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The goal of the Grid Application Development Software (GrADS)
Project is to provide programming tools and an execution environment to
ease program development for the Grid. This paper presents recent exten-
sions to the GrADS software framework: a new approach to scheduling
workflow computations, applied to a 3-D image reconstruction applica-
tion; a simple stop/migrate/restart approach to rescheduling Grid applica-
tions, applied to a QR factorization benchmark; and a process-swapping
approach to rescheduling, applied to an N-body simulation. Experiments
validating these methods were carried out on both the GrADS MacroGrid
(a small but functional Grid) and the MicroGrid (a controlled emulation of
the Grid).
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Fig. 1. GrADS Program Preparation and Execution Architecture

1. INTRODUCTION

Since 1999, the Grid Application Development (GrADS) Project has worked
to enable an integrated computation and information resource based on ad-
vanced networking technologies and distributed information sources. In
other words, we have been attacking the problems inherent in Grid com-
puting . In theory, the Grid connects computers, databases, instruments,
and people into a seamless web of advanced capabilities. In practice, its
lack of usability has limited its application to specialists.

Because the Grid is inherently more complex than stand-alone com-
puter systems, Grid programs must reflect this complexity at some level.
However, we believe that this complexity should not be embedded in the
main algorithms of the application, as is often now the case. Instead, GrADS
provides software tools that manage the Grid-specific details of execution
with minimal effort by the scientists and engineers who write the programs.
This increases usability and allows the system to perform substantial opti-
mizations for Grid execution.

Figure 1 shows the program development framework that GrADS pi-
oneered in response to this need ®. Two key concepts are central to this
approach. First, applications are encapsulated as configurable object pro-
grams (COPs), which can be optimized rapidly for execution on a specific
collection of Grid resources. A COP includes code for the application, a
mapper that determines how to map an application’s tasks to a set of re-
sources, and a performance model that estimates the application’s perfor-
mance on a set of resources. Second, the system relies upon performance
contracts that specify the expected performance of modules as a function
of available resources.
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The left side of Figure 1 depicts tools used to construct COPs from ei-
ther domain-specific components or low-level (e.g. MPI) programming. In
either case, GrADS provides prototype tools that semi-automatically con-
struct performance models and mappers. Although they are not the major
focus of this paper, some of these tools are described in more detail in
Section 3 below.

The right side of Figure 1 depicts actions when a COP is delivered
to the execution environment. The GrADS infrastructure first determines
which resources are available and, using the COP’s mapper and perfor-
mance model, schedules the application components onto an appropriate
subset of these resources. Then the GrADS software invokes the binder to
tailor the COP to the chosen resources and the launcher (not shown) to
start the tailored COP on the Grid.

Once launched, execution is tracked by the contract monitor, which de-
tects anomalies and invokes, when necessary, the rescheduler to take cor-
rective action. Performance monitoring in GrADS is based on Autopilot ¥,
a toolkit for real-time application and resource monitoring and closed-loop
control. Autopilot provides sensors for performance data acquisition, ac-
tuators for implementing optimization commands and a decision-making
mechanism based on fuzzy logic. Part of the tailoring done by the binder is
to insert the sensors needed for monitoring a particular application. Autopi-
lot then assesses the application’s progress using performance contracts 4,
which specify an agreement between application demands and resource ca-
pabilities. The contract monitor takes periodic data from the sensors and
uses Autopilot’s decision mechanism to verify that the contract is being
met. If a contract violation occurs, the monitor takes corrective action, such
as contacting a GrADS rescheduler. GrADS incorporates a variety of util-
ities associated with contract monitoring, including a Java-based Contract
Viewer GUI to visualize the performance contract validation activity in
real-time.

To support research into and evaluation of GrADS capabilities , GrADS
has constructed two research testbeds. The MacroGrid consists of Linux
clusters with GrADS software installed at several participating GrADS
sites, including clusters at University of California at San Diego (UCSD,
10 machines), University of Tennessee at Knoxville (UTK, 24 machines),
University of Illinois at Urbana-Champaign (UIUC, 24 machines), and
University of Houston (UH, 24 machines). The experiments in Section 3
and Section 4.1 run on this testbed. The MicroGrid is a Grid emulation en-
vironment that runs on clusters and permits experimentation with extreme
variations in network traffic and loads on compute nodes . Section 4.2
describes experiments run on this platform. (We earlier ran very similar
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experiments on the MacroGrid, validating both the MicroGrid’s emulation
and the rescheduling method’s practicality ©.)

The experiments we describe exercise many parts of the GrADS en-
vironment. This paper closes with a brief discussion of what we learned
from these experiences, and an outline of future work.

2. LAUNCHING COMPONENTS ON THE GRID

Once an application schedule has been chosen, the GrADS application
manager must prepare the configurable object program and map it onto the
selected resource configuration. In turn, the application manager invokes
the binder, which is responsible for creating and configuring the applica-
tion executable, instrumenting it, and then launching it on the Grid. The
original GrADS binder did most of its work by editing the entire appli-
cation binary, which limited its applicability to homogeneous collections
of processors (such as our original testbed). It soon became clear that this
approach would not suffice for a general system because most grids (in-
cluding later generations of our own testbed) are heterogeneous and be-
cause many grid programs require linking against libraries of components
preinstalled on Grid resources.

To address these issues, we developed a new distributed GrADS binder
that executes on all Grid resources specified in the schedule. The new
binder receives three sets of inputs: resource specific information (such
as hardware and software capabilities) via the GrADS Information Ser-
vice (GIS), characteristics of the target architecture that can be used for
machine-specific optimizations, and a compilation package that consists
of the application’s source code in an intermediate representation, a list of
required libraries, and a script to configure the application for compilation.

A binder process executes on each machine chosen by the scheduler.
For this to be possible, the global binder must know the locations of all
software resources, including application-specific libraries, general libraries,
and the binder itself. To that end, the global binder queries the GIS to locate
necessary software on the scheduled node, starting with the local binder
code. The global binder then launches the local binder process, which fur-
ther queries GIS for the locations of application-specific libraries, instru-
ments the code with Autopilot sensors, configures, compiles, and links the
application. Finally, the global binder enables the launch of the application.
If the application is an MPI application, then a global synchronization must
be carried out as part of the MPI protocol at the beginning of the execution.
In this case, the binder returns control to the application manager which
launches the application after synchronization. In non-MPI applications,
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the binder launches the application and notifies the application manager
when the program terminates.

Note that by using a high-level representation of the program and con-
figuring and compiling it only at the target machine, the binder naturally
deals with heterogeneous resources. This is important in any Grid con-
text. Moreover, preserving high-level program information until the target
machine is known also provides opportunities for architecture-specific op-
timizations.

3. SCHEDULING WORKFLOW GRAPHS

Workflow applications are an important class of programs that can take
advantage of the power of Grid com@uting, such as the LIGO P pulsar
search image processing applications ®. As the name suggests, a workflow
application consists of a collection of components that need to be executed
in a partial order determined by control and data dependences.

The previous version of the GrADS scheduler was designed to support
tightly-coupled MPI applications -V and was not well suited to workflow
applications. On the other hand, existing approaches to workflow schedul-
ing, such as Condor DAGMan (!?, are not able to effectively exploit the
performance modeling available within GrADS to produce better sched-
ules. To address these shortcomings, we developed a new GrADS work-
flow scheduler that resolves the application dependences and schedules
the components, including parallel components, onto available resources
using GrADS performance models as a guide.

3.1. Workflow Scheduling

A Grid scheduler for a workflow application must be guided by an objec-
tive function that it tries to optimize, such as minimizing communication
time or maximizing throughput. For the GrADS Project, we have chosen
to minimize the overall job completion time, also known as the makespan,
of the application. The GrADS scheduler builds up a model of Grid re-
sources using services such as MDS ® and NWS (). The scheduler also
obtains performance models of the application using a scalable technique
developed for GrADS. Using these models, the scheduler then provides a
mapping from the workflow components to the Grid resources.

A stricter definition of the problem can be formulated with the help of
two sets: the set C = {c,,c,,...c,} of available application components
from the application DAG, and the set G = {r,r,,...r,} of available Grid
resources. The goal of the scheduler is to construct a mapping from ele-
ments of C onto elements of G.
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For each application component, the GrADS workflow scheduler ranks
each eligible resource, reflecting the fit between the component and the
resource. Lower rank values, in our convention, indicate a better match for
the component. After ranking the components, the scheduler collates this
information into a performance matrix. Finally, it runs heuristics on the
performance matrix to schedule components onto resources.

Computing rank values The scheduler ensures that resources meet certain
minimum requirements for a component. Resources that do not qualify un-
der these criteria are given a rank value of infinity. For all other resources,
the rank of the resource r ; is calculated by using a weighted sum of the ex-
pected execution time on the resource and the expected cost of data move-
ment for the component c;:
rank(c;,r;) = wy x eCost(c;,r;) +w, x dCost(c;,r;)

The expected execution time eCost is calculated using a performance mod-
eling technique that will be described in the next section. The cost of data
movement dCost is estimated by a product of the total volume of data
required by the component and the expected time to transfer data given
current network conditions. For this measurement, NWS is used to obtain
an estimate of the current network latency and bandwidth. The weights w
and w, can be customized to vary the relative importance of the two costs.

Scheduling application components Once ranks have been calculated, a
performance matrix is constructed. Each element of the matrix p;; denotes
the rank value of executing the ith component on the jth resource. This
matrix is used by the scheduling heuristics to obtain a mapping of com-
ponents onto resources. Such a heuristic approach is necessary since the
mapping problem is NP-complete (!5, We apply three heuristics to obtain
three mappings and then select the schedule with the minimum makespan.
The heuristics that we apply are the min-min, the max-min, and the suffer-
age heuristics (1617,

3.2. Component Performance Modeling

As described in the previous section, estimating the performance of a work-
flow component on a single node is crucial to constructing a good overall
workflow schedule. We model performance by building up an architecture-
independent model of the workflow component from individual compo-
nent models. To obtain the component models, we consider both the num-
ber of floating point operations executed and the memory access pattern.
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We do not aim to predict an exact execution time, but rather provide an
estimated resource usage that can be converted to a rough time estimate
based on architectural parameters. Because the resources are architecture-
independent, our models can be used on widely varying node types.

To understand the floating point computations performed by an appli-
cation, we use hardware performance counters to collect operation counts
from several executions of the program with different, small-size input
problems. We then apply least squares curve-fitting on the collected data.

To understand an application’s memory access pattern, we collect his-
tograms of memory reuse distance (MRD) — the number of unique mem-
ory blocks accessed between a pair of references to the same block — ob-
served by each load and store instruction !®. Using MRD data collected on
several small-size input problems to the application, we model the behav-
ior of each memory instruction, and predict the fraction of hits and misses
for a given problem size and cache configuration. To determine the cache
miss count for a different problem size and cache configuration, we evalu-
ate the MRD models for each reference at the specified problem size, and
count the number of accesses with predicted reuse distance greater than
the target cache size.

3.3. Workflow Scheduling Test Case

In this section, we apply some of the strategies described in the previous
sections to the problem of adapting EMAN 9 a bio-imaging application
developed at Baylor College of Medicine, for execution on the Grid us-
ing the GrADS infrastructure. EMAN automates a portion producing 3-D
reconstructions of single particles from electron micro-graphs. Human in-
tervention and expertise is needed to define a preliminary 3-D model from
the electron micro-graphs, but the refinement from a preliminary model
to the final model is fully automated. This refinement process is the most
computationally intensive step and benefits the most from harnessing the
power of the Grid. Figure 2 shows the components in the EMAN refine-
ment workflow, which forms a linear graph in which some components can
be parallelized.

We have conducted experiments on workflow scheduling with two EMAN
data-sets - GrOEL, a small data-set with 200MB input data and rdv, a
medium data-set with 2GB input data. For these experiments, we used 6
nodes from the Itanium IA-64 cluster [i2-53 to 12-58] at UH and 7 nodes
from the IA-32 cluster [torcl to torc7] at UTK. Note that the testbed is
heterogeneous in terms of architecture, CPU-speeds, memory and storage.
Also, note that ’classesbymra” is the most computationally intensive step
in the EMAN refinement and is a parameter sweep that can be distributed
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Fig.2. EMAN refinement workflow

across multiple clusters. “classalign2” on the other hand cannot be dis-
tributed across multiple clusters.

Table-I shows the results of the run of the rdv data on unloaded re-
sources on the testbed. The first column represents the name of the com-
ponent in the linear DAG. The second column denotes the resources cho-
sen by the Workflow scheduler for the particular component. The third
column denotes the number of instances mapped by the Workflow sched-
uler to the selected resources. The last column denotes the time it took for
that component to run on the selected set of resources. For the sequential

|Component [Resources Chosen|Num Instances| Component Exec Time|

proc3d i2-58 1 <1min
project3d i2-58 1 1h. 48min
proc2d i2-58 1 <1min
classesbymral|i2-53 to i2-58 68 [i2-*] 84h. 30min
torcl to torc7 42 [torc*] S1h. 41min
classalign2 [i2-53 to i2-58 379 45min
make3d i2-58 1 47min
proc3d i2-58 1 <1min
proc3d i2-58 1 <1min

Table I. Results of EMAN Workflow Execution with rdv data

and single-cluster components, the scheduler chose the best node or clus-
ter for execution. The interesting case is the case of the parameter sweep
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step called “’classesbymra”. From the execution time of the ’classesbymra”
step, the following can be inferred:

— The makespan of the “classesbymra” step was 84hrs. 30 minutes [the
time the instances finished on the UH cluster]. Since the instances at
the UTK machines finished in 81 hrs 41min, it can be inferred that the
load was optimally balanced across the two clusters since the granular-
ity of a single instance is greater than 7hrs.

— The optimal load balance is primarily due to accurate performance
models and efficient Workflow scheduling. Rank of a “classesbymra”
instance on a node in UH cluster was 5077.76 and on a node in UTK
cluster was 8844.91.

For the GrOEL data-set, the makespan for the classesbymra step for
heuristic scheduling was compared with that obtained from random schedul-
ing. Random scheduling picks a node randomly for the next available in-
stance. The results in table-II use 2 nodes from the UH cluster and 7 nodes
from the UTK cluster and all the resources are unloaded. The number in the
braces after execution times indicate the average number of classesbymra
instances mapped to the site. From these results, it can be inferred that ac-
curate relative performance models on heterogeneous platforms combined
with heuristic scheduling result in good load balance of the classesbymra
instances when the grid resources are unloaded. Heuristic scheduling is
better than random scheduling by 25 percent in terms of makespan length.

| [Heuristic Run Average|Random run Average]

Exectime(uh) |12min 42sec [38] 6min 3sec [17]
Exectime(utk)|11min 47sec [60] 15min 48sec [81]
Makespan 12min 42sec 15min 48sec

Table II. Results for GrOEL data with unloaded resources

The second set of results shows the effect of loaded machines on the
quality of schedule. 5 loaded nodes from the UH cluster and 7 unloaded
nodes from UTK cluster were used for these experiments. From the re-
sults in table-III, it is observed that there is uneven load balance due to
loading of the UH nodes. Random scheduling does better because the ran-
dom distribution maps more instances to the unloaded UTK cluster which
had more nodes in the universe of resources. So, it can be inferred that for
performance model based scheduling to work, either the underlying set of
resources should be reliable [implying advanced reservation] or the vari-
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ability of resource performance can be predicted and taken into account
during scheduling.

| [Heuristic Run Average| Random run Average]

Exectime(uh) |16min 41sec [60] 9min 38sec [44]
Exectime(utk)|7min 51sec [38] 10min 28sec [54]
Makespan 16min 41sec 10min 28sec

Table III. Results for GrOEL data with loaded resources

The third set of results show the effect of inaccurate performance mod-
els on the quality of schedule. A rank value of 4.57 instead of 7.60 was used
for a classesbymra instance on a UH node. Rank value for the UTK nodes
was kept correct. 6 nodes from the UH cluster and 7 nodes from the UTK
cluster were used. From the results in table-IV it can be inferred that, inac-
curate relative performance models on different heterogeneous platforms
result in poor load balance of the classesbymra instances.

| [Heuristic Run Average|Random run Average]

Exectime(uh) |21min 37sec [77] Smin 24sec [45]

Exectime(utk)|3min 57sec [21] 10min 30sec [53]

Makespan  |21min 37sec 10min 30sec
Table IV. Results for GrOEL data with inaccurate performance models

4. RESCHEDULING

Normally, a contract violation activates the GrADS rescheduler. The reschedul-
ing process must determine whether rescheduling is profitable, based on
the sensor data, estimates of the remaining work in the application, and
the cost of moving to new resources. If rescheduling appears profitable,
the rescheduler computes a new schedule (using the COP’s mapper) and
contacts rescheduling actuators located on each processor. These actua-
tors use some mechanism to initiate the actual migration or load balancing.
Sections 4.1 and 4.2 describe two rescheduling mechanisms that we have
explored. Both rely on application-level migration, although we designed
both so that the required additional programming is minimal. Whether a
migration is done or not, the rescheduler may contact the contract monitor
to update the terms of the contract.

4.1. BRescheduling by Stop and Restart

Our first approach to rescheduling relied on application migration based
on a stop/restart approach. The application is suspended and migrated only
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when better resources are found for application execution. When a running
application is signaled to migrate, all application processes checkpoint user
specified data and terminate. The rescheduled execution is then launched
by restarting the application on the new set of resources, which then read
the checkpointed data and continue the execution.

4.1.1. Implementation

We implemented a user-level checkpointing library called SRS (Stop Restart
Software) @9 to provide application migration support. Via calls to SRS,
the application can checkpoint data, be stopped at a particular execution
point, be restarted later on a different processor configuration and be con-
tinued from the previous point of execution. SRS can transparently handle
the redistribution of certain data distributions (e.g., block cyclic) between
different numbers of processors (i.e., N to M processors). The SRS library
is implemented atop MPI and is hence limited to MPI-based parallel pro-
grams. Because checkpointing in SRS is implemented at the application
rather than the MPI layer, migration is achieved by exiting of the applica-
tion and restarting it on a new system configuration.

The SRS library uses the Internet Backplane Protocol (IBP) D for
checkpoint data storage. An external component (e.g., the rescheduler) in-
teracts with a daemon called Runtime Support System (RSS). RSS exists
for the duration of the application execution and can span multiple mi-
grations. Before the application is started, the launcher initiates the RSS
daemon on the machine where the user invokes the GrADS application
manager. The actual application, through the SRS, interacts with RSS to
perform some initialization, to check if the application needs to be check-
pointed and stopped, and to store and retrieve checkpointed data.

The contract monitor retrieves the application’s registration through
the Autopilot ) infrastructure. The applications are instrumented with sen-
sors that report the times taken for the different phases of the execution to
the contract monitor.

The contract monitor compares the actual execution times with pre-
dicted ones and calculates the ratio. The tolerance limits of the ratio are
specified as inputs to the contract monitor. When a given ratio is greater
than the upper tolerance limit, the contract monitor calculates the average
of the computed ratios. If the average is greater than the upper tolerance
limit, it contacts the rescheduler, requesting that the application be mi-
grated. If the rescheduler chooses not to migrate the application, the con-
tract monitor adjusts its tolerance limits to new values. Similarly, when a
given ratio is less than the lower tolerance limit, the contract monitor calcu-
lates the average of the ratios and lowers the tolerance limits, if necessary.
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The rescheduler component evaluates the performance benefits that
might accrue by migrating an application and initiates the migration. The
rescheduler daemon operates in two modes: migration on request and op-
portunistic migration. When the contract monitor detects unacceptable per-
formance loss for an application, it contacts the rescheduler to request
application migration. This is called migration on request. Additionally,
the rescheduler periodically checks for a GrADS application that has re-
cently completed. If it finds one, the rescheduler determines if another ap-
plication can obtain performance benefits if it is migrated to the newly
freed resources. This is called opportunistic rescheduling. In both cases,
the rescheduler contacts the Network Weather Service (NWS) for updated
Grid resource information. The rescheduler uses the COP’s performance
model to predict remaining execution time on the new resources, remain-
ing execution time on the current resources, and the overhead for migration
and determines if migration is desirable.

4.1.2. Evaluation

We have evaluated stop/restart rescheduling based on application migra-
tion for a ScaLAPACK ?? QR factorization application. The application
was instrumented with calls to the SRS library that checkpointed applica-
tion data including the matrix A and the right-hand side vector B.

In the experiments, 4 UTK machines and 8 UIUC machines were used.
The UTK cluster consists of 933 MHz dual-processor Pentium III ma-
chines running Linux and connected to each other by 100 Mb switched
Ethernet. The UIUC cluster consists of 450 MHz single-processor Pen-
tium II machines running Linux and connected to each other by 1.28 Gbit/second
full-duplex Myrinet. The two clusters are connected via the Internet.

A given matrix size for the QR factorization problem was input to the
application manager. Initially, the scheduler used the more powerful UTK
cluster. However, five minutes after the start of the application, an artificial
load was introduced on a UTK node, which could make it more efficient
to execute the application the UIUC cluster.

The contract monitor requested the rescheduler to migrate the applica-
tion due to the loss in predicted performance caused by the artificial load.
The rescheduler evaluated the potential performance benefits due to mi-
gration and either migrated the application or allowed the application to
continue on the original machines.

The rescheduler was operated in two modes — default and forced. In
normal operation, the rescheduler works under default mode, while the
forced mode allows the rescheduler to require the application to either mi-
grate or continue on the same set of resources. Thus, if the default mode
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is to migrate the application, the forced mode will continue the application
on the same set of resources and vice versa. For the experiments, results
were obtained for both modes, allowing comparison of the scenarios and
verification that the rescheduler made the right decision.

Figure 3 was obtained by varying the size of the matrices (i.e., the
problem size) on the x-axis. The y-axis represents the execution time in
seconds of the entire problem including the Grid overhead. For each prob-
lem size, the left bar represents the running time when the application was
not migrated and the right bar represents the time when the application was
migrated.

Several observations can be made from Figure 3. First, the time for
reading checkpoints dominated the rescheduling cost, as it involves mov-
ing data across the Internet and redistributing data to more processors. On
the other hand, the time for writing checkpoints is insignificant since the
checkpoints are written to IBP storage on local disks.

In addition, the rescheduling benefits are greater for large problem
sizes because the remaining lifetime of the application is larger. For matrix
sizes of 7000 and below, the migration cost overshadows the performance
benefit due to rescheduling, while for larger sizes the opposite is true. Our
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rescheduler actually kept the computation on the original processors for
matrix sizes up to 8000. So, except for matrix size 8000, the rescheduler
made the correct decision.

For matrix size 8000, the rescheduler assumed an experimentally-determined
worst-case rescheduling cost of 900 seconds while the actual rescheduling
cost was about 420 seconds. Thus, the rescheduler evaluated the perfor-
mance benefit to be negligible. Hence, in some cases, the pessimistic ap-
proach of assuming a worst-case rescheduling cost will lead to underesti-
mating the performance benefits due to rescheduling.

In another paper ?*, we examine the effects of other parameters (e.g.,
the load and the time after the start of the application when the load was
introduced) and the use of opportunistic rescheduling.

4.2. Rescheduling by Processor Swapping

Although very flexible, the natural stop, migrate and restart approach to
rescheduling can be expensive: each migration event can involve large data
transfers. Moreover, restarting the application can incur expensive startup
costs, and significant application modifications may be required for spe-
cialized restart code. Our process swapping approach, which was initially
described in ®¥, provides an alternative that is lightweight and easy to use,
but less flexible than our migration approach.

4.2.1. Basic Approach

To enable swapping, the MPI application is launched with more machines
than will actually be used for the computation; some of these machines
become part of the computation (the active set) while some do nothing
initially (the inactive set). The user’s application sees only the active pro-
cesses in the main communicator (MPI_Comm_World); communication
calls are hijacked, and user communication calls to the active set are con-
verted to communication calls to a subset of the full process set.

During execution, the contract monitor periodically checks the perfor-
mance of the machines and swaps slower machines in the active set with
faster machines in the inactive set. This approach requires little applica-
tion modification (as described in ®**) and provides an inexpensive fix for
many performance problems. On the other hand, the approach is less flex-
ible than migration — the processor pool is limited to the original set of
machines, and the data allocation can not be modified.

MPI Swapping was implemented in the GrADS rescheduling archi-
tecture in which performance contract violations trigger rescheduling. The
swapping rescheduler gathers information from sensors, analyzes perfor-
mance information and determines whether and where to swap processes.
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We have designed and evaluated several policies ® and we have experi-
mentally evaluated our process swapping implementation using an N-body
solver 24,

4.2.2. Evaluation

This section describes how we used the MicroGrid to evaluate the GrADS
rescheduling implementation.

The MicroGrid Understanding the dynamic behavior of rescheduling ap-
proaches for Grids requires experiments under a wide range of resource
network configurations and dynamic conditions. Historically, this has been
difficult, and simplistic experiments with either a few resource configu-
rations or simple models of applications have been used. We use a gen-
eral tool, the MicroGrid, which supports systematic, repeatable, scalable,
and observable study of dynamic Grid behavior, to study the behavior of
the process swapping rescheduling system on a range of network topolo-
gies. We show data from a run of an N-body simulation, under the N-N
rescheduling system, running on the MicroGrid emulation of a distributed
Grid resource infrastructure.

The MicroGrid allows complete Grid applications to execute on a set
of virtual Grid resources. It exploits scalable parallel machines as com-
pute platforms for the study of applications, network, compute, and stor-

age resources with high fidelity. For more information on the MicroGrid
see (25,5.26).

Experiments with process-swapping rescheduling The first step in using
the MicroGrid is to define the virtual resource and network infrastructure
to be emulated. For our demonstration, we created a virtual Grid whichis a
subset of the GrADS testbed, consisting of machines at UCSD, UIUC, and
UTK. The virtual Grid includes two clusters at UTK and UIUC and a sin-
gle compute node at UCSD. The UTK cluster includes three 550Mhz Pen-
tium II nodes. The UIUC cluster consists of three 450Mhz Pentium II ma-
chines. Both clusters are internally connected by Gigabit Ethernet. The sin-
gle UCSD machine is a 1.7 Ghz Athlon node. The latency between UCSD
and the other two sites is 30ms, and between UTK and UIUC the latency
is 11ms. These configurations are described for MicroGrid in standard Do-
main Modeling Language (DML) and a simple resource description for the
processor nodes.

The MicroGrid uses a Linux cluster at UCSD to implement its Grid
emulation. We allocated two 2.4Ghz dual-processor Xeon machines for
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Fig. 4. Emulated application progress during N-body demonstration run

network simulation, and seven 450Mhz dual-processor Pentium II ma-
chines to model the compute nodes in the above virtual Grid.

To perform the process swapping rescheduling experiment on the vir-
tual Grid, we first launched the MicroGrid daemons (instantiating the vir-
tual Grid). From this point on, all processes launched on UCSD, UTK,
or UIUC machines ran on the virtual Grid nodes. Second, we launched
the contract monitor infrastructure (the Autopilot manager and contract
monitor processes) and rescheduler process on the UCSD node. Third, we
launched the N-body simulation application to the UTK and UIUC clusters
which then connected to the contract monitor and rescheduler. All three of
the initial active application processes started on the UTK nodes. At (vir-
tual) time 80 seconds, we added two competitive processes to consume
CPU time on one UTK machine. The rescheduling infrastructure detected
poor performance and migrated all three working application processes to
the UIUC cluster by time 150 seconds. Figure 4 shows the resulting appli-
cation progress, first slowed by the competitive load, then increased by the
migration to free resources.

5. FUTURE DIRECTIONS: VIRTUAL GRIDS

GrADS provided a foundation for an evolving compilation and execution
infrastructure, GrADSoft, which we and others have used to conduct a
range of application experiments ?’-31) such as those described in this
paper. These application experiments have not only validated the basic
GrADS approach, but have also informed our focus on the most critical
remaining challeges. These efforts are the focus of our new Virtual Grid
Application Development Software (VGrADS) project.
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One of the key lessons of the GrADS project is that the complexity of
grid resource environments induces complexity in both application devel-
opment and execution. First, execution on a shared grid of heterogeneous
resources such as the TeraGrid forces an application developer to explicitly
consider resource heterogeneity, dynamically fluctuating loads, and the in-
teraction between local users and resource policies. There is little question
that this complicates grid application programs, increasing programming
difficulty and discouraging grid applications. Second, a rigid view by ap-
plications that prescribe a "perfect” set of resources, complicates resource
management requiring search of a great expanse of resources and rapid,
detailed matching of applications to resources. This too is a major techno-
logical challenge. Finally, it is our observation from working with many
leading grid application teams that when faced with complex application
performance structure and complex resource environments compounded
with poor predictive information, expert programmers are reduced to use
of ad hoc heuristics (albeit sophisticated ones) that require much tuning
and debugging to achieve acceptable resource utilization and application
performance.

Building on the knowledge and infrastructure of the GrADS project,
our new approach adopts the concept of a Virtual Grid (VGrid) as a funda-
mental element of the software architecture which supports a separation of
concerns for VGrADS.

Vgrids cleanly separate high-level programming tools, applications,
and services from the complexity of dynamic grid scheduling and resource
management. This approach is analogous to one that has proven effec-
tive in sequential and parallel computing contexts, where optimizations
target abstract uniprocessors and multiprocessors rather than the physical
resources themselves. The same concept will form the basis of our ap-
proach to simplifying the task of Grid application development.

Virtual grids support simpler high-level program preparation tools by
providing simplified resource management and simple monitored perfor-
mance guarantees. This supports the development and use of more pow-
erful programming abstractions. We believe that virtual grids will enable
the execution system to quickly and scalably identifying appropriate re-
sources for applications, simplifying both application and system-level re-
source management. Finally, the virtual grid approach simplifies perfor-
mance monitoring and resource adaptation by making explicit (and ap-
plication neutral) the performance expectations and guarantees. In short,
virtual grids provide a cleaner separation of responsibilities across the pro-
gram preparation, execution system, and monitoring and adaptation sys-
tems, allowing each to be simplified and as a result more effective.
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VGrADS research focuses on two major areas: execution environments
and programming tools. Execution environment research explores the syn-
thesis, coordination, and measurement of grid resources. The goals of this
work are to explore (1) aggregation and virtualization of resource and
Grid service aggregates; (2) intelligent, rapid resource selection and man-
agement in complex, heterogeneous environments; (3) performance mea-
surement and tuning to achieve high individual application performance;
and (4) fault-resilience through replication and intermediate program state
management. The resulting system will enable the nimble adaptation of
applications to changing Grid conditions.

Programming tools research explores the mapping of two distinct, high-
level programming models to VGrids. The abstract parallel machine model
treats a computation as a collection of parallel tasks without concern for
mapping that computation to the actual hardware. The abstract component
machine model, on the other hand, represents a computation as a (possibly
dynamic) graph of component invocations with specific data dependencies.
In this model, applications and services might be high-level scripts that in-
voke operations from a component integration framework. The VGrADS
execution system, working on behalf of the application, will use VGrids to
instantiate both of these programming models.
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