
∗This work was supported by grants from the National Science
Foundation numbered CCF-0331654 and NGS-0305390.

Because each program in a space-shared environment runs in
its own dedicated partition of the target machine, a programcan-
not be initiated until there are a sufficient number of processors
available for it to use. When a program must wait before it can
be initiated, it is queued as “job”1 along with a description of
any parameters and environmental inputs (e.g. input files, shell
environment variables,etc.) it will require to run. However, be-
cause of the need both to assign different priorities to users and to
improve the overall efficiency of the resource, most installations
do not use a simple first-come-first-served (FCFS) queuing dis-
cipline to manage the queue of waiting jobs. Indeed, a numberof
queue management systems, including PBS [20], LoadLeveler[1],
EASY [16], NQS/NQE [18], Maui [17] and GridEngine [12] each
offers a rich and sophisticated set of configuration optionsthat al-
low system administrators to implement highly customized prior-
ity mechanisms.

Unfortunately, while these mechanisms can be used to balance
the need for high job throughput (in order to ensure machine ef-
ficiency) with the desires of end-users for rapid turnaroundtimes,
the interaction between offered workload and local queuingdis-
cipline makes the amount of time a given job will wait highly
variable and difficult to predict. Users may wait a long time –
considerably longer the the job’s eventual execution time –for a
job to begin executing. Many users find this potential for unpre-
dictable queuing delay particularly frustrating since, inproduction
settings, theycan make fairly reliable predictions of how long a
program will execute once it starts running. Without an ability to
predict its queue waiting time, however, users cannot plan reliably
to have results by a specific point in time.

In this paper, we present theBrevik Method Batch Predictor
(BMBP) – a new methodology for predicting bounds, with quan-
titative confidence levels, on the amount of time an individual job
will wait in queue before it is initiated for execution on a produc-
tion “batch scheduled” resource. BMBP bases its predictions only
the observed history of previous waiting times. Thus, it automat-
ically takes into account the effects of varying workload and cus-
tomized local queuing discipline. In addition, we observe that the
queuing behavior exhibited by all of the machines we examined

1We will use the term “job” throughout this paper to refer to a de-
scription of a program and its execution requirements that aqueu-
ing system can use to initiate a program once the necessary re-
source become available.



in this study (7 supercomputers operated by the National Science
Foundation and the Department of Energy over a9-year period) is
highly . In response to hardware and software upgrades, failures,
and configuration changes, changing organizational priorities, user
turnover, security events,etc., administrators appear to tune and
adjust their local queuing policies, often in a way that is not obvi-
ous to the user community. BMBP attempts to detect these change
points adaptively so that it uses only relevant history to make each
prediction.

We verify both the efficacy and generality of BMBP using the
logging information recorded by various batch schedulers that were
in use during the time each machine in our study was in operation.
All of the installations except the Lawrence Livermore National
Laboratory maintained a variety of queues for each machine.We
presume that a qualitative queuing policy has been published to
the user community for each queue (e.g., jobs in the “Low” queue
at the San Diego Supercomputer Center would be given lower pri-
ority than those in the “Normal” queue, which would, in turn,have
lower priority than those in the “High” queue). In this way these
installations attempt to provide their respective users communi-
ties with a rudimentary and qualitative prediction capability since,
in general, lower priority jobs can be expected to wait longer in
queue.

However, in each case the batch scheduler must choose among
jobs that are waiting in a number of queues, each of which is gov-
erned by a specific policy. Moreover, the algorithm used to se-
lect a particular job at a particular time from amongst the various
queues is not typically published, and potentially changing under
administrator control. Thus, while the implementation of multiple
policies for a given machine through multiple queues can provide
a high level and qualitative expectation of how a specific jobwill
be treated, it substantially complicates the problem of making a
quantitative prediction for that job.

We examine the predictive power of BMBP when it is applied
to the various queues implemented at each site by detailing how
well our new method predicts in a quantitative way the qualita-
tive characteristics attached to each queue. With implicitpriority
mechanisms such as backfilling [15] in use at some of the sites,
however, users have come to expect that processor count alsoaf-
fects wait time. In particular, jobs in a particular queue requesting
small numbers of processors are believed, typically, to wait for
shorter periods, since they can be “backfilled” into the machine
around larger jobs. We therefore also examine how well BMBP
predicts the bounds on waiting times for jobs based on the queue
to which they were submitted and the number of processors they
specified. In all cases – covering over1 million jobs – the method
makes predictionsfor each job, which are “correct” in a very spe-
cific statistical sense which we will discuss below, for the bounds
on the waiting time.

This ability to make predictions for individual jobs distinguishes
our work from other previous efforts. An extensive body of re-
search [21, 5, 6, 8, 11, 3, 7, 9] investigates the statisticalproperties
of offered job workload for various HPC systems. By providing
a rigorous statistical characterization of job interarrival times and
program execution times, the resulting statistical properties associ-
ated with queuing time can be derived through simulation. Despite
these extensive characterization studies, however, we know of few

previous research efforts that treat the problem of predicting queu-
ing delay in a quantitative way.

Our work differs from these approaches in two significant ways.
First, our goal is strictly to provide a predictive mechanism for
users and application schedulers rather than to investigate the dis-
tributional properties exhibited by HPC systems. We focus only on
the problem of prediction at the expense of a complete statistical
model of system behavior. As a result, BMBP achieves new levels
of predictive accuracy and quantitative rigor, but it cannot easily
be used to build simulations of future or hypothetical systems in
the same way previous results can.

Second, BMBP makes a prediction for each individual job’s
queuing delay rather than a statistical characterization of the queu-
ing delay experienced by all jobs. For example, previous efforts
have focused on describing job behavior using different paramet-
ric models so that the mean queuing delay can be estimated. It
is difficult to quantify and predict how the delay that will beex-
perienced by a job that is about to be submitted will compare to
the estimated mean delay. In contrast, BMBP correctly predicts
bounds on delay for individual jobs (rather than the collection of
all jobs) with quantifiable confidence levels.

The remainder of this paper details BMBP and describes its
evaluation. In so doing, the paper makes the following two novel
contributions.

• We describe a new predictive methodology for bounding
queuing delay that is quantitative, non-parametric, and gen-
eral. As a result, the method works automatically, without
ancillary analysis or human “tuning” for a specific site or a
specific queue.

• We evaluate this methodology by comparing its performance
to an alternative parametric approach based on the assump-
tion that the underlying distribution is log-normal. Our re-
sults show that our new approach achieves the specified con-
fidence levels in each case while the log-normal approach
does not.

We emphasize that our intention in developing BMBP is to pro-
vide a practically realizable predictive capability for eventual de-
ployment as a user and scheduling tool rather than a new analytical
methodology. Therefore our reportage focuses on the results gen-
erated by a work prototype that is currently being integrated with
various batch scheduling systems, and our results are, ultimately,
empirical.

2. Related Work

Smith, Taylor, and Foster in [21] use a template-based approach
to categorize and then predict job execution times. From these
execution-time predictions, they then derive queue delay predic-
tions by simulating the future behavior of the batch scheduler in
faster-than-real time. Our work differs from this approachin two
significant ways. To be effective, the Smith-Foster-Taylormethod
depends both on the ability to predict job execution time accurately
for each job and on explicit knowledge of the scheduling algorithm



used by the batch scheduler. Other work [14, 4] suggests thatmak-
ing such predictions may be difficult for large-scale production
computing centers. Moreover, the exact details of the scheduling
policy implemented at any specific site is typically unpublished.
While the algorithm may be known, the specific instance of the
algorithm and the definition of any parameters it requires are the
prerogative of the site administrators and, indeed, may be changed
as conditions and site-specific needs warrant. In contrast,our ap-
proach uses only with the observed queue delays. By doing so,it
does not require execution time predictions, and it automatically
takes into account any site-specific effects induced by the local
scheduling policy (whether static or dynamically changing).

Downey [5, 6] uses a log-uniform distribution to model the re-
maining lifetimes of jobs executing in all machine partitions as a
way of predicting when a “cluster” of a given size will become
available and thus when the job waiting at the head of the queue
will start. Our work differs from Downey’s in that we do not use
predictions of the time until resources become free to estimate the
start time of a job. Rather, we work directly from the observed
queuing delays.

Finally, our approach differs from both of these related ap-
proaches in that it attempts to establish rigorous bounds onthe
time an individual job will wait rather than a specific, single-valued
prediction of its waiting time. We contend that the highly variable
nature of observed queue delay is better represented to potential
system users as quantified confidence bounds than as a specific
prediction, since users can “know” the odds that their job will fall
outside the range.

3. Problem Definition: Predicting Bounds on
Queuing Delay

While it is appealing to consider the problem of predicting the
exact queuing delay a given job will experience through somede-
terministic mechanism, because the scheduling policy is hidden
and potentially changing, and because there is no deterministic
model for job interarrival duration or execution time, we assert that
queuing delay must be treated statistically as well. As a result, the
best possible outcome (from the job submitter’s perspective) is the
ability to predict bounds on the delay a job will experience,and to
do so with a quantifiable measure of confidence.

For example, suppose that a scheduler or machine user would
like to know the maximum amount of time a job is likely to wait
in a batch queue before it is executed. In order to be precise,we
quantify the word “likely” to mean that we wish to generate a pre-
dicted number of seconds so that we are95% certain that our job
will begin execution within that number of seconds, in the sense
that, over time,95% of our predictions will be at least as great as
the actual wait-times of the jobs. If we regard the wait time of a
given job as a random variable, then, this amounts to finding an
estimate for the95th percentile, or0.95 quantile, of this variable’s
distribution.

Since the distribution of interest is unknown, any of its param-
eters in which we might be interested must be estimated, typically
from a sample. Standard methods of statistical inference allow us
to use a sample to produce an interval (which may be infinite on

one end) that we can assert contain the parameter with a speci-
fied level ofconfidence, roughly corresponding to the “probabil-
ity” that our interval has captured the true parameter of thepop-
ulation. In general, the more confident we wish to be, the wider
the confidence range; for example, a99% confidence interval for
the estimated0.95 quantile is wider than an80% confidence in-
terval, because the higher level of confidence demands that we
be more certain that the true parameter lies in our interval.For
the purposes of this paper, we will typically be consideringupper
confidenceboundson quantiles, which correspond to left-infinite
intervals(−∞, B].

To estimate an upper bound, then, we need to choose two val-
ues: the quantile and the desired level of confidence for the bound.
Returning to the example, to say that a particular statistical method
produces a99%-confidence upper bound on the0.95 quantile is to
say that, if the method is applied a large number of times, thevalue
it produces fails to be greater than the0.95 quantile no more than
1% of the time. We will term an upper-bound prediction ascorrect
if the observed value falls below the predicted value; we will term
a prediction method on a set of datacorrect if the proportion of
correct predictions it makes is at least as great as the quantile it is
predicting.

In this work, we (perhaps somewhat unfortunately) have cho-
sen to use the value0.95 for each. We have identified the0.95
quantile as appropriate for a level of how certain we wish to be
about how long a job will wait in the queue. At the same time
95% is fairly standard from the standpoint of statistical inference
as a level of confidence. Note that because it is the0.95 quantile
we are estimating, a user should expect that there is at most a1 in
20 chance that the actual wait time experienced by a job exceed
the predicted wait time (provided, of course, that the prediction
method is correct in the sense of the above paragraph).

Our aim in producing predictions is not only that they be cor-
rect at least95% of the time, but also that they be meaningful
to the user. If we were to make extremely conservative predic-
tions, based, say, on the maximum wait time ever observed in the
queue, the percentage of correct predictions would doubtless in-
crease; however, the extremely large predictions producedwould
have little utility to someone wishing to use these values for plan-
ning purposes. One sees, then, that there is a direct trade-off be-
tween having a high percentage of correct predictions and those
predictions reflecting what a “typical” wait time might be: If the
predictions are correct at a substantially higher rate thanadver-
tised, it is a sign that they are overly conservative and therefore
less meaningful than they could be. Thus the fact that, in general,
only slightly more than95% of our predictions are correct for each
queue, as we will see in Section 6, shows that they are meaningful
for the purpose for which they are designed.

Note also that, while we have presented the problem in terms
of estimating the upper bound on queuing delay, it can be similarly
formulated in terms of produce lower confidence bounds, or two-
sided confidence intervals, at any desired level of confidence, for
any population quantile.

4. Inference for Quantiles



In this section, we describe our approach to the problem of de-
termining upper bounds, at a fixed level of confidence, for quan-
tiles of a given population whose distribution is unknown. As de-
scribed previously, our intention is to use this upper boundas a
conservative estimate of the queuing delay, and to report the de-
gree of conservatism as the quantified confidence level.

4.1 The Brevik Method Batch Predictor

Our approach, which we term theBrevik Method Batch Predic-
tor (BMBP), is based on the following simple observation: IfX

is a random variable, andXq is theq quantile of the distribution
of X, then a single observationx from X will be greater thanXq

with probability(1 − q). Thus (under suitable assumptions about
independence and identical distribution) we can regard allof the
observations as a sequence of independent Bernoulli trialswith
probability of success equal toq, where an observation is regarded
as a “success” if it is less thanXq . If there aren observations, the
probability of exactlyk “successes” is described by a Binomial
distribution with parametersk andn. Therefore, the probability
thatk or fewer observations are greater thanXq is equal to

k
X

j=0

 

n

j

!

· (1 − q)n−j · qj (1)

We provide a more complete description of the method in the
Appendix of this paper. However, in short, we can find the small-
est value ofk for which Equation 1 is larger than some specified
confidence level, and thekth value in a sorted set of observations
(of sufficient size) will be greater than or equal to theXq quantile
of the distribution from which the observations were made with
the specified level of confidence.

Nonstationarity
In the specific context of batch-queue wait times, one certainly
cannot make the unsupported assumption that the data are i.i.d.
(independent and identically distributed); therefore, the idea men-
tioned above that the wait time for aspecific jobis to be regarded
as a random variable with its own specific distribution returns to
the foreground. In fact, we have observed that, over the course
of a long data trace, the above prediction method, which essen-
tially regards a specific wait time as simply a particular instance of
a general “wait time” random variable, is subject to degradation.
We assume that this degradation is because the system is changing
over time making the observation sequence nonstationary.

We circumvent this difficulty in the following way. First, ob-
serve that, given an i.i.d. sequence of data from a random variable
X and a sequence valuexi that is greater than, say,X.95, the prob-
ability that the next valuexi+1 is also greater thanX.95 is .05,
which is low but not exceptional; however, the probability that the
next two are greater thanX.95 is .0025 – an extremely rare occur-
rence. Therefore, if we are trying to make inferences about the.95
quantile of a data set and we find three measurements in a row that
exceed their.95-quantile estimates, we can be almost certain that
this has taken place due to some nonstationarity in the data rather
than purely by chance from a stationary sequence.

Now, suppose that the data, regarded as a time series, exhibits
some autocorrelation structure. If the first autocorrelation is fairly
strong, three or even five measurements in a row above the.95
quantile might not be such a rare occurrence, since one high value
would tend to produce another. For this reason, we conducteda
Monte Carlo simulation using log-normal distributions with vari-
ous values of first autocorrelation in order to identify the number
of consecutive measurements above the.95 quantile necessary to
constitute a “rare event,” meaning one that occurs for less than
5% of the errors. We then generated a coarse-grained lookup ta-
ble with autocorrelations and “rare-event” thresholds. Note that
our choice of log-normal distribution does not amount toassum-
ing that the distributions of wait times are log-normal; we onlyuse
this distribution to give a very rough sense of how many consecu-
tive incorrect predictions constitute a “rare event,” as characterized
above, for heavy-tailed autocorrelated data. As a practical mat-
ter, the log-normal is an easy distribution to work with, andin in
light of Downey’s below-mentioned endorsement of log-normals,
as well as the fact that log-normals did in fact perform fairly well
as prediction models, log-normal distributions seem to be agood
choice for our simulation. In any event, it should be noted that it
is not vital to our method that the log-normal be entirely accurate:
Our choice of5% was somewhat arbitrary to begin with, and if the
number produced by this method turns out to give an event that
occurs with3% or 7% probability, it can hardly be construed as a
serious difficulty.

For each queue, we calculate the first autocorrelation during
the training period and use the lookup table to find the “rare-event”
threshold for that data set. When we observe the determined num-
ber of consecutive incorrect predictions, we assume that the data
has changed in some fundamental way so that old data is no longer
relevant for our predictions. Accordingly, we trim the history as
much as we are able to while still producing meaningful confi-
dence bounds.

For example, it follows from formula 1 above that in order to
produce a95% confidence bound for the.95 quantile the mini-
mum history from which a statistically meaningful inference can
be drawn is59: Setj = n − 1, so that the sum gives the prob-
ability that n − 1 or fewer are less thanXq; the smallestn for
which this sum is at least.95 is 59. Therefore, for this specific
quantile and level of confidence, upon seeing the assigned number
of missed predictions in a row (determined by the first autocorre-
lation observed during training), we would trim our historyto the
most recent59 and start making predictions based on the short-
ened history. Thus our confidence bounds automatically adapt to
the longest history that is clearly relevant to the current prediction.

For the data sets considered, our method produces (conserva-
tive) predictions for the.95 quantile for each wait time so that, for
each data set, our predictions were correct at least95% of the time.
The relatively high level of confidence chosen enabled the predic-
tor to work well in spite of possible effects of non-independence
and short-term nonstationarity in the data.

4.2 Model-Fitting with Log-Normals

In [5], Downey hypothesizes that the job at the head of a FCFS
queue experiences a delay that is well-modeled by alog-uniform
distribution; however, in a private communication with theauthor,



he expressed a belief that overall wait times are well modelled by
log-normaldistributions; note that that a random variableX is dis-
tributed log-normally iflog X is a normally-distributed variable.
This observation suggests another approach to the problem of pro-
ducing quantile estimates for batch-queue wait times; specifically,
one can fit a log-normal to the data (or, equivalently, a normal
distribution to their logarithms) using, preferably, the method of
maximum likelihood estimation (MLE), and then produce the de-
sired population quantile from a lookup table or the inverseof the
cumulative distribution function.

In fact, the above method will likely produce accurate quan-
tile estimates for a true log-normal; however, in the interest of
statistical rigor, as well as an “apples-to-apples” comparison with
BMBP, we produce confidence upper bounds for quantiles rather
than quantile estimates themselves. To this end, we work with the
logarithms of the data; since they are assumed to be normal, we
can use theK′ distribution for confidence bounds on quantiles for
normal populations, given in Table 4.6 of [13].

Generally, model-fitting is done with all of the data available,
and our experiments include the use of full histories to produce
confidence bounds; however, in light of the long-term nonstation-
arity phenomenon discussed above, we additionally implemented
an estimation scheme incorporating the same history-truncation
strategy that we used with BMBP. The result separates the effects
of using a binomial approach from the effects of our automatic
identification of change points.

5. Evaluation

Our goal is both to determine the statistical correctness ofBMBP
and to investigate its accuracy. Recall that a method is correct if,
provided the number of job predictions is large enough to offset
short-term statistical anomalies, the percentage of correct predic-
tions is at least as large as the specified level of confidence.We
examine several different combinations of quantile and confidence
level as part of this verification. As a measure of accuracy, we de-
tail the degree of over-prediction each upper bound generates. No-
tice that a simple prediction method in which the predictor repeat-
edly guesses an astronomically large number19 times followed
by a single guess of a very small number will generate predictions
that are above the corresponding observationsexactly95% of the
time and therefore, under our definitions, is “correct.” On the other
hand, it is not an “accurate” predictor, in a way that we will dis-
cuss.

While we plan to deploy BMBP in production computing set-
tings, to first determine its efficacy, we use a trace-based event-
driven simulation (described in the next subsection). Logging data
from a variety of HPC sites (described in Subsection 5.2) records
the queue name, arrival time, queue delay, and processor count
for all of the jobs submitted to each system. Because we can re-
play each submission trace we can compare BMBP to an alterna-
tive approach based on a dynamically fit log-normal distribution
determined by an MLE (as described previously) over the same
job workloads. For each job in each trace we record the predic-
tion that the job’s userwould have been givenif either the BMBP
or log-normal prediction system were in place when the job was
submitted. However, since users might change their submission

decisions based on the predictions furnished, this comparison only
demonstrates that the method retroactively captures the dynamics
that were present at the time of each submission. We believe that
the correct and accurate behavior of BMBP in this setting, how-
ever, warrants deployment and “live” evaluation as a next step.

We have also been able to obtain preliminary timings for BMBP
from its use in simulation. Using a 1 gigahertz Pentium III, the av-
erage time required to make a prediction over the approximately
1.2 million predictions we examine across all batch queue logs is8
milliseconds. Clearly BMBP is efficient enough to deliver timely
forecasts.

5.1 Simulation Implementation

Our simulator takes as input a file containing historical batch-
queue job wait times from a variety of machines/queue combina-
tions and parameters directing the behavior of our models. For
each machine/queue for which we have historical information, we
were able to create parsed data files which contain one job entry
per line comprising the UNIX time stamp when the job was sub-
mitted and the duration of time the job stayed in the queue before
executing.

The steady state operation of the simulation reads in a line from
the data file, makes a prediction based on the current model being
used, and stores the job in a “pending queue”. We then increment
a virtual clock until one of three things happen.

• The virtual time specified for the job to wait in the pending
expires.

• A new job enters the system according to the virtual clock.

• A specified number of seconds elapses (specified as an in-
put parameter) allowing the prediction method to “refit” its
models.

When the first case occurs, the job is simply added to a growing
list of historical job wait times stored in memory. Althoughthe
waiting time for the job is carried in the trace, the predictor is
not entitled to “see” the waiting time in the history until itstops
waiting in queue and is released for execution.

When the second case occurs, the current prediction value is
used to make a prediction for the job entering the queue, the simu-
lation checks to see if the predicted time for that job is greater than
or equal to the actual time the job will spend in the pending queue
(success), or the predicted time was less than the actual jobwait
time (failure). The success or failure is recorded, and the job is
placed on the pending queue. Note that in a “live” setting this suc-
cess or failure could only be determined after the job completed
its waiting period.

When the third case occurs, the simulation makes a new pre-
diction based on the current contents of the historical databuffer.
This prediction is used for all jobs until another time epochhas
elapsed. The reason why we wait a set number of seconds before
making new predictions (case 3) instead of making new predic-
tions every time a new job enters the queue (case 2) is to simulate



a real world problem; we do not expect to actually have real-time
access to job wait time data. Instead, we assume that the predictor
will get an up-to-date “dump” periodically (every five minutes for
the results reported in the next section). We note that we have run
simulations for which the epoch length is set to0 seconds, simu-
lating the (likely unrealizable) deployment scenario in which the
predictor state is updated for each job, and the effect on theresults
was minimal.

Also, because predictions are based on history, we train each
simulation using an initial fraction (10% in this study) of each
job sequence. During the training period, the simulation executes
as above but does not record the successes or failures of the pre-
dictions begin made; in effect, it is simply putting the specified
fraction of job wait times in a historical buffer.

When the training period is exhausted, the simulation enters the
result phase. In this phase, the code executes as described,making
quantile predictions with a given confidence bound, and recording
a success or failure for each job entering the queue. The simulator
also records the ratio of the prediction to the observed waittime
for each job. We use the median of these ratios to measure the
accuracy of each simulation run (as described in Section 6).

5.2 Batch Queue Data

We obtained 7 archival batch-queue logs from different high-
performance production computing settings covering different ma-
chine generations and time periods. From each log, we extracted
data for the various queues implemented by each site. For allsys-
tems except the ASCI Blue Pacific system at Lawrence Livermore
National Laboratory (LLNL), each queue determines, in part, the
priority of the jobs submitted to it. For example, jobs submitted
to the interactivequeue at the National Energy Research Science
Center (NERSC) are presumably given higher-priority access to
available processors than those submitted to theregularlongqueue
in an effort to provide interactive users with shorter queuing de-
lays.

Typically, a center publishes a set of constraints that willbe
imposed on all jobs submitted to a particular queue. These con-
straints include maximum allowable run time, maximum allow-
able memory footprint, and maximum processor count which the
batch-queue software enforces. The priority mechanism used by
the scheduler to select jobs from across the advertised queues,
however, is either partially or completely hidden from the user
community and may change over time. For example, the center
may choose temporarily to give higher priority to long-running
large jobs immediately before a site review or nationally visible
demonstration. While the user community may be informed of the
change and its duration, they may not be told exactly how it will
affect the priority given to jobs submitted to other queues.

In this work, we consider only the historical job submission
information associated with each queue and machine. While in
some cases the queue names suggest a potential prioritization (as
with the NERSC queues), the logs do not include the priority rela-
tionship between queues explicitly. Furthermore, becauseadmin-
istrators may change the prioritization in a way that is not made
completely explicit, we believe that prediction technology based
strictly on observed queuing behavior is desirable.

Abbreviation Detail

Datastar Power4 P690 parallel computer built
by the IBM Corporation

Cray-Dell Dell x86 processors, built by Cray Research
Incorporated

LANL Los Alamos National Laboratory located in
Los Alamos, New Mexico and operated for the
Department of Energy

NERSC National Energy Research Center located at
the University of California, Berkeley and
operated or the Department of Energy

O2K Origin 2000 parallel computer built by
Silicon Graphics Corporation

Paragon Paragon parallel computer built the
Intel Corporation

SDSC San Diego Supercomputer Center located
at the University of California, San Diego and
operated for the National Science Foundation

SP SP-series parallel computer built by the
IBM Corporation

TACC Texas Advanced Computing Center located at
the University of Texas, Austin and operated for
the National Science Foundation

Table 2. Abbreviations used in Table 1

Table 1 summarizes the log traces we consider in this study.
Column 1 of the table shows the site and machine type of each
trace in abbreviated form. We detail the abbreviations in Table 2;
we note that each site is a production computing facility with a
predominantly scientific computing user community operated ei-
ther for the U.S. National Science Foundation or the Department
of Energy. In the second column of Table 1 we show the period of
time covered by each trace (in terms of month and year). Column 3
shows the alphanumeric queue name listed in each log and column
4 indicates the number of records in each trace. In Columns 5 and
6 we show, respectively, the mean and median queuing delays in
seconds. Finally, column 7 depicts the sample standard deviation
from each trace.

From the last three columns of the table, it is clear that the
distribution of queue delays for each queue on each machine at
each site is heavy-tailed: In each case, the median wait timeis
significantly less than the average wait time, and the variance is
large relative to the average. A large body of previous work [5, 21,
8, 14, 4] has observed that the interarrival and job execution times
for parallel jobs are also typically heavy-tailed.

This collection of data comprises 1.26 million jobs covering 9
years at the San Diego Supercomputer Center, Lawrence Berkeley
Laboratory, Lawrence Livermore National Laboratory, Los Alamos
National Laboratory, and the Texas Advanced Computing Cen-
ter. It includes a variety of job mixes, machine types, and priority
schemes (some of which are unknown), and thus it represents a
substantial “sample” of batch-queue user experience in terms of
observed queue delay.

6. Results



Site/Machine Date Queue Name Job Count Avg. Delay Median Delay Std. Deviation

SDSC/Datastar 4/04 - 4/05 TGhigh 1488 29589 6269 64832
SDSC/Datastar 4/04 - 4/05 TGnormal 5445 7333 88 28348
SDSC/Datastar 4/04 - 4/05 express 11816 2585 153 11286
SDSC/Datastar 4/04 - 4/05 high 5176 35609 1785 100817
SDSC/Datastar 4/04 - 4/05 high32 606 13407 251 32313
SDSC/Datastar 4/04 - 4/05 interactive 5822 1117 1 10389
SDSC/Datastar 4/04 - 4/05 normal 48543 35886 1795 100255
SDSC/Datastar 4/04 - 4/05 normal32 5322 24746 1234 61426
SDSC/Datastar 4/04 - 4/05 normalL 727 48432 1337 97090
LANL/O2K 12/99 - 4/00 chammpq 8102 6156 33 13926
LANL/O2K 12/99 - 4/00 irshared 1012 1779 6 17063
LANL/O2K 12/99 - 4/00 medium 880 11570 1670 21293
LANL/O2K 12/99 - 4/00 mediumd 1552 1448 296 8039
LANL/O2K 12/99 - 4/00 scavenger 50387 1433 7 7126
LANL/O2K 12/99 - 4/00 schammpq 1386 7955 8450 8481
LANL/O2K 12/99 - 4/00 shared 35510 1094 6 6752
LANL/O2K 12/99 - 4/00 short 2639 4417 13 11611
LANL/O2K 12/99 - 4/00 small 14544 22098 67 81742
LLNL/Blue Pacific 1/02 - 10/02 all 63959 8164 242 18245
NERSC/SP 3/01 - 3/03 debug 115105 332 42 3950
NERSC/SP 3/01 - 3/03 interactive 36672 121 1 2417
NERSC/SP 3/01 - 3/03 low 56337 34314 6020 91886
NERSC/SP 3/01 - 3/03 premium 24318 3987 177 15103
NERSC/SP 3/01 - 3/03 regular 274546 16253 1578 47920
NERSC/SP 3/01 - 3/03 regularlong 3386 57645 43237 64471
SDSC/Paragon 1/95 - 1/96 q1l 5755 16319 10205 27086
SDSC/Paragon 1/95 - 1/96 q256s 1076 808 7 7477
SDSC/Paragon 1/95 - 1/96 q32l 1013 4301 8 12565
SDSC/Paragon 1/95 - 1/96 q64l 3425 4324 11 11240
SDSC/Paragon 1/95 - 1/96 standby 8896 14602 604 35805
SDSC/SP 4/98 - 4/00 express 4978 1135 22 4224
SDSC/SP 4/98 - 4/00 high 8809 16545 567 133046
SDSC/SP 4/98 - 4/00 low 22709 20962 34 95107
SDSC/SP 4/98 - 4/00 normal 30831 26324 89 101900
TACC/Cray-Dell 1/04 - 3/05 development 5829 74 9 1850
TACC/Cray-Dell 2/04 - 12/04 hero 48 28636 12 71168
TACC/Cray-Dell 2/04 - 3/05 high 2110 5392 10 33366
TACC/Cray-Dell 1/04 - 3/05 normal 356487 732 10 9436
TACC/Cray-Dell 8/04 - 3/05 serial 7860 2178 10 13702

Table 1. Job submittal traces. The units for the mean, median and standard deviation measurements
are seconds.



In this section we investigate the efficacy of various methods
for predicting queue delay quantiles with a quantified levelof con-
fidence. The simulation results are intended to describe theactual
results a “live” prediction system would have generated if it had
been available during the time epoch described by each traceun-
der the assumption that the availability of these predictions would
not affect submission or execution times. While it appears from
our simulations that it is indeed possible to provide reliable esti-
mates of the bounds on the delay quantile – and to do so in a way
that takes into account the nonstationary nature of each series –
there is considerable variation among the various methodologies
we tested in terms of their accuracy and computational cost.

6.1 Predicting By Queue Name

We begin by comparing the efficacy of using BMBP for quan-
tile prediction in batch queues to that of parametric inference based
on the assumption that the data are distributed log-normally, both
with and without the history-trimming features discussed above.
In this first set of simulation experiments, the data used forthese
simulations is subdivided according to the queue name recorded
in each log file but is not further subdivided by processor count.
That is, in each case, we predict the bounds on the queuing de-
lay for a job submitted to a particular queue without regard to its
requested number of processors. We report the observed fraction
of successful predictions for each queue when we predict the0.95
quantile with an upper confidence level of95%. The results for
simulations covering all of the logging data are shown in Table 3.
The first column indicates the site, or in the cases where we have
investigated multiple machines at a site, the machine name.The
second column indicates the name of the queue. In columns 3,
4, and 5 we show the prediction results for BMBP, the log-normal
method without history trimming, and the log-normal methodwith
the BMBP history trimming technique. Any value that falls be-
low 0.95 (indicating that the method has failed to provide upper
bounds for the0.95 quantile for that queue) is marked with an as-
terisk. In addition, for each of the three prediction methods, we
boldface the technique for which the median prediction ratio (de-
scribed in Subsection 5.1 and shown in Table 4) is the lowest.As
Table 3 indicates, BMBP correctly predicts an upper bound for at
least95% of the jobs submitted to each queue except theshort
queue at LANL. In this particular queue,8% of the jobs occur
at the very end of the log with unusually long delays. It may be
that if more of the log were available, the eventual correct predic-
tion fraction would be above0.95 or it may be that the method is
simply unable to adapt quickly enough to the sudden changes in
delay. For all of the other queues, the fraction is above0.95 and
for a large majority of the queues, BMBP gives the tightest upper
bound (indicated by the boldfaced values). Using a log-normal
model (even one that is refit every5 minutes) that considers all
previously observed measurements in each prediction workswell
for some queues but fails for others. Therefore, using full histories
to model the population of queue delays with a log-normal model
fails as a general methodology. To test the the robustness ofthe bi-
nomial approach used in BMBP against that of the method based
on assuming log-normal distributions, we show the performance
of the log-normal using the same history trimming scheme em-
ployed by BMBP. While our history trimming method improves
the performance of the log-normal method (both in terms of cor-
rectness and accuracy), there are still queues for which BMBP is
the only general method of the three which is able to produce cor-

Machine Queue BMBP logn logn
NoTrim Trim

datastar TGhigh 0.95 0.92* 0.96
datastar TGnormal 0.98 0.91* 0.95
datastar express 0.98 0.92* 0.94*
datastar high 0.97 0.91* 0.97
datastar normal 0.95 0.93* 0.96
datastar normal32 0.97 0.90* 0.98
lanl schammpq 0.97 1.00 1.00
lanl mediumd 0.97 0.97 0.97
lanl short 0.91* 0.86* 0.87*
lanl chammpq 0.97 0.98 0.98
lanl small 0.97 0.98 0.98
lanl shared 0.97 0.89* 0.93*
lanl scavenger 0.97 0.92* 0.96
llnl all 0.97 1.00 1.00
nersc debug 0.97 0.95 0.95
nersc interactive 0.97 0.87* 0.95
nersc low 0.96 0.99 0.99
nersc premium 0.97 0.96 0.96
nersc regular 0.97 0.98 0.98
nersc regularlong 0.97 1.00 1.00
paragon q256s 0.97 0.95 0.95
paragon q64l 0.98 0.98 0.99
paragon q1l 0.97 1.00 1.00
paragon standby 0.98 0.99 0.98
sdsc normal 0.97 0.93* 0.98
sdsc high 0.96 0.95 0.98
sdsc low 0.97 0.90* 0.98
sdsc express 0.97 0.84* 0.94*
tacc2 normal 0.99 0.96 0.98
tacc2 high 0.99 0.97 0.97
tacc2 development 0.98 0.97 0.98
tacc2 serial 0.97 0.89* 0.96

Table 3. Simulation results indicating percent-
age of correct job wait time predictions for all
jobs in each queue.

rect predictions for the0.95 quantile for each job in each queue on
each machine.

The potential value of such predictions is illustrated in Figure 1.
In the figure, we show the BMBP prediction of the upper bound
on the0.95 quantile with95% confidence for February 24, 2005 in
the “Normal” queue on Datastar at SDSC and Lonestar at TACC.
The black line shows the predicted queue delay for Datastar and
the gray line, the delay for Lonestar. The units in the figure are
seconds, and they-axis is shown on a log scale.

From between approximately 6:50 AM and 3:25 PM on the
24th, a user with a choice between running a job (of any processor
count) in the “Normal” queue at SDSC and at TACC would have
been able to predict that the job would have started in12 seconds
or less if submitted at TACC with at least95% certainty. Simi-
larly, the same user could have predicted that the job, if submitted
at SDSC during the same24-hour period, would have started exe-
cution in less than4 days, with the same95% certainty. We recog-



Machine Queue BMBP logn logn
NoTrim Trim

datastar TGhigh 4.55e-02 6.39e-02* 1.92e-02
datastar TGnormal 2.18e-03 9.16e-03* 6.63e-02
datastar express 1.02e-02 2.89e-02* 2.85e-02*
datastar high 9.88e-03 1.92e-02* 7.12e-03
datastar normal 9.43e-03 1.11e-02* 7.78e-03
datastar normal32 1.80e-02 3.21e-02* 1.05e-02
lanl schammpq 3.93e-01 4.51e-02 4.69e-02
lanl mediumd 3.56e-02 3.33e-02 3.19e-02
lanl short 5.90e-04* 2.34e-03* 1.37e-03*
lanl chammpq 9.22e-04 1.01e-03 6.80e-04
lanl small 4.59e-04 3.26e-04 1.86e-04
lanl shared 1.25e-03 1.07e-02* 2.02e-02*
lanl scavenger 1.35e-03 3.15e-03* 5.58e-03
llnl all 4.24e-03 1.27e-03 1.27e-03
nersc debug 3.48e-02 5.47e-02 6.07e-02
nersc interactive 1.08e-02 6.48e-02* 3.03e-02
nersc low 1.37e-02 6.73e-03 4.62e-03
nersc premium 6.81e-03 8.74e-03 1.13e-02
nersc regular 1.39e-02 8.46e-03 8.75e-03
nersc regularlong 2.19e-01 5.64e-02 5.64e-02
paragon q256s 1.29e-03 4.41e-03 8.16e-03
paragon q64l 2.95e-04 3.38e-04 3.04e-04
paragon q1l 9.60e-02 5.93e-02 4.21e-02
paragon standby 3.48e-03 2.15e-03 2.39e-03
sdsc normal 7.93e-04 1.20e-03* 5.76e-04
sdsc high 9.05e-03 1.09e-02 5.98e-03
sdsc low 4.08e-03 1.92e-03* 4.20e-03
sdsc express 2.38e-03 1.72e-02* 8.44e-03*
tacc2 normal 4.88e-03 2.78e-02 2.92e-02
tacc2 high 2.38e-04 1.19e-03 1.10e-03
tacc2 development 3.75e-01 3.81e-01 3.20e-01
tacc2 serial 2.18e-03 2.10e-02* 1.90e-02

Table 4. Simulation results reporting median
ratio of actual wait times over predicted wait
times for three prediction methods.

nize that few users have the luxury, at present, of choosing between
top-quality resources such as Lonestar and Datastar. However as
grid computing [10, 2] becomes more prevalent, and multi-site re-
sources such as TeraGrid [19] become more popular, we believe
that the need for effective prediction of this type will be important.

6.2 Predicting By Queue Name and Processor Count

With scheduling improvements such as backfilling [15] and dy-
namically changing user priorities (often at the behest of besieged
system administrators or center personnel struggling to meet the
requirements of an important demonstration), users of modern batch
systems have come to expect that processor count affects queuing
delay. In particular, it is generally but somewhat anecdotally be-
lieved that “smaller” jobs (in terms of requested processorcount)
are given qualitatively higher priority than larger jobs, based on
the assumption that it is easier to find “space” for smaller jobs.
Thus, a common user desire is to be able to predict, at any point

Figure 1. Predicted queue delay upper
bounds on SDSC Datastar (black line) and
1 TACC Lonestar (gray line) for February 24,
2005

in time, an upper bound on delay for potential job submissions of
different job sizes in a single queue.

To explore our ability to meet this need, we subdivide the jobs
in each queue according to the number of processors specifiedin
each submission request. Each subdivision corresponds to arange
of processor counts. The specific range values (as shown in the top
row of Table 5) were suggested by Karl Schulz and Jay Boisseau
of the Texas Advanced Computing Center (TACC) as being the
ones most meaningful to their user community.

Tables 5, 6, and 7 again show the results of predicting the up-
per bound on the0.95 quantile with95% confidence for BMBP,
log-normal without history trimming, and log-normal with history
trimming respectively. As before, boldface values indicate that
the method which produced the given result not only was success-
ful in terms of correct predictions, but is also the most accurate
of the three methods, and asterisked values highlight the failure
to achieve the desired0.95 fraction of correct predictions. Also,
because subdividing the logging data reduces the number (and po-
tentially the frequency) of jobs considered by each method,we
discard any case for which the total number of jobs availableis
less than1000. Since each of the logs spans a year or more, we
believe it will be difficult to achieve significant results when fewer
than 4 jobs per day, on the average, of a particular node countare
submitted. We denote these cases with a “-” in each table.

When job queues are broken down according to processor count,
BMBP is clearly the most effective approach. The method is,
again, generally correct as evidenced by the absence of asterisked
values in Table 5: BMBP makes the desired percentage of correct
predictions in each case. In contrast, the log-normal approach, ei-
ther with or without history trimming, succeeds in some cases but
fails in others. In addition, BMBP is the most accurate of thethree
approaches we have tested, as can be seen from the count of the
boldfaced values in each table.

We illustrate the utility of these types of predictions in Figure 2.
In the figure, we show the upper0.95 quantile predictions with
95% confidence generated by BMBP for Datastar at SDSC during



Machine Queue 1-4 5-16 17-64 65+

datastar TGhigh 0.95 - - -
datastar TGnormal 0.98 - - -
datastar express 0.98 0.96 - -
datastar high 0.95 0.97 - -
datastar normal 0.97 0.97 0.96 -
datastar normal32 0.97 - - -
lanl schammpq - - 0.98 -
lanl mediumd - - - 0.97
lanl short - - 0.97 -
lanl chammpq 0.96 0.96 0.97 -
lanl small 0.96 0.95 0.98 0.98
lanl shared 0.97 0.97 - -
lanl scavenger 0.97 0.98 0.97 0.98
llnl all 0.97 0.98 0.98 -
nersc debug 0.97 0.97 - -
nersc interactive 0.97 - - -
nersc low 0.97 0.97 0.96 -
nersc premium 0.97 0.98 - -
nersc regular 0.97 0.97 0.97 -
nersc regularlong 0.96 - - -
sdsc normal 0.96 0.96 0.97 -
sdsc high 0.97 0.95 0.96 -
sdsc low 0.95 0.95 0.96 -
sdsc express 0.97 - - -
tacc2 normal 0.98 0.98 0.98 0.98
tacc2 development 0.98 0.98 - -
tacc2 serial 0.97 - - -

Table 5. BMBP simulation results indicating
percentage of correct job wait time predic-
tions.

the month of June, 2004. The black line indicates the number of
seconds predicted for jobs requesting between1 and4 processors,
and the gray line shows the predicted time for jobs requesting 17
to 64 processors. A user, furnished with these predictions, would
have been able to correctly predict that the worst-case waittime
for larger jobs would belower than for smaller jobs. We found
this result so surprising that we investigated the logs in detail and
discovered that, in fact, larger jobs were favored for this month in
terms of queuing delay (we omit this more detailed verification due
to space constraints). Thus BMBP, had it been available, would
have been able to forecast correctly the advantage of submitting
larger jobs to the interested user.

6.3 Characterizing Queue Delay

The results thus far reported show that, in general, the BMBP
method used with a confidence level of95% provides fast, correct,
and accurate upper bounds for the0.95 quantile. As mentioned
previously, the method can predict both upper and lower bounds
for any quantile at a specified confidence level. To further illustrate
the potential utility of such predictions, we show quantilebounds
for the “Normal” queue serving the Datastar machine at SDSC
on May 5th, 2004. Table 6.3 shows the lower bound on the0.25
quantile and the upper bounds on the0.5, 0.75, and0.95 quantiles
at95% confidence generated every two hours from the logs.

Machine Queue 1-4 5-16 17-64 65+

datastar TGhigh 0.92* - - -
datastar TGnormal 0.91* - - -
datastar express 0.92* 0.91* - -
datastar high 0.86* 0.96 - -
datastar normal 0.92* 0.95 0.96 -
datastar normal32 0.90* - - -
lanl schammpq - - 1.00 -
lanl mediumd - - - 0.97
lanl short - - 0.93* -
lanl chammpq 0.96 0.85* 1.00 -
lanl small 1.00 1.00 1.00 0.87
lanl shared 0.90* - - -
lanl scavenger 0.98 0.94* 0.95 0.87*
llnl all 0.96 1.00 1.00 -
nersc debug 0.95 0.98 - -
nersc interactive 0.87* - - -
nersc low 0.98 0.99 0.99 -
nersc premium 0.94* 0.95 - -
nersc regular 0.98 0.98 1.00 -
nersc regularlong 1.00 - - -
sdsc normal 0.86* 0.99 1.00 -
sdsc high 0.88* 0.98 1.00 -
sdsc low 0.97 0.99 1.00 -
sdsc express 0.86* - - -
tacc2 normal 0.95 0.96 0.92* 0.93*
tacc2 development 0.98 0.96 - -
tacc2 serial 0.89* - - -

Table 6. Log-normal without history-trimming
method simulation results indicating percent-
age of correct job wait time predictions.

Until 2:00 PM, the predicted quantiles all indicate the probabil-
ity of a potentially long (greater than4-hour long) queuing delay is
at least50%. Later in the day, however, the predicted bounds im-
prove substantially, to the point where the predicted upperbound
on the0.5 quantile is approximately24 minutes, and there is at
least a75% chance that a job will wait no more than6.5 hours
(just before midnight). Given these types of predictions for all of
the queues at a site and/or multiple sites (both with and without
categorization by processor count), and the assurance thatthey are
correct to a specific level of confidence, we believe BMBP will
provide an important new capability to HPC users.

7. Conclusion

High-performance computing centers rely heavily on space-
sharing systems to support their users computational demands.
These systems typically employ a batch scheduler to handle multi-
ple jobs requesting access to the machines, which leads to a prob-
lem of imposing batch job queue delays on user jobs. While users
can reliably predict how long their job will take to execute once
scheduled, they have not previously been able to predict howlong
their job will stay in the job queue. In this work, we propose a
novel batch job wait time prediction method which uses as input
a historical trace of job wait times, and quantile of interest, and a



Machine Queue 1-4 5-16 17-64 65+

datastar TGhigh 0.96 - - -
datastar TGnormal 0.95 - - -
datastar express 0.93* 0.96 - -
datastar high 0.97 0.99 - -
datastar normal 0.96 0.97 0.99 -
datastar normal32 0.98 - - -
lanl schammpq - - 1.00 -
lanl mediumd - - - 0.97
lanl short - - 0.94* -
lanl chammpq 0.96 0.92* 1.00 -
lanl small 1.00 1.00 1.00 0.97
lanl shared 0.93* 0.97 - -
lanl scavenger 0.97 0.94* 0.96 0.97
llnl all 0.97 1.00 1.00 -
nersc debug 0.96 0.97 - -
nersc interactive 0.95 - - -
nersc low 0.99 1.00 1.00 -
nersc premium 0.96 0.98 - -
nersc regular 0.97 0.99 1.00 -
nersc regularlong 1.00 - - -
sdsc normal 0.93* 0.99 1.00 -
sdsc high 0.93* 0.99 1.00 -
sdsc low 0.96 0.99 1.00 -
sdsc express 0.93* - - -
tacc2 normal 0.98 0.97 0.97 0.95
tacc2 development 0.99 0.97 - -
tacc2 serial 0.96 - - -

Table 7. Log-normal with trimming method
simulation results indicating percentage of
correct job wait time predictions.

confidence bound on the quantile prediction. With this informa-
tion, the BMBP method can produce a prediction for the specified
quantile at the given confidence level which we have shown to be
both reliable and robust in simulation. Our experiment compared
the BMBP method, a more traditional log-normal method, and a
log-normal method with a history trimming technique employed
by the BMBP. The BMBP method was more correct and accurate
in general than either log-normal method both in the case where
job wait time data was subdivided by node count ranges and when
all job sizes were considered.

Appendix: BMBP Details

Recall Formula 1 from Section 4, which established, for an
i.i.d. sample(xi) from a random variableX, that the probability
that k or fewer of thexi are greater thanXq is equal to

k
X

j=0

 

n

j

!

· (1 − q)n−j · qj (2)

Observe that this calculation is valid (not just asymptotically
correct) under the sole assumption that thexi are independent and

.25 .5 .75 .95
Quantile Quantile Quantile Quantile

44 4769 41058 159844
143653 301970 343518 471515
140115 301970 343518 471515
140115 301970 343518 471515
28 227527 343518 471515
44 299676 388933 521723
42 15788 301970 455116
22 11323 197811 400614
103 4053 168348 400614
85 3165 143790 400610
134 1944 23836 396776
118 1940 23787 396776
102 1465 23606 396776

Table 8. One day in the life of the datas-
tar/normal queue showing prediction quar-
tiles of interest.

identically distributed (i.i.d.), and also that it dependsonly onn,
k, andq.

Given a desired confidence levelC and quantile of interestXq ,
we can use Equation 2 above to obtain a level-C upper bound for
Xq . Let x(i), i = 1, . . . , n, represent theorder statistics; that is,
(x(1), x(2), ..., x(n)) permutes the sample so that it is in increasing
order. To say that we are confident with levelC thatx(k) > Xq is
equivalent to saying that thea priori probability thatx(k) > Xq is
greater than or equal toC; by Equation 2, this gives the equation

k
X

j=0

 

n

j

!

· (1 − q)n−j · qj ≥ C (3)

taking the smallestk for which this equation holds givesxk as
a level-C lower bound forXq . We can replace this equation by the

Figure 2. Predicted queue delay upper
bounds on SDSC Datastar for 1-4 processors
(black line) and 17-64 processors (gray line)



equivalent

n
X

j=k+1

 

n

j

!

· (1 − q)n−j · qj ≤ 1 − C (4)

which tends to have fewer terms for high quantiles.

Even using the second form of our formula is computation-
ally costly for large sample sizes. In this case, however, the usual
normal approximation to the binomial distribution, based on the
Central Limit Theorem, is quite accurate in our applications, pro-
vided that both the expected number of successes and the expected
number of failures is at least10. According to this approximation,
given a Bernoulli process with probability of successp, the propor-
tion of successes in a sample of sizen will be distributed approx-

imately normally, with meanp and standard deviation
q

p(1−p)
n

.
Thus the raw number of successes out ofn trials has approximate
distributionN(np,

p

np(1 − p). What this means in our case is
that in order to read off a confidence bound for theq quantile of
a population from a sample, we need only take theq quantile of
the sample and move up a furtherz∗

p

nq(1 − q) order statistics,
wherez∗ is the appropriate critical confidence value from the stan-
dard normal table. For example, to find a95%-confidence upper
bound forX.9, the.9 quantile of a populationX, based on a sam-
ple (xi) of size100, we take the.9 quantile of the data, which
is x(900), and move1.645 ·

√
1000 · 0.9 · 0.1 ∼= 15.6 more order

statistics. In order to generate a conservative estimate, we round
everything up to the next integer; in this case, then, we would use
x(916) as a reliable95%-confidence upper bound forX.9.

While 95% confidence may intuitively seem to give extremely
conservative upper bounds for quantiles, the above exampleillus-
trates the phenomenon that the upper bound produced by the bi-
nomial method actually converges, as the sample size increases,
to the quantile itself; note that the above95%-confidence upper
bound for the.9 quantile is the.916 quantile of the sample, which
is a remarkably tight bound.

8. REFERENCES
[1] IBM LoadLeveler User’s Guide. Technical report, International

Business Machines Corporation, 1993.
[2] F. Berman, G. Fox, and T. Hey.Grid Computing: Making the

Global Infrastructure a Reality. Wiley and Sons, 2003.
[3] S.-H. Chiang and M. K. Vernon.Dynamic vs. Static

Quantum-based Processor Allocation. Springer-Verlag, 1996.
[4] S. Clearwater and S. Kleban. Heavy-tailed distributions in

supercomputer jobs. Technical Report SAND2002-2378C, Sandia
National Labs, 2002.

[5] A. Downey. Predicting queue times on space-sharing parallel
computers. InProceedings of the 11th International Parallel
Processing Symposium, April 1997.

[6] A. Downey. Using queue time predictions for processor allocation.
In Proceedings of the 3rd Workshop on Job Scheduling Strategies
for Parallel Processing, April 1997.

[7] D. G. Feitelson and B. Nitzberg.Job characteristics of a production
parallel scientific workload on the NASA Ames iPSC/860.
Springer-Verlag, 1996.

[8] D. G. Feitelson and L. Rudolph.Parallel Job Scheduling: Issues
and Approaches. Springer-Verlag, 1995.

[9] D. G. Feitelson and L. Rudolph.Towards Convergence in Job
Schedulers for Parallel Supercomputers. Springer-Verlag, 1996.

[10] I. Foster and C. Kesselman.The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann Publishers, Inc.,
1998.

[11] E. Frachtenberg, D. G. Feitelson, J. Fernandez, and F. Petrini.
Parallel Job Scheduling Under Dynamic Workloads.
Springer-Verlag, 2003.

[12] Gridengine home page –
http://gridengine.sunsource.net/.

[13] I. Guttman.Statistical Tolerance Regions: Classical and Bayesian.
Hafner, 1970.

[14] M. Harchol-Balter. The effect of heavy-tailed job sizedistributions
on computer system design. InProceedings of ASA-IMS Conference
on Applications of Heavy Tailed Distributions in Economics,
Engineering and Statistics, June 1999.

[15] D. Lifka. The ANL/IBM SP scheduling system, volume 949.
Springer-Verlag, 1995.

[16] D. Lifka, M. Henderson, and K. Rayl. Users guide to the argonne
SP scheduling system. Technical Report TM-201, Argonne
National Laboratory, Mathematics and Computer Science Division,
May 1995.

[17] Maui scheduler home page –http:
//www.clusterresources.com/products/maui/.

[18] Cray NQE User’s Guide –http:
//docs.cray.com/books/2148_3.3/html-2148_3.3.

[19] NSF TeraGrid Project.http://www.teragrid.org/.
[20] Pbspro home page –

http://www.altair.com/software/pbspro.htm.
[21] W. Smith, V. E. Taylor, and I. T. Foster. Using run-time predictions

to estimate queue wait times and improve scheduler performance.
In IPPS/SPDP ’99/JSSPP ’99: Proceedings of the Job Scheduling
Strategies for Parallel Processing, pages 202–219, London, UK,
1999. Springer-Verlag.


