MULTI-LEVEL ADAPTATION FOR PERFORMABILITY IN
DYNAMIC WEB SERVICE WORKFLOWS

Lavanya Ramakrishnan

Submitted to the faculty of the University Graduate School
in partial fulfillment of the requirements
for the degree
Doctor of Philosophy
in the Department of Computer Science

Indiana University

June 2009

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the

requirements of the degree of Doctor of Philosophy.

Doctoral Dennis Gannon, Ph.D.
Committee (Principal Advisor)
Randall Bramley, Ph.D.
Steven Johnson, Ph.D.
Beth Plale, Ph.D.

June 3, 2009 Daniel A. Reed, Ph.D.

ii

Copyright (© 2009
Lavanya Ramakrishnan

ALL RIGHTS RESERVED

iii

iv

Acknowledgements

I have had the support of mentors, collaborators, family and friends in this incredible journey

towards the doctoral degree.

I would not have completed this work without Jaidev, my best friend and life partner. Jaidev
pushed me to go back to school, provided feedback on my work, shared my obscure geek excite-

ment, and helped maintain a work-life balance.

Both our families have been supportive, patient and helpful as I have progressed through grad-
uate school. My parents inculcated a strong interest in math, science and learning and provided a
strong foundation in questioning, reasoning and decision-making; all important tools for research.
Growing up, I was inspired by my grandparents who had values and ideas well beyond their times
and were very supportive of my various endeavors over the years. I am very fortunate to be able
to enjoy the love and support of my paternal grandmother to this day. Much of my interest in
computer science started when my brother, Bharath taught me to write BASIC programs when I
was around ten and for that I will ever be grateful. Bharath and his wife, Chitra have also provided
unconditional support on numerous occasions. Jaidev’s parents” annual visits and the family re-
unions with them, my sister-in-law, Jaee and her husband, Anirudha have always been a welcome

change. My nephew, Dhruv and niece, Uma constantly remind me of the simple joys of life with

their curiosity and excitement.

Dennis Gannon encouraged me to come back to school for the doctoral degree and made it
possible for me to work remotely. He provided an ideal research environment - encouraging me
to pursue independent research while being available when I needed guidance. Beth Plale has
been a great mentor and collaborator, providing key insights into technical as well presentation
aspects of this research, and has always been available for discussions. I am thankful to Dan Reed
for providing me great opportunities at RENCI and for nudging me to explore topics that were
outside my comfort zone which has helped make this work stronger. Randall Bramley and Steve

Johnson have provided helpful pointers and suggestions throughout my graduate school years.

I have been lucky to have numerous collaborators through different projects. I am thankful
to Jeff Chase for our long discussions about research (and life). Kelvin K. Droegemeier patiently
explained various concepts of mesoscale meteorology and Rich Wolski, Charles Koelbel and (late)
Ken Kennedy provided key insights on resource management for workflows in grid environments

and made it possible for me to collaborate with the VGrADS team.

Laura Grit, T. Mark Huang, Adriana Iamnitchi, David Irwin, Yang-Suk Kee, Anirban Man-
dal, Daniel Nurmi, Graziano Obertelli, Kiran Thyagaraja, Asim YarKhan, Aydan Yumerefendi and
Dmitrii Zagorodnov provided critical pieces of software infrastructure for the GROC and LEAD-
VGrADS activities. I am also thankful to past and present Extreme Lab members, colleagues at
MCNC and RENCI for numerous productive discussions. Other team members of LEAD, Bio-
portal, VGrADS, SCOOP projects also helped in numerous ways. My research was funded through
various National Science Foundation (NSF) programs including the Middleware initiative (GROC),

ITR (LEAD and VGrADS) and SDCI (workflow emulator) and TeraGrid allocations.

The workflow survey was a critical piece of the puzzle and I am grateful to the people who

contributed including Suresh Marru, Brian Blanton, Howard Lander, Steve Thorpe, Jeffrey Tilson,

Vi

Sriram Krishnan, Luca Clementi, Ravi Madduri, Wei Tan, Cem Onyuksel, Yogesh Simmhan, Sud-
harshan Vazhkudai, Vickie Lynch. Access to large scale system infrastructure at various sites has
been important for validating my hypothesis. I am thankful to system administrators and support
staff at Duke University, University of North Carolina - Chapel Hill/RENCI, Univ. of California-
Santa Barbara, Univ of Houston, Univ of Tennesse - Knoxville, Univ of California - Santa Barbara
and TeraGrid sites. Brad Viviano also taught me a number of things about system administration

and managing clusters that has influenced some key design decisions.

My friend, Anjali, no matter which part of the world life takes her, provides support that I can’t
begin to describe. I have also been lucky to have many friends who have been part of my support
system while I lived in Bloomington, Durham and Sunnyvale. They provided me with necessary

distractions in the form of meals, coffee, movies and hikes.

vii

Abstract

Large scale computations from various scientific endeavors are composed as workflows that
access shared data and high performance systems. Similarly, business applications in cloud com-
puting systems use distributed infrastructure as part of mainstream business models. Recent ad-
vances in grid and cloud computing provide tools to monitor and manage execution. However
they do not not provide predictable bounds on the Quality of Service (QoS) that can be expected
in such variable multi-user distributed environments. Understanding the dynamic properties of
resources and coordinated control of resources and workflows is critical especially for deadline-

sensitive workflows such as weather prediction.

In this dissertation we revisit the software stack that supports the multi-tier services and pro-
pose and evaluate the WORDS (Workflow ORchestrator for Distributed Systems) architecture that
abstracts the differences between specific resource models and provides a clear separation of con-
cerns between the resource-level and application-level tools. In the context of the WORDS architec-
ture we explore interfaces and mechanisms necessary for providing predictable quality of service

to web service workflows with time and accuracy constraints.

We make the following four primary contributions. First, we propose a resource abstraction

across grid and cloud resource control mechanisms that enables higher-levels tools to abstract the

viii

differences between systems. Second, we propose a probabilistic Quality of Service (QoS) model
that enables providers to quantify the variation in resource availability; both for resource procure-
ment due to competition and for the duration of the resource request from failures at various lev-
els. Third, we use performability analysis through a Markov Reward Model to quantify the loss
in performance and study the impact on cost due to availability variations. Finally, we propose a
multi-phase orchestration approach that balances performance, reliability and cost considerations

for a set of workflows.

ix

Contents

Acknowledgements v
Abstract viii
1 Introduction 1
1.1 Thesis Hypothesis and Contributions 3
1.2 Workflow ORchestrator for Distributed Systems (WORDS) 5
1.3 Constraint Model for Workflows and Resource Requirements 6
14 Resource Abstractions L L 7
1.5 Performability Modeling L 8
1.6 Container Provisioning 10
1.7 Workflow Orchestration 10
1.8 ThesisOutline 11
2 Understanding Workflow Requirements Through Examples 12
21 Overview 13

2.2

2.3

24

2.5

2.6

Weather and Ocean Modeling Workflows 15

221 Mesoscale Meteorology o 17
222 StormSurgeModeling Lo 17
223 Floodplain Mapping 19
Bioinformatics and Biomedical workflows Lo L. 20
231 GHmmer 21
232 Gene2life 21
233 Motif Network 22
234 MEME-MAST e 23
235 MolecularSciences 25
236 AvianFlu 25
2.3.7 caDSR . . . 26
Astronomy and Neutron Science Workflows 26
24.1 Pan-STARR e 27
242 McStasworkflow 28
Computer Science Examples L L 29
251 Animation 30
252 Performance Measurement 30
253 LoadBalancing 31
Discussion 32

xi

2.6.1 Usecasescenarioso 33
262 Workflow Types. 35
2.6.3 Multipleworkflows L 38

2.64 Workflow Capabilities 39
2.6.5 Resource coordination. L Lo 40

27 SUMMAIY . . o . o ot it i 40
3 Distributed Systems 43
31 OVerview oo e e 44
3.1.1 High Performance and Grid Computing 45
3.1.2 Utilityand CloudSystems 45

3.2 Gridsand Clouds: AComparison. 47
321 Applications L 47
322 UserRoleso 48

3.23 ProgrammingModels o o 48

3.24 Resource Procurement oo 50
3.25 Dataand Storage Management 51

326 CostModels e 51
3.2.7 ServiceGuarantees 52

328 Summary e 53

xii

33 Collaborations e e 54
3.3.1 Linked Environment for Atmospheric Discovery (LEAD) 55
3.3.2 Virtual Grid Application Development Software (VGrADS) 56
3.3.3 Open Resource Control Architecture (ORCA) 59

34 SUMMATY 59

4 Related Work 60

4.1 Resource Management oo 61
4.1.1 Resource Selection and Meta-schedulerson the Grid 61
4.1.2 Resource Provisioning 62
413 Workflow Scheduling 63
414 Economy Based Grid Resource Management 64
4.1.5 Monitoring and Adaptation frameworks 65
4.1.6 Virtualization 66
4.1.7 Fault Tolerance and Performability 67

42 Workflow Management 69
42.1 Dynamic and Adaptive Workflows in Business Processes 69
422 Scientific Grid Workflow Tools 71
423 Workflow Constraints and Quality of Service 74

43 Summaryo 75

xiii

5 Workflow Orchestrator for Distributed Systems 76

51 OVerview o i e e 77
5.2 Resource Abstraction 80
53 ResourceLayer e 82
54 ApplicationLayer 83
55 UserRoles e 85
56 Terminology 85
5.7 Summary 87
6 Constraint Model 89
6.1 Workflow Constraints e 90
6.1.1 Examples 90
6.1.2 Model 91

6.1.3 Conflict Resolution L 93

6.2 Resource Request Specifications 94
6.2.1 Reliability Requirements of Scientific Applications 94

622 Examples 95

6.2.3 Reliability Specification 97

6.3 SUMMATIY o o 99

Xiv

7 Performability Modeling 100

7.1 Degradaded Service Modeling 102
7.1.1 Resource State Reliability Model 103

71.2 Performability Model L 105

713 AnExample 110

7.2 Workflow Planning for Performability 112
721 ProgrammingModels 0 oo 112

722 Workflow scheduling 113

7.2.3 Fault Tolerance Strategies 115

73 Evaluation 117
7.3.1 Application Performance Variability 117

7.3.2 Effect of Failure Levels on Applications 119

7.3.3 Factors affecting Performability 120

734 Fault Tolerance Strategies 123

74 SUMMAIY . . . o ot vt 123
8 Resource Layer 125
8.1 Resource Control Policy 127
8.2 Container Hosting Model 129
8.2.1 Resource Coordinator 130

XV

8.4

8.5

8.6

8.2.3 Separationof Concerns 132
GROC . . . 133
83.1 SiteMonitoring 135
832 TaskRouting 136
833 ResourceLeasing 137
8.3.4 Configuring Middleware 138
835 Robustness 140
83.6 Security 140
8.3.7 Summary 141
Probabilistic QoS Model e 142
8.4.1 Probabilistic Resource Procurement 143
8.4.2 Resource Properties 143
84.3 Resource Costmodels 145
Evaluation e 147
8.5.1 Container Hosting Model 148
8.5.2 Probabilistic Advanced Reservations 157
Summary e 160

Xvi

9 Workflow Orchestration 161

9.1 Orchestration: AnOverviewo it e 162
9.2 Workflow DAG Analysis 164
9.21 Structural Analysis 165

922 Work UnitAnalysis. 167

923 ResourceRequests 171

9.3 Resource Acquisition L o 173
94 TaskMapping 175
9.4.1 Probabilistic DAG Scheduler 175

9.42 Performability based DAG Scheduler 176

9.4.3 Hybrid DAGScheduler 179

9.5 Schedule Enhancement L 180
9.6 Evaluation e 181
961 DAGAnalysis. 184
9.6.2 Performability Workflow Scheduling Simulation 186
9.6.3 Probabilistic Workflow Orchestration 188

9.7 SUMMATY o e 195
10 Workflow sets 197
10.1 Workflow Orchestration Pipeline 199

XVvii

10.2 Work Queue Preparation L 201

10.3 Execution Management 202
10.4 Scheduling Workflow Sets Without Fault Tolerance 204
10.4.1 Problem Description L oo 204
10.4.2 Pipeline Policies 205
104.3 Evaluation 206
1044 Summary 206
10.5 Scheduling over Grid and Cloud Resources with Fault Tolerance 208
10.5.1 System Design L 208
10.5.2 Problem Description o 211
10.5.3 Pipeline Policies 212
10.5.4 Evaluation 213
10.5.5 Summary 223
10.6 Deadline and Budget Sensitive Workflow Orchestration 223
10.6.1 Problem Description 223
10.6.2 Pipeline Policies 224
10.6.3 Evaluation e 226
10.6.4 Summary 229
10.7 Summary 230

XViil

11 Conclusions and Future Work

11.1 Resource Layer

11.2 ApplicationLayer

A Workflow Emulator

Al Application Service Handler Interface

A.2 Orchestration Handler e

B LEAD Portal Resource Usage Analysis

B.1 SystemDetails L

B2 Overview e

B.3 Data Mining Workflow

B.4 Weather Forecasting Workflow

B5 Summary

Bibliography

Xix

231

233

235

237

238

240

242

243

243

246

246

252

254

List of Tables

2.1

2.2

Workflow Survey Project Overview. We surveyed workflows from different domains
including weather and ocean modeling, bioinformatics and biomedical workflows,
astronomy and neutron science. The table shows the project information and tools

used by thescientists. o o

Summary of Workflow Characteristics. The total number of tasks and the number of
parallel tasks are useful in understanding the structure of the workflow. The max-
imum processor width of a task helps us understand the number of processors re-
quired simultaneously. The computation and data sizes shows a rough order of the
time and the size of data products from this workflow. Each of the workflow may in-
clude one or more patterns. Our goal is to capture the dominant pattern seen in the
workflow. Workflows are classified as Sequential (mostly tasks that follow one af-
ter the other), Parallel (multiple tasks run at the same time), Parallel-split(one task’s
output feeds to multiple tasks), Parallel-merge(multiple tasks merge into one task),
Parallel-merge-split (both parallel-merge and parallel-split) and Mesh (where task

dependencies are interleaved). o oL L

XX

7.1

7.2

9.1

9.2

9.3

10.1

B.1

B.2

Performability Example. Table shows performability and cost for different perfor-

mance model numbers and reliability characteristics where n; = 1,no = 2,n3 =

Application Descriptions. The table provides a bried description of the application

codes from weather and ocean modeling that we use for our experiments.

Structural Workflow Analysis. The table shows the structural properties for some

example workflows. L L

Work Unit Workflow Analysis. The table shows the properties that describe that

determine the work units to be performed for each of our example workflows.

Resource Procurement for NCFS workflow. The table shows the cost and success
probability that can be obtained for an ncfs workflow scheduled for a deadline of 36

hours over batch systems.

Demonstration Testbed for LEAD-VGrADS. Setup configuration of grid and cloud

resourcesinour testbed. e

LEAD Production Testbed. Machine specifications of systems used by LEAD.

LEAD Production Workflow Completion States. The table shows the classification

of workflows that are in different termination states - success, failed or recovered. . .

xxi

118

183

244

244

List of Figures

1.1

21

2.2

2.3

24

2.5

Multi-level Adaptation. The two level adaptation plane that works in conjunction with the
active software hierarchy. The adaptataion plane is orthogonal to the main execution software
stack. The two level plan also facilitates a clear separation of concerns between the application

and resourcelayers. L

LEAD North American Mesoscale (NAM) Initialized Forecast Workflow. The workflow pro-

cesses terrain and observation data to produce weather forecasts.

LEAD ARPS Data Analysis System(ADAS) Initialized Forecast Workflow. The workflow pro-

cesses terrain and observation data to produce weather forecasts.

LEAD Data Mining Workflow. The workflow processes weather data to identify regions where

weather phenomenon is present.

SCOOP Workflow. The arriving wind data triggers ADCIRC that is used for storm-surge

prediction during hurricaneseason. Lo oL

NCFS workflow. A multitude of models are run to model the storm surges in the coastal areas

of North Carolina. i i e

poeit

2.6

2.7

2.8

29

2.10

211

212

2.13

2.14

2.15

2.16

Glimmer Workflow. A simple workflow used in educational context to find genes in microbial

Gene2Life Workflow. The workflow is used for molecular biology analysis of input sequences.
The dotted arrows show the intermediate products from this workflow that are required by

the user and/or might be used to drive other scientific processes.

Motif Workflow. A workflow used for motif/domain analysis of genome sized collections of

INPUESEqUENCES. ot e e e e e e e

MEME-MAST Workflow. A simple demonstration workflow used to discover signals in DNA

SEQUENCES. o v vt s e

Molecular Sciences Workflow. The workflow is used to study atomic structures of proteins

and ligands. e

Avian Flu Workflow. A workflow used in drug design to study the interaction of drugs with

theenvironment. e e e e e e e e e e e e e e e

Cancer Data Standards Repository Workflow. A workflow used to query concepts related to

aninputcontext. e

PSLoad Workflow. Data arriving from the PS1 telescope is processed and staged in relational

databases eachnight. L o o

PSMerge Workflow. Each week, the production databases that astronomers query are updated

with the new data staged during theweek.

McStats Workflow. This workflow is used for Neutron ray-trace simulations.

Animation Workflow. The rendering work is distributed across a multitude of nodes.

xxiii

2.17 Performance Measurement Workflow. The workflow is used for benchmarking applications

2.18

2.19

3.1

5.1

6.1

with various compiler, link and runtime flags.00 0L

Load balancing workflow. When jobs or workflows are scheduled on resources, a dependency
is created from the resource availability constraint. In the left side of the figure, we show how
jobs a, b, ¢, d are scheduled on one, two or three processors. When scheduled on one processor,
the jobs get mapped sequential resulting in a virtual dependency where job b must wait for
job a to finish. Similarly for workflows, if we were to schedule them on three processors, in
addition to their workflow task dependency, their execution dependency is determined by the

execution of one or more of the tasks from other workflows.

Resource profile as a workflow. A dynamic application manager might procure resources as
load increases and release resources as load falls below a threshold. The resource profile over

time can be represented as a workflow structure.o L

Scientific Application Programming Models (a) Master-Worker (b) Divide and Con-

quer (c) Single-Program Multiple-Data (SPMD)

WORDS Architecture. The orchestration system introduces a clean separation of re-
source level and application-level functionality through a resource abstraction (slot).
The workflow planner interacts with the resource coordinator to facilitate resource

acquisition.

Workflow Constraint Model UML. The figure shows the various components in WORDS and

the relations and constraints the user can specify on those components.

XXiv

7.1

7.2

73

74

7.5

7.6

Resource Reliability Model. A Markov chain representing the five reliability states of

the machines and the transitions between the states represent the failure and repair

Application Performance Variation. Figure shows the running time variability ob-

served for WRF over TeraGrid machines (a) Mercury (b) Tungsten.

Effects of Failure Levels on Applications. The projected application running time
for meteorological and ocean modeling applications (a) Short running - arps2wrf,

wrfstatic (b) Long running - wrf, adcirc. o oL

Study of Performance with Availability Variations. The expected steady-state reward
rate for different application run times with performance degradation factors n; =

I,ng=2n3=3,ng=4@z=2and (b)z=70.

Study of Performance Degration Factors on an Application. The expected steady-
state reward rate for different n; values for an application with running time of 60

minutesand x = 30.. e e e

Cost analysis of Fault Tolerance strategies. Figure shows a comparison of costs with
replication and checkpoint-restart strategy for different application running times

where Cper—checkpoint = 1 and Crestart—on—faiture 183 .« - o oo oo oo oL

XXV

119

8.1

8.2

8.3

8.4

8.5

Two Architectural Alternatives for Serving Multiple User Communities, or VOs. In
(a), the VOs” application manager (AM) submit jobs through a common gatekeeper
at each site; job scheduling middleware enforces the policies for resource sharing
across VOs. In (b), each VO runs a private grid within isolated workspaces at each
site. Isolation is enforced by a foundational resource control plane. Each VO grid
runs a coordinator (GROC) that controls its middleware and interacts with the control

plane to lease resources for its workspaces. oL

GROC Components. Overview of components for a GROC managing a VO grid
hosted on virtual clusters leased from multiple cluster sites. The application man-
ager interacts with Globus services, instantiated and managed by the GROC, for job

and datamanagement. Lo

GROC Testbed. The testbed has three cluster sites with a maximum capacity of 15
virtual machines each. There are two hosted grids (the Bioportal and SCOOP appli-
cations). Each site assigns a priority for local resources to each grid, according to its

local policies.

Effect of reservations. Figure shows the average number of waiting jobs across three
sites. In (b), the SCOOP grid reserves servers in advance to satisfy its predicted

demand. e

Resource Holdings and Priority. Site resources are allocated to competing GROCs
according to their configured priorities. (a) shows the decrease in resources available
to Bioportal as more machines are reserved to SCOOP, as shown in (b). Bioportal
reacquires the machines as SCOOP releases them. (c) shows the progress of resource

configuration events on sitesand GROCs.

XXV1

8.6

8.7

8.8

8.9

8.10

8.11

9.1

Adaptive Provisioning under Varying Load. The load signal (a) gives job arrivals. (b) shows
the waiting jobs queue at Site A, while (c) shows a stacked plot of the resource holdings of

each grid across the threesites. o o oL

System Efficiency. (a) shows the load signal and (b) the variation of efficiency with

lease length across multiple cluster sizes.

Stretch Factor. We study stretch factor as a measure of fairness, of two competing

GROCs - Bioportal and SCOOP with varying lease lengths

Start Times of Probabilistic Advanced Reservations. Probabilistic reservations have
variable start times. We show the historgram of difference in actual start times from
expected start times on two resources for requests made (a) 1 hour (b) 2 hours (c) 3
hours (d) 4 hours in advance. NOTE: Only intervals with entries have been shown

inthisgraph. L

Costs of Probabilistic Advance Reservations. Probabilistic reservations incur addi-
tional costs if and when they start before expected start time. Here we show the
cost variations between the predicted and actual cost over a set of requests on two

TeraGrid resources (a) ncsatg (b)abe. L oL Lo

Effect on Cost for Different Guarantees. Higher levels of guarantees i.e., higher suc-

cess probabilities result in greatercosts. oL 0 oL

Workflow Orchestration Functional Blocks. Workflo orchestration has multiple stages
for understanding workflow requirements and constraints, querying resource status
and scheduling a workflow. The different functional boxes interact with and share

data structures of workflow representation and the schedule.

XXVii

153

9.2

9.3

9.4

9.5

9.6

9.7

Example of Structural Analysis: A simple workflow with its associated structural

properties

Example of Work Unit Analysis. A simple workflow annotated its work quantum

characteristiCs o e e

Resource Request Merging in Time. Examples that shows how slot merging is ap-
plied with timeSlack (a) newSlot’s start and end times fall within timeSlack units of
currentSlot’s start and end times the slots are merged (b) If the start time of the new
slot is timeSlack units within the end time of the slot and the processor width is iden-

tical, theslotsaremerged. Lo

Resource Request Merging in Time and Processor Width (i.e.,processorSlack = true).

Examples that shows how slot merging is applied with timeSlack and processorSlack

170

(a) newSlot’s start times falls within timeSlack units of currentSlot’s start time or newSlots’s

end times fall within currentSlot’s end times slots are merged (b) If the start time of

the new slot is timeSlack units within the end time of the slot, the slots are merged. .

Scientific workflow examples.(a) a weather forecasting workflow (b) storm surge
modeling workflow (c) domain analysis of biological sequences (d) flood-plain map-

pingworkflow L

Impact of Slack Factor on Slot Requests. The graphs shows the slot analysis for the
four sample workflows with varying timeSlack and processorSlack parameters (a) and
(b) show the slot count and corresponding wastage as timeSlack varies, (c) and (d)
show the slot count and corresponding wastage (in log scale) timeSlack varies when

processorSlack=true. L

XXV1iii

170

9.8 Failure Characteristics of Production Systems. Failure to repair rates over time in

production use of systemsat LANL.

9.9 Schedule Comparision with Different Availability Levels. Comparison of workflow
tasks scheduled on the resources in Experiment 1 with no prior accumulated re-

source history and Experiment 2 with prior accumulated history for system 2.

9.10 Study of Performability based Workflow Schedules On Production Systems. Ratio
of a) makespan b) performability over time in production use of systems (averaged

over 100runs perdatapoint.)

9.11 Resource Procurement over Batch Systems for LEAD workflow. Comparison of
different resource acquisition techniques for the lead workflow. We compare (a) the

effective probability and (b) cost as deadline varies upto 24 hours.

9.12 Resource Procurement over Batch Systems for SCOOP workflow. Comparison of

different resource acquisition techniques for scoop workflows. We compare (a) the

185

effective probability and (b) cost (shown in log scale) as deadline varies upto 24 hours.192

9.13 Resource Procurement over Batch Systems for Motifi workflow. Comparison of dif-
ferent resource acquisition techniques for motif workflow. We compare (a) the effec-

tive probability and (b) cost (shown in log scale) as deadline varies upto 24 hours . .

9.14 Resource Procurement over Cloud Systems. Comparison of (a) cost and (b) makespan
from task-based and workflow-based scheduling for workflows on Cloud (EC2) re-

sources. The Y axisisinlogscale.

XXix

192

10.1 Workflow Orchestration Pipeline. It is a multi-phase orchestration strategy for schedul-

10.2

10.3

10.4

ing workflow sets. The user workflows are assigned to priority queues. Next, the
workflow constraints guide a resource procurement strategy. The resource procure-
ment step returns a Gantt Chart that consists of a set of slots from the different sites.
In the next phase the minimally required workflows are first mapped using a DAG
scheduler. Subsequently in the trade-off phase, increasing fault tolerance for a sched-
uled workflow is compared with scheduling an additional DAG. The more effective
schedule to meet workflow constraints is selected. Finally, any additional scheduling
to use additional resources with different pricing or scheduling remaining DAGs or

increasing fault tolerance isapplied.

Workflow Queue Preparation. Workflows with different priorities and criticalities
need to be placed in appropriate sequence for scheduling. Our queue is ordered by

priority and then criticality between the elements with same priority.

Queue of Queues. Often it is necessary to consider two subsets of workflows in
conjunction during schedule. Our queue of queues approach enables two sets to

scheduled simultaneously.

Execution dependency. When tasks from different workflows are scheduled on a
slot there are additional execution dependencies. B3 and B4 are ready to execute but
need to wait for A4 and B2 to finish. Similarly while B5 is ready to execute it must

wait for A6. e

XXX

199

201

10.5

10.6

10.7

10.8

10.9

Study of Deadline and Accuracy Scheduling of Workflow Set. We apply a slot based
workflow orchestration to a workflow set to meet the constraint of at least M out of
N workflows must finish within the deadline D. We study the variation of (a) proba-
bility with deadline for different M/N, (b) number of workflows that get scheduled
with deadline D (c) variation of effective probability with variation in M for different

N values and deadlineof Zhours

Comparison of the LEAD-VGrADS collaboration system with cyberinfrastructure

production deployments. L

Interaction of Workflow Planner with VGrADS components. The workflow planner
iteratively queries for resources and once sufficient resources are obtained initiates
the resource binding process. The resource binding by vgES consists of a series of
steps that include procuring the resources and setting up the resource to be ready for
application execution. In parallel, the workflow planner determines the workflow

execution plan on availableresources. L L oL

Planning Timeline. The graph shows the timeline of the planning phase in the sys-
tem. The orchestration system queries the virtual grid execution system. Once pre-
requisite amount of resources are obtained, the vgES system is directed to start the
binding process. Simultaneously, bandwidth between the sites is queried and the
multi-phase pipeline process is launched. The end of the bind process signifies that

the resources are ready to executejobs. L L L L L oL

Execution Timeline. The graph shows the timeline of execution of the workflows
in the system. In this run, workflow1 failed and hence completed earlier. All other

workflows completed by its deadline.

XXX1

210

10.10Comparison of Proposed and Actual Schedule. The graph shows a comparison of
workflow start and end times with the generated schedule. The difference in start

time is due to lack of tools for predicting resource binding and setup.

10.11Resource Binding. The graphs shows the time at each site for resource binding or
procurement. The average values are shown as bars and the high and low values are

shown with errorbars. e

10.12Schedule for Different Workflow Set Size. Number of workflows scheduled with
deadline and different number of workflows in the set. This graph shows the case

for when five workflows, i.e., M =5 e

10.13Schedule for Different User Requirements. Number of workflows scheduled with
deadline and different quantity of workflows required. The graph shows the case

for a total of ten workflowsintheset.,

10.14Schedule Success Probability with Different User Requirements. Effect on success
probability of the workflow schedule with varying number of workflows required

for a workflow set schedule with nine workflows.

10.155chedule for Varying M. Effect on number of workflows scheduled with varying

number of workflows required for a workflow set schedule with nine workflows. . .

10.16Effect on Fault Tolerance Strategy with Varying User Requirements. Number of
replicas in the schedule with varying number of workflows required for a workflow

set schedule withnine workflows

10.17Effect on Success Probability from the Pipeline Scheduling. In this graph we see
the success probability at the end of each of the phases for a workflow set with five

workflows and a deadlineof twohours

XXXil

221

10.18Performability Workflow Set Scheduling Over System Lifetime. Number of (a) work-
flows (b) checkpoints (c) replicas scheduled over the production use of systems life-

time at LANL. e e e

10.19Performability Workflow Set Scheduling with Varying Deadline. Number of a) work-
flows b) tasks checkpointed c) tasks replicated (d) effective success probability with

variationindeadline. e

10.20Effect of Budget on Resource Availability Level. Resource state variation with budget
(a) shows four cost rate functions we consider for the resource state (b) shows the

variation of resource stability level withbudget.

A.1 Workflow Emulation Architecture. The figure shows the interaction of the different

components in the emulation environment. 0 0 0L

A.2 Application Service Emulation Execution Flow. The figure shows the different states
supported by the emulation execution flow for each task in the workflow. Some

states may be skipped or repeated for different scenarios.

B.1 LEAD Workflows Performance Variation.

B.2 Storm Detection. The distribution of execution times for the storm detection algo-

rithm code on bigred, mercury and tungsten.

B.3 Remove attributes. The distribution of execution times for the remove attributes

code on bigred, mercury and tungsten. oL L Lo
B.4 Spatial Clustering. Execution times on bigred, mercury and tungsten.

B.5 Terrain Preprocessor. Execution times (a) anl (b) bigred (c) mercury (d) tungsten. . .

XXXiii

238

247

B.6 Wrfstatic.Execution times (a) anl (b) bigred (c) mercury (d) tungsten. 250

B.7 Nam Initial Execution times (a) anl (b) bigred (c) mercury (d) tungsten. 250
B.8 Nam Lateral Execution times (a) anl (b) bigred (c) mercury (d) tungsten. 251
B.9 ADAS Execution times (a) anl (b) bigred (c) mercury (d) tungsten. 251
B.10 ARPS2WRF Execution times (a) anl (b) bigred (c) mercury (d) tungsten. 252
B.11 WRF Execution times (a) anl (b) bigred (c) mercury (d) tungsten. 253

XXX1V

1

Introduction

In the last few years we have seen the emergence of multi-core processors, virtualization tech-
nologies and web services that have revolutionized the computing models in use. Increasingly, dis-
tributed resources and data are shared across virtual communities and used to solve scientific and
business problems. More recently, companies are leveraging distributed computing infrastructures
through utility, grid and cloud computing as an integral part of mainstream business models. The
high performance computing domain at supercomputing centers has seen a similar trend in sup-
porting scientific applications such as drug discovery [12], cancer research [29], weather modeling
and prediction [54], earthquake engineering [120] through deployments of large-scale distributed
infrastructure such as TeraGrid [179] and Open Science Grid [132]. These trends are changing the

software services and the interaction of higher-level software with distributed systems.

The advent of the internet has also resulted in the emergence of sophisticated end-user tools
such as web interfaces and portals that enable the end-user to access distributed information and
resources. Workflow tools have emerged at the application later that allow users and businesses
to compose work units as a sequence of automated or semi-automated operations. Workflow tools

have been used to model business processes i.e., to automate information and task sharing among

1. Introduction 2

individuals of a company or business partners. More recently workflows and workflow tools have
become an integral part of cyberinfrastructure [10, 49]. Workflow tools allow a scientist to compose
and manage complex scientific distributed computation and data in distributed resource environ-

ments.

Workflow tools in distributed cyberinfrastruture support basic resource interaction functions
and provide limited Quality of Service (QoS) guarantees or failure recovery. Workflows and dis-
tributed system infrastructures have evolved in largely isolated environments and only have a
weak interaction model available today. The new resource models ushered in by cloud computing
models introduce additional challenges in assuring QoS since their dynamic characteristics exacer-
bate performance and reliability behavior of underlying hardware resources. In addition, workflow
tools are increasingly used for applications with more complex and diverse requirements operat-
ing in highly distributed environments that have large real-time variability. For example, scientific
explorations often have uncertainties that need to be resolved during runtime either through user
intervention or other rule-based mechanisms. Thus, while a general structure of the workflow is
known, the exact structure of the workflow is often determined during execution. Workflows with
timeliness requirements such as weather prediction, economic forecasting, hurricane track forecast-
ing require coordination and adaptation of the resources at runtime to meet their QoS requirements.
For instance, the weather prediction workflows often have stringent deadlines and arriving data
determines the execution plan and hence resource requirements. Cyberinfrastructure supporting

such applications needs to have proactive planning and dynamic adaptation.

Distributed architectures are moving towards a web service oriented framework [5, 64]. A ser-
vice oriented framework helps define standard modular interfaces to functionality while allowing
separation of concerns and policies that may be tied with distinct applications or institutions. The

service oriented architecture also gives rise to a multi-layered system with the workflow, service

1. Introduction 3

and resource layer each implementing distinct policies. Thus there is a need for interaction mecha-
nisms between application layer tools and the resources for better management of the cyberinfras-

tructure to meet the needs of the user.

We develop WORDS (Workflow Orchestrator for Distributed Systems) in the context of dy-
namic web service workflows. The multi-level system takes a holistic view of the resource and user
space and defines the interaction between them. This thesis addresses the issues of being able to
provide predictable quality of service for scientific workflows in the presence of variability in the
underlying system characteristics. We use the weather prediction workflows from the Linked En-
vironments for Atmospheric Discovery (LEAD) project as the primary use case due to its timeliness

and accuracy constraints.

We discuss the hypothesis and contributions of this research in Section 1.1. We provide an
overview of WORDS in Section 1.2. We present an overview of the constraint space in WORDS
in Section 1.3 and the resource abstraction in WORDS in 1.4. We discuss the necessity of joint
analysis of performance and dependability in distributed environments in Section 1.5. We discuss
the development of container based provisioning approach in leased environments in Section 1.6.
We provide an overview of workflow orchestration approach for deadline sensitive workflows in

dynamic and environments (Section 1.7).

1.1 Thesis Hypothesis and Contributions

As distributed environments are used to solve larger and more complex scientific and busi-
ness problems from different domains, we need dynamic and adaptive elements in application
tools. Higher-level user tools such as workflow engines and portal frameworks need the ability

to express and enforce user specified constraints and changes. The system as a whole needs to be

1. Introduction 4

flexible, resilient to both resource variability in terms of performance and reliability, as well as able
to meet the end-user’s dynamic requests. The dynamic aspects of next-generation workflows that
are targeted to be run in the distributed environment require us to study the closer coordination of
user requirements with the resource management layer. Based on the following requirements, the

hypothesis is:

It is possible to design a multi-level adaptation architecture to meet performability (i.e., both performance

and reliability) guarantees to support dynamic changes in workflow and resource behavior

The following are the contributions towards the above stated hypothesis:

o the WORDS system architecture in the context of a service oriented architecture that defines

the interactions required between application and resource layers,

e probabilistic resource abstractions that allow higher level application techniques to be shielded
from specific resource models and yet account for the variability in policy and runtime be-

havior,

e a constraint model that defines the conditions and expectations a user can specify on single or
multiple workflows and extensions to a resource specification language to specify reliability

attributes,

e performability as a metric for capturing the multi-dimensional behavior of resources in terms
of performance, reliability and cost and study its impact on scheduling and fault tolerance

strategies,

e workflow orchestration for deadline-senstive workflows that leverages workflow character-

istics and resource behavior in the context of multi-user dynamic environments.

1. Introduction 5

4 N\
Portals or science gateways — user level interfaces

User | 4 Request L to specify workflow DAGs and constraints.)
expectations* : user input Workflow ¥
. . monitoring (~ ~
Application control il : o I
lan Sarro Workflow tools — multiple application coordination.
p| ane execution \. J
Resource * Resource p ¥ N
needs ¢ : change Resource

Resource Management Services — provides

0 tat
<Resou rce adaptation -~ 7 functionality for job and file management.
plane

N
Manage !
resources

~N
J

Resource Control Plane — resource configuration,
application middleware management.

i

Resources - clusters, sensors, radars, etc.

Figure 1.1: Multi-level Adaptation. The two level adaptation plane that works in conjunction with the active
software hierarchy. The adaptataion plane is orthogonal to the main execution software stack. The two level
plan also facilitates a clear separation of concerns between the application and resource layers.

1.2 Workflow ORchestrator for Distributed Systems (WORDS)

Distributed resource systems today are composed of a hierarchy of software systems, com-
posed of (a) a resource management middleware that interacts with the underlying cluster, HPC
resources, instruments, sensors etc. and (b) an application tools layer consisting of scientific codes,
portal, workflow tools, web services. Dynamic changes from the user and/or the application im-
pact the system top-down whereas changes in the resources - performance, reliability and availabil-
ity impact the system bottom-up. To support a dynamic environment, we need multi-level adaptation
that supports local changes while balancing the global state of the system. Adaptation refers to (a)
coordinated planning of resources and services with workflow characteristics to meet the needs
of the user, (b) ability of the workflow to adjust to resources’ performance, reliability, availability

variations, (c) ability to react to application, workflow or other user-initiated changes.

1. Introduction 6

Figure 1.1 shows the interaction of the hierarchical adaptation planes with the software hierar-
chy of distributed middleware today. Users interact with web interfaces or portal environments
that in turn interact with workflow tools to manage the user’s execution environment. The work-
flows use resources where access is mediated through the resource management services. The
adaptation plane is orthogonal to the main execution path and hidden from the user. A critical
function of the application control plane is planning, monitoring and remediation. The resource
adaptation plane manages resource interactions including resource acquisitions, monitoring and
resource related remediation in consultation with the application control plane. These interac-
tions between the end-user, multiple levels of software infrastructure and the underlying resources
is a critical component for next generation dynamic cyberinfrastructure. The components of the

WORDS system are detailed in Chapter 5.

1.3 Constraint Model for Workflows and Resource Requirements

Today’s tools allow users to specify some higher level quantitative resource requirements (e.g.,
number of processors, processor type, etc) and the work unit dependencies through directed acyclic
graphs (DAG). However in a competitive multiple service provider community, ushered in by grid
and cloud computing business models, we require multiple levels of constraint specifications. First,
the user must be able to provide some higher level constraints and conditions (e.g., budget, priori-
ties, etc) on the work units to guide workflow orchestration decisions. Second, at the resource level
it is important to be able to capture the qualitative resource behavior that the workflow orchestra-

tion can in turn use to meet the user’s requirements.

Application level tools today have limited support to specify constraints and QoS requirements

on the workflow. Scientific users want to specify various constraints on the workflow such as time

1. Introduction 7

or resource constraints or priorities on parts of the workflow or relationships between different
workflows. Workflow standards such as WS-BPEL [202] and languages provided by tools [36, 48,
107, 174] are not rich enough to support such constraints. We explore the constraint model that
drives the resource plane interactions. The workflow constraint model is a limited set, focused on
resource needs for scientific workflows, and provides a strong foundation for expansion for other

needs.

Today’s resource management tools provide mechanisms to select and discover resources and to
manage applications” QoS requirements [205]. To guide lower level performability based workflow
planning, next generation resource management tools need to provide user-level interfaces that
allow users to specify performance and reliability requirements for the application. The virtual
grid description language [90] is a hierarchical language for resource abstractions that allows users
to specify qualitative resource performance specifications. We propose an extension to the existing
virtual grid description language that enables users to specify availability requirements guided by

resource cost models and budget of the user.

1.4 Resource Abstractions

Different resource models such as grid, utility or cloud computing provide standard interfaces
for interaction with different types of services including job management, data transfer and other
resource management functions like resource discovery. The application middleware available to-
day is largely focused on task coordination and placement of tasks on resources based on per-
formance. However the new resource models introduce additional burdens on the middleware:
resource types are virtualized making it hard if not impossible to predict accurate execution times

of applications on specific resources; additional services (e.g., advanced reservation) come at an

1. Introduction 8

extra cost requiring cost considerations in the scheduling mechanism; resource arrival and depar-
ture times vary. Thus the current approach is severely limiting as we move to next generation
infrastructure (e.g., cloud computing [9], GENI [69]) where business and service models are closely
associated with the underlying architecture of these networked systems. End consumers have a
choice of multiple service-providers and associated cost and value models that will need to be ex-
posed at the resource level and leveraged appropriately at the application tools layer in concert

with user requirements.

We explore the interaction of user level information and choices with resource management
models through a resource abstraction. We propose a probabilistic QoS abstraction that allows
us to capture the variability in distributed environments, with respect to resource allocation deci-
sions as well as runtime hardware and software failures. The communication flow, through the re-
source abstraction, between the user’s requirements and the resource model’s ability to meet the re-
quirements allows consumers to exercise various cost-benefit variations. The abstraction also gives
providers the chance to provide alternatives that closely match the user’s requirements. This ab-
straction is essential for next-generation data centers as they balance needs of different user groups
with the variability in underlying resource hardware. This abstraction also gives users the ability
to compare and contrast QoS capabilities of various resource providers, and thus is a foundation to

a dynamic competitive market driven by user preferences.

1.5 Performability Modeling

Scientific applications have diverse performance and reliability requirements that are often dif-

ficult to satisfy, given the variability of underlying resources. Moreover, as grid and web services

1. Introduction 9

continue to evolve, rapidly changing software stacks with specific configuration and service re-
liability challenges exacerbate application execution times and failures. Availability variations in
these systems can be from hardware failures, dynamic performance variability, failures of software
services or bugs in the software (data from LEAD Production workflows available in Appendix B).
Today, resource selection decisions are typically made using simple resource status and perfor-
mance models, despite frequent component failures [93, 205]. Simplistically, a resource can be
considered to be in one of two states, either “fully-operational” or “failed.” However, the diversity
and the complexity of distributed environments makes graceful performance degradation in the
presence of failures critical. Availability can vary due to failure of one or more critical services,
load on one or more resource components, recovery from a failure, etc. These variations manifest
as a loss in performance that can result in increased application execution times or as a complete
failure that require rescheduling. Thus in addition to handling failures, workflow orchestration
needs to account for possible loss in Quality of Service (QoS) from resource availability variations

in any planning strategies

J. Meyer introduced the concept of performability [116] evaluation as a mechanism to combine
performance and availability analysis when considering resource behavior. We use performability,
as a composite measure of a resource’s performance and dependability i.e., a measure of the sys-
tem’s performance in the event of failures. We present a qualitative model to capture and analyze
the effect of resource reliability on application performance and cost models. Specifically, we ad-
dresses the following research challenges: (a) managing potentially conflicting resource selection
goals such as performance and reliability in workflow planning (b) determining appropriate fault

tolerance strategies based on application and resource characteristics.

1. Introduction 10

1.6 Container Provisioning

The increasing separation between resource providers and consumers in today’s grid and cloud
computing environments makes resource control very important and difficult. We propose and
evaluate a lease-based hosting architecture as a viable mechanism for resource providers and con-
sumers to manage a dynamic shared pool of resources. The approach illustrates the dynamic as-
signment of shared pools of computing resources to hosted environments. It shows how to extend
grid management services to use a dynamic leasing service to acquire computational resources and
integrate them into application environments in response to changing demand. In our prototype,
each user or group runs a private grid based on an instance of the Globus Toolkit (GT4) middleware
running within a network of virtual machines at the provider sites. Each site controls a dynamic

assignment of its local cluster resources to the locally hosted grid points of presence.

1.7 Workflow Orchestration

Workflow planning techniques so far have focused on performance based resource selection
and mapping in conjunction with run-time systems handling failures and variations. However in
a multi-user environment where multiple workflows are submitted by each user, priorities, budget
and other constraints need to be accounted for across the workflows. Current workflow scheduling
and planning methods prove to be insufficient for the additional requirements of next generation

workflows.

In addition, as these workflows run in resource environments such as grid and cloud comput-
ing, it is vital to account for the diversity and variability of the resources in planning techniques.
When resources are procured across a group of users or workloads, workflow planning needs to

be preceded by a separate resource acquisition phase and followed up with adaptation as resource

1. Introduction 11

properties change during workflow execution. We use the term workflow orchestration to refer to
a holistic, coordinated, dynamic and adaptive approach to workflow planning that works with
user requirements and variable resource characteristics while being shielded from specific resource
policy or systems. In this context, workflow orchestration handles planning and execution manage-
ment that includes resource acquisition, workflow scheduling and real-time adaptation. We design,

develop and evaluate workflow orchestration techniques for deadline-sensitive workflows.

1.8 Thesis Outline

The rest of the thesis is organized as follows. We illustrates requirements of next-generation
scientific workflows through examples from various domains in Chapter 2. Next, we discuss the
characteristics of distributed systems that cater to the needs of these workflows (Chapter 3). In
Chapter 4, we present related work and discuss the current status of resource management systems
and workflow tools used in distributed environments. We present the WORDS system, discuss
the concepts and define related terminology in Chapter 5. We present a performability model to
capture performance and availability variations of distributed resources (Chapter 7). We discuss
the resource abstractions and the application interactions with the resource model in Chapter 8.
We detail the workflow orchestration in Chapters 9 and 10. We present our conclusions and future

directions in Chapter 11.

2

Understanding Workflow Requirements

Through Examples

Workflows and workflow concepts have been used to model a repeatable sequence of tasks or
operations in different domains including the scheduling of manufacturing operations, inventory
management, etc. The advent of internet and web services has seen the adoption of workflows as a
means for business process management [175] and as an integral component of cyberinfrastructure

for scientific experiments [10, 49].

Workflow tools allow users to compose and manage complex distributed computation and data
in distributed resource environments. Workflows have different resource requirements and con-
straints associated with them. For example, application workflows with stringent deadline driven
requirements such as weather prediction, economic forecasting are now increasingly run in dis-

tributed resource environments.

In this chapter, we discuss workflow examples from different domains: bioinformatics and
biomedicine, weather and ocean modeling, astronomy, etc. These examples have been obtained

by talking to domain scientists and computer scientists who composed or run these workflows.

12

2. Understanding Workflow Requirements Through Examples 13

Each of these workflows has been modeled using different workflow tools and sometimes the flow
is even managed through scripts. For each workflow we specify the running time of applications
and input and output data sizes associated with each task node. Running time of applications and
data sizes for a workflow depend on a number of factors including user inputs, specific resource
characteristics and run-time resource availability variations [98]. Thus our numbers are approxi-
mate estimates for typical input data sets that are representative of the general characteristics of the

workflow.

The rest of the chapter is organized as follows. We present an overview of the projects that
were part of our survey in Section 2.1. The weather and ocean modeling workflows are detailed in
Section 2.2. Next, in Section 2.3, we describe the bioinformatics and biomedicine workflows. We
describe the astronomy and neutron science and computer science examples in Sections 2.4 and 2.5.
We discuss the use case scenarios and the characteristics of the workflow in Section 2.6 and finally

summarize our survey in Section 2.7.

2.1 Overview

Table 2.1 presents an overview of the survey that included workflows from diverse scientific
domains and cyberinfrastruture projects. In the following sections, we provide a brief description
of the project, workflow and usage model of the workflows as available today. For each workflow
we specify the running time of applications and input and output data sizes associated with each
task node. Running time of applications and data sizes for a workflow depend on a number of
factors including user inputs, specific resource characteristics and run-time resource availability
variations [98]. Thus our numbers are approximate estimates for typical input data sets that are

representative of the general characteristics of the workflow. For each of the workflows, we also

2. Understanding Workflow Requirements Through Examples 14
Domain Project Website Tool
Weather and | Linked Environments for Atmo- | http://portal .| ead. xbaya,
Ocean spheric Discovery (LEAD), TeraGrid | pr oj ect. org GPEL,
Modeling Science Gateway Apache

ODE
Southeastern Coastal Ocean Ob- | htt p://ww. renci . [Scripts]
serving and Prediction Program | org/focusareas/
(SCOOP) di sast er/ scoop. php
North Carolina Floodplain Mapping [Scripts]
Program
Bioi . | North Carolina Bioportal, TeraGrid | http://ww. renci . Taverna
ioinformatics| L. .
and Bioportal Science Gateway or g/ f ocusar eas/ .
. . bi osci ences/ moti f.
Biomedical
php
MotifNetwork http://ww. Taverna
not i f net wor k. or g/
National Biomedical Computation | http://nbcr. Kepler,
Resource (NBCR), Avian Flu Grid, | sdsc. edu/ http: | Gem-
Pacific Rim Application and Grid | // genst one. npzdev. stone,
Middleware Assembly org http://ww. | [Scripts]
pragma- gri d. net/ and
http://avianflugrid. | Vision
pragma- gri d. net/
http://ngltools.
scri pps. edu/
cancer Biomedical Informatics Grid | htt p: //ww. cagri d. Taverna
(caBIG) org/
Astronomy Pan-STARRS http://pan-starrs.

i fa. hawaii.edu/
public/, http:
/I www. pslsc. or g/

Neutron Sci-
ence

Spallation Neutron Source (SNS),
Neutron Science TeraGrid Gateway
(NSTG)

http://neutrons.
ornl . gov/

Table 2.1: Workflow Survey Project Overview. We surveyed workflows from different domains
including weather and ocean modeling, bioinformatics and biomedical workflows, astronomy and
neutron science. The table shows the project information and tools used by the scientists.

2. Understanding Workflow Requirements Through Examples 15

provide a DAG representation of the workflow annotated with computation and data sizes.

2.2 Weather and Ocean Modeling Workflows

In the last few years the world has seen a number of severe natural disasters such as hurricanes,
tornadoes, floods, etc. The models used to study weather and ocean phenomenon use real-time
observational data in conjunction with a number of parameters that are varied to study the possible
scenarios for prediction. In addition the models must be run in a timely manner and information
disseminated to disaster response agencies. This creates the need for large scale modeling in the areas
of meteorology and ocean sciences, coupled with an integrated environment for analysis, prediction
and information dissemination. A number of cyberinfrastructure projects are building tools and

constructing workflows to facilitate next-generation weather and ocean modeling science.

Terrain

338secs Wrf Static PreProcessor

147MB

Lateral
Boundary
nterpolator

146secs

4570secs/16 processors

2422MB

Figure 2.1: LEAD North American Mesoscale (NAM) Initialized Forecast Workflow. The workflow processes
terrain and observation data to produce weather forecasts.

2. Understanding Workflow Requirements Through Examples 16

Terrain
PreProcessor

338secs Wirf Static
147MB 1

Lateral
Boundary

240secs

146secs

ARPS2WRF 78sccs

4570secs/16 processors

2422MB

Figure 2.2: LEAD ARPS Data Analysis System(ADAS) Initialized Forecast Workflow. The workflow pro-
cesses terrain and observation data to produce weather forecasts.

2 MB

Storm
Detection

35secs

1IKB

Remove
Attributes

66secs

1KB

Spatial
Clustering

129secs

9KB

Figure 2.3: LEAD Data Mining Workflow. The workflow processes weather data to identify regions where
weather phenomenon is present.

2. Understanding Workflow Requirements Through Examples 17

2.2.1 Mesoscale Meteorology

The Linked Environments for Atmospheric Discovery (LEAD) [54] is a cyberinfrastructure
project that supports mesoscale meteorology. The infrastructure of LEAD needs to support real-
time dynamic, adaptive response to severe weather. A LEAD service workflow has constraints on
execution time and accuracy due to weather prediction deadlines. The typical inputs to a workflow
of this type are streaming sensor data [135] that must be pre-processed and then used to launch an
ensemble of weather models. The model outputs are processed by a data mining component that
determines whether some ensemble set members must be repeated to realize statistical bounds on
prediction uncertainty. Figures 2.1, 2.2 and 2.3 show the workflows available through the LEAD
portal that include weather forecasting and data mining workflows [102]. Each workflow task is
annotated with computation time and the edges of the directed acyclic graph (DAG), that repre-
sent the data dependencies between the tasks, are annotated with file sizes. The weather forecasting
workflows are largely similar and vary only in their preprocessing or initialization step. While the
data mining workflow can be run separately today, it can trigger forecast workflows or steer remote

radars for additional localized data in regions of interest [135].

2.2.2 Storm Surge Modeling

Southeastern Universities Research Association’s (SURA) Southeastern Coastal Ocean Observ-
ing and Prediction (SCOOP) program is a distributed project that is creating an open-access grid
environment for the southeastern coastal zone to help integrate regional coastal observing and

modeling systems [159, 138].

Storm surge modeling requires assembling input meteorological and other data sets, running

2. Understanding Workflow Requirements Through Examples 18

models, processing the output and distributing the resulting information. In terms of modes of op-
eration, most meteorological and ocean models can be run in hindcast or forecast modes. The hind-
cast mode, initiated by a user, is used as an after fact of a major storm or hurricane, for post-analysis
or risk assessment. The forecast mode is used for prediction to guide evacuation or operational de-
cisions [138] and is driven by real-time data streams. Often it is necessary to run the model with
different forcing conditions to analyze forecast accuracy. This results in a large number of parallel
model runs, creating an ensemble of forecasts. Figure 2.4 shows a five member ensemble run of
tidal and storm-surge ADCIRC model. ADCIRC is a finite element model that is parallelized using
Message Passing Interface (MPI) [108]. For increased accuracy of forecast the number of concurrent
model runs is increased. The workflow has a predominantly parallel structure and the results are

merged in the final step.

The SCOOP ADCIRC workflows are launched according to the six hour synoptic forecast cy-
cle used by the National Weather Service and the National Centers for Environmental Prediction
(NCEP). NCEP computes an atmospheric analysis and forecast four times per day at six hour in-
tervals. Each of the member runs i.e. each branch of the workflow gets triggered when wind files
arrive through Local Data Manager (LDM) [190], an event-driven data distribution system that
selects, captures, manages and distributes meteorological data products. The outputs from the in-
dividual runs are synthesized to generate the workflow output that is then distributed through

LDM.

In the system today each arriving ensemble member is handled separately through a set of
scripts and Java code [138]. The resource selection approach [99] makes a real-time decision for
each model run and uses knowledge of scheduled runs to load-balance across available systems.
However this approach does not have any means of guaranteeing desired QoS in terms of comple-

tion time.

2. Understanding Workflow Requirements Through Examples 19

275 MB

900 secs/
16 processors

162MB 162MB

Post
Processing

Figure 2.4: SCOOP Workflow. The arriving wind data triggers ADCIRC that is used for storm-surge predic-
tion during hurricane season.

2.2.3 Floodplain Mapping

The North Carolina Floodplain Mapping Program [123, 19] is focused on developing accurate
simulation of storm surges in the coastal areas of North Carolina. The deployed system today
consists of a four-model system that consists of the Hurricane Boundary Layer (HBL) model for
winds, WaveWatch III and SWAN for ocean and near-shore wind waves, and ADCIRC for storm
surge. The models require good coverage of the parameter space describing tropical storm char-
acteristics in a given region for accurate flood plain mapping and analysis. Figure 2.5 shows the
dynamic portion of the workflow. Forcing winds for the model runs are calculated by the Hurri-
cane Boundary Layer (HBL) model that serve as inputs to the workflow. The HBL model is run on
a local commodity linux cluster. Computational and storage requirements for these workflows are
fairly large requiring careful resource planning. An instance of this workflow is expected to run for

over a day. The rest of the workflow today runs on RENCI's Bluegene system [149].

2. Understanding Workflow Requirements Through Examples 20

534MB

11 hr /256 CPUs

21527MB

8hr/10CPUs 16338MB

34MB

3hr/192CPUs
4hr/160CPUs

Figure 2.5: NCFS workflow. A multitude of models are run to model the storm surges in the coastal areas of
North Carolina.

2.3 Bioinformatics and Biomedical workflows

The last few years have seen large scale investments in cyberinfrastructure to facilitate bioin-
formatics and biomedical research. The infrastructure allows users to access databases and web
services through workflow tools and/or portal environments. We surveyed three major projects
- North Carolina Bioportal, cancer Biomedical Informatics Grid (caBIG), and National Biomedical
Computational Resource (NBCR) to understand the needs of this class of workflows. Significant
number of these workflows involve small computation but involve access to large-scale databases
that need to be preinstalled on available resources. While the typical use cases of today have input
data sizes in the order of megabytes, it is anticipated that in the future data sizes might scale to

gigabytes.

2. Understanding Workflow Requirements Through Examples 21

2.3.1 Glimmer

The North Carolina Bioportal and The TeraGrid Bioportal Science Gateway [142] provides ac-
cess to about 140 bioinformatics applications and a number of databases. Researches and educators
use the applications interactively for correlation, exploratory genetic analysis, etc. The Glimmer
workflow is one such example workflow that is used to find genes in microbial DNA (Figure 2.6).

The Glimmer workflow is sequential and light on both compute and data.

2 seconds

1 seconds

5 seconds

Figure 2.6: Glimmer Workflow. A simple workflow used in educational context to find genes in microbial
DNA.

2.3.2 Gene2Life

Let us consider the Gene2Life workflow used for molecular biology analysis. This workflow
takes an input DNA sequence, searches databases to find genes matching the sequence. It globally
aligns the results and attempts to correlate the results based on organism and function. Figure 2.7
depicts the steps of the workflow and the corresponding output at each stage. In this workflow the
user provides a sequence that can be a nucleotide or an amino acid. The input sequence performs

two parallel BLAST [4] searches, against the nucleotide and protein databases respectively. The

2. Understanding Workflow Requirements Through Examples 22

results of the searches are parsed to determine the number of identified sequences that satisfy the
selection criteria. The outputs trigger the launch of ClustalW, a bioinformatics application that
is used for the global alignment process to identify relationships. These outputs are then passed
through parsimony programs for analysis. The two applications that may be available for such
analysis are dnapars and protpars. In the last step of the workflow plots are generated to visualize

the relationships, using an application called drawgram. This workflow has two parallel flows.

300 seconds

4KB| 300 seconds
@ 30 seconds

4KB 4KB
30 seconds @ @ 30 seconds
35 KB \ Tree Files ‘AS KB

(ps and .pdf files)

30 seconds dnapars

Figure 2.7: Gene2Life Workflow. The workflow is used for molecular biology analysis of input sequences.
The dotted arrows show the intermediate products from this workflow that are required by the user and/or
might be used to drive other scientific processes.

2.3.3 Motif Network

The MotifNetwork project [184, 185] is building a software environment to provide access to
domain analysis of genome sized collections of input sequences. The MotifNetwork workflow
(Figure 2.8) is computationally intensive. The first stage of the workflow assembles input data
and processes the data that is then fed into Interproscan service. The concurrent executions of
InterProScan is handled through Taverna and scripts. The results of the domain “scanning” step

are passed to an MPI code for the determination of domain architectures. The motif workflow has a

2. Understanding Workflow Requirements Through Examples 23

parallel split and merge paradigm where preprocessing spawns a set of parallel tasks that operate
on subsets of the data. Finally, the results from the parallel tasks are merged and feed into the

multi-processor application.

Pre
Interproscan

30secs

100 KB
5400 secs
500 KB
Post
Interproscan 60secs
3600 secs/ 7IMB
256 processors
599 MB

1432 MB

Figure 2.8: Motif Workflow. A workflow used for motif/domain analysis of genome sized collections of
input sequences.

2.34 MEME-MAST

The goal of National Biomedical Computation Resource(NBCR) is to facilitate biomedical re-
search by harnessing advanced computational and information technologies. The MEME-MAST
(Figure 2.9) workflow deployed using Kepler [3, 107] allows users to discover signals or motifs
in DNA or protein sequences and then search the sequence databases for the recognized motifs.
This is a simple workflow often used for demonstration purposes. The workflow is a sequential

workflow similar to Glimmer.

2. Understanding Workflow Requirements Through Examples 24

100 KB

MEME 60 seconds

150 KB

MAST 60 seconds

200 KB

Figure 2.9: MEME-MAST Workflow. A simple demonstration workflow used to discover signals in DNA
sequences.

100 KB
BABEL 60 seconds
120 KB
LightPrep 60 seconds

140 KB

5 minutes

GAMESS S minutes

175 KB

10 minutes

Figure 2.10: Molecular Sciences Workflow. The workflow is used to study atomic structures of proteins and
ligands.

2. Understanding Workflow Requirements Through Examples 25

2.3.5 Molecular Sciences

Animportant process in the drug-design process is understanding the three-dimensional atomic
structures of proteins and ligands. The Gemstone project, a client interface to a set of computational
chemistry and biochemistry tools, provides the NBCR community access to a set of tools that al-
lows users to analyze and visualize atomic structures. Figure 2.10 shows an example molecular
science workflow. The workflow in its current incarnation runs in an interactive mode where each
step of the workflow is manually launched by the user once the previous workflow task finishes.
The first few steps of the workflow involve downloading the desired protein and ligand from the
Protein Data Bank (PDB) database and converting it to a desired format. Concurrent preprocessing
is done on the ligand using the Babel and LigPrep services. Finally GAMESS and APBS are used
to analyze the ligand and protein. The results are finally visualized using the QMView which is
done as an offline process. First few steps have small data and small compute and finally produce

megabytes of data.

2.3.6 Avian Flu

The Avian Flu Grid project is developing a global infrastructure for the study of Avian Flu
as an infectious agent and as a pandemic threat. Figure 2.11 shows a workflow that is used in
drug design. It is used to understand the mechanism of host selectivity and drug resistance. The
workflow has a number of small preprocessing steps followed by a final step where up to 1000

parallel tasks are spawned. The data products from this workflow are small.

2. Understanding Workflow Requirements Through Examples 26

130KB

2 minutes

PrepareGPF

50 KB 200KB

4 minutes

30 minutes

Figure 2.11: Avian Flu Workflow. A workflow used in drug design to study the interaction of drugs with the
environment.

2.3.7 caDSR

The cancer Biomedical Informatics Grid(caBIG) is a virtual infrastructure that connects scien-
tists with data and tools towards a federated cancer research environment. Figure 2.12 shows a
workflow using the caDSR (Cancer Data Standards Repository) and EVS (Enterprise Vocabulary
Services) services [28] to find all the concepts related to a given context. The caDSR service is
used to define and manage standardized metadata descriptors for cancer research data. EVS in
turn facilitates terminology standardization across the biomedical community. This workflow is

predominantly a query type workflow and the compute time is very small in the order of seconds.

2.4 Astronomy and Neutron Science Workflows

In this section, we consider scientific workflow examples from the astronomy and neutron sci-

ence community.

2. Understanding Workflow Requirements Through Examples 27

10 MB

findProjects

10 MB
findClasses
InProjects
15SMB
findSemantic
Metadata
10MB
searchLogic
Concept

15MB

5 seconds

10MB

5 seconds

5 seconds

5 seconds

Figure 2.12: Cancer Data Standards Repository Workflow. A workflow used to query concepts related to an
input context.

241 Pan-STARR

The goal of the Pan-STARRS’s (Panoramic Survey Telescope And Rapid Response System)
project [57] is a continuous survey of the entire sky. The data collected by the currently deployed
prototype telescope 'PS1” will be used to detect hazardous objects in the Solar System, and other
astronomical studies including cosmology and Solar System astronomy. The astronomy data from
Pan-STARRS is managed by the teams at John Hopkins University and Microsoft Research through
two workflows. The first PSLoad workflow (Figure 2.13) stages incoming data files from the tele-
scope pipeline and loads them into individual relational databases each night. Periodically the
online production databases that can be queried by the scientists, are updated with the databases
collected over the week by the PSMerge workflow (Figure 2.14). The infrastructure to support the
PS1 telescope data is still under development. Both the Pan-STARRS workflows are data intensive

but require coordination and orchestration of resources to ensure reliability and integrity of the

2. Understanding Workflow Requirements Through Examples 28

data products. The workflows have a high degree of parallelism achieved by working on small

subsets of the data.

5 g / N=800
seconds
Preprocess Preprocess
CSV Batch CSV Batch

1= 100MB/5 1

LoadCSV
File into
LoadDB

LoadCSV
File into
LoadDB

1 100 MB

Validate
LoadDB

30 seconds

5 seconds

10 secs

Figure 2.13: PSLoad Workflow. Data arriving from the PS1 telescope is processed and staged in relational
databases each night.

5 mins

2TB ColdDB &
LoadDB
reprocess

ColdDB &
LoadDB
preproces;

Update
Production
DB

Figure 2.14: PSMerge Workflow. Each week, the production databases that astronomers query are updated
with the new data staged during the week.

2.4.2 McStas workflow

Neutron science research enables study of structure and dynamics of molecules that constitute
materials. Neutron Source at Oak Ridge National Laboratory connect large neutron science facili-

ties that contain instruments with computational resources such as the TeraGrid [109]. The Neutron

2. Understanding Workflow Requirements Through Examples 29

Science TeraGrid Gateway enables virtual neutron scattering experiments. These experiments sim-
ulate a beam line and enables experiment planning and experimental analysis. Figure 2.15 shows
a virtual neutron scattering workflow using McStas, VASP, and nMoldyn. VASP and nMoldyn
are used for molecular dynamics calculations and McStas is used for neutron ray-trace simula-
tions. The workflow is computationally intensive and currently runs on ORNL supercomputing
resources and TeraGrid resources. The initial steps of the workflow run for a number of days and
are then followed by an additional compute intensive step. The workflow is sequential and has

small data products.

1200 hrs/16
processors

VASP

b

0.56MB

36hrail
nMoldyn) i o
& procesgor

0.56MB

MeSis 3 ‘lll‘Sr_l 2‘8
procesgor

Figure 2.15: McStats Workflow. This workflow is used for Neutron ray-trace simulations.

2.5 Computer Science Examples

Workflow tools are increasingly being used in different scenarios both in scientific as well as
business processes. In addition programming constructs such as map and reduce facilitate prob-
lems to be composed as distinct work units with stated dependencies. In this section, we explore
some examples that illustrate workflows whose users are often computer scientists or program-

mers.

2. Understanding Workflow Requirements Through Examples 30

2.5.1 Animation

Rendering computer animation frames is fairly time consuming. Distributed rendering on mul-
tiple processors has been known to provide significant speedups over running on a single proces-
sor [39]. The animation workflow is based on distributed rendering that is commonly used today
for frame generation. The animation workflow has map-reduce style programming model where
work is distributed and the results are gathered and synthesized for the final result. The computa-

tional and data sizes are rough numbers used for illustration [35, 206].

1.500 MB

Pre Animation
Frame
Animation
Post
Animation

500 MB

180 seconds

10 KB

Frame
Animation

500 KB

1.5 hrs

Frame
Animation

300seconds

Figure 2.16: Animation Workflow. The rendering work is distributed across a multitude of nodes.

2.5.2 Performance Measurement

Applications running in distributed environments like Grid and cloud computing resources
often experience significant changes in performance. Benchmarking and performance experiments
are often critical in these environments to determine the best binary for a given set of resources.
Tilson et al. [186] describe a way to use workflow tools to facilitate the benchmarking of a large

number of variable parameters including compiler, link and runtime flags (Figure 2.17).

2. Understanding Workflow Requirements Through Examples 31

CompileLink

Execute

Update
Database

Figure 2.17: Performance Measurement Workflow. The workflow is used for benchmarking applications
with various compiler, link and runtime flags.

2.5.3 Load Balancing

Recent computing models have resulted in application middleware investigating mechanisms
to dynamically manage the resource pool. Cloud computing services such as Amazon EC2 [5] allow
users and applications to increase their resource pool on increased load and decrease the number of
resources when the load drops. When considering the load from different users or applications that
use a defined resource pool we can consider the entire load managed by the middleware to be a
“workflow of workflows” where the task dependency is based on number of concurrent resources
available. For example if there are four independent tasks(Figure 2.18) and just one resource the
workflow would be a simple sequential workflow. However if there were two resources available,
two tasks would run and then subsequently the remaining two tasks would run. Similarly if three
resources were available, three tasks would initially execute in parallel. A similar strategy would be
followed for workflows where in addition to the workflow dependencies, execution dependency

is created between two tasks that need to run on the same resource (shown by dotted lines). In

2. Understanding Workflow Requirements Through Examples 32

Figure 2.18 three workflows are scheduled on three processors. In this case the head nodes of the
workflow are scheduled on the workflows. Subsequently, the two parallel tasks from workflow
a is scheduled with one of the parallel tasks from workflow b. In this case, there is an execution

dependency between workflow b’s second task and the first task from workflow c.

In a more general case consider a cloud computing application that procures more resources as
the load increases and reduce the number of resources as the load decreases. Thus the resources
procured or allotted can be represented as a workflow task graph where each node in the graph

represents the resource slot (Figure 2.19).

TOO® OO oooo
) OO OO

ONONO

OnOaOn0)

Figure 2.18: Load balancing workflow. When jobs or workflows are scheduled on resources, a dependency is
created from the resource availability constraint. In the left side of the figure, we show how jobs a, b, ¢, d are
scheduled on one, two or three processors. When scheduled on one processor, the jobs get mapped sequential
resulting in a virtual dependency where job b must wait for job a to finish. Similarly for workflows, if we
were to schedule them on three processors, in addition to their workflow task dependency, their execution
dependency is determined by the execution of one or more of the tasks from other workflows.

2.6 Discussion

In this chapter, we have presented a number of workflows from different domains. The work-

flows have varying requirements and constraints. In this section we provide a high level discussion

2. Understanding Workflow Requirements Through Examples 33

Resources

Time

ol ehe!

Figure 2.19: Resource profile as a workflow. A dynamic application manager might procure resources as
load increases and release resources as load falls below a threshold. The resource profile over time can be
represented as a workflow structure.

on use case scenarios and workflow characteristics. Additionally, the workflow examples demon-
strate the required support in next-generation workflow and resource management tools to support

dynamic and cloud computing environments.

2.6.1 Use case scenarios

It is often important to understand the use case scenarios for the workflows. Workflows are
used in a number of different scenarios - a new workflow may be initiated in response to dynamic
data or a number of workflows may be launched as part of an educational workshop. In addition,
the user may want to specify constraints to adjust the number of worklows to run based on resource

availability [143].

User-initiated workflows. The typical mode of usage of science cyberinfrastructure is where a user

logs into the portal and launches a workflow for some analysis. The user selects a pre-composed

2. Understanding Workflow Requirements Through Examples 34

workflow and supplies the necessary data for the run. In this scenario, we need mechanisms to pro-
cure resources and enable workflow execution, provide recovery mechanisms from persistent and
transient service failures and adapt to resource availability or recover from resource failures during
workflow execution. The user may also want the ability to pause the workflow at the occurrence of
a predefined event, inspect intermediate data and make changes during workflow execution. The
LEAD (Section 2.2), bioinformatics and biomedicine (Section 2.3) workflows are all user-initiated

workflows through portal environments.

Workflow priorities Let us consider a scenario of an educational workshop with multiple com-
peting users. Resources are typically reserved for this event through out-of-band mechanisms for
advanced reservation. In this scenario resource allocation needs to be based on existing load on
the machines, resource availability, the user priorities and workflow load. The bounded set of re-
sources available to the workshop needs to be proportionally shared among the workflow users.
If there is a weather event during the workshop, resources need to be reallocated and conflicting
events need some arbitration. The LEAD (Section 2.2), bioinformatics and biomedical (Section 2.3)

workflows are also used in education workshops with competing user needs.

Dynamic Event. A number of scientific workflows get triggered by newly arriving data. Multiple
dynamic events and their scale need priorities between users for appropriate allocation of limited
available resources. Resources must be allocated to meet deadlines. Additionally, to ensure suc-
cessful completion of tasks, we might need to replicate some of the workflow tasks for increased
fault tolerance. It is possible that with advance notice of upcoming weather events, we may want
to anticipate the need for resources and try to procure them in advance. The weather forecasting,
storm surge modeling (Figure 2.4), flood-plain mapping (Figure 2.5) and the astronomy workflows

(Figures 2.13 and 2.14) are launched with the arrival of data.

Advanced User Workflow Alternatives and Constraints. An advanced user may to provide a set of

2. Understanding Workflow Requirements Through Examples 35

constraints (e.g. time deadline) on a workflow. Scientific processes such as weather prediction, fi-
nancial forecasting have a number of parameters and computing an exact result is often impossible.
There is a need to run multiple workflows (i.e. workflow sets) that need to be scheduled together. It
is often necessary to run a minimal number of the workflows for confidence in the result. Thus for
workflow sets, users specify that they minimally require M out of N workflows to complete by the
deadline. Thus in the weather forecasting workflow, the user specifies that fewer parallel ensemble
members could be run to get a quicker result. Alternatively the user may be willing to sacrifice

forecast resolution to get some early results which then define the rest of the workflow.

These scenarios illustrate the need for an adaptation framework that implements online planning
and control of workflows to assess resource needs, proactively adapt to failures and workflow needs

based on priorities and policies specified by the user.

2.6.2 Workflow Types

The workflows described in this chapter vary significantly in their computational and data re-
quirements. A number of the bioinformatics workflows often have tasks that are based on querying
large databases in order of minutes for the task execution. In other cases we see each of the tasks
of a workflow require computation time on the order of hours or days on multiple processors.
In some cases sub-parts of the workflow may also present different characteristics. In addition,
the sizes of the intermediate data products also vary. Workflow management strategies for each of
these workflows can vary and thus require the understanding of the workflow to apply appropriate

techniques. We consider the characteristics that help classify workflow types in this section.

Structure. The size of the workflow is an important characteristic to determine resource require-
ments, etc. We consider the tasks of the workflow as its structural characteristic. The size of the

workflows that are deployed today in most production environments are relatively small. The

2. Understanding Workflow Requirements Through Examples 36

largest workflows in our set contain hundreds of independent tasks. The Avian Flu (Figure 2.11)
and PanSTARRS(Figures 2.13 and 2.14) workflows has over a thousand nodes but the computation
at each node is expected to take only a few minutes to an hour. Scientists express a need to run
larger sized workflows but are often limited by available resources or workflow tool features that
are needed to support such large-scale workflows. Today, workflow tools have limited composi-
tion support for large workflows - ability to specify repeated tasks, display parts of a workflow,
etc. In addition, they have little or no support to specify resource requirements, conditions or other
constraints on part or the entire workflow. It is also often difficult in grid environments today
to scale workloads up or down due to batch queue wait times and other factors. In addition to
the total number of tasks in a workflow it is also important to consider the width and length of the
workflows. The width of the workflow (i.e. maximum number of parallel branches) determines the
concurrency possible and the length of the workflow characterizes the makespan (or turnaround
time) of the workflow. We observe that in our workflow examples, the larger sized workflows such
as the motif workflow (Figure 2.8) and the astronomy workflows (Figures 2.13 and 2.14) the width

of the workflow is significantly larger than the length of the workflow.

Pattern. The workflows that we surveyed depict the basic control flow patterns such as sequence,
parallel split, synchronization [192]. The parallel split-synchronization pattern has similarities to
the map-reduce programming paradigm. A number of workflows divide the work units into dis-
tinct work units and the results are then combined - e.g. Animation (Figure 2.16), Motif workflow

(Figure 2.8), Pan-STARRS workflows (Figures 2.13 and 2.14).

Computation. In addition to the structure and pattern of a workflow it is important to under-
stand the computational requirements. In our workflow examples we observe that computational

time required by the workflows can vary from a few seconds to several days. A number of the

2. Understanding Workflow Requirements Through Examples 37

bioinformatics workflows depend on querying large databases and have small compute times in-
cluding the Glimmer workflow (Figure 2.6), Gene2Life (Figure 2.7), caDSR (Figure 2.12). Similarly
the initial parts of the LEAD forecast workflow (Figures 2.1 and 2.2) and the LEAD data mining
workflows (Figure 2.3) have small computational load. A number of the workflows including the
forecasting parts of the LEAD workflow, Pan-STARRS workflows (Figures 2.13 and 2.14), SCOOP
(Figure 2.4), SNS (Figure 2.15), Motif (Figure 2.8), NCFS (Figure 2.5) have medium to large sized

compute requirements.

Data. The workflows are associated with different types of data including input data, backend
databases, intermediate data products, output data products. A large number of the bioinformat-
ics applications often have small input and small data products but often rely on huge backend
databases that are queried as part of task execution. These workflows require that the databases be
pre-installed on various sites and resource selection is often based on selecting the resources where
the data is available. Workflows such as LEAD (Figures 2.1 and 2.2), SCOOP (Figure 2.4), NCFS
(Figure 2.5) and Pan-STARRS workflows (Figures 2.13 and 2.14) have fairly large sized input, inter-
mediate and output data products. The Glimmer workflow (Figure 2.6) has similar sized input and
output data products but its intermediate data products are smaller. In today’s production envi-
ronments workflows often compress data products to reduce transfer times through intermediate
scripts etc. When scheduling workflows on resources, a number of data issues need to be consid-
ered including the availability of the required data as well as the data transfer time of both input

and output products.

The combination of the structural and pattern characteristics, the computational and data sizes
helps in understanding the workflow requirements when making planning and adaptation deci-
sions. We present a workflow analysis approach to determine workflow characteristics that affect

resource planning and adaptation decisions in Chapter 9

2. Understanding Workflow Requirements Through Examples 38

2.6.3 Multiple workflows

The user interacts with applications through various portal and graphical interfaces for work-
flow tools. Workflow management techniques today are focused on managing single workflows in
a distributed environment [112, 205]. However portal environments facilitate simultaneous multi-
user access to the same workflows and underlying resources. In addition, a number of scientific
explorations including the weather and ocean modeling workflows (Section 2.2) often require a
large number of parallel runs to be launched to study different parameters to increase result accu-

racy.

Competing workflows. Portal and gateway environments allow a number of workflows from dif-
ferent users to be launched simultaneously. In such cases workflows from different users are often
competing for the same resource. For example, a LEAD forecasting workflow will need to have
higher priority than a workflow launched by a user in an educational workshop. Workflow man-
agement techniques needs to account for the different classes of workflow users when allocating

resources.

Data sharing and reuse. When multiple workflows exist in the system, there is an opportunity to
save computational time by reusing data products from identical executions [47]. However in these
situations it is also important to manage data privacy concerns when managing data products from

potentially competing workflows.

Workflow set. Scientists often conduct parametric or exploratory studies that involve launching
multiple parallel workflows. The workflows might share data products between them or use the
same set of resources. We use the term workflow set to refer to workflows that need to be scheduled
together to meet their relationship constraint such as data dependencies or accuracy constraint.

In addition, there are workflows from different users which have the same priority and similar

2. Understanding Workflow Requirements Through Examples 39

constraints requiring them to be scheduled such as to ensure fairness. There is limited capabilities

to be able to ensure such policies in the workflow engines available today.

Thus we need tools and mechanisms to manage competing workflows or workflow sets in a
system. Workflow tools will need to support the multiple workflow scenario or “workflow of
workflows”. In addition, as we move to more dynamic resource environments such as cloud sys-
tems, usage of tools such as the Dryad execution engine [84] or MapReduce [45] to manage multiple

workflow execution must be studied.

2.6.4 Workflow Capabilities

Workflow tools have limited capabilities today to allow users to specify constraints and other
expectations from their workflows. We outline the capabilities that users might need in workflow

composition tools.

Exploratory. Scientific explorations often have uncertainties that need to be resolved during run-
time. Input data sizes can vary largely affecting the characteristics of the workflow. In a number of
explorations scientists and their workflows interact with real-time data collecting instruments such
as the Large Hadron Collider (LHC) [100], sensors, radars [54, 135], etc. Thus in these cases while a
general structure of the workflow is known, the exact characteristics of the workflow is determined

during execution.

Interactive. Business workflows and scientific explorations often require a “human-in-the-loop” as
part of the workflow. Workflow management techniques often have to consider sub-parts of the

workflow for scheduling and adaptation.

2. Understanding Workflow Requirements Through Examples 40

Constraints. In addition to the workflow description, users often need to specify various con-
straints on the workflow. The weather and ocean modeling workflows (Section 2.2) are time-
sensitive. The workflow results must be obtained in advance for weather response agencies to
be take appropriate action. In addition the cost of resources (either allocation seconds on TeraGrid

or real dollars on resources such as Amazon EC2) might be a consideration for the end user.

2.6.5 Resource coordination.

Scientific workflows largely run in batch queue based grid environments and business work-
flows run on monolithic corporate systems. However the advent of utility and cloud computing
systems change the mode of operation of scientific processes. Cloud computing systems allows
users to customize software environments allowing workflow tools to be able to manage applica-
tion specific software and data on the resources. In addition procuring resources in advance for
later workflow steps can be achieved with the new resource access mechanisms thus minimizing
workflow makespan by reducing resource wait times. Thus new mechanisms are required in work-

flow and resource management tools.

2.7 Summary

In this chapter, we investigated workflows from various domains that have different structures,
computational and data requirements. We summarize the results of the workflow survey and their

characteristics in Table 2.2.

We consider the structural, computational and data aspects of the workflows. The total number
of tasks and the number of parallel tasks are useful in understanding the structure of the work-

flow. The workflows in our survey vary from a handful of tasks to thousands of components. The

2. Understanding Workflow Requirements Through Examples 41
Workflow Total no. | Max Max Computation | Data sizes || Pattern
Name of tasks | width task pro-

cessor
width
LEAD Weather || 6 3 16 hours megabytes | Sequential
Forecasting to giga-
bytes
LEAD Data || 3 1 1 minutes kilobytes Sequential
Mining
Storm Surge 6 5 16 minutes- megabytes | Parallel-
hours merge
Flood-plain 7 2 256 days gigabytes Mesh
mapping
Glimmer 4 1 1 minutes megabytes | Sequential
Gene2Life 8 2 1 minutes kilobytes Parallel
to
megabytes
Motif 138 135 256 hours megabytes | Parallel-
to giga- || split
bytes
MEME-MAST 2 1 1 minutes kilobytes Sequential
Molecular 6 2 1 minutes megabytes || Parallel-
Sciences merge
Avian Flu ~ 1000 1000 1 minutes kilobytes Parallel-
to split
megabytes
caDSR 4 1 1 seconds megabytes | Sequential
PanSTARRS ~ 1600 - | 800 1 minutes megabytes || Parallel-
Load 41000 40000 split-
merge
PanSTARRS ~ 4900 - | 4800 1 hours gigabytes Parallel-
Merge 9700 9600 to ter- || split-
abytes merge
McStats 3 1 128 days kilobytes Sequential
to
megabytes

Table 2.2: Summary of Workflow Characteristics. The total number of tasks and the number of
parallel tasks are useful in understanding the structure of the workflow. The maximum proces-
sor width of a task helps us understand the number of processors required simultaneously. The
computation and data sizes shows a rough order of the time and the size of data products from this
workflow. Each of the workflow may include one or more patterns. Our goal is to capture the dom-
inant pattern seen in the workflow. Workflows are classified as Sequential (mostly tasks that follow
one after the other), Parallel (multiple tasks run at the same time), Parallel-split(one task’s output
feeds to multiple tasks), Parallel-merge(multiple tasks merge into one task), Parallel-merge-split
(both parallel-merge and parallel-split) and Mesh (where task dependencies are interleaved).

2. Understanding Workflow Requirements Through Examples 42

maximum processor width of a task helps us understand the number of processors required simul-
taneously. A number of the workflows are simple and usually require a single processor per task.
However the motif, flood-plain mapping and McStats workflows often require multiple processors

for parallel data processing either for an MPI style application or a number of parallel tasks.

The computation and data sizes shows a rough order of the time and the size of data products
from this workflow. The majority of our workflows have about megabytes to gigabytes of data.
However a few workflows such as PanSTARRS merging can result in large sized databases as

outputs.

In addition, each of the workflow may include one or more patterns. Our goal is to capture
the dominant pattern seen in the workflow. Workflows are classified according to their structural

characteristics as:

Sequential: consists of tasks that follow one after the other.

Parallel: consists of multiple tasks that can be run at the same time.

Parallel-split: one task’s output feeds to multiple tasks.

Parallel-merge: multiple tasks merge into one task.

Parallel-merge-split: both parallel-merge and parallel-split.

Mesh: task dependencies are interleaved.

Workflow vary significantly in their structure, user constraints associated with them and envi-
ronments they run in. Additional mechanisms to understand the characteristics of the workflows
and other capabilities and coordinate their execution with underlying resource layer is necessary

for applying specific orchestration techniques in dynamic grid and cloud environments.

3

Distributed Systems

Scientific workflows have varied requirements that include access to distributed data sets and
high performance computational resources (Chapter 2). High performance computing and storage
systems deployed at supercomputing centers serve the needs of large scale science and engineer-
ing problems. The need to share data and resources across organizational boundaries resulted in
the evolution of grid computing protocols. Grid deployments, such as TeraGrid [179], Open Sci-
ence Grid [132], serve the needs of scientific communities. Similar distributed deployments have
evolved in other environments as well. For example, PlanetLab [136] provides a research network
that supports the research and development of new internet services. More recently, cloud com-
puting has evolved to support mainstream business models on a pay-as-you-go model for storage

and compute cycles.

These trends have resulted in a variety of protocols and access models that provide access to
underlying resources. For example, scientific users are granted access to supercomputing resources
through a competitive proposal review process and are allocated “service units” [176]. Users can
use their service units by submitting jobs to a batch queue system, which executes the job on the

user’s behalf once enough resources become available. Cloud computing systems today grant users

43

3. Distributed Systems 44

access to resources and are charged for the computational and storage services they use [5]. Cloud
systems, unlike batch systems, enable explicit resource control, i.e. users request specific quantities
and types of resources at specific times. Yet users of both these systems cannot expect strong QoS

assurances due to availability variations.

The computing and storage infrastructure landscape has been continuously changing in the last
few years. End consumers have a choice of multiple resource providers, however the diversity
in extant interfaces makes the task of comparing QoS capabilities extremely difficult. Thus there
is need for closely examining the interaction between application middleware and resource-level
software. We detail the characteristics of distributed systems in Section 3.1. We compare and con-
trast grid and cloud systems in greater detail in Section 3.2. This research is a result of collaboration
with a number of grid and utility computing projects. We present an overview of these collabora-

tive projects in Section 3.3 and finally summarize in Section 3.4.

3.1 Overview

We have seen parallel trends in the development and deployment of advanced IT infrastructure
in the last decade. We have seen the deployment of large-scale government funded HPC envi-
ronments at supercomputing centers that serve the needs of science and engineering problems.
These HPC environments are coupled together with grid computing protocols that enable shar-
ing of resources and data across organizational boundaries. Similarly, utility and cloud computing
are ongoing efforts focused on packaging compute and storage resources as metered services that
are available over the internet. We study the characteristics of these systems with respect to their

resource management and QoS capabilities.

3. Distributed Systems 45

3.1.1 High Performance and Grid Computing

Traditional high performance supercomputing systems have batch queuing software such as
Maui/PBS [115], Sun Grid Engine [73], PBS [133, 187], etc. These sites implement different policies
for user job priority, backfill, and other job scheduling optimizations. In the batch model users

specify a job duration and incur wait times since most of these systems are under provisioned.

Batch queue software manages the mapping of user workloads to resources through a space-
sharing policy, where user jobs are granted exclusive access to their requested resources. These jobs
can rarely be pre-empted or migrated. The amount of time an individual job will wait in the queue
is difficult to predict at the time of job submission. This uncertainty comes from various features
of the batch queue system. First, most batch queue schedulers have a FIFO queue at their core and
sites often configure complex site policies that grant special priorities to individual users and/or
groups that are not known to the end user. Also, users typically specify a maximum amount of time
their job will execute, most jobs finish in much less time [52, 53]. Various tools have been developed
to aid resource selection and workflow planning decisions based on queue wait time predictions

and performance models [127, 205].

The traditional grid computing protocols provide an overlay atop these batch systems that are
made accessible through standard web services interfaces. Globus, an open source toolkit, pro-
vides standard job submission and data transfer interfaces that allows applications to interact with

multiple sites through a single interface.

3.1.2 Utility and Cloud Systems

On-demand or utility computing provides metered infrastructure and services akin to public

utilities such as electricity, water, etc. There have been various research prototypes that implement

3. Distributed Systems 46

on-demand computing environments where resources are requested for a specified time period and
obtained under concrete terms and conditions [136, 83]. Resource providers in this model are able
to provide stronger guarantees through explicit resource control since the requests are bounded in
both time and space [75]. However it is possible that over-subscription leads to lease requests being
rejected when they are redeemed. Leases are also be granted for future time periods providing the

advanced reservation capability similar to batch systems [139].

Cloud computing or Infrastructure as a Service(IaaS), a more recent trend, provides a relatively
new resource model where multiple virtual servers hosted in data centers are used by individu-
als or groups through a paid subscription model. Amazon’s EC2 system [5] is the most prevalent
example in operation. At the time of writing, for more than 20 machine instances from Amazon’s
EC2 service, a user had to fill an online form that was processed out of band. Cloud computing
provides an illusion of infinite computing resources available on demand, i.e.,in current cloud sys-
tems resources are accessible to the user almost instantly, with startup time of the instance and
image imposing the only delays [9]. Compute resources in EC2 today are charged for the closest
instance hour consumed i.e., if you use a resource for 10 minutes, you get charged for one hour.
Thus the provisioning of EC2 resources could be considered to be “leases” which are available in
one hour increments. This might be considered a simplifying assumption since EC2 allows a user
to retain a resource for any number of hours whereas leasing systems typically provide stricter
bounds on finish time. This model requires resource providers to provision resources such that
all user requests can always be met. However, as cloud systems are configured to grant different
service level agreements, providers will under-provision resources to increase profits and decrease

idle time on resources requiring additional resource control policies.

3. Distributed Systems 47

3.2 Grids and Clouds: A Comparison

Grids and cloud systems vary widely in their specific mechanisms and protocols. In fact, the
exact definition of what constitutes cloud systems is still being debated widely in the community.
However, as cloud systems evolve and grid systems mature, there is a need to investigate the
software stack running on these systems towards providing predictable quality of service for end
users. In this section, we compare and contrast the different dimensions of these systems. Earlier
efforts have summarized [9] and compared [66] various aspects of these systems. Our comparison
is focused on studying the interaction of different aspects of the software stack for managing QoS.

Additionally, specific related work is covered in Chapter 4.

3.2.1 Applications

Grid systems have been used for computational modeling and data analysis for large-scale sci-
ence and engineering problems. National and regional grid deployments serve the needs of sci-
entists from varied domains including bioinformatics and biomedicine [142], geology [70], earth-
quake engineering [120], astrophysics [132], weather [54] and storm-surge modeling [138]. These
environments are used for scientific modeling and data analysis, educational purposes, etc (Chap-

ter 2).

Cloud computing systems provide different levels of abstraction to the end-user. Services such
as Amazon EC2 [5] provide web service interfaces to procure virtual machine interfaces that can
then be customized by higher-level tools, services or end-users. In addition platforms and appli-
cations services are layered atop the hardware layer for specific purposes. Some current examples

include Google AppEngine [72] provides a platform for web applications, Microsoft Azure [118]

3. Distributed Systems 48

provides Windows based internet services, Vertica [194] and Sonian [170] provides data warehous-
ing facility and archive services over Amazon S3 respectively. Salesforce [156] provides Customer

Relationship Management (CRM) software services.

3.2.2 User Roles

Grid and cloud services serve the needs of multiple user groups simultaneously, thus often be-
ing referred to as multitenant architectures. These environments have a hierarchy of user roles.
Resource providers such as TeraGrid sites manage underlying hardware and infrastructure soft-
ware such as batch queues and Globus services for job management and file transfer. Cloud or
Infrastructure as a Service (IaaS) providers are the resource providers in cloud systems, that pro-

vide customizable virtual machines.

Software-as-a-Service(Saas) and Platform-as-a-service providers build specialized services on
existing cloud systems catering to specific user groups. Similarly, programmers and IT personnel
manage project-specific services such as eventing system, science gateways or portals, data ser-
vices, application web services, etc in grid deployments today. In grid environments, programmers

often work closely with scientific users and manage higher-level tools and application codes.

3.2.3 Programming Models

Scientific applications in grid environments are predominantly based on three execution mod-
els - Master-Worker, Divide and Conquer and Single-Program Multiple-Data (SPMD) [56]. Cloud
computing applications are composed using the MapReduce programming model for processing
large data set applications [45]. Dynamic workflows consist of elements composed from the ba-

sic execution models [20, 54]. We discuss the programming models and its impact on resource

3. Distributed Systems 49

®
/ & O WOO®
WW WO OO @OOOL®

) (b) ()

Figure 3.1: Scientific Application Programming Models (a) Master-Worker (b) Divide and Conquer
(c) Single-Program Multiple-Data (SPMD)

management in this section.

Master-Worker. In the Master-Worker paradigm (shown in Figure 3.1(a)), the master decomposes
the problem into small tasks and distributes these tasks for execution. Primary communication is
between the master and the workers, as the master is responsible for collecting partial results to
produce the final result. Depending on the master and workers’ execution characteristics (e.g. long
or short running), coupled with resource availability, one resource selection policy may choose a

more reliable node to execute the master task and an appropriate fault tolerance strategy.

Divide and Conquer. Similarly, as seen in Figure 3.1(b), the Divide and Conquer strategy parti-
tions the problem into two or more smaller problems that can be solved independently and com-
bined. Each subtask may be further split into separate tasks. Unlike the Master-Worker model,
the subtasks are interdependent. Hence the performance and reliability requirements (e.g. for the

communication links) may vary significantly from the Master-Worker model.

SPMD. In the SPMD model (Figure 3.1(c)), each task executes common code on different data.

Failure of one task adversely affects the entire application, requiring global coordination.

MapReduce. In the MapReduce programming model, the user expresses the computations as two
functions: Map and Reduce. This programming model is similar to constructs in programming
languages and database operations that splits the input data into disjoint units and processes them

separately. The Map function splits the problem into smaller parts and distributes the problem on

3. Distributed Systems 50

separate processors. The Reduce function, in turn merges results from the distinct computations.
This programming model facilitates parallelism enabling the use of distributed systems for pro-
cessing. Google’s implementation of MapReduce has support for backup operations that handle

stragglers and failed operations on the systems.

Workflows. Finally, workflows allow applications to define data and condition dependent execu-
tion. The workflow itself is a hybrid of one or more execution models mentioned above. As we
observed in Chapter 2 workflows have different structures that capture its degrees of parallelism

that influence resource selection decisions.

3.2.4 Resource Procurement

Resource procurement is implicit in batch queue systems. Users submit a job description to the
batch queue and the job then waits its turn to acquire resources. When the requested resources be-
come available, the job starts executing. The job is killed if it exceeds the requested wall clock time.
Thus users do not have specific bounds on when resource are available. The QBETS(Queue Bound
Estimation from Time Series) [125] service provides the methodology for predicting bounds on the
amount of queue wait times or the probability that a job will finish within a specified duration.
Specialized queues or other policies are in place at sites to provide higher level of quality of service

to specific user groups, e.g., urgent applications [14].

Resource procurement in leasing systems is explicit, i.e., users request fixed quantity of re-
sources at a specific start time and for a specified duration. Leasing systems provide additional
capabilities to extend or vacate leases [75, 83]. Users in cloud systems today request resources and

pay for services as long as they are used.

3. Distributed Systems 51

Supercomputing centers today allow explicit resource control in the form of offline or online ad-
vanced reservation requests. These advanced reservations allow users to specify a fixed start time
in the job description at a premium charge [76, 160]. The service units are charged irrespective of
whether resources are actually used. While most job schedulers support advance reservations, this
feature has typically been reserved for special users since it is expected to negatively impact both
system utilization and regular batch job wait times [166, 169]. These pre-arranged agreements are

also not effective as mechanisms for dealing with dynamic load conditions.

3.2.5 Data and Storage Management

In addition to access to computing resources, applications in both grid and cloud systems need
access to backend databases, storage for intermediate and output data, access to archival services,
etc. Grid sites often have shared file system (e.g., NFS, GPFS) on all the nodes. Data management
across grid sites are handled through Globus based services such as GridFTP and Reliable File
Transfer(RFT) and Replica Location Service(RLS). Storage, archiving of user data are handled on
an individual basis by application services and/or user. Cloud systems provide different data
management solutions. Companies such as Amazon Web Services [5] and Nirvanix [122] provide
storage services accessible through web service interfaces. In addition, databases are accessible
to cloud applications. In addition, Amazon also provides persistent block level storage volumes,

called Elastic Block Store, accessible from Amazon EC2 instances.

3.2.6 Cost Models

The cost models for batch systems are expressed in terms of service units(SUs), where one SU

originally represented one CPU-hour on an IA-64 cluster [178]. A normalization factor is used

3. Distributed Systems 52

based on benchmarking results to account for different machine configurations. The service unit
model is used for calculating computing units, however more recently a similar metric is being

used for access to high performance storage systems [177].

Cost models in cloud systems are based on a pay-as-you-go model. Systems such as Amazon
Web Service [5] and Google AppEngine [72] charge for use of CPU for every hour. Storage and data

transfers are also charged similarly.

3.2.7 Service Guarantees

Both grid and cloud systems have mechanisms to provide various levels of service guaran-
tees at different places in the stack. Both grid and cloud systems have services that monitor
resources and services [201, 82]. In cloud systems, some application level tools such as Google
AppEngine [72], Apache Hadoop [7] have built in mechanisms to handle unreliable nodes. Inter-
nally applications use fault tolerance and recovery mechanisms such as automatic retry, replication,
checkpoint-restart. Similar mechanisms are available at various levels in the grid software stack to

monitor and manage failures [43, 79, 81, 124].

However both these systems undergo various availability variations including complete fail-
ures [9, 93]. Resource providers such as TeraGrid offer user a service unit credit back when re-
sources undergo a complete failure. Similary, Amazon’s user service agreement gives credit back if
reliability falls below 99.9%. However, for predictable QoS, we need to account for these availabil-

ity variations in planning and scheduling decisions.

3. Distributed Systems 53

3.2.8 Summary

Both grid and cloud systems today are composed of a complex hierarchy of resource and soft-
ware systems that consist of scientific codes, portals, workflow tools, web services, resource man-
agement middleware and underlying clusters and distributed resources. These tools provide vari-
ous capabilities with the goal of harnessing data and computational cycles distributed across vari-

ous organizations to meet the needs of the users.

The complex set of interactions between the end-user, different layers of software infrastructure
and the underlying resources is a critical component of next generation cyberinfrastructure. We

summarize the software stack running atop these distributes systems as:
e A resource control plane that can manage QoS of the underlying resource as a commodity
that can be specialized for the user’s needs.

o A higher level services layer that can be used for coordination of the underlying resources for

efficient and reliable execution.

e Application level tools like workflow tools, that can harness the distributed resources through

the services layer to support user needs.
e End-user portal interfaces that allow the users to specify needs and constraints to interact

with the underlying resource needs.

Grid and cloud computing protocols provide the substrate for wide-area resource access. How-

ever, there are common challenges across grid and cloud systems

¢ Grid and cloud systems have ad hoc resource interaction protocols. Application mechanisms

such as workload planning are closely tied to specifics of the resource model. As grid and

3. Distributed Systems 54

cloud systems evolve to support mainstream business models and scientific processes it is
necessary that algorithms and mechanisms in each layer of the software hierarchy can evolve

independent of specific mechanisms and the interaction between the layers are well defined.

e Each of the systems has protocols to query, procure resource allocations. However there is
limited ability to compare and contrast QoS capabilities of resource allocations both in terms

of guarantees for receiving the allocation and runtime failures.

e Application level tools and programming models provide support for specifying application
dependencies. There is limited support to allow users to specify dynamic user requirements

and constraints that better represent the needs of the user.

e Application tools handle fault tolerance (i.e., minimization software and hardware failures
affecting workflow completion) and recovery from failures at different levels in the hierarchy.
However systems often suffer a number of availability variations that impact performance

that are unaccounted by applications.

e Data centers have policies in place to serve multiple user groups that have varied require-
ments. But providing predictable quality of service, with differentiated service levels and

cost structures, is still an open challenge

3.3 Collaborations

This work addresses the above challenges in the context of providing predictable quality of ser-
vice for scientific workflows that use distributed resources. We revisit the software stack deployed
in the context of distributed systems such as grid, utility and cloud computing and this has been

possible due to various collaborative efforts. The three primary collaborative projects are:

3. Distributed Systems 55

e Linked Environment for Atmospheric Discovery (LEAD). is a cyberinfrastructure project for
mesoscale meteorology. The deadline-sensitive workflows in LEAD provide the motivation
for this thesis. This work builds upon the existing foundation provided by web services

workflow framework in LEAD.

e Virtual Grid Application Development Software (VGrADS). explores the resource level in-
terfaces required to facilitate grid programming and application development. The proba-
bilistic model over batch systems uses the virtual advanced reservations from VGrADS. This
thesis also demonstrates the interaction of the workflow orchestration component with the

virtual grid execution system.

e Open Resource Control Architecture. is a leasing architecture for utility computing. We
demonstrate the interaction of application-level components with the leasing core for schedul-

ing scientific applications on leased virtual machines.

In this section we describe these projects and the resulting collaborative efforts in greater detail.

3.3.1 Linked Environment for Atmospheric Discovery (LEAD)

Linked Environments for Atmospheric Discovery (LEAD) [54] is an NSF funded project that is
building a scalable national cyberinfrastructure for mesoscale meteorology. The goal of LEAD is to
provide a service oriented dynamic adaptive workflow orchestration system. The LEAD cyberin-
frastructure consists of a TeraGrid Science Gateway, i.e., portal, that provides an interface to interact
with applications and resources. The user composed workflows access application and data web
services to launch, monitor and manage user computations and data sets. The LEAD software stack

has various monitoring [54] and fault-tolerance measures [87] to handle runtime failures.

3. Distributed Systems 56

The LEAD workflows and its requirements are the primary motivation for this work. The na-
ture of weather modeling that imposes stricter constraints on time and accuracy make predictable
quality of service from underlying resources more challenging. Events that cause adaptive behav-
ior can occur at any level in the LEAD system - a new workflow might be initiated in response to
a weather condition, there might be inefficiencies in an ongoing workflow execution at the mid-
dleware layer, or there might failures or performance variabilities in the system layer [140]. Thus
the system needs to be able to adapt to multi-level changes while meeting the needs of the given

workflow. Specifics of the LEAD workflows and its requirements were discussed in Chapter 2.

The WORDS architecture and various sub-components are more generally applicable to dif-
ferent scenarios accessing grid and cloud systems but were developed in the context of the LEAD
cyberinfrastructure. The service oriented web services architecture in WORDS is inherited from
the LEAD project. The LEAD production deployment consists of about thirty different persistent
services. A subset of these services was used to prototype a system that demonstrate the effective-
ness of the proposed research. These components are described in the context of the architecture
(Chapter 5). In addition, an emulation environment (described in Appendix A) has been developed

for a more thorough evaluation of the workflow planning and resource layer policies.

3.3.2 Virtual Grid Application Development Software (VGrADS)

The VGrADS projects explores the challenges with application development and management
of performance for scientific applications that run in grid environments. The virtual grid execution
system (VgES), the software environment developed by the VGrADS project, abstracts resources
from grid and cloud systems and provides a uniform execution interface. The virtual grid ab-
straction enables applications to interact with local batch queue systems, advance reservations on

TeraGrid resources, Amazon EC2 systems and local cloud sites running Eucalyptus, an open source

3. Distributed Systems 57

cloud software [129]. We describe here the relevant details of the VGrADS project:

Virtual Grid Execution System. The Virtual Grid Execution System (vgES) [90] provides an ab-
straction for dynamic grid applications to deal with complex resource environments. The virtual
grid description language is a hierarchical language for resource abstractions that allows users to
specify users to specify qualitative resource specifications [34]. This qualitative specification shields
users from the complexity of the metrics of the underlying resources. The language supports two
specific language constructs: associators for describing the relationship between the nodes and
operators that describe the network bandwidth requirement between nodes or associators them-
selves. The virtual grid description language supports three high-level associators LooseBagOf,
TightBagOf, Cluster to describe a set of processors with different connectivity. The language also
has operators (close, far, highBW, lowBW) that can be used to describe the network connectivity
between the high-level resources defined by the associators. The vgES provides an integrated re-
source selection and binding approach to resource allocation enabling higher tolerance to lower

resource availability [91].

Virtual Advanced Reservations. The vgES system uses probabilistic reservations to provide guar-
antees on resource acquisition on grid systems using Virtual Advanced Reservation for Queues
(VARQ) [126]. VARQ builds on queue wait time prediction techniques from QBETS [125] to give
users the ability to request “virtual advanced reservations” i.e., a user can specify a fixed start time
for the job. QBETS consumes historical resource request data and makes job completion proba-
bility predictions using statistical methods such as a clustering algorithm to categorize similar job
requests, an on-line change point detection heuristic to detect abrupt variations in the data, and an
empirical quantile prediction technique. Previous studies show that though the queue wait time

experienced by jobs is highly variable, the upper bound predictions produced by QBETS are more

3. Distributed Systems 58

stable, often over days or weeks. Thus VARQ computes a probability trajectory, at 30 second inter-
vals, between the time a user makes a reservation request and the specified deadline and uses the
trajectory to find the latest point in time where a resource request can be submitted to meet a spec-
ified minimum success probability. Through this methodology, users obtain access to probabilistic
or virtual advanced reservations that attempt to achieve some level of resource control over systems
that provide little or no explicit resource control. The mechanism does have certain cost trade-offs;
for example., a resource request can start earlier than the predicted start time, thus using additional

resource allocation time.

There are numerous connections between this work and the VGrADS project as listed below:

e We explore reliability extensions required in resource request specifications in the context of

virtual grid description language in vgES (Chapter 6).

e We explore probabilistic reservations as an overlay over existing systems to provide QoS
guarantees. We use VARQ (Virtual Advanced Reservations for Queues) [126] based reser-
vations to determine if effective workflow orchestration is possible without explicit resource
control in batch systems. A virtual advanced reservations obtained through VARQ is an in-
stance of the resource slot abstraction with probabilistic bounds on obtaining a slot of certain

duration by a given time.

e The LEAD and VGrADS collaboration has resulted in the ability to orchestrate deadline-
driven meteorological workflow sets atop distributed grid and cloud systems. The evolving
integrated system has been demonstrated on the exhibition floor at the premier Supercom-
puting conference (SC) for the last three years. The workflow orchestration techniques that

have driven this integrated environment are based on WORDS (Chapter 10)

3. Distributed Systems 59

3.3.3 Open Resource Control Architecture (ORCA)

Open Resource Control Architecture (ORCA) is an extensible architecture for on-demand net-
worked computing infrastructure developed at Duke University. ORCA provides a resource con-
trol plane to manage a diverse computing environments on a common pool of hardware resources
such as virtualized resources. Shirako [83] provides a substrate of actors that provide a leasing
mechanism separating resource allocation policies from the management of the service or a re-
source. Shirako is a Java-based resource leasing core that is based on a common, extensible resource
abstraction. Shirako contains an implementation of Cluster-On-Demand, which supports dynamic

leasing of resources from cluster provider sites.

We explore the interfaces required by a resource coordinator that interacts with various grid and
cloud systems. In Chapter 8 we use Shirako and COD to implement a dynamic resource control

plane for Globus grids, based on Xen virtual machines.

3.4 Summary

We compared and contrasted grid and cloud systems and their resource control policies. The
interaction between user and resource is critical to build a rich, flexible, dynamic and adaptive en-
vironment. This interaction is necessary for the application requirements to be coordinated with
resource characteristics. Thus while advancing mechanisms and algorithms in each layer of the
software hierarchy, it is important for the layers to interoperate and coordinate adaptation strate-
gies to support dynamic workflows. We use the lessons learned from the different distributed
systems available today to develop the WORDS architecture. The WORDS architecture provides
a resource abstraction that addresses the separation of concern between resource and application

layers while guiding their interaction.

4

Related Work

Grid computing [61, 62] concepts were first explored in the mid-90s in national laboratories
and academic institutions. The first generation of grid technologies and research (e.g. Globus [60],
Legion [74], Condor [103]) focused on the ability to harness distributed grid resources to run
scientific applications. In early 2000s, grid computing attracted interest from industry. The col-
laboration between the grid community, largely composed of researchers in academic and national
laboratories, with the business community led to a service-oriented grid architecture [64] embodied
in OGSA [63] and subsequently in WSRF(Web Services Resource Framework) [130]. Most of the
techniques for management of adaptation in grid environments are handled by resource manage-
ment architectures. More recently cloud computing systems have evolved that support mainstream
business models. We compared and contrasted the different interfaces provided by these systems
in Chapter 3. In this chapter, we focus primarily on specific implementations of resource and work-

flow management that have common elements with this work.

Grid computing is increasingly used to deploy and run grid applications [16] in various scien-
tific domains. Science gateways or portals or workflow tools [175] are used to handle the complex

interactions of the applications and data and provide intuitive user interfaces. As workflow tools

60

4. Related Work 61

are evolving, there is a need to understand the interactions between these tools and resource man-
agement architectures in meeting user’s QoS requirements. In this chapter, we describe the related
work in the area of resource management and workflow tools for managing the QoS guarantees for

workflows.

4.1 Resource Management

There are various resource management systems [119] in the context of grid systems with differ-
ent scheduling and adaptation techniques to meet the needs of the applications. Monitoring tools
are used to evaluate system and application performance to aid in scheduling and rescheduling

decisions.

4.1.1 Resource Selection and Meta-schedulers on the Grid

AppLeS [17] provides a framework for adaptive scheduling on the grid through distinct steps
for resource discovery and selection, schedule generation and selection, application execution and
schedule adaptation. AppLeS supports long-running grid applications by iteratively computing
and implementing refined resource schedules. Various site selection policies and meta-schedulers
such as Grid Service Broker, GridWay, Nimrod /G, etc [85, 26, 191, 193] are being explored in the
context of the grid. These provide an interface for applications to submit jobs to multiple sites and

use standard monitoring tools to collect monitoring information from different grid sites.

Silberstein [162] propose grid execution hierarchy and a scheduling algorithm that adapts to
the multilevel queue feedback to manage mixed workloads. The resource management in Legion
[32] provides a resource selection and policy framework that has a stronger support for local auton-

omy among member sites through its object oriented programming model. SPRUCE [14] provides

4. Related Work 62

gateway extensions for urgent computing through the idea of right-of-way tokens.

While resource selection and mapping techniques aid scheduling, there is still a need to be able

to represent and enforce user policies to guide the scheduling in real-time for user workflows.

4.1.2 Resource Provisioning

Several works have proposed resource reservations with bounded duration for the purpose of
controlling service quality in a grid. Globus toolkit's GARA (General-purpose Architecture for
Reservation and Allocation) proposes a QoS architecture that has support for advanced reserva-
tions, brokered co-reservations, and adaptation [65]. The architecture has three primary compo-
nents - online control interfaces that allow applications or agents to modify resource characteristics,
sensors that detect the need for adaptation and decision procedures that provide a policy frame-
work. The prototype GARA implementation supports differentiated service mechanisms for coor-
dinated management of high-end networked applications [59]. Other GARA extensions [42, 157]
focus on co-allocation policy decisions in a bandwidth broker architecture when users attempt to
make bandwidth reservations across administrative domains. Smith et al. [167] study the impact
of resource reservations on scheduling through mean wait times of queued applications. The wait
times of applications submitted to the queues increases when reservations are supported. The re-
sults also show that best performance is achieved when applications can be stopped and restarted,

backfilling is used and accurate run-time predictions are used [168].

SNAP (Service Negotiation and Acquisition Protocol) [41] provides a generalized model in
which resource interactions are mapped into a well-defined set of resource independent service
level agreements. The SNAP protocols define negotiation protocols for three types of SLAs - re-

source acquisition agreements, task submission agreements, task-resource binding agreements.

4. Related Work 63

Condor [181] is a a specialized workload system to manage compute-intensive jobs across clus-
ters and idle desktop workstations. The ClassAd mechanism in Condor provides a flexible and
expressive framework for matching job requirements with resource availability [144]. Gangmatch-
ing [145] and set matching [105] are extensions to the Condor matchmaking mechanisms that can
handle multilateral and multiple-resource selections. The Condor-G [67] system leverages Globus

and Condor to provide multi-domain resource discovery and scheduling.

Czakowski et al. [40] introduce the underlying concepts for an agreement based resource man-
agement. Agreements represent management policy in strict policy terms that can be asserted.
Singh et al. [163] propose an agreement-based resource provisioning model that allows user mech-
anisms to discover a set of provisionable resources and a policy for pricing these resources that can
then guide user scheduling decisions. The resource availability in this model is represented as a

“slot” that is the number of resources available from a certain start time.

Several research efforts have proposed bounded resource units such as leases, slots, slices, ad-
vanced reservations, etc [41, 65, 83, 90]. These abstractions define properties for time and resource
information but have little or no QoS information. The concept of decoupled resource selection and

scheduling [205] and the slot abstractions[83, 163] has been discussed earlier.

Thus, while we need lower-level protocols and agreements for resource provisioning, we also

need mechanisms to coordinate them with higher level user workflows.

4.1.3 Workflow Scheduling

Mandal et. al [112] propose a heuristic strategy using performance model based in-advance
scheduling for optimal load-balancing on grid resources using the GrADS infrastructure [92]. Batch

queue prediction has been used to predict queue wait times [21] and used in conjunction with the

4. Related Work 64

performance model for workflow scheduling [127]. Huang and Chien [78] discuss using Virtual
Grids to simplify the application scheduling process [90]. The scalability of scheduling algorithm

is improved by pre-selecting a set of “good” resources for workflows.

Blythe et. al. [20] identify and evaluate two resource allocation strategies for workflows -
task-based and workflow-based. The task-based algorithm greedily allocates tasks to resources.
Workflow-based algorithms find an optimal allocation for the entire workflow and perform better

for data-intensive applications.

Various DAG scheduling algorithms have been proposed for grid environments for optimizing
makespan, meeting deadline and /or budget constraints or dealing with uncertainty [111, 155, 204].
The underlying assumption of all these algorithms is that resources are guaranteed to be available
at a given time, whereas resource availability is highly variable. Deelman et al. [50] detail the

computational and storage costs of running the Montage workflow on Amazon EC2 resources.

Heuristic techniques are often used to qualitatively select and map resources to available re-
source pools. Most use performance as criteria for resource selection. Reliability of resources as
a metric coupled with performance has not been used for resource selection in the context of grid

applications.

4.1.4 Economy Based Grid Resource Management

Grid environments enable resource providers to serve multiple user communities. As grids
are increasingly used in mainstream, an economy based resource management is required for fair
sharing and accountability. GRACE (GRid Architecture for Computation Economy) [25] proposes
an infrastructure to enable flexible application scheduling using dynamic resource trading services.

The Nimrod/G resource broker implements a scheduling mechanism that takes an application

4. Related Work 65

deadline for a job and a resource access budget.

Wolski et al. [200] investigate G-commerce - computational economies for controlling resource
allocation using commodities markets and auctions. The authors conclude that commodities mar-

kets are a natural choice for grid environments.

Economic models for the grid can truly work only when the user can evaluate his options in
real-time or specify guidelines that capture his buying choices to service agents. This requires a
two-way communication between resources and the user-space, that is missing in today’s cyberin-

frastructure.

4.1.5 Monitoring and Adaptation frameworks

Various monitoring tools including Network Weather Service [201] and CloudStatus [37] are
used in grid and cloud deployments today. These tools provide a way to monitor resource status -

availability and performance.

In addition, tools like Autopilot [147, 150, 195] and SvPablo [151] provide techniques in which
applications and source code can be instrumented to collect performance data that can then be
used to control or steer the applications. Autopilot provides a sensor-actuator framework to allow
steering of grid applications. Autopilot demonstrates the use of a fuzzy logic decision procedure
infrastructure to manage grid application performance variability during execution. These tech-
niques are applied directly at the resource level and/or individual application level. The emergence
of web services and workflow tools indicates the need for multi-level monitoring and adaptation

techniques in addition to existing resource-level techniques.

The Grid Application Development Software (GrADS) project developed a framework that used

the notion of a configurable object program that contains application source code, resource selection

4. Related Work 66

and mapping strategies. The execution framework also provided a mechanism for contract mon-
itoring using Autopilot for interrupting and remapping an application when performance falls
below acceptable levels. The GrADS workflow scheduler [15] uses a performance-model based

workflow scheduling, rescheduling by stop-restart and rescheduling by process swapping.

Weissman et al. [198] present a dynamic grid service architecture that supports dynamic service
hosting and resource allocation, a dynamic leasing framework and a model for service robustness
that can represent the sensitivity of the service to fluctuations in the environment. Previously, an
architecture for adaptable software in grid environments has been proposed [24]. The paper also

discusses a consistency model for components that encapsulates parallel codes.

Reflective middleware is organized as a set of collaborating components that can interact with
traditional middleware and allow for customizing component behavior dynamically [96]. Reflec-
tive architectures also allow for fine-grain resource management through system meta-interfaces.
DynamicTAO [97], OpenORB [18] and OiL (ORB in Lua) [110] are among the implementations of

reflective middleware that allow dynamic replacement of application components.

4.1.6 Virtualization

The Virtual Grid Execution System (vgES) [90] provides an abstraction for dynamic grid ap-
plications to deal with complex resource environments. The vgES provides an integrated resource
selection and binding approach to resource allocation allowing higher tolerance to lower resource
availability [91]. The Cluster on Demand (COD) project [33] proposes the idea of “on-demand”
workspaces configured to the application’s specific requirements including possibly the operating
system. Shirako [83] provides a substrate of actors that provide a leasing mechanism separating

resource allocation policies from the management of the service or a resource.

4. Related Work 67

Keahey et al [88] propose a virtual workspace abstraction for grid applications that can imple-
mented using virtual machines and/or COD mechanism. A community broker is then used by the

user or application to request and configure virtual workspaces.

Cloud computing interfaces today are based on virtualization with front-end web service in-
terfaces. The most prominent cloud computing service provider today is Amazon [5]. Amazon
provides compute power, storage and other services on a pay per usage model enabling other ser-
vice providers to use the elastic IT infrastructure to host various web based applications or to use
the infrastructure to handle peak or overflows from their regular systems. Eucalyptus [129] pro-
vides a software infrastructure that enables sites to setup “cloud computing” with EC2 compatible

interfaces on their local infrastructure.

Virtualizations provided by these system greatly simplify the resource interaction. But we need

higher-level services that can interact with these systems on behalf of users and their policies.

4.1.7 Fault Tolerance and Performability

Khalili et. al [93] measured the performance and reliability of production computation grids
such as the TeraGrid [179] and GEON [70]. The results showed that the success rate for benchmark
and application runs was between 55% and 80%. The performance variations was in the 50% range

largely due to batch scheduler delays.

Reed et al. [146] present examples and data quantifying reliability of current systems and tech-
niques to detect imminent failures in the environment. The paper also shows how intelligent and

adaptive software can be used to react to failures and for efficient system use.

Weissman [197] describes a wide-area scheduler that supports two fault tolerance options for

SPMD applications, a very common programming model for grid applications. The scheduler

4. Related Work 68

supports replication and application-level checkpointing with performance models. Nurmi et
al [124, 128] describes a model that combines historical measurements of resource availability with
an checkpoint-recovery delay estimate to generate model-based checkpointing intervals to mini-

mize overhead.

Hwang and Kesselman [79, 80] propose a flexible framework for fault tolerance in grid envi-
ronments. The framework has a failure detection service that uses an event mechanism to monitor
and detect failures. A flexible workflow failure handling framework built on top of the failure de-
tection service applies task and workflow fault tolerance techniques. The workflow framework is
evaluated with multiple failure recovery techniques including checkpoint-restart, replication and

retrying.

Alonso et. al [2] discuss the limited fault tolerance capabilities in commercial workflow sys-
tems and specifically discuss increasing fault tolerance using exception handling and replication
strategies for increased availability. Specifically, the authors discuss the idea of providing different
availability levels such as critical, important and normal to workflows that determine the recovery

criticality and fault tolerance strategy that should be used.

Performability is the joint treatment of performance and availability that started in the 1970s.
The term was defined by J. Meyer as a composite measure of a system’s performance and relia-
bility and to qualify system performance in the event of failures [116]. Performability has been
recognized as an important metric for grid environments which have a high amount of variability
in reliability and performance [183, 182]. Performability analysis has been applied in the context
of lower level computer networks and communication systems but has not been applied to study

the higher level workflow behavior in distributed environments [77, 154].

4. Related Work 69

4.2 Workflow Management

Workflow tools are increasingly becoming a critical component of cyberinfrastructure [49]. Work-
flow tools first evolved in the commercial sector to represent business transaction processes. More
recently workflow tools are increasingly being applied to capture the scientific experimentation
process in a grid environment. Some of the business techniques and tools such as WS-BPEL [202]
have been applied to grid workflow tools. However scientific workflows differ largely from busi-
ness workflows. Business workflows are fairly static and changes are fairly infrequent. Scientific
workflows such as the ones discussed in Chapter 2 are more dynamic and require adaptation to
the scientific exploration process (e.g. undecided workflow steps) as well as the adaptation to the
underlying resource behavior [175]. The focus of QoS guarantees for business workflows are on

usability and successful service completion.

In this section, we discuss the support for dynamic and adaptive workflows in business pro-

cesses and also detail the scientific grid workflow tools and supported capabilities available today.

4.2.1 Dynamic and Adaptive Workflows in Business Processes

Workflows have been used to model business processes for a long time. There have been tools
and reference models developed in the Workflow Management Coalition (WfMC) for a long time
now [101]. The WEMC defines workflow as “the automation of a business process, in whole or
part, during which documents, information or tasks are passed from one participant to another
for action, according to a set of procedural rules” [199]. Business workflows that invoke multiple
services over the internet have to accommodate for failures and a dynamic environment. They
usually support ACID(Atomicity, Consistency, Isolation, and Durability) transaction processing to

guarantee against failures.

4. Related Work 70

One such system is eFlow [31], a system that supports composition and execution of composite
services. eFlow supports definition of adaptive and dynamic service processes through dynamic
service discovery during execution, supports the notion of multiservice nodes that can be used to
invoke multiple parallel instances of the same type of service. eFlow also has support for dynamic
service node creation that uses a generic service node in the representation that resolve to a specific

instance at runtime. eFlow uses consistency rules to prevent run-time errors from modifications.

It is often necessary to deviate from the pre-planned process definition during workflow ex-
ecution. For cases where it is not cost-effective to specify all possible changes in the workflow
plan, ADEPTflex provides a way to modify the workflow execution at runtime [148]. It verifies

correctness of dynamic changes and management of concurrent, temporary or permanent changes.

Koksal et al. [95] describe a component based workflow system that allow users to make dy-
namic modifications through a Dynamic Modification Tool that can be used to make permanent
changes to the workflow definitions or temporary changes to instances of the workflow. Liu et
al. [104] proposes a handover policy specification that allows users to specify policy on how work-

flow instances may change when a process definition changes.

The need to cooperate across loosely coupled business organizations has lead to the develop-
ment of web-service oriented architectures. This has led to the evolution of high level workflow
languages such as WS-BPEL (Web Services Business Process Execution Language), often referred
to as BPEL that allow methods to define and support orchestration of fine grained loosely coupled
processes. BPEL workflow engines provide fault tolerance support through dynamic binding of

the services through look-up registries using the UDDI protocol [189].

Business workflow tools provide some level of fault tolerance and adaptability. These tech-
niques cannot be directly applied to scientific workflow tools due to difference in workflow and

resource characteristics.

4. Related Work 71

4.2.2 Scientific Grid Workflow Tools

New workflow tools have been developed to represent and run scientific processes in a dis-
tributed grid environment. There are various workflow tools such as Kepler [3, 107], Taverna [131],
Pegasus [46, 48], Triana [36], that allow users to compose their applications and services into a log-
ical sequence. These tools are developed in the context of specific application domains and have
various features to allow users to compose and interact with workflows through a graphical in-
terface, provides seamless access to distributed data, resources and web services. Yu and Buyya
provide a taxonomy for scientific workflow systems that classify systems based on four elements
of a grid workflow systems - a) workflow design, b) workflow scheduling, c) fault tolerance and d)
data movement [203]. We provide here a summary of the features provided by the primary work-
flow systems in the context of dynamic and adaptive workflows, resource management and fault

tolerance.

Kepler [3, 107] builds on Ptolemy II [22, 23], a java based component assembly framework, that
uses actor oriented design that emphasizes concurrency and communication between components.
Kepler provides uniform mechanism for reporting errors but does not have any adaptation com-

ponents at this time.

Pegasus [48, 71] provides a planning system for use in grid environments. Pegasus integrates an
Al planning system to generate a concrete workflow plan from an abstract description from the user
that is then submitted to a Condor Directed Acyclic Graph Manager (DAGMan) [38]. The Condor
DAGMan uses the graph representation to manage dependencies between jobs and hence acts as
a meta-scheduler for Condor jobs. Pegasus allows constraints to be specified regarding feasible
resources and data dependencies on input fields. Pegasus also applies optimization techniques
such as node aggregation, data product reuse. Deelman et al. [46] discuss the higher level workflow

management issues in grid environments. They discuss the tradeoffs of different scheduling and

4. Related Work 72

planning techniques for workflows such as global and local decisions; full-plan-ahead, in-time local
and in-time global scheduling. The authors also propose the idea of using multiple abstract and

concrete workflows coupled with execution monitoring as techniques for fault tolerance planning.

Duan et al. [55] use the approach of workflow partitioning and optimization using a master-
slave communication model in the ASKALON Workflow Enactment Engine. This configuration

allows for a more scalable and fault tolerant coordination of workflows in a grid environment.

Triana [36] provides a graphical problem solving environment that allows users to compose
workflows through a drag-and-drop interface. Triana has a simple XML language to describe the
components and their interactions. Triana can use other external language representations such
as WS-BPEL through pluggable language converters. Triana’s workflow language has no explicit
support for control constructs such as loops and branching. These are described by specific compo-
nents that operate over a sub-workflow. Triana can distribute group tasks across multiple machines
in a grid environment either in parallel or in a pipeline through distributed services. The Triana
Controlling Service [174] allows the task-graph to be updated incrementally and also supports con-
trol commands that can be used to control functionality such as start/stop algorithm. etc. The
gridMonSteer [196] is a simple non-intrusive monitoring and steering architecture that can work
with Triana to allow scientists to interact with a workflow to receive intermediate results and inter-
act with legacy applications running in grid environments. The gridMonSteer has an application
wrapper that sends monitoring events to a controller with a standard interface. The controller itself
then can be tailored for different types of requirements i.e., a generic application, visualization or
a workflow controller. In the current implementation of the application controller, it receives input

requests and output notifications from the application wrapper.

The Taverna workbench [131] developed in the context of ™¥Grid enables the composition and

4. Related Work 73

execution of workflows in the Life Sciences. Taverna has a XML based language - Simplified con-
ceptual workflow language (Scufl) that allows users to link third party applications and web services
into workflows. Scufl is a data flow centric language and provides implicit support for handling
collections, control structures such as iterations. Taverna implements fault tolerance where it will
retry failed service invocations a certain number of times with exponential back-off delays. Taverna
does not differentiate between failure of services and failure of the underlying resources such as the
network fabric. Taverna does not support automatic substitution of services since their scientific
equivalence is hard to determine. Taverna allows users to specify alternate but identical services
for any step in the workflow. Taverna uses UDDI registries, local disk scavenging for service dis-
covery and provides user service selection tools such as FETA for semantic searching for candidate

services.

The GPEL workflow engine [164, 165] uses WS-BPEL [202] to manage long running applications
in a grid environment. The GPEL Engine provides the capabilities to control the workflow execu-
tion instance through a state document. This capability allows users to pause execution, replay
workflow steps, etc. The LEAD system uses both GPEL based workflow engine and Apache ODE,

which is an open source BPEL workflow engine [8].

Workflow tools today allow scientist to link complex scientific process through various XML
languages and supporting graphical interfaces. They also provide some level of planing and op-
timization techniques and fault tolerance to react to changes in grid resource and services perfor-
mance and reliability. The need for adaptation at the workflow engine to both system and user
behavior has been recognized as a critical requirement to support next generation cyberinfrastruc-
ture science [49]. However, the tools available today do not handle dynamic elements of scientific
workflows. The spectrum of QoS issues that arises from the interplay of user constraints and re-

source behavior has not been considered.

4. Related Work 74

4.2.3 Workflow Constraints and Quality of Service

In addition to the workflow tools and systems discussed already, we discuss some related work

to QoS, constraint specifications and exception handling in workflow systems.

Mangan and Sadiq [113] present a constraint approach to workflow process modeling using a
relational model to capture flexible business processes. The approach uses a standard set of mod-
eling constraints and process constraints to develop a workflow schema. Each constraint is consid-
ered as a composition of one or more elementary conditions. The two types of constraints are task
conditions, for describing task dependencies, and instance data conditions, for complex constraints
where a certain value must be satisfied. This constraint language provides the flexibility required
in business processes. However the language is not rich enough to capture the uncertainties of the

scientific exploration process and the constraints that are required for adaptation decisions.

The METEOR workflow system [30] implements a predictive quality of service model that ac-
counts for task performance and reliability and using that to then compute workflow QoS metrics
based on workflow patterns. Klingemann et al. [94] describe a technique for deriving a model of
web service behavior in cross-organizational workflows from the externally observed service be-
havior. The approach is based on Markov chains that is constructed from the log of past executions
of services. These models are based in a service oriented environment and cannot directly capture

the complexity of distributed grid environments.

Aalst et al [192] and Russell et al. [121] describe in great detail the workflow control patterns
that are encountered when modeling and analyzing workflows. The workflow patterns can largely
influence resource management decisions (e.g., taking advantage of parallel tasks by coallocation).
In addition, Russell et al. [153] investigate the workflow resource patterns which describe the in-

teraction of workflow tasks with resources, where resources include humans. These patterns are

4. Related Work 75

useful in specifying authorization, resource constraints between workflow tasks, etc. Occurrence
and handling of workflow exceptions has been detailed earlier [152]. They use their analysis of
eight workflow systems to propose a graphical, technology-independent language for exception

handling strategies in workflows.

Workflow systems for grid environments need a rich language to support user constraints, abil-
ity to adapt to conflicting constraints across workflows and the environment, the ability to adapt to
failures and exceptions through the system. We also need to be able to use workflow patterns and

dependencies for appropriate resource allocation decisions.

4.3 Summary

The resource management tools available in the grid provide mechanisms to select and dis-
cover resource services to manage grid applications” QoS requirements. More recently scheduling
techniques have been applied to optimize resource selection for a Directed Acyclic Graph (DAG).
These techniques are harder to apply to dynamic and adaptive grid workflows. There is also limited

availability of tools and techniques for workflows to dynamically change to resource availability.

While there is some support for dynamic and adaptive capabilities available in workflow tools,
we need additional capabilities to allow us to express and enforce complex constraints of the appli-
cation as well as the underlying resources, often high performance supercomputing centers in grid

environments.

5

Workflow Orchestrator for Distributed

Systems

In this chapter, we present the Workflow ORchestrator for Distributed Systems (WORDS) that
facilitates the separation of concerns between resource and application layers for effective work-
flow orchestration. WORDS enables an holistic, coordinated, dynamic and adaptive approach to
workflow management using user requirements and variable resource characteristics while being
shielded from specific resource policy or systems. In the context of this system architecture we
explore a standard set of interfaces and mechanisms required at the resource layer in grid and
cloud systems to implement effective workflow orchestration for deadline-sensitive applications.

WORDS has the following characteristics:

e It provides a separation of concerns between the resource and application level. This enables
specific protocols to be implemented in each level of the software stack while not affecting

the interaction protocols.

e The interaction between application and resource layer is through a powerful resource ab-

straction that shields the differences in grid and cloud protocols and represents resource

76

5. Workflow Orchestrator for Distributed Systems 77

properties and its QoS capabilities.

e The orchestration system in WORDS is orthogonal to the main execution stack enabling

higher degrees of planning and adaptation.

The rest of this chapter is organized as follows. We present the overview of the WORDS archi-
tecture in Section 5.1. We discuss the resource abstraction in WORDS that defines the interaction
between the application and resource layers in Section 5.2. We provide an overview of the re-
source and application layers in Sections 5.3 and 5.4. User roles (Section 5.5) and terminology (Sec-
tion 5.6)in the context of this architecture is detailed. Finally we summarize the research questions

that we address in the context of this architecture (Section 5.7).

5.1 Overview

Figure 5.1 shows the WORDS system that introduces a separation between the resource layer
and application layer. The orchestration system receives a specification of a workflow or as a set of
workflows and user constraints. Each workflow in the set is represented as a directed acyclic graph
(DAG). The constraints may include time, accuracy, etc. The workflow planner communicates user
requirements to the resource coordinator which initiates resource procurement. The resource coor-
dinator interacts with both grid and cloud sites through conventional scheduling mechanisms and
interfaces. The resource coordinator can also work with other execution abstraction systems such
as the virtual grid execution system [90] that mitigate the job and data management differences

from each model (more in Chapter 10).

The resource coordinator interacts with various site specific resource control mechanisms and

returns a Gantt chart to the application layer. A Gantt chart consists of a set of resource slots from

5. Workflow Orchestrator for Distributed Systems 78

Grid sites
g OO
g 0O
(3]
3 W M O O
Application Layer Time Resource Layer

Workflow

. Resou
and constraints

€

OO
procurement D I:]
Orchestration orkflow Resource 0
Planner Coordinator HIH]

system OO
OO

Execution g \
system E Web Execution| HEN
< ervice Manager O
I O O
O O

Cloud site
Sites

Figure 5.1: WORDS Architecture. The orchestration system introduces a clean separation of re-
source level and application-level functionality through a resource abstraction (slot). The workflow
planner interacts with the resource coordinator to facilitate resource acquisition.

different sites and each slot is annotated with its associated properties. A resource slot is an abstract
unit of a resource set on a site that has been assigned to the application or user by the resource
layer with defined width (i.e., number of processors) and length (i.e., duration). The resource slot is
central to our resource abstraction and may represent resources allocated to a job through the batch
queue system or to a user in cloud systems or through advanced reservation or probabilistic mech-
anisms. Analogously, we use abstract resource slot as a representation to communicate resource
requirements from the workflow planner to the resource coordinator. The abstract resource slot is
not tied to a particular site or system and communicates the properties of the resources desired. Let
us consider an example, for a workflow A, the workflow planner can request one resource slot of
16 processors for two hours with a minimum probability of 0.9 of getting the slot and a minimum
probability of 0.99 that the slot will not fail. The resource coordinator in turn interacts with the sites

and return a slot of 16 processors starting at 8 am and ending at 10 am with a 0.93 probability of

5. Workflow Orchestrator for Distributed Systems 79

getting the slot and 0.99 probability that the slot will not fail.

The workflow planner determines a schedule by assigning tasks on the slots using criteria such
as computational time, data transfers, success probabilities, cost, etc. Additionally the characteris-
tics of the slots are used to determine appropriate fault tolerance strategies. This process of resource
acquisition and task mapping is iterative with the goal of enhancing the schedule for some or all

tasks in the workflow.

The execution system (bottom of Figure 5.1), consisting of the workflow engine and web ser-
vices requires only minimal change to support the orchestration system. The execution manager
handles slot-based resource functions such as job submissions in concert with the resource coordi-
nator. The workflow planner cannot anticipate all runtime failures that might occur.The WORDS
architecture provides resistance to runtime failures through the execution system that is responsi-
ble for detecting deviations from the original schedule or other failures. The execution manager
invokes the orchestration components with updated DAG (e.g., the parts of the DAG that have
not been run yet) and resource information to reevaluate if user constraints can still be met under

changed circumstances.

The WORDS architecture provides a clear separation of functions between the resource and
application layer for orchestration decisions. This separation of concerns allows the workflow
planner to concentrate on user space and the resource coordinator handles site interaction. The
WORDS architecture also has an hour-glass model similar to the Internet Protocol (IP) hour-glass
model. It enables resource-layer and application-layer protocols and policies to evolve indepen-
dently. The communication between the two layers is facilitated through the slot abstraction. Thus,
the WORDS architecture provides a resource abstraction that the higher level workflow orchestra-

tion can use for planning workflows to meet user constraints atop dynamic distributed systems.

5. Workflow Orchestrator for Distributed Systems 80

5.2 Resource Abstraction

Fundamentally, grid and cloud computing systems have different access models and policies.
However there are also similarities - resources are assigned to jobs or leases for durations of time;
resources are often provisioned across competing user groups and resource requests can fail; large
scale systems also experience hardware and software failures. The resource abstraction needs to
capture the various dimensions of resource property including cost, policy and variability associ-
ated with policy and hardware. The WORDS architecture is based on a least common denominator
resource model that abstracts the specific properties of grid and cloud systems. The model captures
the common minimal set of of properties across the systems that enables the higher-level workflow
orchestration to provide effective QoS guarantees for deadline-sensitive workflows. The model
does not capture additional resource properties that are provided by specific systems. The degree
of effectiveness of workflow orchestration over each system varies based on specific resource con-
trol policies. For example, if the resource coordinator returns a set of slots from cloud systems that

enable explicit resource control the workflow orchestration can provide higher-levels of QoS.

The resource abstraction in WORDS is powerful enough to abstract various systems and flexi-
ble to accommodate various dynamic environments. For example, if mechanisms are available in
resource systems to support dynamic resizing of resource reservations or slots the resource coor-
dinator can update the Gantt chart with the new information. The workflow orchestration then
uses this information while being shielded from specific underlying implementations. Such dy-
namic adaptation might also require user/application intervention to determine trade-offs in cost
and time. The WORDS architecture enables this interaction which is otherwise difficult if not im-

possible in today’s systems.

5. Workflow Orchestrator for Distributed Systems 81

The QoS model in the resource abstraction is probabilistic and captures the variability asso-
ciated with resource procurement (i.e., advanced reservations, job submissions, etc) and failure
characteristics during allotted duration. The probabilistic model is important since with or with-
out explicit resource control, strong QoS guarantees cannot be made in distributed systems due
to the variability and complexity of the underlying resources and policy. Explicit resource control
through advanced reservations in batch systems or in cloud systems has certain impacts - resource
providers need to over-provision resources for peak demand and there can be an adverse effect
on system utilization and wait times [166, 169]. Probabilistic guarantees help resource providers

manage the variability in QoS including unexpected load, utilization and other runtime factors.

We explore probabilistic resource procurement for enabling dynamic workflow orchestration
over resources with little or no explicit resource control. As cloud systems advance, the same tech-
niques can be applied to them since lease or cloud resource requests are similar to job requests
with fixed time units [75]. In overbooked leasing systems we can calculate an equivalent prob-
ability using the number of resource lease requests that are overbooked. In addition to resource
procurement, hardware and software services have failure characteristics. Thus we define QoS
properties that captures the variability aspect of the resources. The probabilistic resource model al-
lows providers to specify quantitative bounds on resource requests e.g., there is a 95% chance that
a request for a three hour slot of 16 processors starting in one hour can be met and there is a 99%
chance that resources will stay up during the required duration. The probabilistic resource model

is presented in greater detail in Chapter 8.

5. Workflow Orchestrator for Distributed Systems 82

5.3 Resource Layer

In the orchestration system in WORDS , the resource layer is responsible for interacting with
different resource systems such as grid and cloud systems and shield higher-level tools from spe-
cific mechanisms or site policies. The resource layer queries resource status and availability (through
the Resource Coordinator) and monitors execution for failures or changes in performance or reli-
ability (through the Execution Manager) and feeds the information to the application layer. In the

WORDS architecture the resource layer has the following key functions:

Resource procurement. A primary function of the resource layer is resource recruitment or pro-
curement. The resource layer receives a set of resource requests, represented as abstract slot re-
quests, from the application layer. The abstract slot requests guides resource procurement strate-

gies across multiple grid and cloud sites.

Site monitoring. The resource layer additionally monitors the sites for resource changes such as
resources becoming available, failures or performance fluctuations that can then drive additional

workload scheduling or adaptation decisions.

Execution monitoring. Despite rigorous planning, failures and changes in the underlying re-
sources tend to occur during workflow execution. In addition to monitoring the resources, the
resource layer would also interface with application level execution systems to monitor execution

of individual jobs or workloads on the mapped resources.

5. Workflow Orchestrator for Distributed Systems 83

5.4 Application Layer

The goal of existing application tools such as workflow planners has largely been time optimiza-
tions based on task execution times and data transfer times. Workflow planners apply resource se-
lection techniques [20] to map abstract workflows onto a concrete set of resources. Workflow tools
also apply optimization techniques such as intermediate data product reuse, node aggregation, etc
in the workflow planning stage [48]. However in addition to the workflow task-resource map-
ping based on performance it is often necessary to make adjustments in the plan based on resource

availability and reliability characteristics in the workflow planning.

The application layer provides an effective adaptation framework that can react to resource
behavior in conjunction with user specified constraints and application changes. In addition, the
application layer in WORDS acts as a global coordinating adaptation agent allowing arbitration in
the occurrence of conflicts. Specifically, the application layer in WORDS has the following func-

tions:

Workflow admission. The workflow planner provides a two way communication between the user
and the resource layer enabling users to interact with the system and adjust workload character-
istics with availability. This interaction makes possible a joint decision between the system and
end-user on workflow admission into the system prior to execution. WORDS enables the dynamic
scientific process such as when users setup triggers to be notified when resources become available

so they can pursue additional scientific explorations.

Resource procurement. The workflow planner uses the specified workload information to deter-
mine and drive the resource recruitment and selection choices in the resource layer. Workload
characteristics such as sensitivity to time and cost considerations result in different policies that

can be applied at this level. We consider some illustrative policies for deadline and cost sensitive

5. Workflow Orchestrator for Distributed Systems 84

workloads (Chapters 9 and 10).

Execution plan. The workflow planner applies user constraints and available resources to develop
an execution plan for the specified workload. The execution plan developed by the planner ac-
counts for resource availability characteristics and includes fault tolerance strategies to enhance
the success probability of completion. This plan is then used by the execution system to monitor

and orchestrate the progress of the workflow.

Dynamic adaptation. The orchestration system handles adaptation changes and can react to changes
in resources or user requirements and create a new execution plan. The application layer would

also be responsible for arbitrating conflicting adaptation events from different sources.

We handle cases that require dynamic execution level control for deadline-sensitive workflows
at the execution manager level. More generally, it is desirable to have a higher-level workflow con-
troller component that manages execution systems like workflow engines. In that case, a workflow
controller, in concert with the planner would be the final decision authority for making dynamic
adaptation changes. Resource layer implements local policies to react to resource availability char-
acteristics that are shielded from the application. However any significant event that results in a
change in the workflow execution (e.g. rescheduling due to a resource failure) will go through the
workflow controller. The workflow engine can also be configured to consult the workflow con-
troller on significant events such as failures, etc. The workflow controller also would constantly
monitor the system and initiate an adaptation of the workflow execution in consultation with the
workflow planner. However workflow engines today have limited support for such dynamic con-

trol during execution, hence evaluation of this capability is outside the scope of this work.

The orchestration system in WORDS is the focus of this research. The orchestration system fa-
cilitates a higher degree of control in adaptation decisions by a clear separation of concerns between

application and resource layer.

5. Workflow Orchestrator for Distributed Systems 85

5.5 User Roles

Both grid and cloud systems today have different user roles such as end users, service providers,

system administrators. Each of these users interact with the WORDS system.

Infrastructure providers. Grid and cloud systems alike have distinct infrastructure or resource
providers that include personnel at infrastructure sites for managing the machines, network, oper-
ating system and resource-level services. The infrastructure providers manage the needs of com-
peting user groups. The probabilistic QoS model in WORDS enables resource providers to quantify

the uncertainty associated with allocation and failures.

Service Providers. Service providers operate on existing infrastructure to provide specialized ser-
vices to the end-user. The clear separation of functions in WORDS between the resource and ap-
plication layers allows a transparent resource acquisition process that can be reflected back to the

user. In addition, this enhances accountability in service contracts between different user-levels.

Users. The end-user interacts with the WORDS architecture through user specialized interfaces
such as web interfaces, that allows the user to specify workload description and user-level con-
straints. The WORDS architecture enables the end-user to specify constraints to guide scheduling
and resource-level decisions. The WORDS architecture enables user-participation in adaptation

decisions. Unless otherwise specified, user or scientific user is used to refer to this class of users.

5.6 Terminology

This research explores the WORDS architecture in the context of resource interfaces and work-
flow tools in grid and cloud systems. Components have evolved in separate and diverse worlds

with different and sometimes overlapping terminology. In this section, we provide a clarification

5. Workflow Orchestrator for Distributed Systems 86

terminology used in the context of WORDS and the rest of this dissertation.

Workflow and Task We use the term workflow to depict a sequence of operations, applications
or service calls that have dependencies on their execution. The workflows may be BPEL based
workflows that consist of a sequence of web service calls or a sequence of binary applications
invoked through a script. We use the term task or service to refer to components of the workflow.
All workflows in our system are represented as directed acyclic graphs (DAG). The vertices in our
DAG represent tasks and edges represent data flow operations. We do not consider workflows or

workloads that have loops or cycles in their representation.

Workflow Set. We consider the use case where workflows may have dependencies between them
in Chapter 2. We use the term workflow set to indicate a collection of workflows that need to be

considered for scheduling concurrently.

Constraint and Policy. We use the term constraint or user constraint to identify conditions that
users specify on workflows or workflow sets. We use the term policy to indicate priorities and rules
that service or infrastructure providers have in place to differentiate between users or groups of

users.

Resource and Site. We use the term resource and site frequently. The term resource refers to a
single node or a cluster. Site may be used in place of resource to indicate resources under one ad-
ministrative unit. We specifically do not address federation of clusters within an organization. If
an organization has multiple clusters, each addressable separately for purposes of resource inter-
action, then our system is oblivious to the relationship that exists between clusters. However if
these clusters on a single site are connected by high-speed networks our planning algorithm will

automatically select sites with proximity as part of the data transfer cost analysis.

5. Workflow Orchestrator for Distributed Systems 87

5.7 Summary

The WORDS architecture supports the needs of workflow orchestration atop grid and cloud
systems. The degree of effectiveness of workflow orchestration over each system varies based on
specific resource control policies they implement, that is reflected in the resource abstraction. The
goal of the architecture is the “separation of concerns” between the resource and application layers.
The resource layer is responsible for resource acquisition and other specific resource management
mechanisms whereas the application layer uses the abstracted resource properties to make orchestra-
tion decisions. The slot abstraction is the center of the interaction model between the two layers.
The concept of decoupled resource selection and scheduling [205] and the slot abstractions[83, 163]
has been discussed earlier. However the interaction and the interfaces between the application
layer requirements and resource model variability and its impact on high-level workflow orches-

tration has not been studied before.

In the context of the WORDS architecture, we address the following research questions:
e Is a common abstraction possible that captures the different properties of grid and cloud

systems and yet enables higher level systems to be shielded from specific system implemen-

tations?

e What information is required in next-generation data-center interfaces to improve support

for dynamic adaptive workflows?
e Can users be allowed to express dynamic user and resource constraints?

e Isit possible to provide predictable quality of service atop systems that do not provide explicit

resource control?

5. Workflow Orchestrator for Distributed Systems 88

e How can workflows account for variability in performance, and reliability that are inherent

to distributed large-scale systems?

e How can workflow sets be scheduled to meet multiple constraints such as deadline and accu-
racy? How can higher-level tools determine appropriate fault tolerance strategies with cost

and other constraints?

6

Constraint Model

Dynamic scientific workflows (e.g. LEAD) require the ability to specify various criteria, such
as time and accuracy, on the workflows and the relationship between workflows. Similarly the
application level tools need the ability to express qualitative expectations on resources queried. In
today’s cyberinfrastructure environments there are mechanisms to monitor performance and en-
sure reliability, to select and discover resources and tools to express task dependencies. However
there is little or no support available at the resource or user level that allow users to express require-
ments relevant to the application workload. Workflow planning mechanisms need to understand
constraints or requirements that come from the scientific experiments to be able to trade-off various
system characteristics. For example, a user with a time sensitive workflow may be willing to use

more expensive resources and a scheduling strategy needs to take that into account.

In this chapter, we explore the constraint space at the user and resource layer to facilitate speci-

fying dynamic user requirements. Specifically, we address the following issues.

o We explore the type of requirements that users would like to specify on workflows and
workflow-sets. We use these requirements to define a constraint space that defines the scope

of constraints a user can specify on various elements in the WORDS architecture.

89

6. Constraint Model 90

o We explore the resource specifications that are needed for scientific application codes. The
virtual grid description language (vgdl) allows users to specify qualitative performance re-
quirements during resource selection. We propose extensions to vgd! that capture availability

expectations from resources.

In this chapter, we address the interfaces necessary at the user level to specify constraints on the
workflows and the ability to specify resource requirements at the resource level that can translate

to user requirements to specific resource properties.

6.1 Workflow Constraints

In this section, we explore the type of constraints that a user likes to specify on a workflow or a

workflow set. First we present some examples and then present the model.

6.1.1 Examples
We consider a user’s workflow set W = {W7, Wa, ..., Wy} where workflow W; is a description
of a DAG. These workflows can run on any of the resources in the set R = {Ry, Ra, ..., R5}.

Deadline. A user specifies that the workflow set must complete by a deadline D from now. Addi-

tionally the user specifies that W3 must finish by D3 where D3 < D.

Accuracy. The user specifies that in the given set at least four out of the nine workflows must

complete by the specified deadline.

Workflow Importance. The user specifies that in the given set, W, Ws and Wy are most important

followed by W5 and W7.

6. Constraint Model 91

met by meets
N N Gantt Chart
Constraint Collection O—L
Constraint
—
- Accuracy Constraint
has Set Ci i noReguired
I consists of
Deadline
WorkflowSet ndTime
worklowSetid
B Site Budget
C [- T Budget
| ' hudget
| totalBudget
‘Workflow [F— desiredProbability J,
et ol ol Resource
resourcebame
! Slot
Mapping slotld
hag Task
1 - consists of 1 [startTime
taskiame 1 mapped onto = ndTime
Property : 'Dﬂgt - width
askatarTime
priarity 1%1 {askEndTime resourceMNare
criticality

Figure 6.1: Workflow Constraint Model UML. The figure shows the various components in WORDS and the
relations and constraints the user can specify on those components.

Budget. The user is willing to use 1000 computational units on each site.

Success Probability. Each task in the workflow that is scheduled must have a 50% chance of com-

pleting by the deadline.

6.1.2 Model

Figure 6.1 shows the conceptual view of the elements in the WORDS system and the constraints
the user can specify on the artifacts. A WorkflowSet is composed of Workflows. Each workflow is
composed of Tasks. A Workflow or Task can have a Property that captures the priority and criticality
of the workflow or task. In our implementation, the criticality is the value assigned by the user and

the priority is assigned by the system. Criticality captures the value of the entity to the user relative

6. Constraint Model 92

to other entities that belong to the user. The priority is assigned by the system to indicate the user’s
priority relative to other users in the system. Priority and criticality values are expected to be tied
with cost-models in the long-term to prevent misuse. A WorkflowSet is associated with a Constraint
Collection that details the user requirements on the workflows. A Constraint Collection may have
two types of user constraints, i.e., constraints on a workflow or task (Component Constraint) or on
a set (Set Constraint). The constraint model is motivated by the LEAD workflows and address the

following types of constraints.

e Probability. A user can specify a desired success probability of completion at either the task
or workflow or workflow set level. This quantitative guarantee the user requires on a specific

workflow.

e Deadline. Time-sensitive workflows such as weather prediction have deadline associated
with them. Thus a user can specify a deadline on a workflow set, workflow or task that

guides scheduling decisions.

e Budget. Distributed resource models are increasingly made available as metered services,
with different costs associated with quality of service. Thus it is important to let users specify
a budget that they are willing to expend on an experiment. A budget may be specified per

site or a cumulative budget across all sites may be specified.

e Accuracy. In addition to the above constraints, a user can also specify an accuracy constraint
for a workflow set. The accuracy constraint captures the minimum number of workflows in a

set that must complete successfully to satisfy the science accuracy requirements (Chapter 2).

The goal of WORDS is to determine an execution plan that satisfies the set of constraints. The

plan is represented in a Gantt Chart as a set of mappings of tasks on the resource slots.

6. Constraint Model 93

6.1.3 Conflict Resolution

The constraints that users specify may have inconsistencies or result in conflicts. Generally,
aggressive or invalid constraints such as a deadline or an accuracy constraint that can’t be met are
directly handled by the planning components in the system. These will result in the user being
asked to modify constraints since a valid execution plan could not be determined. We ensure the

following checks for resolution in the WORDS system.

e Property may be specified at various levels - task, workflow or workflow set. A component
inherits the higher level’s property. For example, if a criticality is not specified at the task

level, it has the same criticality as its parent workflow.

o A deadline may be specified at the task, workflow or workflow set. If a deadline is not spec-
ified at the task level the workflow’s deadline is used to determine the task deadline. If a
workflow does not have a specified deadline, it has the same deadline as the workflow set it
belongs to. If a task deadline is specified that is not consistent with the workflow set deadline,
the orchestration system in WORDS will not be able to come up with a valid execution plan

and return an error to the user.

e Our constraint model allows the user to specify a budget per site as well as a total budget. If
the budget is specified for all sites and a total budget is specified by the user, the sum is ver-
ified. If individual site budget is not specified the total budget is considered to be uniformly

distributed across the sites.

e Workflows in WORDS are ordered by their priority and criticality. User roles and associated
cost models are envisioned to stop users from specifying aggressive criticality values. If pri-
ority and criticality are identical for two or more workflows, the deadline and submission

time of the workflow is used for determining the order of the workflow.

6. Constraint Model 94

6.2 Resource Request Specifications

In WORDS , the user constraints are received by the workflow planner that translates the re-
quirements and drives the resource procurement through the coordinator. The resource coordinator
queries different sites to request resources. The virtual grid execution system (described in detail
in Chapter 3) allows high-level, qualitative performance requirements to be specified that guides
resource selection. The language in vgES is a hierarchical language for resource abstractions that
allows users to specify qualitative resource performance specifications. We provide an extension to

the virtual description language that enables users to specify availability requirements.

A critical dimension to managing an application’s reliability requirements is understanding its
specific characteristics. We discuss the reliability requirements for grid applications with differ-
ent execution models in Section 6.2.1. In addition, we illustrate the virtual grid extensions us-
ing two application examples - mpiBLAST [44] and the Weather Research and Forecasting (WRF)

model [117].

6.2.1 Reliability Requirements of Scientific Applications

In Chapter 3, we identified that scientific codes are composed with common parallel program-
ming model representations - (a) Master-Worker, (b) Divide and Conquet, (c) SPMD and (d) work-

flows.

In the master-worker paradigm, the master decomposes the problem into small tasks and dis-
tributes these tasks for execution. Primary communication is between the master and the workers,
as the master is responsible for collecting partial results to produce the final result. Depending on
the master and workers’ execution characteristics (e.g. long or short running), coupled with re-

source availability, one resource selection policy could be to choose a more reliable node to execute

6. Constraint Model 95

the master task and an appropriate fault tolerance strategy.

Similarly, the Divide and Conquer strategy partitions the problem into two or more smaller
problems that can be solved independently and combined. Each subtask may be further split into
separate tasks. Unlike the master-worker model, the subtasks are interdependent. Hence the per-
formance and reliability requirements (e.g. for the communication links) might vary significantly
from the master-worker model. In the SPMD model, each task executes common code on different

data. Failure of one task adversely affects the entire application, requiring global coordination.

Finally, workflows allow applications to define data and condition dependent execution. The
workflow itself is a hybrid of one or more execution models mentioned above. For workflows, as-
suring high reliability and high performance for the entire workflow duration can be very expen-
sive. In such cases, the workflow planning software may request a combination of high reliability
and lower reliability nodes to offset costs. The workflow planning strategy could then apply addi-
tional fault-tolerance mechanisms such as replication or checkpoint-restart to increase the success
probability. To summarize, a cost-benefit analysis of application characteristics in concert with re-
source characteristics is required to determine an appropriate resource selection and corresponding
fault tolerance strategy. Next, we present some examples of scientific codes and possible resource

requests to satisfy their needs.

6.2.2 Examples

mpiBLAST. The Basic Local Alignment Search Tool (BLAST) [4] compares nucleotide or protein
sequences and finds regions of similarity between them to detect functional and evolutionary rela-
tionships. The parallel version of BLAST, mpiBLAST, follows the master-worker execution model.
Consider an mpiBLAST resource request for a master node connected to a set of worker nodes,

each with at least 4 GB of memory. In the virtual grid description language (vgDL), this would be

6. Constraint Model 96

specified as follows:

mpiBLAST1 = Master Node = {memory >= 4GB, disk >
20GB}highBW LooseBagOf < WorkerNode > [4 : 32]; WorkerNode = {memory >=

4GB}

One fault tolerance strategy might require the network link between the master and the worker

to have "good” reliability (Section 6.2.3). The modified vgDL might look like the following:

mpiBLAST?2 = Master Node = {memory >= 4GB, disk >

20GB}(goodReliability AND highBW) LooseBagOf < WorkerNode > [4

32]; WorkerNode = {memory >= 4GB}

In addition to the network being reliable, the request could also specify that the master node be

highly reliable:

mpiBLAST3 = HighReliabilityBag < MasterNode >= {memory >=
4GB, disk > 20GB}(goodReliability AND highBW) LooseBagOf < WorkerNode >
[4: 32]; Worker Node = {memory >= 4GB}; Master Node = {memory >= 4GB, disk >

20GB}

Weather Research and Forecast (WRF) Model The Weather Research and Forecasting (WRF) model [117]
is a mesoscale numerical weather prediction system. The WRF model is an SPMD computation
where geographic regions are modeled in parallel. For a simple WRF execution, the request might

be for a cluster with 8 to 32 nodes, each with at least 4 GB of memory:

wrf1 = TightBagOf < CNode > [8 : 32]; CNode = {memory >= 4GB}

We might require all the nodes and the network connecting them to be highly reliable since this

is an SPMD computation. A modified request is shown below to request a HighReliabilityBag;:

wrf2 = HighReliabilityBag < ManyNodes > [1 : 1]; ManyNodes = TightBagOf <

CNode > [8 : 32]; CNode = {memory >= 4GB}

6. Constraint Model 97

From these examples we see that applications can have varied reliability requirements based
on their characteristics. Workflow planning components need higher-level interfaces to describe
collective qualitative reliability requirements in the resource selection process. These requirements
are based on application characteristics and other real-time constraints such as deadlines or budget.
These user-specified attributes can then guide selection allowing the system to apply scheduling

and adjust fault tolerance levels and expectations at run-time.

6.2.3 Reliability Specification

In this section, we discuss the extensions required to the virtual grid description language to
support reliability specifications. We define a high-level qualitative reliability metric space that
can be used to request resources. The qualitative levels are mapped to well-defined quantitative
reliability levels in the virtual grid to enable runtime monitoring and adaptation. We define a five

point qualitative reliability scale that maps to quantitative levels of availability as follows:

Excellent (90-100 %)

Good (80-89%)

Satisfactory (70 - 79%)

Fair (60-69%)

Poor (59-0%)

We expect the exact definition of the levels to vary in specific deployment contexts and evolve
with advances in underlying computer hardware architectures. These qualitative levels map di-

rectly to resource cost models enabling users or application level tools to trade-off resource quality

6. Constraint Model 98

with cost considerations. This prevents users from requesting high reliability resources when it is
not required. This situation is analogous to when users specify an expected wall clock time on their
batch jobs today in HPC systems - specifying a longer than required wall clock time could result
in being penalized with longer queue wait times and a short wall clock time can result in the job

getting killed earlier.

We define a set of associators for collective node reliability. These associators map to the quali-

tative reliability set defined earlier

HighReliabilityBag. A set of nodes with Excellent reliability.

GoodReliabilityBag. A set of nodes with Good reliability.

e MediumReliabilityBag. A set of nodes with Satisfactory reliability.

LowReliabilityBag. A set of nodes with Fair reliability.

PoorReliabilityBag. A set of nodes with Poor reliability.

Similarly, we define operators for specifying network reliability levels.

We add the following operators that describe network link reliability and are mapped to similar

quantitative levels as above:

highReliability. A set of nodes with network link reliability that is Excellent.

goodReliability. A set of nodes with network link reliability that is Good.

o mediumReliability. A set of nodes with network link reliability that is Satifactory.

lowReliability. A set of nodes with network link reliability that is Fair.

poorReliability. A set of nodes with network link reliability that is Poor.

6. Constraint Model 99

Typically a reliability specification for components are expressed as a value for an associated in-
terval with a desired confidence level (e.g., the disks on the head node of a cluster are 90% reliable
between 10 pm and 4 am, with a 95% confidence interval). The vgDL's extensible attribute mech-
anism allows these to be additionally specified if required. These resource request specifications

map to the reliability states that a resource encounters during its lifetime (Chapter 7).

6.3 Summary

In this chapter, we explored the user constraint model and resource reliability specifications to
support dynamic scientific workflows. This space of requirements from user and resource prop-
erties provides the foundation for the orchestration to explore various trade-offs in application

execution.

7

Performability Modeling

Workflows experience significant variations in performance and reliability during their real-
time execution. In this chapter we explore performability, a measure of lost QoS due to reliability
variations, as a basis for workflow scheduling and fault tolerance strategies. Workflow orches-
tration needs to account for user and application level requirements and consider the resource
space behavior in real time. As explained earlier today’s workflow and resource planning relies
on resource status and performance models, despite frequent component failures [93, 205]. Thus
resources are considered to be in one of two states, either “fully-operational” or “failed.” Realisti-
cally, the availability of resources can vary greatly based on failure of one or more critical services,
load on one or more resource components, recovery from a failure, etc. These variations manifest
as a loss in application performance that can result in increased application execution times or as
a complete failure that might require rescheduling. In addition, earlier studies show the variation
of application performance on a resource over multiple executions [98]. Thus it is often impossible
to predict accurately the exact running time of an application on a diverse set of resources. The
prediction problem gets further exacerbated as resources are made available through virtualization

and cloud computing. The advent of new technologies in recent years and the complexity of the

100

7. Performability Modeling 101

multi-level software stack makes the current day methodologies insufficient to make accurate de-
cisions. Thus we need methodologies in application middleware that not only handle failures but
also account for possible loss in Quality of Service (QoS) from resource availability variations in
any planning strategies. For this, a resource provider needs to provide an assured level of service

under a cost model even as there are performance and reliability variations in hardware.

Today’s grids are composed of a conceptual resource hierarchy (e.g., individual systems, data
systems and clusters) and a software hierarchy with a multiplicity of execution models (e.g., SPMD,
parameter sweep, workflow). To build a resilient environment one needs a multi-level strategy
that can detect and adapt to performance variations and failures at each level and across levels.
As an example, consider the previously discussed meteorological application (Chapter 2) with
constraints on execution time and accuracy due to weather prediction deadlines [54]. The inputs
to a typical workflow of this type are streaming sensor data that must be pre-processed and then
used to launch an ensemble of weather models. The model outputs are processed by a data min-
ing component that determines whether some ensemble set members must be repeated to realize
statistical bounds on prediction uncertainty. In this environment, both performance and reliability
guarantees (i.e., the critical workflow elements must complete and must do so within the given
time constraint) are essential. Thus the application and resource layer must interact and adjust
strategies to balance and manage user expectations as discussed in Chapter 5. In this chapter, we
propose and develop a performability model that enables workflow scheduling and planning to

account for dynamic resource behavior.

We use performability [116], as a composite measure of a grid’s performance and dependability
(i.e., a measure of the system’s performance in the event of failures) and present a qualitative model

to capture and analyze the effect of resource reliability on application performance. We propose a

7. Performability Modeling 102

model to analyze performability as a metric for workflow planning (Section 7.1). We discuss per-
formability modeling based workflow planning (scheduling and fault tolerance) in Section 7.2.1.
We present an experimental evaluation of performance on real applications with induced avail-
ability variations, and an analytical evaluation of parameters affecting performability (Section 7.3).
Subsequently in Chapters 9 and 10 we apply the performability modeling to workflow orchestra-

tion.

7.1 Degradaded Service Modeling

Grid systems are often able to survive the failure of one or more components and continue to
provide service, but with reduced performance. The behavior and status of systems with multiple
interacting components is typically captured using stochastic process modeling. J. Meyer intro-
duced the concept of performability [116] evaluation as a mechanism to combine performance and
availability analysis when considering resource behavior. In this context, performability is defined
as “the probability that a system reaches an accomplished level y over a utilization interval (0,t).”
Grid systems often have multiple hardware and software components or services that contribute
to system state. The probability of staying in a certain state with respect to transition rates between

states is used to quantify system performance and reliability.

Markov Reward Models (MRM) are typically used to model degradable systems and capture
joint performance and system reliability. A Markov reward model consists of a Markov chain that
describes a system'’s possible states and an associated reward function. By modeling the system as
an MRM, we associate reliability levels with states in the Markov chain. The reward rates corre-
spond to system performance in the different states allowing us to model the behavior and capture

the probability of the system delivering performance at different availability levels. If detailed

7. Performability Modeling 103

Figure 7.1: Resource Reliability Model. A Markov chain representing the five reliability states of
the machines and the transitions between the states represent the failure and repair rates.

monitoring data was available from systems, we can classify the current state of the system and

then use appropriate probabilities to determine its behavior during workflow execution.

We develop and describe the model for resource state reliability in Section 7.1.1 and apply re-
ward rates to the state based on application performance and cost, developing our performability

model in Section 7.1.2.

7.1.1 Resource State Reliability Model

In today’s systems, quantitative reliability metrics are used (e.g. mean time to failure (MTTEF),
mean time to repair (MTTR) and mean time between failures (MTBF = MTTF +MTTR.) These relia-
bility metrics are used for different system components, including storage, network and computing
resources and often guide fault tolerance strategies. We use the qualitative five point reliability scale

(described in Chapter 6) in conjunction with reliability metrics to assess system performability.

Resources can be in a variety of states based on the functioning of each component in the system
- hardware and software. Accurately capturing each state for changes in behavior can be a tedious
and complicated task. However, we seek the high-level system behavior in terms of delivered QoS.
Distributed resources exhibit the Markov property - the next system reliability level depends only
on the present state and is independent of previous states. For example, if a service resets from an
error, and is restored to an operational state it does not matter if it has failed at some earlier point.
Thus we define a Markov chain (Figure 7.1) representing the five reliability levels - High, Good,

Medium, Low, Poor and the complete failure state “Fail.” This model represents the reliability

7. Performability Modeling 104

states of a resource where each resource might be a composite object such as a cluster of nodes. In
this analysis, we classify the reliability levels based on the cumulative resource reliability level that
includes hardware and software components required for application execution. We use resource
failure (\) and repair (u1) rates that are inverses of the MTTF and MTTR respectively to model the

transition rates from a state.

This qualitative model helps characterize the system with a Markov chain that can be easily
modeled, avoiding the state space explosion problem, while capturing the salient aspects of system
behavior [77]. In our model, the transitions occur between adjacent failure states, i.e., a series of
failures will shift the system from the High to Good state and corresponding repairs will move
the system back to the higher reliability state. Such a Markov chain, where transitions only occur
between adjacent states (Figure 7.1), is defined as a birth-death process [154]. We define the Markov
chain with uniform failure () and repair rates (1) that are consistent with the qualitative nature
of the virtual grid system. These simplifying assumptions can be relaxed given more detailed

performance data and models of cluster, grid and cloud resources.

The transient analysis of the Markov chain gives the instantaneous reliability of the system (i.e.,
the probability that the system is working at time t, regardless of the number of times it may have
failed in the time (0,t)). For simplicity, we consider the steady state probability of occupancy in each
state - the likelihood that the resources are collectively in one of the states shown in Figure 7.1. The

steady state solution for a birth-death process is given by:

T = p" T, (7.1)

o = 1-— P (72)

7. Performability Modeling 105

where p is the failure-to-repair ratio (p = A/u) and n is the state identifier such that n=0,1, 2, 3,
4 represents “High”, “Good”, “Medium”, “Low”, “Poor” respectively. Thus 7 is the steady state
probability of being in the High reliability and 74 is the steady state probability of being in the Poor
state. Because resources are considered repairable, the system will be in an operational state if the
repair rate exceeds its failure rate, i.e., A < p or p < 1, else the system’s steady state would tend

towards complete failure. From equations (7.1) and (7.2), we see that the steady state probabilities

of being in the respective reliability states depend on the failure-to-repair ratio of the resources.

7.1.2 Performability Model

In this section, we extend the simple resource reliability model defined in the previous section
to create a Markov Reward Model (MRM) that includes system performance and cost enabling a
joint treatment of performance, cost and reliability. The MRM consists of a Markov chain shown in
Figure 7.1 and an associated reward function that represents system performance. For each state
i € S, r; represents the reward obtained for time spent in that state, measured either as reward

obtained per unit time or reward obtained on transition from a state.

To measure overall system performability, we must measure the quantum of work achievable in
a given interval or alternatively assess the rate the system can perform work, given the probabilities
of being in different states. We measure performability as the accumulated reward rate over a
specified time interval. If Z(t) is the system reward rate at time t, the expected instantaneous

reward rate is given by

E[Z(t)] = Zrimi(t) (7.3)

7. Performability Modeling 106

where ¢ € S and m;(t) is the probability of being in a particular state and r; is the corresponding

reward at time t.

However a resource might visit infinitely large number of states during execution, making it
important to measure the expected steady-state reward rate of a given machine, which can be ex-

pressed as

Combining these results (Equations 7.2 and 7.4) the performability of a set of resources depends

on the resources’ failure-to-repair ratio (reliability p) and the rewards associated (r;) with each state.

Performance. Let us assume that the application run time on a resource in High reliability state
is T time units. Earlier work has shown that the performance variation follows a normal distri-
bution [98]. Thus, we denote performance of the application in the other states as (T + n,z), (T' +
nox), (I'+nsz), (T+nax) units respectively. The parameters x, n1, ne, n3, n4 are performance degra-
dation factors used to capture the increase in the application’s execution time at lower reliability
levels. The increase in time in each state is given by n; * x. The parameter z is the constant degrada-
tion factor that is seen due to machine availability characteristics and is independent of the appli-
cation characteristics. The parameters n1,n2, n3, nsa captures the time increase experienced by the
application on the machine at degradation factor of x. The parameters n1, ns, n3, n4 have the unit of
time. In cyberinfrastructure deployments, the performance degradation factors will be determined
by historical information of the resource failure characteristics and benchmarking results of the ap-
plication on the resource. The reward rate indicates the performance level of the system within the

operation constraints (i.e. reliability level) of that state. Thus, we use the inverse of the time taken

7. Performability Modeling 107

by an application in a particular state to denote the reward level in the state. This enables us to

capture the performance associated with various reliability levels.

If an application is in the “High” state the amount of work completed in unit time would be
greater than the work completed in the “Fair” state. For a particular application running on a
specific machine, the reward rate is the inverse of the running time in the state. If a machine is in
the “Good” state throughout, the application would take (7T+n;x) time units to finish or 1/(T+nx)
work units would be completed per unit time. The expected reward rate is obtained by substituting

the performance reward rates in equation 7.4:

1
E[ZT] =—"70 + 277{@ (7.5)

The inverse of the steady-state reward rate is the projected application execution time on degrad-

able systems and is given by:

Tprojected =]-/E[ZT] (76)

Thus knowing the failure-to-repair ratio of a machine and the application’s behavior in different
reliability levels, we can predict the execution time of an application that accounts for the reliability

variations.

Cost Model. Today’s grid and cloud systems have different cost models associated with them.
On production grids (e.g., TeraGrid), users are allocated service units through an allocation review

process and service units are deducted from the quota for storage and processor usage. Systems

7. Performability Modeling 108

such as Amazon EC2 charge users for data transfers and the instance hours used on the machines.
Both systems provide fixed pricing models for a given machine to all end-users and complete fail-
ures are handled through a refund process. However, the scale of these systems require differen-
tiated pricing models that account for dynamic service levels during execution. Thus cost models
on degradable systems need to correspond to the system state. We assume that the cost-rate (i.e.
cost per unit time) for a system in the High reliability state is given by cy. Correspondingly the
cost in the “Good”, “Medium”, “Low” and “Poor” states are given by c1, c2, c3, ¢4 units. Thus the

expected steady-state cost rate can be given by:

where ¢ € S and 7; is the steady state probability of being in a particular state and ¢; is the corre-
sponding cost rate in that state. Thus the expected steady-state total cost for an application is given

by

TotalCost =

« E[Z¢] (7.8)

An important question that arises in degradable systems is how does a resource provider set its
pricing such that it accounts for the variability in the system while making the prices competitive.
A consumer will use resources in a degradable state only if the total cost incurred by the application

is equal or lower in the degradable state. Thus for a given application,

7. Performability Modeling 109

TotalCostpoor < TotalCostr,oy...

< TotalCostgign

where TotalCostsiqte is the total cost incurred by application when a resource is in the given state
during execution. Let us consider an example application with execution time T in the High relia-
bility state. At a cost-rate of ¢y it would incur a total cost of T" * ¢y in the High reliability state. The
same application would take (T" + n;x) in the Good reliability state and hence cost (T' + nyz) * cy.

Thus for the pricing to be competitive, the Good reliability state must be priced as shown:

TotalCostgood < TotalCostgign

(T+nyz)*xcy <T*co

tFact il
c1 = costFactor ————
! T +nix
Thus, more generally the pricing in a given state is given by:
, * Co
¢i = costDegradation; ———— 7.9
i g T (7.9)

where cost Degradation; is the cost factor in state i. At cost Degradation; = 1 the total cost to run an
application in state 7 is the same as the cost in the High reliability state even though the application

might take longer to complete. A costDegradation; < 1 gives the user an incentive to use the

7. Performability Modeling 110

Parameter Machines
A B C D
Application running | 30 min 30 min 25 min 15 min
time T
Failure-to-repair rate p 0.1 0.4 0.4 0.6
Perform. x=2 0.033 0.032 0.038 0.055
Perform. x=100 0.031 0.0224 0.027 0.029
| Effective cost rate | 0.9 | 0.93 | 0.93 | 0.82 |
Total Cost at x=2 0.50 0.49 0.48 0.25
Total Cost at x=100 0.54 0.69 0.58 0.46

Table 7.1: Performability Example. Table shows performability and cost for different performance
model numbers and reliability characteristics where ny = 1,no =2,n3 =3,n4 =4

resources in degraded states. In deployments, a resource provider will use benchmark applications

to measure the degraded performance in the different system states to set the appropriate pricing.

7.1.3 An Example

As an example, consider an application with different run times on different machines, as shown
in Table 1. We use example values for the failure-to-repair-rate (p) and performance degradation
factors (z,n1,n2, ng, nq) to study the variation in expected steady state reward rates. If we consid-
ered only performance, we would pick machine D as it completes the application most quickly. If
we were to select a resource based on reliability, we would pick machine A, the one with the lowest

failure-to-repair ratio.

Now let us calculate the performability for the application running on machine D at a degrada-

tion factor of x = 2 where I' = 15, p = 0.6 and ny = 1,12 = 2, n3 = 3, n4 = 4 using equation 7.4

7. Performability Modeling 111

E[Z]ZE’HTQ
=7ro*x T+ T kT + Tk MTo 4+ T3 kW3 4+ T4 * Ty

—lia-p+ p°x(1—p)

T TH+nxx
L 1
TH+ngxx

ARSI e

xp % (1—p) + xptx(1-p)

THngxx
1 1
=15+ (1-00) EEEET P

5 % 0.6 % (1 —0.6)

1 2
—_ . 1-0.
+15+1*2 * (0.6)° % (1 —0.6)

1 3

1

_— 4 —
gt (00)+ (1-06)

=0.027 + 0.014 + 0.008 + 0.004 + 0.002

=0.055

For a low performance degradation factor (x=2), performance outweighs the importance of
the reliability, making machine D superior. However, at higher performance degradation factor

(x=100), machine A is a better choice than machine D.

Similarly we assign the cost rates in the different states to be ¢ = 1,¢1 = 0.9,¢2 = 0.8,¢3 =
0.7,c4 = 0.6 units/hr. We calculate the steady-state effective cost rate (using equation 7.7) that
assigns a basic rate for the resource accounting for its reliability characteristics. We see that machine
A has the highest cost rate whereas machine D has the lowest cost rate. Using the cost-rate and the
projected application running time we finally calculate the cost for the given application on the
given resources. At lower degradation factor, the cost on machine D is significantly less than the
cost on the other machines. However as the degradation factor increases, the cost increases since the
applications are projected to take longer on the resource. At higher degradation factor of # = 100

the cost of application running on machine D is still the cheapest but the cost difference is minimal.

7. Performability Modeling 112

Thus, the combined analysis of performance and reliability and cost through the performability

metric helps resource selection decisions by considering multiple dimensions of resource behavior.

7.2 Workflow Planning for Performability

Complex scientific applications in distributed environments are composed as workflows where
each step is a parallel or sequential application with a specific programming model. These com-
plex applications are often run over a distributed set of resources that are selected based on the
performance of the applications on a resource and associated data movement costs [20]. Moreover,
workflows in domains such as mesoscale meteorology [54] and storm surge modeling [138] are time
sensitive and often require additional fault tolerance strategies to meet deadlines. Time sensitive
workflows are dependent on both high performance and reliability, making performability anal-
ysis critical. The first stage in workflow planning is a resource selection based on performability
characteristics and programming models. The second stage includes resource mapping to reduce
the makespan or cumulative workflow execution time and applying fault tolerance strategies to
increase the reliability. In this section, we discuss the implications of performability analysis on

workflow scheduling and fault tolerance strategies in greater detail.

7.2.1 Programming Models

Grid applications have different programming models that affect resource selection and fault
tolerance strategies (illustrated in Chapter 3). The effective system performability is the minimum
performability of its individual components. For example, a Master-Worker programming model
needs higher reliability for the master and the communication network connecting the master and

worker. Typically in the master-worker programming model, the masters are longer lived than the

7. Performability Modeling 113

workers. The performability of the master can be considered to be the system performability for a

master-worker application.

E(]y[,w) = Minimum (EMa,stem Eworkers, ENetwork) = EMaster (710)

when TMa,ster >> TWorkers and TMa,ster >> TNetwork and TMa,ster and TWm’k’ers is the running
time of the master and workers respectively, and Tnetwork is the effective data transfer time on the

network links.

The Divide and Conquer model is an extended case of the master-worker paradigm where each
subtasks might spawn additional tasks. Typically, the higher the task is in the tree, the longer
the running time and the more critical is its performability. Hence extending the model from the
master-worker discussion, we can see that the performability of this programming model will be

the performability of the head of the chain.

In an SPMD computation, multiple sub-components operate on different pieces of data. The
subcomponents communicate with each other requiring the entire SPMD computation to be sched-
uled on resources that have similar performability characteristics. The performability of the SPMD

computation is: E(spnpy = Minimum(Esystemcomponents)-

7.2.2 Workflow scheduling

Heuristic techniques are typically used for workflow-level planning and scheduling [205]. Weights
are assigned to the nodes of the graph representing the computational needs of the task on partic-

ular resources. The edges are assigned values representing the communication (i.e. data transfer

7. Performability Modeling 114

needs) between the adjacent tasks. By applying performability analysis at two levels - the compu-
tational resources and the network - we can obtain the application’s overall execution time given
the failure levels of resources it might encounter. This model can be expanded to model storage
and other resources as well. Specifically, using equations (7.1), (7.2) and (7.4) we can obtain the
expected accumulated reward rate for an application on the given resources. The projected appli-
cation running time that accounts for the performance variations during resource failures is given

by:

T;m’oje(:ted = 1/E[Z](computation) (711)

where T(projectea) is the projected application running time and E[Z](computation) is the performa-

bility of the computational elements.

In systems where application performance is unaffected by reliability levels, systems can be
considered to be perfect (i.e., p = 0 and thus from equation(7.2), the probability of being in the
“High” state is one). Thus, the performability for an application would be 1/T and the projected
application running time would be T. Note that these are the performance estimates used in current
day workflow scheduling (i.e, no failures). Our model enhances existing mechanisms by providing
a more detailed estimate of the running time capturing performance variations across reliability

levels.

Next, we construct a Markov Reward model for the network availability where the reward rates
are the inverse of the data transfer time at different availability and reliability levels. The failure-
and-repair rates would represent the availability and reliability of the network links between sites.

In this case, the projected data transfer time in presence of various reliability levels would be the

7. Performability Modeling 115

inverse of the network performability.

Tprojected—da,ta = 1/E[Z](communication) (712)

where Ty ojected—data 1S the projected data transfer time based on the performability analysis, and

E[Z](communication) is the network performability.

Once these values are determined, traditional scheduling algorithms [188] can be applied to the
workflows and the schedule with minimum makespan can be selected for the workflow execution

plan (more details in Chapter 9).

7.2.3 Fault Tolerance Strategies

As discussed earlier, some workflows such as weather forecasting are time sensitive and must
meet deadlines for the forecast to be useful. In these cases, users often specify a deadline for work-
flow completion. When considering the makespan, it is possible to judge whether this deadline
can be met by using the projected workflow completion time. Often the composite system reliabil-
ity can be enhanced by applying additional fault tolerance strategies. Two commonly used fault
tolerance strategies are replication and checkpoint-restart; each with different trade-offs. Given
unlimited resources, all components could be replicated to increase effective reliability without
affecting performance. In practice, users will incur costs on application runs (e.g. service units
spent in TeraGrid or cost of resource time on Amazon EC2), necessitating a balance between per-
formance and reliability. On the other hand, checkpoint-restart guarantees a very high level of
reliability (probability of successful completion is almost 1) but at the cost of performance degra-
dation due to checkpoint overheads. We use a simple cost-model and the performability analysis

presented earlier to determine if a fault tolerance strategy might improve system performability for

7. Performability Modeling 116

an application

Consider the cost of replication to be the lost time on the resources that could have been used
by another application. Further assume that an application is replicated on a resource with similar

performability. The cost of replication (Cr) can be represented as:

Cr = Tprojected *n (713)

where n is the number of replicas and T}y qjeccteq is the application running time from the per-

formability analysis. Similarly, the cost of checkpoint-restart (Ccr) is represented as

CCR = Ccheckpoint + Crestm’t—on—fmllu,re (714)

C(:he(:k,point = Cper—checkpoint * Tprojected/ﬂnterval (715)

where T}, ojected is the application running time from the performability analysis, and Tinterval Tep-
resents the optimal checkpoint interval to meet the performability level. Replication will be the

preferred fault-tolerance strategy if Cr < Ccp.

We present a more detailed analysis of the optimal fault tolerance strategy in Section 7.3 for
different application running times. Once the fault tolerance strategy is determined performability
modeling can be used to recalculate the projected application running time from the model above.
Specifically, these values will then be used to estimate task completion times during each iteration

of the workflow scheduling algorithm as shown below.

Case 1: Checkpoint-restart. In this case T jected— rr Will be the new expected running time (p = 1)

calculated as TprojectedfFT = Tprojected + Ccheckpoint + Crestartfonffailure-

7. Performability Modeling 117

Case 2: Replication. In replication, if the resources that are used for replication are similar, the
Tprojected—Fr 1S Obtained by the performability analysis described (where p = 1 — w(1 — p;) and

i€1l,n).

7.3 Evaluation

It is critical to understand both the application’s characteristics and resource behavior when
considering a resource for scheduling or making fault tolerance decisions. We present results col-
lected from the execution of a scientific application on TeraGrid that highlight the variability in
application running time in Section 7.3.1. In Section 7.3.2, we present experimental data from a set
of meteorological and ocean modeling applications [138] that are subjected to simulated interfer-
ences to degrade resource reliability, with consequent changes in observed performance. The ex-
perimental data is then provided as input to our performability model and analyzed with respect to
varying failure-to-repair ratios. We study the effect of application running time and performance
degradation factor(x, n;) on application performability at different failure-to-repair ratios in Sec-
tion 7.3.3. We evaluate the various parameters affecting the fault tolerance strategy for applications

in Section 7.3 .4.

7.3.1 Application Performance Variability

Figure 7.2 shows histograms of application running times of WRF (a weather prediction code,
see Table 7.2) on two TeraGrid NCSA clusters observed over two weeks. Mercury is an IBM IA-64
cluster with a mixture of 1.3GHz and 1.5GHz Intel Itanium 2 processors and Tungsten is a collection
of Dell PowerEdge 1750 servers with Intel Xeon 3.2GHz processors. The data presented consists

of 132 runs on Mercury and 77 runs on Tungsten. On mercury a large number of application runs

7. Performability Modeling

118

Name

Application Description

arps2wr]

f Generates initial and lateral
boundary conditions for WRE.

wrfstati

r Processes static data sets such as
terrain, vegetation, soil texture, etc
that serves as input for a meteoro-
logical model WRF.

adcirc

Finite element hydrodynamic
model for storm surge modeling
(run on 64 processors)

wrf

Mesoscale numerical weather pre-
diction system (run on 128 proces-
sors)

Table 7.2: Application Descriptions.

100 T T T T T

The table provides a bried description of the application codes
from weather and ocean modeling that we use for our experiments.

90
80 -
70 -
60
50
40

Number of observations

30
20

Sl

0 . 1

1
Number of observations

90 100 110 120 130

Application running time (minutes)

(@

A l)

= —" 1 O @ 1 1 1 1
140
Application running time (minutes)

140 150 100 110 120 130

(b)

150

160

170

180

190

200

Figure 7.2: Application Performance Variation. Figure shows the running time variability observed
for WRF over TeraGrid machines (a) Mercury (b) Tungsten.

7. Performability Modeling 119

1000 T T T T T T T T 5500 T T T T T T T T
— arps2wrf-clusterl ---=-- — adcirc ——
K 900 arps2wrf-cluster0 —»— 7 ¥ 5000 | wrf e
5 wrfstatic-clusterl ----m--- / 5
2 800 - wrfstatic-cluster0 --& - 7| g 4500 By
e 700 | . e]
£ m £ 4000
@ 600 SO o
£ - E 3500
> 500 o F =
E 200 - & E 3000
c B .. g8 c
3 BB G B a8 B 3 2500
5 300 oo e 5
2 e S 2
g 2op e g %
[e) - bt S -
A 100 e bbbt & 1500 gt
0 1 1 1 1 1 1 1 1 1000 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 0 01 02 03 04 05 06 07 08 09
p(Ratio of failure rate to repair rate) p(Ratio of failure rate to repair rate)

(@) (b)
Figure 7.3: Effects of Failure Levels on Applications. The projected application running time for

meteorological and ocean modeling applications (a) Short running - arps2wrf, wrfstatic (b) Long
running - wrf, adcirc.

take around 103 minutes. However 27% of observations fall outside this range. On Tungsten most
run times are distributed from 150 to 170 minutes. This variation of 20 minutes can significantly
impact workflow planning strategies. Workflow scheduling needs to account for this variation

while mapping applications to resources especially for deadline-sensitive applications.

7.3.2 Effect of Failure Levels on Applications

In this section, we present experimental data on application running times induced with sim-
ulated failure levels. Table 2 provides brief application descriptions, which consist of a mix of
single-node preprocessing applications and message-passing-interface (MPI) multiprocessor jobs.
We subject the applications to simulated availability stress tests that affect memory, cpu and net-
work bandwidth (for the MPI jobs). A matrix multiplication, a program blocking memory and Test
TCP (TTCP) benchmarking tool [180] were run individually and then in combination during ap-
plication execution. Data for single node jobs were collected on a 35 node Linux cluster with Intel
Xeon processors running at 3.2 GHz (cluster 0) and on a 70 node Dell PowerEdge cluster, where

each node has 2 x 2.66Ghz Intel Woodcrest 5150 (dual core) processors (cluster 1). Data for wrf and

7. Performability Modeling 120

adcirc was collected on the Dell PowerEdge cluster (cluster 1).

The application running times at different failure levels are then substituted in our model (Sec-
tion 7.1) to study the performability under different failure-to-repair rates. In this experiment, we
make a assumption that considers performance levels in the Good and Medium levels to be iden-
tical for MPI jobs and Poor and Low states to be identical for the single-node and MPI jobs. This
simplifying assumption is appropriate since all systems might not exhibit all failure states and cor-
responding performance fluctuations. Figure 7.3(a) shows the projected application running time
for arps2wrf and wrfstatic on both clusters. Both applications perform better on cluster 1, how-
ever the execution time of wrfstatic on cluster] is affected more than on cluster0 when subjected
to failures. Similarly arps2wrf on cluster0 is affected at higher values of failure-to-repair rate. We
compare wrf and adcirc (Figure 7.3(b)) which have similar running time (on different number of
processors), as the failure-to-repair rates increase we see that wrf is more affected than adcirc. Thus
we see that different failures modes and underlying hardware characteristics have an impact on

applications.

7.3.3 Factors affecting Performability

In this section, we consider more general cases of application running time to explore the pa-
rameter space. Figure 7.4 shows the expected steady state reward rate with varying values of
failure-to-repair rates for performance degradation factors x=2 and x=70 for a range of application
running times (20 -140 minutes), that are typical of grid applications. At x=2 (Figure 7.4(a)), and for
application running time of 20 minutes we see that the performability does not change for smaller
values of p but decreases significantly for large values of p. At x=70 (Figure 7.4(b)), the performa-
bility decreases almost linearly for application running time of 20 minutes. As the application

running time increases, the expected reward rate stays constant for larger values of p. Workflows

7. Performability Modeling 121

0.05 — 0.05 —
20 mins —+— 20 mins —+—
% 40 mins ---%--- % 40 MiNS ==X
= 60 mins - %= = 60 mins - -%:-
“Eu 0.04 - 0 mins - -&- | “Eu 0.04 - 80 mins --&-
= i = 100 mins ---m-:-
2 [120 mins ---e---
o) L o) L 140 ming e
g 0.03 g 0.03
l{; M) e 2
g ol 0 e g
§ oo02f .., g g
17} | T e o 17}
el el
2 -8 2
o 0.01 ®-- S)
o o
> >
]] ;
O Il Il Il 4 O Il Il Il Il
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
p(Ratio of failure rate to repair rate) p(Ratio of failure rate to repair rate)

Figure 7.4: Study of Performance with Availability Variations. The expected steady-state reward
rate for different application run times with performance degradation factors n; = 1,no = 2,n3 =
3,n4 =4 (a) x =2 and (b) x = 70.

T T T
N1=1,0,=1,n3=1,n4=1 -t
£ 002 N1=1,n,=2,n3=3,n,=4 —se— |
- N7=1,n,=3,15=9,n,=27 ---2---
g ~ n;=100,n,=110,n3=120,n4,=130 ----@--
® 0015 =&/, e i
o a.,
g g U
€ 001f] NG |
g = =
k 11
g 0005 | ;.. i
[
Q
X
w
0 L L L L -
0 0.2 0.4 0.6 0.8 1

p(Ratio of failure rate to repair rate)

Figure 7.5: Study of Performance Degration Factors on an Application. The expected steady-state
reward rate for different n; values for an application with running time of 60 minutes and « = 30.

7. Performability Modeling 122

90 T T T T T T T
Replication cost(n=1)
80 | Replication cost(n=2
Checkpoint restart cost(interval=0.5)
70+ Checkpoint restart cost(interval=2) - X

Checkpoint restart cost(interval=5) - =-- e

Overhead or cost(mins)

0 5 10 15 20 25 30 35 40
Application running time(mins)

Figure 7.6: Cost analysis of Fault Tolerance strategies. Figure shows a comparison of costs

with replication and checkpoint-restart strategy for different application running times where
Cperfcheckpoint =1land Crestartfonffailure is 3.

typically consist of a mix of jobs with different running times. From this analysis we see that longer
running components might be less sensitive to p allowing more scheduling alternatives than the
more sensitive components (low running times) that might need to be run on specific machines. A
workflow algorithm in the future might account for these characteristics when optimizing resource
choices for workflow tasks. This can help minimize costs in workflow planning. Although generic
metrics like MTTF and MTTR can indicate the general suitability of resources, it is critical to con-
sider the application’s running time in making resource selection decisions. At small values of n;
the performability decreases linearly. At higher values of n; the decrease is more rapid as resource
reliability decreases (Figure 7.5). For large values of n; (i.e. performance difference between the

High and other states is significant) the performability decreases linearly.

7. Performability Modeling 123

7.3.4 Fault Tolerance Strategies

Fault tolerance strategies depend on application and resource characteristics. To determine a
fault tolerance strategy associated costs for each technique must be considered. The most com-
monly used fault tolerance strategies are replication and checkpoint-restart. From our earlier anal-
ysis, the system will replicate if the cost of replication is lower than the cost of checkpoint-restart:

Cgr < Ccrg.

Figure 7.6 shows the cost of fault tolerance strategies for different replication factors and check-
point intervals. Replication is more cost effective for smaller application running times. If we
checkpoint too frequently, the cost of checkpoint-restart increases, as expected. If the checkpoint
interval is very low (i.e, 0.5 minutes) the cost of checkpoint-restart is significantly higher and repli-
cating twice is more cost-effective. Thus, we can apply a fault tolerance strategy and select appro-
priate values for the replication factor and checkpoint-interval to minimize cost while increasing
performability. If the application is very critical and the cost of replication and checkpoint-restart

is immaterial both strategies might also be used simultaneously

7.4 Summary

In this chapter, we presented a framework that provides a basis to evaluate the performance
of distributed resources in the presence of failures. We explore the trade-offs of performability on
resource selection and fault tolerance strategies appropriate for different programming models of
scientific applications. The joint treatment of performance and reliability using performability anal-
ysis through Markov Models lays the foundation for next generation dynamic workflow schedul-
ing and fault tolerance strategies required in grid and cloud environments. The performability

model provides a generic framework that allows plug-and-play of resource behavior to study the

7. Performability Modeling 124

variation in QoS and its effect on performability guarantees to the application. We explore one such
approach in using the performability model for workflow scheduling in Chapter 9. As more dis-
tributed resource deployments make available underlying resource reliability information, work-
flow planning components will be able to use that information with application characteristics for

appropriate workflow planning and resource management decisions.

8

Resource Layer

Grid and cloud computing systems have evolved to provide different abstractions at the re-
source layer. We compared and contrasted the different resource models and their interfaces and
capabilities in Chapter 3. Each system provides different types of access, cost modeling and Quality
of Service(QoS) capabilities. The resource layer is responsible for interacting with these different
systems to support mechanisms that can balance the needs of both resource providers and con-

sumers.

Resource provider sites should have autonomy to control how much of each resource type they
allocate to each consumer at any given time. Resource consumers need predictable service quality
(performance isolation and reliability expectation) even in the presence of competition for shared
resources. Service quality is especially crucial for urgent computing applications such as weather

prediction and disaster response.

In this chapter, we explore the resource layer abstractions, interfaces and interactions across

different resource systems. Specifically,
e We propose a hosting model in which independent, self-contained middleware deployments

125

8. Resource Layer 126

run within isolated containers on shared resource provider sites. Sites and hosted environ-
ments interact via an underlying resource control plane to manage a dynamic binding of
computational resources to containers. Central to the hosting model is GROC (Grid Resource
Oversight Coordinator). GROC is an implementation of resource coordinator that manages
the dynamic containers (i.e., instances of slots) for the end user. The resource coordinator
interacts with the resource mechanisms at the sites to query, procure a dynamic binding of
resources. Our implementation is built with Shirako, a leasing framework for cluster sites
and the hosted middleware is Globus middleware. However, the design and architecture are

more widely applicable to cloud sites.

e We also propose the lowest-common-denominator probabilistic Quality of Service (QoS) ab-
stractions atop grid and cloud services that enables providers to quantify the variation in
resource availability in probabilistic measures. Users of both grid and cloud environments
cannot expect strong QoS assurances since they experience reliability variations due to hard-
ware and software failures and availability fluctuations from shared user environments. The
probabilistic abstractions allows resource providers to realistically quantify the level of ser-

vice.

The proposed resource layer abstractions in this chapter enables higher level tools to assess re-
source status and implement higher level policies and techniques to meet user needs (more details

in Chapter 9).

The rest of this chapter is organized as follows. We discuss the dimensions to resource control
policy in grid and cloud systems. We present the container based hosting model in Section 8.2 and
discuss the resource co-ordinator’s functions and roles in greater detail in Section 8.3. We discuss
our probabilistic QoS model in greater detail in Section 8.4.1. Finally we evaluate the container

hosting model and the probabilistic resource acquisition mechanisms in Section 8.5.

8. Resource Layer 127

8.1 Resource Control Policy

In grid systems, user communities, or virtual organizations (VOs), generate streams of jobs to
execute on shared resource sites, e.g., cluster farms. Similarly, cloud clients or SaaS (Software as
a Service) providers generate streams of resource requests. Cluster sites and data centers provide
computational resources to these virtual organizations. We refer to the entities that generate the
jobs as application managers. The term denotes a domain-specific entry point to a set of distributed
resources; VO users may submit jobs through a portal framework or gateway, a workflow manager,
or a simple script interface. Figure 8.1(a) depicts an example of a standard Globus grid with two
VOs executing on two sites. A VO’s application manager submits each task to a “gatekeeper” at
one of the sites, which validates it and passes it to a local batch scheduling service for execution.

There are four key aspects to resource control policy in such a system:

o Resource allocation to VOs. The sites control their resources and determine how to allocate
them to serve the needs of the competing user communities. A site may assign different

shares or priorities to contending VOs, and/or may hold resources in reserve for local users.

o Resource control within VOs. VOs determine the rights and powers of their users with respect

to the resources allocated to the VO.

o Task routing. The application managers for each VO determine the routing of tasks to sites for

timely and efficient execution.
e Resource recruitment. Entities acting on behalf of the VOs negotiate with provider sites for

resources to serve the VO's users.

Grid sites such as TeraGrid and Open Science Grid implement their own resource allocation poli-

cies as job-level policies within the batch schedulers in current practice in grid systems. A scheduler

8. Resource Layer 128

VO jobs

\

(a) (b)

Figure 8.1: Two Architectural Alternatives for Serving Multiple User Communities, or VOs. In
(a), the VOs’ application manager (AM) submit jobs through a common gatekeeper at each site;
job scheduling middleware enforces the policies for resource sharing across VOs. In (b), each VO
runs a private grid within isolated workspaces at each site. Isolation is enforced by a foundational
resource control plane. Each VO grid runs a coordinator (GROC) that controls its middleware and
interacts with the control plane to lease resources for its workspaces.

may give higher priority to jobs from specific user identities or VOs, may export different queues
for different job classes, and may support job reservations. Resource recruitment is based primarily
on reciprocal and social agreements requiring human intervention; a recent example is the notion
of right-of-way tokens in the SPRUCE [14] gateway extensions for urgent computing. Most cloud
deployments have static resource allocation policies. Currently, Amazon EC2 allows users to reg-
ister on the website and access upto 20 machine instances. Additional instance requests must be
pre-approved through out-of-band communication. Many current deployments also rely on ad hoc
routing of tasks to grid sites, given the current lack of standard components to coordinate task rout-
ing. However for next-generation dynamic application environments it is critical that the software

stack has mechanisms to represent and enforce these four dimensions of resource control.

8. Resource Layer 129

8.2 Container Hosting Model

Figure 8.1(b) depicts the architectural model we propose for hosted grids with container-level
resource control. Each site instantiates a logical container for all software associated with its host-
ing of a given VO. The container encapsulates a complete isolated computing environment or
workspace [88] for the VO grid’s point-of-presence at the site, and should not be confused with
the individual JVMs that run Java components at the site. Each VO grid runs a separate batch task
service within its workspace. The site implements resource control by binding resources to con-
tainers; the containers provide isolation, so each instance of the batch scheduler only has access to
the resources bound to its container, and not other resources at the site. Condor-G “gliding-in” [67]
provides similar mechanisms to instantiate appropriate Condor services in Globus based batch
queue systems. Similar mechanisms are also available in the Virtual Grid Execution System (vgES)
to enable slots on grid and cloud systems (discussed in Chapters 3 and 10). However Condor-G
and vgES does not address dynamic container resizing that is addressed in the container model we

propose in this chapter.

Thus we propose integrating resource control functions at two different levels of abstraction:
jobs and containers. Jobs —individual independent tasks or tasks in a workflow—are the basic unit
of work for high-throughput computing, so middleware systems for clusters and grids focus on job
management as the basis for resource control. Our premise is that the architecture should also in-
corporate resource control functions at the level of the logical context or “container” within which
the jobs and the middleware services run. Advances in virtualization technologies—including
but not limited to virtual machines—create new opportunities to strengthen container abstractions
as a basis for resource control and for isolation and customization of hosted computing environ-

ments [33, 83, 88, 172, 173].

8. Resource Layer 130

In essence, in our container model we propose a “Grid” comprising a set of autonomous re-

source provider sites hosting a collection of independent “grids”:

e Each grid serves one or more communities; we speak as if a grid serves a single VO, but our

approach does not constrain how a hosted grid shares its resources among its users.

e Each grid runs a private instance of its selected middleware to coordinate sharing of the data

and computing resources available to its user community.

e Each grid runs within a logically distributed container that encapsulates its workspaces and

is bound to a dynamic “slice” of the Grid resources.

In this chapter, we show how hosted grids can negotiate with the resource control plane to
procure resources across grid sites in response to changing demand. We present the design and
implementation of a prototype system based on the Shirako [83] toolkit for secure resource leasing
from federated resource provider sites. Cluster sites are managed with Cluster-on-Demand [33]
and Xen virtual machines [13]; the hosted grid software is based on the Globus Toolkit (GT4) [58].
Within this supporting infrastructure, we explore coordinated mechanisms for programmatic, au-

tomatic, service-oriented resource adaptation for grid environments.

8.2.1 Resource Coordinator

While the sites control how they assign their resources to each hosted grid, the grids control the
other three policies internally. We propose that each hosted grid include a coordinating manager,

which we will call the GROC—a loose acronym for Grid Resource Oversight Coordinator.! The

IThe novelist Robert Heinlein introduced the verb grok meaning roughly “to understand completely”. The verb
“groak” [27] originally was used to refer to watching people silently while they eat, hoping they will ask you to join them. Both
meanings have significance here. The name GROC emphasizes that each hosted grid has a locus of resource policy that op-
erates with a full understanding of both the resources available to the grid and the grid’s demands on its resources. GROC
also actively watches the resources and can opportunistically procure them.

8. Resource Layer 131

GROC performs two interrelated functions, which are explained in detail in Section 8.3:

e The GROC is responsible for advising application managers on the routing of tasks to sites. In

this service brokering role the GROC can be called a metascheduler or superscheduler.

e The GROC monitors the load and status of its sites (points of presence), and negotiates with
providers to grow or shrink its resource holdings. It may resize the set of batch worker nodes
at one or more sites, set up new grid sites on resources leased from new providers, or tear

down a site and release its resources.

The GROC thus serves as the interface for a VO application manager to manage and configure its
resource pool, and may embody policies specific to its application group. Crucially, our approach
requires no changes to the grid middleware itself. Our prototype GROC is a service built atop the
Shirako and Globus toolkits and it is the sole point of interaction with the underlying resource

control plane.

8.2.2 Resource Control Plane

The GROC uses programmatic service interfaces at the container-level resource control plane
to acquire resources, monitor their status, and adapt to the dynamics of resource competition or
changing demand. The control plane is based on the SHARP [68] leasing abstractions as imple-
mented in the Shirako toolkit [83]. Each lease represents a contract for a specified quantity of typed
resources for some time interval (term). Each resource provider runs a local resource manager called
Cluster-on-Demand (COD [33]), and exports a service to lease virtual clusters from a shared server
cluster. Each virtual cluster comprises a dynamic set of nodes and associated resources assigned

to some guest (e.g., a VO grid) hosted at the site. COD provides basic services for booting and

8. Resource Layer 132

imaging, naming and addressing, and binding storage volumes and user accounts on a per-guest

basis.

The GROC interacts with the site to configure its virtual clusters and integrate them into the
VO'’s grid (Section 8.3.4). When the lease expires, the grid vacates the resource, making it available
to other consumers. The site defines local policies to arbitrate requests for resources from multiple
hosted grids. In our prototype the leased virtual clusters have an assurance of performance iso-
lation: the nodes are either physical servers or Xen [13] virtual machines with assigned shares of
node resources. In our implementation we use Xen VMs because they boot faster and more reliably

than physical servers, but the concept applies equally to physical servers.

8.2.3 Separation of Concerns

While the hosted VOs and their grid middleware retain their control over job management, the
GROC managers interact with the resource control plane to drive the assignment of resources to
VOs. The assignment emerges from the interaction of GROC policies for requesting resources and
the resource provider policies for arbitrating those resource demands. In effect, the architecture
treats the grid nodes and their operating systems as managed entities. Provider sites allocate re-
sources to workspace containers without concern for the details of the middleware, applications,

or user identities operating within each workspace isolation boundary.

Grid hosting with container-level management is particularly important as the grid evolves
toward a stronger separation between resource providers and consumers. TeraGrid and Open Sci-
ence Grid are examples of the growth of large infrastructure providers in the academic community.
A similar trend has been observed in industry from cloud offerings through Amazon, Google, Mi-
crosoft, etc. They signal a shift from a traditional emphasis on reciprocal peer-to-peer resource

sharing within VOs to a new emergence of resource providers that serve computational resources

8. Resource Layer 133

to multiple competing user communities or VOs. Containment and container-level management
also enable resource providers to serve more diverse needs of their VOs. A resource provider site

can host different grid stacks or other operating software environments concurrently.

Our approach assumes that the grid middleware can adapt to a dynamically changing set of
worker nodes at the sites. In fact, adaptation is always required in a dynamic world: compute
servers may fail or retire, and provider sites deploy new servers in response to bursts of demand or
funding. With a container based hosting model, grids and clouds may grow dynamically to use ad-
ditional resources as they become available. One limitation is that batch services often do not have
adequate support to checkpoint or reschedule nodes when worker nodes fail or shutdown. Check-
pointing, replication and migration continue to be active research topics, and these capabilities are
increasingly crucial for long-running jobs in a dynamic world. We investigated the tradeoffs in-
volved with checkpoint-restart and replication for applications in dynamic resource environments
that can be applied to long jobs running in Chapter 7. These principles are applicable to jobs run-
ning within a container. Further investigation of these topics during runtime execution is outside

the scope of this work.

8.3 GROC

We present the design and implementation of a prototype system that coordinates dynamic
resource leasing and task routing, based on the grid hosting architecture outlined above. Our pro-
totype uses the standard Globus Toolkit (GT4) for resource management within each hosted grid:
job management, resource discovery, identity management and authorization, and file transfer.
Dynamic resource leasing is based on Shirako, a service-oriented toolkit for constructing SHARP

resource managers and COD cluster sites [83].

8. Resource Layer 134

file transfer

job submission

Torque/Maui
meA;/onbiog,

site status
inquiry

metascheduler

Shirako
service manager

Figure 8.2: GROC Components. Overview of components for a GROC managing a VO grid hosted
on virtual clusters leased from multiple cluster sites. The application manager interacts with
Globus services, instantiated and managed by the GROC, for job and data management.

Figure 8.2 illustrates the interactions among the most important components within a hosted

grid, as implemented or used in the prototype.

e The nucleus of the hosted grid is the GROC, which orchestrates task flow and resource leasing.
The GROC is the point of contact between the Globus grid and the Shirako resource control

plane.

e The application managers (e.g., portals) control the flow of incoming job requests. They con-

sult the GROC for task routing hints (Section 8.3.2), then submit the tasks to selected sites.

o A Globus Resource Allocation Manager (GRAM) runs on a master node (head node) of a virtual
cluster at each provider site, acting as a gatekeeper to accept and control tasks submitted for

execution at the site.

o The application managers interact with a secure staging service on each head node to stage

data as needed for tasks routed to each site, using Reliable File Transfer (RFT) and Grid File

8. Resource Layer 135

Transfer Protocol (GridFTP).

e When a task is validated and ready for execution, GRAM passes it to Torque, an open-source

batch task service incorporating the Maui job scheduler.

e The GROC receives a stream of site status metrics as a feedback signal to drive its resource re-
quests (Section 8.3.1). Each site exposes its status through a Globus Monitoring and Discovery

Service (MDS) endpoint.

e The GROC acts as a Shirako service manager to lease resources on behalf of the VO; in this
way, the GROC controls the population of worker nodes bound to the hosted grid’s batch task
service pools (Section 8.3.3). The GROC seamlessly integrates new worker nodes into its grid

(Section 8.3.4) from each site’s free pool.

The following subsections discuss the relevant aspects of these components and their interac-

tions in more detail.

8.3.1 Site Monitoring

In our prototype, the GROC acts as a client of WS-MDS (a web service implementation of MDS in
GT4) to obtain resource status at each site, including the number of free nodes and the task queue
length for each batch pool. The WS-GRAM publishes Torque scheduler information (number of
worker nodes, etc.) through the MDS aggregator framework using the Grid Laboratory Uniform
Environment (GLUE) schema. MDS sites may also publish information to upstream MDS aggrega-

tors; in this case, the GROC can obtain the status in bulk from the aggregators.

The GROC queries the MDS periodically at a rate defined by the MDS poll interval. The poll

interval is a tradeoff between responsiveness and overhead. We use a static poll interval of 600

8. Resource Layer 136

ms for our experiments. The results of the site poll are incorporated immediately into the task
routing heuristics. A simple extension would use MDS triggers to reduce the polling, but it is not a

significant source of overhead at the scale of our implementation.

8.3.2 Task Routing

A key function of the GROC is to make task routing recommendations to application managers.
The GROC factors task routing and other resource management functions out of the application
managers: one GROC may provide a common point of coordination for multiple application man-
agers, which may evolve independently. The task routing interface is the only GROC interface used

by a grid middleware component; in other respects the GROC is non-intrusive.

To perform its task routing function, the GROC ranks the sites based on the results from its site
poll and a pluggable ranking policy. Information available to the policy includes cluster capacity
at each site, utilization, and job queue lengths. In addition, the policy module has access to the
catalog of resources leased at each site, including attributes of each group of workers (e.g., CPU

type, clock rate, CPU count, memory size, interconnect).

The coordinating role of the GROC is particularly important when multiple user communities
compete for resources. The GROC maintains leases for the resources held by the VO grid: its task
routing choices are guided by its knowledge of the available resources. Since it observes the com-
plete job stream, it can also make informed choices about what resources to request to meet its

demand.

The goal of our work is to evaluate the hosting architecture, rather than to identify the best
policies. Our prototype policy considers only queue length and job throughput for homogeneous

worker nodes. More sophisticated techniques such as batch queue prediction [125] can be used for

8. Resource Layer 137

job start predictions within the container. Also, we do not consider data staging costs. Job routing
in our prototype uses a simple load balancing heuristic. It estimates the aggregate runtime of the
tasks enqueued at each site, and the time to process them given the number of workers at each site.

It selects the site with the earliest expected start time for the next job.

8.3.3 Resource Leasing

In the absence of support for resource leasing, the GROC could act as a task routing service for
a typical grid configuration, e.g., a set of statically provisioned sites with middleware preinstalled
and maintained by administrators at each site. In our system, the GROC can also use the resource
control to change the set of server resources that it holds. The GROC invokes Shirako’s program-
matic resource leasing interface to acquire and release worker nodes, monitor their status, and/or
instantiate points of presence at new cluster sites when resources are available and demand exists.

This control is dynamic and automatic.

The GROC seeks to use its resources efficiently and release underutilized resources by shrinking
renewed leases or permitting them to expire. This good-citizen policy is automated, so it is robust
to human failure. An operator for the VO could replace the policy, but we presume that the VO
has some external incentive (e.g., cost or goodwill) to prevent abuse. Note that our approach is
not inherently less robust than a conventional grid, in which a greedy or malicious VO or user
could, for example, submit jobs that overload a site’s shared storage servers. In fact, the leased
container abstraction can provide stronger isolation given suitable virtualization technology, which

is advancing rapidly.

The GROC uses pluggable policies to determine its target pool sizes for each site. In Section 8.5.1,
we define the policies used in our experiments. The prototype GROC uses a predefined preference

order for sites, which might be based on the site’s resources or reputation, peering agreements,

8. Resource Layer 138

and/or other factors such as cost. Similarly, the sites implement a fixed priority to arbitrate re-

sources among competing GROCs.

8.3.4 Configuring Middleware

Typically, grid middleware is configured manually at each site. One goal of our work is to show
how to use Shirako/COD support to configure grid points of presence remotely and automatically.
The responsibility—and power—to manage and tune the middleware devolves to the VO and its
GROC, within the isolation boundaries established by the site. This factoring reduces the site’s
administrative overhead and risk to host a grid or contribute underutilized resources, and it gets
the site operators out of the critical path, leaving the VOs with the flexibility to control their own

environments.

Configuration of a COD node follows an automated series of steps under the control of the
Shirako leasing core. When a site approves a lease request for new worker nodes, the GROC passes
a list of configuration properties interpreted by a resource-specific plugin setup handler that executes
in the site’s domain. The setup handler instantiates, images, and boots the nodes, and enables key-
based SSH access by installing a public key specified by the GROC. It then returns a lease with unit
properties for each node, including IP addresses, hostnames, and SSH host keys. The GROC then
invokes a plugin join handler for each node, which contacts the node directly with key-based root
access to perform an automated install of the middleware stack and integrate the node into the
VO'’s grid. Similarly, there is a teardown handler that reclaims resources (e.g., machines), and a leave
handler that cleanly detaches resources from the middleware stack. To represent the wide range
of actions that may be needed, the COD resource driver event handlers are scripted using Ant [6],
an open-source OS-independent XML scripting package. We implemented join and leave handler

scripts to configure the middleware components shown in Figure 8.2.

8. Resource Layer 139

To instantiate a point of presence at a new site, the GROC first obtains separate leases for a
master node (with a public IP address) that also serves as a scratch storage server for data staging. It
instantiates and configures the Globus components, Torque and Maui on the master, and configures
the file server to export the scratch NFS volume to a private subnet block assigned to the virtual
cluster. When a new worker node joins, the join handler installs Torque and registers the worker
with the local master node. The join handler for the master configuration is about 260 lines of Ant

XML, and the worker join handler is about 190 lines.

Our prototype makes several concessions to reality. It assumes that all worker nodes are reach-
able from the GROC. It is possible to implement a proxy that handles the worker join operations
through the public head node for each virtual cluster so that workers may use private IP addresses.
This work is outside the scope of this thesis. The setup attaches a shared NFS file volume containing
the Globus distribution to each virtual cluster node, rather than fetching it from a remote reposi-
tory. For the sake of simplicity, all the hosted grids use a common certificate authority (CA) that
is configured using Globus’s SimpleCA, although there is nothing in the architecture or prototype
that prevents the hosted grids from each using a private CA. Interaction with the CA is not yet au-
tomated; instead, the GROC has preconfigured host certificates for the DNS names that its master
nodes will receive for each potential site that it might use. Our implementation also uses a set of
common user identities that are preconfigured at the sites. Finally, we prestage all applications and

data required by the VO’s users when we instantiate the site.

We use the default First Come First Served (FCFS) scheduling policies for Torque/Maui, but the
GROC is empowered to set policies at its points of presence as desired. Thus, the application man-
ager is able to rely on the VO’s GROC to implement policies and preferences on how its available
resources might be used by different members of the community, and to adapt these policies as the

resource pool size changes.

8. Resource Layer 140

8.3.5 Robustness

The GROC is stateless and relies on recovery mechanisms in Shirako, which maintains all lease
state in a local LDAP repository. If a GROC fails, it will recover its knowledge of its sites and
resource holdings, but it will lose its history of task submissions and the MDS feedback stream
from the sites. Once recovered, the GROC maintains its existing leases and monitors grid operation
for a configurable interval before adjusting its lease holdings. Reliable job submission and staging

are handled using existing Globus mechanisms that do not involve the GROC.

As noted in Section 8.2.3, robust grid services must be capable of restarting jobs when nodes fail
or leave the service. In our approach, nodes may depart due to resource competition, as governed
by the site policies and the GROC interactions with the dynamic resource control plane. Although
the GROC has advance warning of node departures, the Torque batch service in our current pro-
totype is not able to suspend or migrate tasks running on those nodes; thus some tasks may be
interrupted. We believe that support for virtual machine checkpoint/migrate is a promising path
to a general solution. Xen supports live VM migration, but we do not explore its use for robust

adaptation.

8.3.6 Security

The important new security requirement of our architecture is that each GROC must have a se-
cure binding to each of its candidate hosting sites. Each SHARP actor has a keypair and digitally
signs its control actions. To set up the trust binding, there must be some secure means for each site
and GROC to exchange their public keys. Other related systems that delegate policy control to a
VO, or a server (such as a GROC) acting on behalf of a VO, also make this assumption. Examples in-

clude the VO Membership Service (VOMS) [1] and Community Authorization Service (CAS) [134].

8. Resource Layer 141

Similarly, Amazon EC2 uses X.509 certificate for authentication to their cloud systems [5].

One solution is to designate a common point of trust to endorse the keys, such as a shared cer-
tificate authority (CA). Although each grid selects its own CA to issue the certificates that endorse
public keys within the grid, the provider site authorities exist logically outside of the VO grids in
our architecture. Thus reliance on a common CA would presume in essence that the public key cer-
tificate hierarchy (PKI) extends upwards to include a common CA trusted by all resource provider
sites and all hosted grids. An alternative is to rely on pairwise key exchange among the sites and
VO operators. In this prototype the public keys for the brokers and GROC s are installed through a

manual operator interface.

To instantiate a new site point of presence, the GROC passes the gateway host certificate and
private key in an encrypted connection during join. Note, however, that the GROC cannot hide
the site private keys used by its middleware from the hosting resource provider, since the resource
provider knows the private SSH key of each leased node. There are many ways that a malicious
resource provider can subvert or spy on its guests. However, our implementation is not inherently

less secure than grid and cloud sites today.

8.3.7 Summary

The GROC coordinates container-level functions such as resource leasing and configuration and
guides task routing decisions. The GROC enables the higher-level application tools to focus on
job and data management and abstracts the resource-level variations through the container. The
evolution of computing models such as cloud computing and the variability in these distributed
resources requires a concrete representation of resources and their properties that is facilitated by
the container representation. In Section 8.4.1 we discuss the resource properties associated with the

container model that represent its QoS properties.

8. Resource Layer 142

8.4 Probabilistic QoS Model

Resource providers often implement policies that balance different customer needs that result in
variability of guarantees. For example, in a leasing or cloud system, a broker may oversubscribe re-
source requests to minimize idle time. Similarly, in batch systems services such as QBETS [125] and
VARQ [126] provide probabilistic bounds on when a job or a reservation will start. Thus resource
contracts are often not designed to be “strong”. In addition, hardware and software services have
failure characteristics that the user needs to know about in advance of resource procurement. Thus
we propose a probabilistic QoS model in which resource providers can make a promise within a
certain guarantee - e.g., a resource provider can say that there is a 95% chance that a user’s resource

request can be met and a 99% chance the resource will stay up during the allotted time.

Our probabilistic QoS model provides a “least-common denominator model” that abstracts out
the differences from the resource models, i.e. grid and clouds. The abstraction captures the com-
mon key elements across the systems and allows the higher-level mechanisms (e.g. scheduling) to
work with different resource models and underlying policies. This is analogous to the IP hourglass
model used in computer networks, where irrespective of the specific protocols in the application

layer or transport layer, the only protocol used for passing data packets is the IP.

The core of the probabilistic QoS model is the slot abstraction. The slot abstraction is the center
of the interaction model between the two layers. The concept of decoupled resource selection and
scheduling [205] and the slot abstraction [83, 163] has been discussed earlier. A slot is a term used
to refer to resource units assigned by a resource provider for a specified duration to the consumer

which have a set of properties.

Our QoS abstraction allows the higher-level stack to abstract out existing site mechanisms and

8. Resource Layer 143

policies including underlying scheduling systems and plan for the uncertainty. This does not af-
fect the resource procurement and execution system interaction with underlying systems. Other
systems like the virtual grid execution system [90] provide interfaces to abstract the differences
in execution system. Thus probabilistic guarantees help resource providers maintain QoS while

anticipating unexpected load, utilization and other runtime factors.

We discuss probabilistic resource procurement in Section 8.4.1. We define the properties re-
quired on the slot abstraction for our QoS model in Section 8.4.2 . In Section 8.4.3 we discuss the

cost models associated with the slots under different resource systems.

8.4.1 Probabilistic Resource Procurement

Explicit resource control is possible in today’s batch systems through offline or online advanced
reservations that allow users to specify a fixed start time at higher costs. Thus advanced reserva-
tions yield resource slots that have guaranteed start and end times and probability of procurement
very close to one. We use VARQ (Virtual Advanced Reservations for Queues) [126] based resource
slots to determine if effective workflow orchestration is possible without explicit resource control
in batch systems. A virtual advanced reservations obtained through VARQ is an instance of the re-
source slot abstraction with probabilistic bounds on obtaining a slot of certain duration by a given
time. In overbooked leasing systems we can calculate an equivalent probability using the number

of resource lease requests that can be overbooked.

8.4.2 Resource Properties

We define the following properties on the slot abstraction:

Estimated start and end time. Each resource slot has a projected start and end time during which

8. Resource Layer 144

the resource will be available. For a batch system, the start and end times are bound by queue wait

times. Leases and advanced reservations have fixed start and end-times.

Width. Each slot has a width that denotes the number of computational units (e.g., processors) that

will be available for a given resource request.

Projected cost. Each slot has a cost for resource usage over the estimated slot duration. Cost models

for each of the resource models are discussed in detail in Section 8.4.3.

Probability of meeting the resource request. We define a probability value that is analogous to the
chance that a resource request is successfully fulfilled. Statistical methods have be used to predict
stretch factors and probabilities of meeting resource requests using historical traces [125, 126]. The
probability of meeting a resource request when using an advanced reservation mechanism or leases
is 1. We use job wait time predictions for standard batch queue systems as a means of predicting
probability of resource arrival. For virtual advanced reservations, there is a probability associated
with the ability to meet the reservation request. In overbooked leasing systems we can calculate an

equivalent probability using the number of resource lease requests that can be overbooked.

Probability of resource failures during the estimated duration. Most systems undergo hardware
and software failures during their lifetime. The probability of the machine failing during a given
duration can typically be calculated using uptimes and downtimes of the nodes and constituent
services. Monitoring services on both grid (e.g.,, NWS [201], INCA [82]) and cloud systems (e.g.,
CloudStatus [37]) collect some failure information, but these are often not directly accessible to the
end user. The properties associated with the slot abstraction enable this information to be easily

accessible by the user.

Start early and end extension time flexibilities. In addition to knowing the estimates on start and

end time the user is interested in knowing if the resource allocation may start early or if the end

8. Resource Layer 145

time is extensible. In a traditional batch queue system, a wall clock duration is specified during job
submission. In this case the resource cannot overrun the duration but may finish early without a
penalty. In the virtual advanced reservation while the end time cannot be extended, the resource
can become available earlier. In a leasing system, start times are typically fixed while there may be
an option to extend the leases. In the context we consider, late starts and early ends are handled
as exceptions since these occur as failures in resource acquisition guarantees or from failures of

resources etc. In addition these situations do not incur additional costs for the user.

8.4.3 Resource Cost models

An important decision factor when it comes to selecting resources is the resource cost. HPC
systems like the TeraGrid use service units as basic units of TeraGrid time. Services like Amazon
EC2 similarly charge per instance-hour. In this section, we discuss the cost models associated with

batch and lease systems:

Batch model. In a typical batch model, users pay for only the execution time of the task on the

resource. Thus, the cost for an application per processor on a batch system is

COStbat(zh - tbq * Cbz'

where tb; is the time to execute and cb; is unit cost on resource i.

Capabilities like out-of-band or online advanced reservations come at additional costs which
are a function of execution time or a fixed overhead. For e.g., on the SDSC TeraGrid, advanced
reservations have a premium that ranges from 1.2 to 2 times the actual cost of the resource. Thus

the cost of an offline advanced reservation per processor is given by

8. Resource Layer 146

Costogures = t8; * €8; * premium

where ts; is the time requested and cs; is the unit cost on resource i. In the virtual reservations
mode, the users pay for any additional time that the resource is procured in advance of the actual

task execution. Thus the cost of a virtual advanced reservation per processor is

Costyirtual = t8; * cs; + (idletime)

Leases. In a leasing system, a user will pay for a lease that is acquired which includes the running

time and wasted time on the resource. The cost of a lease per processor is

COStleases = th * Cli

where tl; is the time of the lease (in closest hours for EC2) and cl; is the cost of the resource.

If the same lease is used by multiple jobs or different workloads the wasted cost is amortized
over the workflows. For EC2 systems the cost varies from $0.10 to $0.80 based on the size of the

instance.

The cost models inherently represent the differences in the overheads in the systems. Our QoS
model represents the cost-rate that can be used by different systems to gauge relative costs when

considering these systems for workloads.

8. Resource Layer 147

Site A Site B Site C
(Total: 15) (Total:15) (Total:15)
Priorities Priorities Priorities
Bioportal: High Bioportal: Same Bioportal: Low
SCOOP: Low SCOOP: Same SCOOP: High

SCOOoP
Starting

Bioportal
Starting

Figure 8.3: GROC Testbed. The testbed has three cluster sites with a maximum capacity of 15
virtual machines each. There are two hosted grids (the Bioportal and SCOOP applications). Each
site assigns a priority for local resources to each grid, according to its local policies.

8.5 Evaluation

We have proposed a hosting model and a probabilistic QoS model to facilitate interaction of the
higher-level software stack with the underlying resources. In this section, we evaluate implemen-

tation that demonstrate these ideas.

We present an experimental evaluation of the container hosting model prototype built atop the
Globus and Shirako toolkits to demonstrate its feasibility and understand the trade-offs in different

policy and site setup choices in Section 8.5.1 .

Probabilistic QoS models come with some variations that can be bounded within certain lim-
its to be feasible. Virtual advanced reservations are implemented atop batch queue systems as a
mechanism to assure resource procurement within certain probabilistic bounds. Virtual advanced
reservations by design come with variations in when they start and incur additional costs when
they start earlier than required. We present an experimental evaluation of the effect on start-times
and costs obtained through virtual reservations atop under-provisioned TeraGrid batch systems in

Section 9.6.3.

8. Resource Layer 148

8.5.1 Container Hosting Model

We conducted an experimental evaluation of the prototype to illustrate how hosted grids con-
figure and adapt their resources to serve streams of arriving jobs. The experiments demonstrate
on-demand server instantiation for hosted grids, dynamic adaptation driven by GROC policies,

and the interaction of policies at the sites and grids

Application workloads. We consider here two specific grid application services: Bioportal [142],
a web-based interface that allows VO users to submit bioinformatics jobs, and SCOOP [138], a
system that predicts storm surge and local winds for hurricane events. Bioportal uses a simple
policy to route user jobs to a local cluster and the TeraGrid. In its original incarnation it has no
mechanism to ensure predictable service quality for its users. We selected four commonly used
Bioportal applications (blast, pdbsearch, glimmer, clustalw) from the Bioportal tool suite to represent

the workload.

The North Carolina SCOOP Storm Modeling system (described in Chapter 2) is an event-based
system that triggers a series of Advanced Circulation (ADCIRC) runs on arrival of wind data. Ex-
ecutions are triggered periodically during the hurricane season based on warnings issued by the
NOAA National Hurricane Center (NHC). One interesting aspect of SCOOP is its ability to fore-
cast its demand since the hurricane warnings are issued every six hours during storm events. In
the original version, a simple resource selection interface schedules the runs when each warning
arrives; although SCOOP knows when runs will be issued, it cannot ensure that sufficient resources

will be available to complete the models in a timely manner.

Policy. The experiments use GROC policies appropriate for each workload. Bioportal uses an on-

demand policy that maintains a target upper bound on waiting time. The total number of nodes to

8. Resource Layer 149

request at each decision point is given by:

Bioportal Request(t) =

(W aitingJobs(t) — FreeCPUs(t))
max — 0
W aiting Factor * Resources(t)

where Waiting.JJobs(t) are the total number of jobs in the queue at and FreeC PUs(t) are the num-
ber of CPUs available and Resources(t) are the total number of resources at time t. Our experiments

use WaitingFactor = 2.

SCOOQOP’s GROC uses a look-ahead policy to reserve resources in advance of expected demand. It
considers the current backlog and expected arrivals over a sliding time window. The total number

of new nodes to request is given by:

SCOOPRequest(t) =

t+At
max { ((Waiting.]obs(t) — FreeCPUs(t)) + Z ExpectedJob&) ,O}

i=t

Experimental setup. All experiments run on a testbed of IBM x335 rackmount servers, each with
a single 2.8Ghz Intel Xeon processor and 1GB of memory. Some servers run Xen's virtual machine
monitor version 3.0.2-2. All experiments run using Sun’s Java Virtual Machine (JVM) version 1.5.
COD uses OpenLDAP version 2.2.23-8, ISC’s DHCP version 3.0.1rc11, and TFTP version 0.40-4.1 to

drive network boots.

We partition the cluster into three sites (Figure 8.3). Each site consists of a COD server that

configures and monitors allocated machines, a broker server that implements the site’s policy for

8. Resource Layer 150

16 T T T T
Bioportal:load —— 3 Bioportal:load ——
SCOOP:load ---- i SCOOP:load ---e-

Bioportal:avg. waiting jobs -+ 7| 14 i Bioportal:avg. waiting jobs « -+ |

SCOOP:avg. waiting jobs SCOOP:avg. waiting jobs

14+

12 - q 12 -

10

Number of jobs
Number of jobs

I ! . ST, 0 y .
0 10 20 30 40 50 60 0 10 20 30 40 50 60

Time (in mins) Time (in mins)
(a) Without advance reservations (b) With advance reservations

Figure 8.4: Effect of reservations. Figure shows the average number of waiting jobs across three
sites. In (b), the SCOOP grid reserves servers in advance to satisfy its predicted demand.

allocating its resources to competing consumers, and five physical machines. The sites divide the
resources of each physical machine across three virtual machines, giving a total resource pool of
45 machines for our experiment. Previous work [83] has shown that the leasing and configuration
mechanisms scale to much larger clusters. The sites in these experiments use a simple priority-
based arbitration policy with priorities as shown in Figure 8.3. All leases have a fixed preconfigured

lease term.

Reservations and priority. This experiment illustrates how GROCs procure resources to serve
growing load, and illustrates the mechanisms and their behavior. We consider two synthetic load
signals that have a linearly increasing number of jobs arriving over a short interval. The duration

of the load is 50 minutes and a worker node lease term is 4 minutes.

Figure 8.4 shows the average number of waiting jobs across the three sites (a) without and
(b) with advance reservations. In both cases, the sites use priorities as shown in Figure 8.3, and
Bioportal uses its simple on-demand resource request policy. In Figure 8.4 (a), SCOOP’s look-ahead
horizon is zero, so it effectively uses an on-demand request policy as well. In Figure 8.4 (b), SCOOP

reserves resources in advance of its anticipated need, significantly reducing its job delays and queue

8. Resource Layer 151

40, 40,
[_JSiteA Site A
= Esne B = %sme B
Site C|
8 30F 30 [Site C|
g g
£ g
2 g
8251 2 25
< ¢
° 5
200 3 200
g g
Z 15 2 150
10+ 10+
5F 5F
ol N |
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Time (in mins) Time (in mins)
(a) Bioportal resource holding at each site (b) SCOQP resource holding at each site

35

30

25

20

15

Progress (events)

10

10 20 30 40 50 60
Time (in mins)

(c) Progress of server configuration events.

Figure 8.5: Resource Holdings and Priority. Site resources are allocated to competing GROCs ac-
cording to their configured priorities. (a) shows the decrease in resources available to Bioportal
as more machines are reserved to SCOOP, as shown in (b). Bioportal reacquires the machines as
SCOQP releases them. (c) shows the progress of resource configuration events on sites and GROCs.

lengths.

Figures 8.5 (a) and (b) show the distribution of resources among the two GROCs, illustrating the
impact of site policy. This experiment is slightly different in that the Bioportal load submits jobs at
a constant rate after it reaches its peak, producing a backlog in its queues. As more computation
is allocated to serve the SCOOP burst, Bioportal’s worker pool shrinks. The impact is greatest on
Site C where Bioportal has lower priority. As SCOOP’s load decreases, Bioportal procures more

resources eventually reduces its backlog.

8. Resource Layer 152

The GROCs adapt to changing demand by adding and removing worker nodes as the experi-
ment progresses, using the mechanisms described in Section 8.3.4. Figure 8.5 (c) shows the com-
pletion times of configuration events across all three sites for an experiment similar to Figure 8.5.
At the start of the experiment, each GROC leases and configures a master node at each of the three
sites. These six nodes boot (setup) rapidly, but it takes about 336 seconds for the master join handler
to copy the Globus distribution from a network server, and untar, build, install, and initialize it. As
jobs arrive, the GROC also leases a group of six worker nodes. Once the master nodes are up, the
workers join rapidly and begin executing jobs; as load continues to build, both GROCs issue more
lease requests to grow their capacity. After each worker boots, it takes the GROC’s worker join han-
dler about 70 seconds to initialize the node with a private copy of Torque, and register it with its
Torque master at the site. The GROCs permit some leases to expire as the queues clear; the leave
(deregister) and teardown handlers complete rapidly. In this experiment, the Bioportal takes a while

to clear its queued jobs, so the remainder of the leaves and teardowns occur later in the experiment.

Adaptive provisioning with varying load. This experiment demonstrates adaptive resource pro-
visioning by competing grids under a more realistic load signal. The Bioportal workload consists
of a steady flow of jobs, with occasional spikes in job arrivals. The job arrival times were obtained
from traces of a production compute cluster at Duke University. We scaled the load signals to a
common basis that is appropriate for the size of our resource pools. The SCOOP workload runs
a small set of ADCIRC jobs periodically according to a regular schedule. In practice, the resource
demand for the runs in each period may vary according to weather conditions or post-processing
results. For this experiment we use a synthetic load generator to create load spikes lasting a small
time period (approximately 1 minute), at intervals of approximately 50 minutes. The duration of

this experiment is 420 minutes and the lease length of each worker node is set to 25 minutes.

Figure 8.6(a) shows the load signal, (b) the waiting jobs queued at Site A, and (c) the resources

8. Resource Layer 153

14
" Bibponal ‘arriving‘jobs LV
Scoop arriving jobs ---e---
12 -
10 B
1%}
Q
=X ,
k]
@
Qo
£ ,
=3
P4
150 200 250 300 350 400 450
Time (in mins)
(a) Load signal
50 B T al T 55
joporta T T T T T T s
s N
40 B

NGoW W

Number of Resources

Number of jobs

SN

15 : ‘lH }“ \ | m R il
Wy MV A R T
10 m ! i} i r \ i
n i
5 H h b
0 50 100 150 200 250 300 350 400 450 50 100 150 200 250 300 350 400 450
Time (in mins)
(b) Waiting jobs at Site A (c) Resource holdings

Figure 8.6: Adaptive Provisioning under Varying Load. The load signal (a) gives job arrivals. (b) shows the
waiting jobs queue at Site A, while (c) shows a stacked plot of the resource holdings of each grid across the
three sites.

that each GROC holds across the three sites. We see that each GROC is able to procure resources ac-
cording to its varying load. SCOOP periodically demands resources to complete its runs, temporar-
ily reducing Bioportal’s resource holdings. However, Bioportal successfully retrieves resources be-
tween SCOOP’s periods of activity. For simplicity, we omit the distribution of waiting jobs at Site

B and Site C, which are similar to Site A.

Resource efficiency and lease length. The last experiment compares container-level control with

job-level control with respect to efficiency and fairness of resource assignments to two competing

8. Resource Layer 154

50
"Bioportal —— 710 resources per site. ——
45 SCOOP «+e-v: 15 resources per site «x-
30 resources per site - #---
40 1 08 N
» x
35 b I ASUOPRPPPRIELLL L I
| I L
S 3 4 s 06 R
5 g
5 25 1 g
H =
E 2 R S 04r b
z
15 B
10 g 0.2 1 7
L
5 R | 1
@i ! I 0 . . .
0 10 20 50 60 70 8 90 100 200 300 400 500
Time (in ticks) Lease Length (in ticks)
(a) Load signal used for experiment (b) Utilization with varying lease lengths

Figure 8.7: System Efficiency. (a) shows the load signal and (b) the variation of efficiency with lease
length across multiple cluster sizes.

VO grids. The power and generality of container-level resource control comes at a cost: it schedules
resources at a coarser grain, and may yield schedules that are less efficient and/or less fair. In
particular, a container holds any resources assigned to it even if they are idle—in our case, for the
duration of its lease. Another container with work to do may be forced to wait for its competitor’s

leases to expire. Our purpose is to demonstrate and quantify this effect for illustrative scenarios.

In this experiment, the job-level control is a standard First Come First Served (FCFS) shared
batch scheduler at each site. The container-level policy is Dynamic Fair Share assignment of nodes
to containers: the GROCs request resources on demand and have equal priority at all sites. Node
configuration and job execution are emulated for speed and flexibility. We implement a grid em-
ulator as a web service that emulates the Globus GRAM and MDS interfaces (job submission and
status query) and also exports an interface to instantiate grid sites and add or remove worker
nodes from a site. An external virtual clock drives the emulation. The site emulation incorporates a
Maui scheduler with a modified resource manager module to emulate the job execution on worker
nodes. Note that the core components (GROC, Shirako/COD, Maui) are identical to a real deploy-
ment. One difference is that the emulation preempts and requeues any job running on an expired

worker node, although the batch scheduler configured in our prototype (Torque) does not support

8. Resource Layer 155

50 12
"Bioportal —— Bioportal: Dynamic Fair Share —+—
45 |- SCOOP ---eee Bioportal: FCFS
10 q
or | \
35 q
2 s °f]
S, 30 q g
5 £
5 =0 1 5 °f |
5 2
3 20 — &
z o LL |
15 . 4
10 . g 2L]
5 i e 1
i ‘ S o ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 70 80 920 100 200 300 400 500
Time (in ticks) Lease Length (in ticks)
(a) Load signal used for experiment (b) Fairness: Bioportal
3 T T T
SCOOP: Dynamic Fair Share ===+
SCOOP: FCFS
25| q
AAAAAA .
_ 2k e 4 4
S PSRN -
g
s
= 15 4
=
g
3
s i
05 | q
o ‘ ‘ ‘ ‘ ‘
100 200 300 400 500

Lease Length (in ticks)

(c) Fairness: SCOOP

Figure 8.8: Stretch Factor. We study stretch factor as a measure of fairness, of two competing GROCs
- Bioportal and SCOOP with varying lease lengths

preemption.

Figure 8.7 (b) shows the utilization of container-level control with different lease lengths using a
bursty load signal derived from a real workload trace (Figure 8.7 (a)) across different cluster sizes.
We measure utilization as how effectively GROCs use their allocated resources: one minus the
percentage of unused computational cycles. As lease length increases, container-level utilization
decreases because the system is less agile and it takes longer for resources to switch GROCs. The
decline is not necessarily monotonic: if the job and lease lengths are such that jobs complete just
before the lease expires, then the Dynamic Fair Sharing container policy will redeploy the servers,
maintaining high utilization. However, an advantage of longer leases is that they can reducing

“thrashing” of resources among containers; in this emulation we treat the context switch cost as

8. Resource Layer 156

negligible, although it may be significant in practice due to initialization costs. Also, at smaller

cluster sizes, resources become constrained, causing utilization to increase.

To compare job-level and container-level control, we also measure the efficiency of the resource
pools. We define efficiency as one minus the percentage of usable resources that are wasted. A
server is “wasted” when it sits idle while there is a job at the same site which could run on it. By
this measure, the efficiency of a site-wide batch scheduler using FCFS is 100%, since it will always
run the next job rather than leave a server idle. In contrast, a local batch scheduler running within
a container may hold servers idle, even while another task scheduler in a different container has
jobs waiting to run. For the given workload, in a resource constrained case (10 resources per site),
the average efficiency across sites is 92% and in the overprovisioned case (30 resources per site)
the average efficiency is 78%. As with utilization, efficiency is higher on smaller clusters since the
GROCs are more constrained and may make better use of their resources. Efficiency is lower on

larger clusters—but of course efficiency is less important when resources are overprovisioned.

Fairness is a closely related issue. One measure of fair resource allocation is the relative stretch
factor of the jobs executed at a given provider site. Stretch factor is the ratio of completion time
to job duration. That is, we might view a site as “fair” if a job incurs equivalent waiting time
regardless of which grid submitted the job to the site. (Of course, the benefits of container-level
resource control include support for differentiated service and performance isolation, which are
“unfair” by this definition.) Both the FCFS job policy and the Dynamic Fair Share container policy
strive to be “fair” in that they do not afford preferential treatment. Even so, these simple policies
allow one of the GROCs to grab an unfair share of resources if a burst of work arrives while another

is idle.

Figure 8.8 shows the average stretch factors for two job streams (Bioportal and SCOOP) running

under both job-level and container-level resource control. Bioportal submits an initial burst of short

8. Resource Layer 157

jobs, which fill the global FCFS queue (for job-level control) or trigger lease requests for a block of
servers (for container-level resource control). A subsequent burst of longer SCOOP jobs must wait
for servers to become available. These bursts are followed by another pair of bursts of Bioportal

and SCOOP jobs as shown in Figure 8.8 (a).

The Bioportal (Figure 8.8 (b)) shows a higher stretch factor than SCOOP (Figure 8.8 (c)) in all
cases. In this particular scenario, the SCOOP bursts submit longer jobs to the queue, increasing
the waiting time for the subsequent burst of Bioportal jobs. However, resource leasing can allow
either workload to hold its resources longer so that some are still available for the next burst. In
this case, longer leases improve the stretch factor for Bioportal and increase the stretch factor for

SCOOP, improving fairness of the overall system.

In general, efficiency and fairness properties result from the interaction of the policy choices
and the workload; it is less significant whether resource control is implemented at the job level or
container level. A rich range of policies could be implemented at either level. The advantage of
container-level control is that its policies generalize easily to any middleware environment hosted
within the containers. On the other hand, the granularity of that control must be coarser to avoid

sacrificing efficiency and utilization.

8.5.2 Probabilistic Advanced Reservations

Next, we evaluate our probabilistic advanced reservations atop grid systems. For this experi-
ment, we use resource data from two TeraGrid machines (tagged as ncsatg and abe in the graphs)
located at the National Center for Supercomputing Applications. We obtain resources acquisition
probabilities through QBETS and VARQ services. We setup experiments on ncsatg and abe to obtain
probabilistic resource slots using the VARQ service. The experiments request 90 minute, 16 node

slots (the approximate time required for a single LEAD workflow) one, two, three and four hours

8. Resource Layer

158

80
70
60

Percentage of entries

80
70
60
50
40
30
20

Percentage of entries

ncsatg Ex==a
abe m—

Relative start time (in Mins)

(a) advance request of 1 hour

10

ncsatg Exx==a
abe m—

JJP._I&N.H ecde) W) w oL

[e] o] o]o Yo X0 Yo Yo N0 Yo Jo ke Yo Yo Yo Yo R o Ko Y o))

-10--1
1 1 1 1 1 1

OFARTOONPOANINOANNL
SodoooooTTTITITANNN
ANPINOROOOOOODDDDD
OANINOOTIINO
Ep R IR T PN

Relative start time (in Mins)

(c) advance request of 3 hours

Percentage of entries

Percentage of entries

80
70
60
50
40
30
20
10

80
70
60

ncsatg Ex=s
abe m—

30
40-4
50-
60-
70-7
80-
90-

Relative start time (in Mins)

(b) advance request of 2 hours

ncsatg Ex==s
abe m—

Relative start time (in Mins)

(d) advance request of 4 hours

Figure 8.9: Start Times of Probabilistic Advanced Reservations. Probabilistic reservations have
variable start times. We show the historgram of difference in actual start times from expected start
times on two resources for requests made (a) 1 hour (b) 2 hours (c) 3 hours (d) 4 hours in advance.
NOTE: Only intervals with entries have been shown in this graph.

80
70
60
50
40
30
20
10

Percentage of entries

Difference in Cost (Predicted - Actual) (seconds)

Advanced slot 1hr Ex====3
Advanced slot 2hr n—
Advanced slot 3hr C—3
Advanced slot 4hr ——3

[cNoNoNe]
™M O o AN
- —

—
()

181-210
211-240 F
241-270

all
o
s}
<
~
N
—

151-180
271-300 P
301-330
331-360
361-390
391-420
421-450

(a) ncsatg

Percentage of entries

Difference in Cost (Predicted - Actual) (seconds)

Advanced slot 1hr Ex====3
Advanced slot 2hr n—
Advanced slot 3hr C—3
Advanced slot 4hr ——

| S N IS I S S NS N SN N N
0O00000000O0O0Q
NMOAT~NOMO DN D
TAAANQ DD DY
A A A A
ONNOAITNOM®OOOAN
AdAdNNN®OM OO

(b) abe

Figure 8.10: Costs of Probabilistic Advance Reservations. Probabilistic reservations incur addi-
tional costs if and when they start before expected start time. Here we show the cost variations
between the predicted and actual cost over a set of requests on two TeraGrid resources (a) ncsatg

(b) abe.

8. Resource Layer 159

90
80
70 —
60 -
50 + E
40 | .
30 :
20 % E
10 | -
0 I IV TR, ' I I I

0O 01 02 03 04 05 06 07 08

Probability

Predicted additional cost (mins)

Figure 8.11: Effect on Cost for Different Guarantees. Higher levels of guarantees i.e., higher success
probabilities result in greater costs.

in advance, with success probabilities ranging from 0.1 to 0.99.

Start time. When considering probabilistic advanced reservations, the slots can arrive exactly at,
before or after the expected start time. Figure 8.9 shows the start time variation for one, two, three
four hour advance requests over a period of four weeks. The majority of the experiments start in

the [-10,10] minute range around the expected start time.

Cost. If the slot arrives on time or later, there is no extra cost since the job is ready to run. However
if the slot arrives earlier, the idle time is the extra cost. In all our experiments the cost incurred is
always equal to or lower than that predicted by VARQ. Figure 8.10 shows the distribution of the
difference between the predicted and actual costs for all advanced requests on (a) ncsatg and (b) abe.
The largest percentage of runs have a prediction that is higher by 31 to 90 seconds on ncsatg and by
1 to 60 seconds on abe. Finally, Figure 8.11 shows the variation in predicted cost with probability

values. The predicted cost increases as the desired probability value increases.

8. Resource Layer 160

8.6 Summary

The increasing separation between resource providers and consumers makes resource control in
today’s grid and cloud system both more important and more difficult. This chapter illustrates the
dynamic assignment of shared pools of computing resources to hosted environments. It demon-
strates the role of the resource coordinator in managing a dynamic binding of resources across
different sites driven by workload requirements. Our approach addresses resource control at the
container level, independently of the application middleware that runs within the container. The
implementation of resource control at the container-level becomes more critical especially in cloud

environments.

We also presented a lowest-common-denominator probabilistic QoS model that abstracts the
differences in the different systems and lets the application middleware (e.g. workflow tools) con-
centrate on higher-level mechanisms required to manage user requirements and constraints in vari-
able and competitive resource environments. Our experimental evaluation atop over-provisioned

grid systems demonstrates the feasibility of this QoS model.

9

Workflow Orchestration

Distributed resources are increasingly used for time-sensitive workflows such as weather fore-
casting, storm-surge modeling, etc. These applications typically require a higher-level of QoS that
has been hard to guarantee in current day production environments. There is a similar trend in
industry where business services are relying on cloud computing to manage its peak workload
capacity. These two parallel trends require us to revisit how higher-level tools that coordinate re-

sources and user requirements and their interaction with new resource models.

We investigate these issues in the context of workflow tools that are increasingly used in cyb-
terinfrastructure environments to coordinate data and computational tasks in this chapter. Today’s
workflow planning techniques can provide a “yes” or “no” answer to the question of whether a
workflow will meet its deadline [20, 127]. However this information alone is often insufficient for
deadline-driven applications such as weather prediction, where users are willing to run the work-
flow so long as the odds of completion are “reasonable”. Users are often willing to pay extra or
trade-off application requirements to ensure timely workflow completion. In addition, even if ap-
plications are not deadline sensitive, experiments have uncertainties and users often use resource

availability and costs as a criteria to define their experiment parameter space. Current workflow

161

9. Workflow Orchestration 162

planning approaches and their interaction with resource models are severely limiting as we move

to next generation infrastructure.

We presented a resource layer abstraction that enables uniform access across different com-
puting models and the properties associated with the the resource abstraction in turn help with
higher-level decisions (Chapter 8). Thus, we investigate a holistic workflow planning approach
that considers workflow characteristics and coordinates (a) resource acquisition, (b) directed acyclic
graph (DAG) scheduling, and (c) scheduling enhancements that can improve the chance of work-

flow completion. We use the term workflow orchestration to collectively describe these mechanisms.

The rest of this chapter is organized as follows. We present an overview of workflow orchestra-
tion in Section 9.1. We present an approach for DAG analysis that helps understand the resource
needs and characteristics of a workflow in Section 9.2. We describe resource acquisition, task map-
ping and schedule enhancement in greater detail in Sections 9.3, 9.4 and 9.5 Finally, we present our

evaluation of our orchestration approaches (Section 9.6) .

9.1 Orchestration: An Overview

Figure 10.1 shows the various aspects of workflow orchestration. We use the term workflow or-
chestration to denote a collection of mechanisms that describe the coordination of workflows and
resources to meet end user expectations while accounting for resource characteristics. Resource
level activities (e.g. resource querying and acquisition) are managed by interaction with the re-
source coordinator whereas the workflow planner manages workflow and user level activities(e.g.
understanding workflow requirements). The components interact with each other and share logical
data structures that hold workflow information and resource information. The shared data struc-

ture for workflow information has DAG description as well as user constraints on time, budget,

9. Workflow Orchestration 163

Workflow Resource
Planner Coordinator
()
Workﬂ.o W DAG analysis Ressn}r.ce
admission achISItIOH
_ y,
()
. Schedule
Task mapping enhancement
_ J

Figure 9.1: Workflow Orchestration Functional Blocks. Workflo orchestration has multiple stages
for understanding workflow requirements and constraints, querying resource status and schedul-
ing a workflow. The different functional boxes interact with and share data structures of workflow
representation and the schedule.

etc. The resource information is stored in a Gantt Chart structure that has information about the
“slots” at different sites and its properties. We discuss the dimensions of workflow orchestration in

greater detail:

Workflow Admission. In today’s environment, the user submits a workflow to an execution sys-
tem that uses application performance models and resource monitoring data to make resource
mapping decisions. However, before execution starts it is necessary to consider whether or not
workflow constraints can be met with available resources and make priority decisions at the appli-
cation layer. The user and the system have to consider the value of executing a workflow against its
associated costs before execution starts. While a workflow might eventually finish, resource time
may be wasted if the workflow does not complete by its deadline. In the case of critical applications
users are also willing to risk some wastage of resource for increasing the odds of the workflow com-
pleting. Thus we need high-level planning and interaction techniques that allow users and service

providers to jointly decide if a workflow must be run.

DAG Analysis. As complex workflows with different characteristics and constraints are run in

distributed environments, we need automated mechanisms to understand workflow characteristics

9. Workflow Orchestration 164

that then drive planning strategies appropriately. It is critical to understand the structure and the

resource requirements of the workflows.

Resource Acquisition. Resource acquisition is critical for workflow scheduling decisions. Higher-
level tools require knowledge of resource quantity, type and availability times to make decisions.
In batch systems resource acquisition is closely associated with the execution queue. Jobs are sub-
mitted to a queue from which jobs are mapped onto resources. However, as we move to cloud or

lease based systems, resource acquisition is a separate phase that precedes planning strategies.

Task Mapping. Job or workflow scheduling strategies have been used for a long time to map
tasks onto appropriate resources. Various scheduling strategies have been proposed that account
for execution time, data transfer time and monitoring status of the resources while scheduling a
DAG. Here we present task mapping approaches that uses (a) probabilities of task completion and,
(b) performability as criterion for mapping decisions(Section 9.4). These approaches demonstrate
how workflow DAG scheduling strategies can leverage resource properties to plan for not just

performance but also reliability.

Schedule enhancement. Both lease and batch systems allow mechanisms to get higher guarantees
on QoS through mechanisms such as advanced reservations. These facilities come at higher costs
and the system needs to decide if it is worth the cost. We investigate schedule enhancements using

advanced reservations in this work.

9.2 Workflow DAG Analysis

Understanding workload characteristics and predicting resource needs has been an area of ac-
tive research. In today’s grid systems people use performance models and historical data to predict

resource requirements [112]. On batch systems, users have to specify an expected wall clock time

9. Workflow Orchestration 165

for their jobs in batch systems. Specifying longer than required durations can result in longer queue
wait time, however specifying lower than what is required can result in the job getting killed. As
we move to more dynamic resource environments with virtual advanced reservations, leasing and
cloud based systems projecting resource requirements during the resource acquisition phase be-

comes critical and challenging.

Workflow orchestration needs to estimate and specify the set of resources and their properties
during resource acquisition phase. In over-subscribed environments resource requests may not
be immediately satisfied and it is necessary to iterate the resource request by changing its prop-
erties. Thus it becomes critical to do an analysis of the workload to understand its requirements.
We propose a heuristic and define a set of properties that help understand the workflow structure
and its computational and data requirements. Our methodology provides a strong foundation for
understanding workload characteristics and estimating resource requests. We discuss the struc-
tural analysis of the workflow in Section 9.2.1 and we outline our approach to understanding the
resource requirements of the workflow in Section 9.2.2. Finally, we describe heuristics for deter-

mining resource requests based on workflow characteristics in Section 9.2.3.

9.2.1 Structural Analysis

The structural elements of the workflow are considered for higher level understanding of the
workflow. The structural characteristics of the workflow are useful if each of the tasks performed
approximately the same quantum of work. We define the following properties that capture the

characteristics of the workflow.

Maximum Task Width of Workflow. We define the property to capture the maximum number of

concurrent tasks at any part of the workflow.

9. Workflow Orchestration 166

Maximum Task Width =2

in=4

N

Length of Workflow Chain

D >
Minimum Task Width =1

Total number of tasks = 6

Number of tasks by Level
L1)=2,1(2) =2,
L(3)=1,1(4)=1

Figure 9.2: Example of Structural Analysis: A simple workflow with its associated structural prop-
erties

Minimum Task Width of Workflow. The minimum number of tasks at any level of the workflow

gives the minimum width of the workflow.

Length of Workflow Chain. The number of tasks from the start to the bottom of the directed acyclic

graphs along its longest path captures the length of the workflow chain.

Number of Tasks at Each Level. A critical element in workflow planning is understanding the
possible parallelism achievable during workflow execution thus knowledge of the number of tasks

at each level is useful.

Figure 9.2 shows an example workflow and the value of its associated structural properties. The
workflow has six tasks and a maximum width of two and minimum width of one. The workflow’s
length is four. Also based on the structural analysis, there are two tasks in levels one and two, and

one task each in levels three and four.

9. Workflow Orchestration 167

5mins/1proc 13 mins/ 16 proc

A B

C D
4 mins /2 prcR /3 mins / 2| proc
E

1 16 mins / 16 proc
F

80 mins / 32 proc

Figure 9.3: Example of Work Unit Analysis. A simple workflow annotated its work quantum char-
acteristics

9.2.2 Work Unit Analysis

We illustrated the resource requirements of scientific workflow examples in Chapter 2. A num-
ber of scientific applications run on multiple processors and vary in their execution times. Thus it
is important to consider the actual computational and data units required by the workflow in ad-
dition to its higher-level structural characteristics. We assume that a DAG description is annotated
with rough estimates of the performance information. For each task in the workflow, the time (T)
on N processors is specified. For example in Figure 9.3), we see that task A is expected to take five
minutes on one processor. In addition the data sizes between two or more tasks in the workflow is
specified. Performance models are not always accurate on Grid resources. The following analysis
can be plugged in with average numbers to get a rough order estimate. Alternatively worst-case

timings can be used which would give a pessimistic schedule.
We define the following properties for our work unit DAG analysis.

Single Processor Computational Units. We calculate the time units the workflow will take if it

were to run on a single processor. This is useful in judging the total quantum of work performed

9. Workflow Orchestration 168

by this workflow.

Ideal Processor Sequential Makespan. It is often useful to understand the sequential aspect of the
workflow in a multi-processor environment. Thus we calculate the turn-around time or makespan
of the workflow for the case where a resource acquisition strategy is able to get the desired number

of processors for each task but at a time only one task can run.

Ideal Processor Makespan. It is the turn-around time of the workflow where there are no resource
constraints and resource requests are met immediately. This represents the ideal makespan of the

workflow and is usually what is possible in under-subscribed resource environments.

Maximum Processor Width of Workflow. The parallelism of the workflow is an important criteria
in resource planning decisions. We capture the maximum number of processors that is required in

parallel for a workflow at any given time during its execution.

Minimum Processor Width of Workflow. We also capture the minimum number of processors that

are required at any level of the workflow.

Task Data Ratios. For each task in the workflow, we calculate the output to input data ratios, thus

enabling us to gauge the data aspects of the task.

Workflow Computational Classification. At a higher level it is often important to understand the
computational distribution of the workflow. In our classification we characterize workflows on the
distribution of the work load in the top, middle and bottom of the workflow. Our classification

includes the following categories
e TOP_.COMPUTATION_HEAVY indicates that the top one third of the workflow is computa-
tion intensive

e MIDDLE_COMPUTATION_HEAVY indicates that the middle one third of the workflow is

computation intensive

9. Workflow Orchestration 169

e BOTTOM_COMPUTATION_HEAVY indicates that the bottom one third of the workflow is

computation intensive

e TOP_.MIDDLE_COMPUTATION_HEAVY indicates that the top half of the workflow is com-

putation intensive

e MIDDLE_BOTTOM_COMPUTATION_HEAVY indicates the the bottom half of the workflow

is computation intensive

e UNIFORM_COMPUTATION indicates that the workflow is roughly uniform in its computa-

tion distribution

The nature of the workflow can determine resource acquisition strategies. For e.g., a BOT-
TOM_COMPUTATION_HEAVY workflow might benefit from a real-time advanced reservation re-

quest.

Workflow Data Classification. We use the ratio of the total output data from the workflow to its
input data to classify the workflow based on its data. Our categories for this classification currently

are

e DATA PRODUCER indicates that the outputs of the workflow are larger than the inputs to
the workflow.

e DATA REDUCER indicates that the inputs to the workflow are larger than its outputs.

e DATA_UNIFORM indicates that workflow inputs and output sizes are mostly similar.

9. Workflow Orchestration 170

mergedSlot
newSlot

newSlot mapping

currentSlot

currentSlot
mapping

h wastage &

TimeSlack 2 X TimeSlack

mergedSlot

=

2 X TimeSlack

currentSlot I newSlot

v
(b) wastage

(a)
b

Figure 9.4: Resource Request Merging in Time. Examples that shows how slot merging is applied
with timeSlack (a) newSlot’s start and end times fall within timeSlack units of currentSlot’s start and
end times the slots are merged (b) If the start time of the new slot is timeSlack units within the end
time of the slot and the processor width is identical, the slots are merged.

mergedSlot

mavoins I
mapping

nev/Slot

currentSlot

currentSlot :
mapping

TimeSlack 2 X TimeSlack > wastage

(a)
mergedSlot

currentSlot
mapping newsSlot
— mapping

2 X TimeSlack

v
(b) wastage

Figure 9.5: Resource Request Merging in Time and Processor Width (i.e.,processorSlack = true). Ex-
amples that shows how slot merging is applied with timeSlack and processorSlack (a) newSlot’s start
times falls within timeSlack units of currentSlot’s start time or newSlots’s end times fall within cur-
rentSlot’s end times slots are merged (b) If the start time of the new slot is timeSlack units within the
end time of the slot, the slots are merged.

9. Workflow Orchestration 171

9.2.3 Resource Requests

Resource requests often come with certain overheads for e.g., wait time in the batch queues or
virtual machine startup overhead. Thus it is often beneficial to merge resource requests for multi-
ple consecutive tasks to minimize overheads. This might incur a wastage of a resource when the
resource is idle waiting for the next task. However for applications with strict timeliness require-
ments (e.g. LEAD) this wastage is often inconsequential. Thus we define two properties, on the
time and processor width dimension of a slot that control the merging of the slots while trading

wastage.

e Time slack factor. The timeSlack factor captures the variation in time units that can be tol-
erated from an existing slot’s start and end times. For example, using this factor a new slot
whose start time is within the start time + timeSlack units would be considered for a merge.
Similarly a new slot that has an end time within the end time =+ timeSlack units would be

considered for a merge.

e Processor slack factor. In addition to the time dimension it is also important to consider the
width (i.e. number of processors) of the resource request. A user can specify a true or false
value for the processor slack factor to control slot wastage when considering the processor

based merging of slots.

The above two parameters help us in defining how resource requests must be formulated for a
particular workflow. Figures 9.4 and 9.5 show examples of slot merging without (Case 1 in Algo-
rithm 1) and with processor slack (Case 2 in Algorithm 1). When the timeSlack factor is considered
for merges, a width-wise merge is performed only when both start and time times of the slots are

within =+ timeSlack units are merged (Figure 9.4(a)). Similarly, a length-wise merge is performed if

9. Workflow Orchestration 172

the start time of the newSlot is within =+ timeSlack units of a currentSlot (Figure 9.4(b)) if the processor

widths for the two slots are identical.

The processorSlack factor allows a more lenient merge. If either the start time of a slot or the end
time of a slot is close to the end time within + timeSlack units of a current slot, a merge is performed
(Figure 9.5(a)). Similarly a length-wise merge is performed if the start time of the newSlot is within

+ timeSlack units of a currentSlot (Figure 9.5(b)) irrespective of their processor widths.

Algorithm 1 describes the slot merging methodology for merging an existing slot currentSlot
with a new slot request newSlot. Two slots can be merged either in width, i.e. the slot request’s
processors is increased to accommodate both requests, or in length where one slots end time is
closer to the other’s start time. In our methodology we traverse the DAG from top to bottom and
comparing each new slot request for a task with already processed slot requests. We obtain the
set of slots required by the workflow calculated under the conditions imposed by the slack factors
described above. Individual slots from each task in the workflow are merged to come up with an
optimal set that are constrained by the time slack and processor slack factors. A time slack factor of

zero would be the most aggressive resource request and can result in a separate slot for each task.

Let us now consider the complexity of this heuristic. If a workflow has n tasks, our heuristic
in the worst case has to do zero comparisons for the first element, one comparison for the second
element, (n-1) comparisons for the n'" element. Thus, the worst case complexity of our algorithm

is given by:

9. Workflow Orchestration 173

[
. 3
(]!
L

~.

|

£}

!
o
z

9.3 Resource Acquisition

Newer resource models have changed the way higher-level tools interact with resources. One
of the fundamental differences is how and when resources are acquired. In batch queue based sys-
tems, resource acquisition is closely tied with the execution system. However with newer resource
models the procurement of resources is explicit and occurs before planning strategies can be ap-
plied. This presents some new challenges to workflow orchestration including the need to predict

resource requirements. Resource acquisition strategies that are possible with workflows are:

Task-based. In a task based strategy, resources are acquired just-in-time for each task or each job
in the workflow separately. This is similar to the state of the art in workflow grid systems. In
today’s batch queue based grid systems, each task of the workflow is submitted as a job to the
queue. In a task-based strategy the overheads from queue wait time in batch systems and machine

startup-overhead in cloud or utility systems are incurred for each task.

Workflow-based. In a workflow based strategy, resources are acquired prior to scheduling for an en-
tire workflow. In this case, we need mechanisms to determine appropriate resource requests. Also,
gaps in the schedule result in resource wastage that is an additional cost that must be accounted

for in workflow planning.

9. Workflow Orchestration 174

Algorithm 1 Slot merging: Merging newSlot with a currentSlot

{Case 1: TIME SLACK MERGE: when processorSlack is false and only timeSlack is specified }
{Case 1(a): WIDTH MERGE if newSlot’s start and end times are close to an existing slot, it can
be expanded in width}
if (newSlot.startTime > (currentSlot.startTime — timeSlack)) and
(newSlot.startTime < (currentSlot.startTime + timeSlack)) and
(newSlot.endTime < (currentSlot.endTime + timeSlack)) and
(newSlot.endTime > (currentSlot.endTime — timeSlack)) then
currentSlot.processorWidth < currentSlot.processorWidth + newSlot.processorWidth
Update start time and end time of the currentSlot to accommodate the new slot if required
return
end if
{Case 1(b): LENGTH MERGE: if newSlot’s start time is close to the end time and processorWidth
of newSlot is less than or equal to currentSlot}
if (newSlot.startTime < (currentSlot.endTime + timeSlack)) and
(newSlot.startTime > (currentSlot.endTime — timeSlack)) then
if newSlot.processorWidth == currentSlot.processorWidth then
Update start time and end time of the currentSlot to accommodate the new slot if required
return
end if
end if
{Case 2: PROCESSOR SLACK MERGE: even a slight overlap in time, consider merging slots}
if processorSlack then
{Case 2(a): LENGTH MERGE: if newSlot’s start time is close to the end time}
if (newSlot.startTime < (currentSlot.endT'ime + timeSlack)) and
(newSlot.startTime > (currentSlot.endTime — timeSlack)) then
if newSlot.processorWidth > currentSlot.processorWidth then
currentSlot.processorWidth < newSlot.processorWidth
Update start time and end time of the currentSlot to accommodate the new slot if required
return
else if newSlot.processorWidth < currentSlot.processorWidth then
Update start time and end time of the currentSlot to accommodate the new slot if required
return
end if
end if
{Case 2(b): WIDTH MERGE if newSlot’s start or end times are close to an existing slot, it can
be expanded in width}
if ((newSlot.startTime > (currentSlot.startTime — timeSlack)) and
(newSlot.startTime < (currentSlot.startTime + timeSlack))) or
((newSlot.endTime < (currentSlot.endTime + timeSlack)) and
(newSlot.endTime > (currentSlot.endTime — timeSlack))) then
currentSlot.processorWidth < currentSlot.processorWidth + newSlot.processorWidth
Update start time and end time of the currentSlot to accommodate the new slot if required
return
end if
end if

9. Workflow Orchestration 175

The resource acquisition strategy affects the availability of resources accessible to higher-level
workflow planning components. Both task-based and workflow-based resource acquisition have
trade-offs. We evaluate the tradeoffs between a task-based and workflow-based resource acquisi-
tion in the context of our workflow orchestration implementation (Section 9.6.3). The workflow-
based strategy can be expanded to include multiple workflows or the active workload that is visible

to the application-level components (more details in Chapter 10).

9.4 Task Mapping

Scheduling distributed workflows on heterogeneous resources is a known NP-complete prob-
lem and a number of heuristics have been proposed [127, 188]. These heuristics focus on optimizing
the makespan of the workflow using projected application running times and data transfer times.
However application running times vary in real-time due to a number of factors including load
and availability of machines [141]. Thus we need task mapping strategies that account for perfor-
mance and reliability. For deadline-sensitive workflows it is necessary to consider the best chance

of workflow completion when making resource decisions.

We explored the effect of availability variation on performance in Chapter 7. We develop
deadline-driven DAG scheduling approaches focused on probability of a task finishing in Sec-
tion 9.4.1. Nect, we develop DAG scheduling strategies that use the performability model to ac-

count for the performance impact due to availability variation (Section 9.4.2).

9.4.1 Probabilistic DAG Scheduler

We describe a probabilistic workflow scheduling approach that takes into account the probabil-

ity of resource acquisition as well as the probability of resource failure during the allotted duration

9. Workflow Orchestration 176

while scheduling each task.

Algorithm 4 describes the probabilistic task mapping approach. The node priority assigning
phase traverses the DAG from bottom-up and assigns deadlines for the tasks given a workflow
deadline (Algorithm 2). Subsequently the tasks are sorted by deadline for the scheduling phase.
Each task T has a duration d and must be scheduled no earlier than earliestStartTime and must finish
no later than latestFinishTime. The only difference in the slot based system is that the algorithm
tries to find a space on the slot where the task can be mapped. The difference arises from the
resource model characteristics. In a batch queue system, resource requests are bound by the size of
the cluster whereas when resource procurement is decoupled from the mapping, the scheduler is
bound by the size of the slot already returned by the site. Subsequently all task mappings that meet

the task deadline are considered for selection and the best success probability mapping is selected.

For any task in a workflow, the probability that it will succeed depends on the resource on
which it is scheduled as well as the probability of its parent tasks finishing. When two tasks are
scheduled on independent resource slots their probabilities are independent and the probability
of a task is the joint probability of its parent and itself. However in a slot abstraction, if a Task T
and its parents are scheduled on the same resource slot then the Task T has the same probability
of finishing as its weakest parent. Algorithm 3 shows how the task probability of every task in a
workflow is calculated according to this mechanism. Also the probability of a workflow completing
is the minimum of the success probability of all tail nodes. The process is repeated for all tasks in

the workflow. This heuristic finds a mapping in polynomial time (O(n?)).

9.4.2 Performability based DAG Scheduler

We showed that performability modeling can be used to project the effect on performance from

availability variations in Chapter 7. Specifically we showed that we can use the performability

9. Workflow Orchestration 177

Algorithm 2 Deadline Assignment: Calculating latest completion times for tasks in a DAG

while T in tailnode do
taskdeadline < DAGdeadline
unassignedtasks < parentsofT
end while
while T in unassignedtasks do
if children of T have been assigned deadlines then
taskdeadline < minimumAcrossChildren(deadlineO fChild(T) — durationO fChild(T))
end if
unassignedtasks < parentsofT
end while

Algorithm 3 Task Probability: Calculating task success probability

MinParent < Get minimum probability of all parent tasks
if MinParent is on same resource slot S as task then
taskSuccessProbability <= MinParentProbability
else
taskSuccessProbability < MinParentProbability x Task Probability
end if

Algorithm 4 DAG Scheduler: Probabilistic DAG Scheduler for batch and slot systems

Assign latest completion times for the tasks (using Deadline Assignment Algorithm (2))
Sort the tasks by latest finish times
for all T'in DAG in sorted order do
earliestStartTime < Latest FinishTime(Parents(T))
for each resource slot do
if BATCH then
latestFinishTime <= Mazimum/(earliestStartTime, (taskDeadline — duration))
else
latestFinishTime <« find position where task will fit on slot
end if
if task can complete by deadline then
resource AcqProb <= ProbSlot Acquisition
resourceU pProb < ProbSlotDoesN ot Fail
taskSuccessProbabilityOn Resource <= resource AcqProb x resourceUpProb
taskSuccessProbability RelativeT oParents < calculate task success probability consider-
ing placement of parent tasks
end if
end for
selected Resource < Resource where task has
Mazimum(taskSuccessProbability RelativeT oParents)
end for

9. Workflow Orchestration 178

values to project running time and data transfer times for a task on machines and network with

reliability variations.

We modify two commonly used DAG scheduling heuristics - Min-min and Max-min [188] to

account for performability.

Min-min: In this heuristic, at each pass the minimum completion times of each task that can be
scheduled given its performance model is calculated. The earliest finishing task is then selected to

be scheduled next. This is repeated till all components in the workflow are mapped

Max-min: The philosophy behind this heuristic is to schedule the bigger components first. Once
the minimum completion time for all possible components is calculated the latest finishing task (i.e.

largest component) is then selected to be mapped first.

We modified the implementation of these algorithms to consider the projected times from the
performability analysis. The calculate projected running time for the application uses application
performance distribution with the resource’s failure and repair rates. The algorithms using per-
formability have been shown in Algorithm 5. The approach has the same complexity as the the
version of the algorithms that consider just performance i.e. both heuristics find a mapping in

polynomial time (O(n?).)

We compare workflow scheduling simulation results from the performance and performability
approaches using failure data collected on production systems at Los Alamos National Labora-

tory [106, 158] in Section 9.6.2.

9. Workflow Orchestration 179

Algorithm 5 Performability DAG scheduler: The algorithm shows the modified version of the
min-min and max-min heuristic that uses the performability analysis for projected timings. The
modified lines from the original algorithm is shown in bold.

readyT askList < Determine components that are ready to be scheduled based on dependencies
while T in readyT askList do
for all R in resourceList do

projected RunningTime < 1

Per formabilitycomputation (T, R

. 1 .
dataTrans ferTime < poom gy {from equation 7.12}

EstimatedCompletionTime(T) <= MaxParentFinishTime(T) + projected RunningTime +
dataTrans ferTime
end for
For min-min: Find minimum completion time of task T over all resources R and finalize map-
ping
For max-min: Find maximum completion time of task T over all resources R and finalize map-
pmg
readyTaskList <= Determine components that are ready to be scheduled based on dependen-
cies
end while

7 {from equation 7.11}

9.4.3 Hybrid DAG Scheduler

Finally, we developed a hybrid version of the deadline-sensitive DAG scheduler that uses the
performability metrics. We also modified the DAG scheduler to consider fault-tolerance strate-
gies (Section 7.2.3) in the mapping phase. The DAG scheduler is similar to the probabilistic DAG
scheduler and first assigns deadlines to the tasks in the DAG based on the deadline specified for
the workflow. For this step it uses the performability based projected application running time that
accounts for impact on running time due to availability variations that can occur during execution.
In the next step, for each task in the DAG, it then uses the performability model and the state of
the resource from the model (e.g. High, Good) to calculate the projected running time of the appli-
cation on each of the resources. It finally considers all the resources for the task that can meet the
deadline, and the task is mapped onto the resource that will incur the least cost for the application.
If fault tolerance is enabled during DAG scheduling, the cost of replication and checkpoint-restart
for this application is considered. If the cost of replication is lower, an additional mapping is sought

for the task on the resources. If checkpoint-restart is a better strategy, the resources are checked for

9. Workflow Orchestration 180

availability with the additional time overheads for checkpoint-restart. If resources are available to

accommodate the overheads the task mapping is updated appropriately.

9.5 Schedule Enhancement

Both lease and batch systems allow users to get higher QoS guarantees through facilities that
come at higher costs, and workflow orchestration must balance costs with the need. In batch queue
systems today, users often use online or out-of-band advanced reservations for guaranteed resource
access. However these often require considerable lead time and the costs for these are often pro-
hibitive limiting its use only when there is a predictable load anticipated. Cloud systems today
work on a model where you are guaranteed immediate access to N resources that are agreed upon
out-of-band and thus do not have explicit notion of promise of resources in the future. However as
mentioned previously, when cloud systems are over-subscribed, a similar notion can be expected.
For workflows, schedule enhancement can be implemented at a task-level or workflow-level or a

hybrid approach which we refer to as boundary reservations.

Task-based. In task-based advanced reservations, we query the resource coordinator on a task-
by-task basis for the entire workflow to see if the workflow success probability can be enhanced
by using an advanced reservation for a task. In our implementation we use the schedule from the
probabilistic DAG scheduler sorted by the task success probabilities as a guidance mechanism to
enhance the “weak” links in the workflow. While, for time-sensitive applications cost is not a con-
sideration, this mechanism also allows enhancements to the approach that controls acquisition by
priority of the tasks and the cost. For each task we query the resource for an advanced reservation
and sort the results by the highest probability followed by minimum cost. We pick the best result,

if the probability of that task completing is higher than what is obtained through the probabilistic

9. Workflow Orchestration 181

batch scheduler. With this mechanism, the cost of obtaining the advanced reservation is incurred

on each task of the workflow.

Boundary-based. Workflow components may be scheduled on multiple sites, hence we investigate
an intermediate approach of procuring a single advanced reservation on each site for parts of the
workflow that are scheduled on it. In this mechanism we consider the earliest task and latest task
scheduled on the resource to define the time boundary and the maximum width of any task on the

resource as the slot width for the request.

Workflow-based. In workflow-based advanced reservations, the resource is requested for the en-
tire slot during the resource acquisition phase. In this mechanism, the overhead (i.e., wait time on
batch systems and machine startup overhead on cloud systems) of slot acquisition is incurred only
once for the entire workflow. The cost for this approach is the entire cost of the slot that is used.

The wastage in the slot comes from idle time on the slots and earlier slot arrival.

9.6 Evaluation

We have presented a number of workflow orchestration strategies in this chapter. In this section,
we evaluate our orchestration strategies in the context of select workflow examples from Chapter 2.
The workflow examples used in this evaluation is shown in Figure 9.6. We model the structure of
the workflows using Xbaya [161], a graphical composition tool that is used in the Linked Environ-

ments for Atmospheric Discovery(LEAD) [54] project.

We evaluate our heuristic for slot request and discuss workflow properties for our example
workflows in Section 9.6.1. We evaluate our performability-based and probabilistic DAG sched-

ulers in Sections 9.6.2 and 9.6.3.

9. Workflow Orchestration

182

338secs
147MB

88secs

243MB

78secs

4570secs/
16 processors

2422MB

(a) lead

30secs

100 KB

5400 secs

500 KB

60secs

275 MB

275 MB

900 secs/
16 processors

162MB 162MB

60secs

(b) scoop

534MB

1hr/
256 processors

11 hr/
256 processors

21527MB

Shr/ 13hr/

10processors

34MB
4hr/

3hr/ 34V

3600 secs/
256 processor:

(c) motif

599
MB

192processors

4.5hr/

(d) ncfs

160processors

Figure 9.6: Scientific workflow examples.(a) a weather forecasting workflow (b) storm surge mod-
eling workflow (c) domain analysis of biological sequences (d) flood-plain mapping workflow

Workflow Number of | Number of | Number of | Maximum | Minimum
Tasks Levels Tasks by | Width Width
level
lead 6 4 22,1,1 2 1
Scoop 6 2 51 5 1
ncfs 7 4 2,2,2,1 2 1
motif 138 4 1,135,1,1 135 1

Table 9.1: Structural Workflow Analysis. The table shows the structural properties for some exam-

ple workflows.

9. Workflow Orchestration

183

Number of slots

Number of slots

10

T T T T T
lead workflow processor slack = false
motif workflow processor slack = false -
ncfs workflow processor slack = false -
scoop workflow processor slack = false —

. .
1500 2000
Slack factor (seconds)

(@

L L
500 1000

L
2500

L
3000

L
3500

T T T
lead workflow processor
motif workflow processor
ncfs workflow processor
scoop workflow processor

KKK KK KKK KK KK KKK KK K KKK K KK

T T
slack = true
slack = true ----x---
slack = true -
slack = true -

o % % +

0 5 10 15 20 25 30
Slack factor (seconds)
(©

lead workflow
scoop workflow — -~

motif workflow -+«
ncfs workflow -- --e- -

140

100

80 |

60 [

Slot Wastage (minutes)

40 +

20 i

0 500 1000 1500

2000 2500 3000 3500

Slack factor (seconds)

(b)

lead workflow
scoop workflow —=~

motif workflow -«
ncfs workflow - --e- -

ceesdas

10000 F

1000

R e

e b asesbansedoneoy

Slot Wastage (hours)
=
o
T

0.1

0.01 L L .

-5 0 5 10

15 20 25 30

Slack factor (seconds)

(d)

Figure 9.7: Impact of Slack Factor on Slot Requests. The graphs shows the slot analysis for the four
sample workflows with varying timeSlack and processorSlack parameters (a) and (b) show the slot
count and corresponding wastage as timeSlack varies, (c) and (d) show the slot count and corre-
sponding wastage (in log scale) timeSlack varies when processorSlack= true.

Workflow Total com- | Workflow | Computational Data Classification
putational | Dataratio | Classification
units
lead 20.63hours | 8.0 MIDDLE_BOTTOM DATA_PRODUCER
scoop 20.82hours | 0.36 TOP_MIDDLE DATA _REDUCER
ncfs 5968 hours | 3.0 TOP DATA_PRODUCER
motif 459.17 2.13 BOTTOM DATA_PRODUCER
hours

Table 9.2: Work Unit Workflow Analysis. The table shows the properties that describe that deter-
mine the work units to be performed for each of our example workflows.

9. Workflow Orchestration 184

9.6.1 DAG Analysis

Tables 9.1 and 9.2 show the value of the properties for the example workflows. As mentioned
earlier each of the workflows varies significantly in their structure and work units. The lead work-
flow has a small number of tasks and is a data producer and the computation is heavy in the middle
to bottom of the workflow. The scoop workflow reduces its input data and the top to middle of the
workflow has the computation. The ncfs workflow is very computationally heavy requiring total
of almost 6000 processor hours and the top of the workflow is more computationally heavy. The

motif workflow has its computation in the bottom of the workflow and is also a data producer.

Figure 9.7 shows the effect on slot count and slot wastage for varying values of the parame-
ters timeSlack and processorSlack. Figure 9.7(a) shows the slot count as timeSlack is varied. The lead
workflow has a number of small tasks and the slot count decreases quickly with increasing times-
lack. The scoop workflow’s slot count decreases at about 900 seconds which is the largest part of
the workflow. In Figure 9.7(c) the number of slots decreases rapidly as the processorSlack=true since
it allows more lenient merging of slots. Figures 9.7(b) and (d) captures ths slot wastage as timeSlack
is varied. We observe that as the slot count decreases, the wastage from the slot increases since a
large part of the slot goes unused. The ncfs workflow does not encounter any slot wastage since a
slot is requested for each task in the workflow since the tasks are large and merging of slots does
not occur. Workflow orchestration strategies need to compare the effects from the overheads as-
sociated with individual slots with the wastage on the slots to determine the right slot acquisition

parameters.

9. Workflow Orchestration 185

07 T T T
system 2 - Experiment 1 ---o---
system 2 - Experiment 2 --x
o 06x% system 5 - Experiment1and 2 - &-- -
© Sx system 9 - Experiment 1 and 2 - -+~
[0%
8 05F " ke i
o o 3
g o4l e,
I 4 e, b
® . Ko K
(&) N
5 03fF i
k]
2
T
o
g

Time (Days)

Figure 9.8: Failure Characteristics of Production Systems. Failure to repair rates over time in pro-
duction use of systems at LANL.

11200 T .
system 2 EXXx]
11000 | Ssystem5 ez 4
system 9

10800 | E
9
% 10600 f e
2 10400 | —
<
(=} L 4
g 10200
o
3 10000 | £ E
= (R4
E 9800 | 90 R
: s

9600 :::::‘ E

K543
9400 | E
9200

Experiment 1 Experiment 2

Figure 9.9: Schedule Comparision with Different Availability Levels. Comparison of workflow
tasks scheduled on the resources in Experiment 1 with no prior accumulated resource history and
Experiment 2 with prior accumulated history for system 2.

9. Workflow Orchestration 186

2 T T T ——— — T 2 T T T ——— T T
MinMin - Experiment 1 e MinMin - Experiment 1 e
19 F MaxMin - Experiment 1 ---x--- o 19F MaxMin - Experiment 1 ---%--- |
iy MinMin - Experiment 2 ---@-- o MinMin - Experiment 2 ---@--
& 18} MaxMin - Experiment 2 -+~ J g4oq8t MaxMin - Experiment 2 -+~ |
a a
a 1.7 F B [1.7 F B
g g
£ 16} g I 16} g
< 15 2
c 5 - = 4
2 ol :
2 14, B g i
< €
Z 13F %, 1 S 1
© [T . S - e,
£ 12¢ VB g S e R
g T g g \, v g
11} B X 11r 5. B L B
b%e.. g g
ko SRR ez B G G e @ 1 L L i@ L L L L
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
Time (Days) Time (Days)

@ (b)
Figure 9.10: Study of Performability based Workflow Schedules On Production Systems. Ratio of

a) makespan b) performability over time in production use of systems (averaged over 100 runs per
data point.)

9.6.2 Performability Workflow Scheduling Simulation

Next, we present results from a set of experiments in workflow scheduling using a simulation
framework. Recently, resource providers such as TeraGrid have been collecting and publishing
machine (e.g., Availability Prediction Service [11], INCA Real Time Monitoring Suite [82]). How-
ever, the quantity of data is still insufficient for any extensive evaluation. As more data is collected
on systems it will be possible to classify the current availability level (e.g. High, Good, etc) of the
resource and plug that additional information into the model. We use the operational data made
available by Los Alamos National Laboratory (LANL) that includes data collected from about 22
high performance computing systems over a period of 9 years [158]. The reliability data provides
significant samples similar to current production HPC systems. The simulation framework evalu-
ates workflow scheduling algorithms using performability and performance as metrics. Numerous
studies have proposed various workflow scheduling heuristics for different grid applications [205] ;
we choose two scheduling algorithms: min-min and max-min [188] described in Section 9.4.2. With
each heuristic we first consider application performance time on each resource in the high state and

generate a schedule for the workflow (referred to as PERF hereafter) and then apply the algorithms

9. Workflow Orchestration 187

shown that considers performability (referred to as HYBRID). Our approach is orthogonal to the

choice of the exact algorithm and can be used with other algorithms.

Performance data Our simulation framework uses the lead workflow - a mesoscale meteorology
workflow that is used for weather prediction. A sample directed acyclic graph is shown in Fig-
ure 9.6(a). In the simulation we generate the application run times in different reliability states
from a normal distribution [98] where the mean is from real observations on TeraGrid machines.
Bandwidth data required to model data transfer times is generated from long-tailed Pareto distri-

butions [86].

Reliability data The LANL reliability data provides details on failures and repair times over the
life of a number of systems. We use systems 2 (6152 cpus), 5 (512 cpus) and 9 (512 cpus) in this
simulation. We calculate the failure and repair rates at time t for these machines using failure data
available till time t. We take this approach since in real systems decisions will be made with data
available to date. We select data points from this set of observations for our scheduling simulation
and compare the effect on workflows as the systems failure and repair times change over their
lifetime. Figure 9.8 shows the failure-to-repair ratio of the data points selected for the simulation
for the three systems. In Experiment 1, we use the first 18000 hours of system lifetime for the
simulation, i.e. all systems have no prior accumulated resource history. For experiment 2, we
consider system 2 to have prior accumulated failure data history i.e., we use system 2’s data from

20000 to 38000 hours.

Results. Figure 9.9 shows the total number of workflow tasks scheduled on each resource in each
experiment. In Experiment 2, the corresponding failure-to-repair rates for system 2 are signifi-
cantly higher than the other two resources and we see a drop in the number of components that
are scheduled on this resource. Figure 9.10(a) shows the ratio of makespan from the HYBRID ap-

proach and the corresponding performance heuristic. At high failure-to-repair rates, the HYBRID

9. Workflow Orchestration 188

approach produces a longer schedule accounting for the failure possibilities. In Experiment 1, the
HYBRID approach produced slightly longer makespans for the workflows than the PERF heuristic.
Experiment 2 demonstrated slightly higher increase in the makespan where system 2 had a much
higher rate of failure-to-repair ratio compared to the other two systems. This is largely because
workflow components do not get scheduled on the best performance machine when reliability of

that machine is lower.

In Figure 9.10(b) we compare the performability of the computational parts of the workflows.
The performability for the PERF algorithm is calculated using the corresponding failure-to-repair
rates of the machines on which each task was scheduled. As expected we see that performability ra-
tio corresponds closely to the resource failure-to-repair rates. As the failure-to-repair rates increase,
the performability from the HYBRID approach is significantly higher than the PERF. Thus we see
that using performability as a metric can result in a better workflow schedule that accounts for the
machine availability in addition to application performance. We see that the difference between
min-min and max-min is minimal on the makespan and the performability. These experiments
demonstrate the performability and makespan variance over machine lifetimes, emphasizing the
importance of performability as a metric in workflow scheduling that improves performability with

minimal effect on makespans.

9.6.3 Probabilistic Workflow Orchestration

In this section, we present experimental results that compare and contrast our probabilistic
orchestration techniques in grid and cloud environments. In Section 9.6.3, we demonstrated the
feasibility of probabilistic slots through trials performed on the TeraGrid. Here we use simulation
to compare the effect of orchestration technique parameters when using both TeraGrid and EC2

resources through probabilistic orchestration.

9. Workflow Orchestration 189

Implementation. We implemented a set of workflow orchestration strategies for resource acqui-
sition, task mapping and schedule enhancement to facilitate comparison. Our implementation

consisted of the following planners:

e Batch Queue (BQP). We implemented a vanilla batch queue scheduler that used batch queue
prediction data (BQP) and Availability Prediction Service (AVP) [11] data to select resources
during the mapping phase selecting the resource with best probability for each task. The

complexity of this algorithm is the complexity of the DAG scheduler which is O(n?).

e Batch Queue and Task-based advanced reservations (Task). We use the batch scheduler to
map tasks onto resources. We sort the tasks by their success probabilities. We use VARQ to
query for each task in the sorted list to see if a task-based advanced reservation enhances
the success probability. VARQ queries use a heuristic to vary the parameters to find a possi-
ble resource combination that meets the users requirements. The VARQ query is for a fixed
duration, width and start time and range of success probabilities. The cost incurred for this
mechanism is the total execution time plus additional costs from VARQ for the slots. The
complexity of this algorithm is given by the complexity of the DAG scheduler (O(n?)) and
the complexity of the VARQ query which is O(n). Thus the complexity of this approach is

given by O(n? + n) ie., O(n?).

e Batch Queue and Boundary-based advanced reservations (Boundary). We use the batch
scheduler to map tasks onto resources and then use VARQ to procure advanced reservations
grouping all the mappings on a single resource into a single slot request. The VARQ query
is for a fixed duration, width and start time and range of success probabilities. The cost in-
curred for this mechanism is the total execution time plus additional costs from VARQ and
any slot idle time that comes from gaps in the slots. The complexity of this algorithm is given

by O(n? + n) i.e. O(n?).

9. Workflow Orchestration 190

e Batch Queue Advanced Slot and Workflow-based task mapping (Slot). In this approach we
query the resources to get appropriate “advanced reservation” slots. We then apply the prob-
abilistic DAG scheduler to map tasks onto these slots. For every task we make a VARQ query
for a fixed duration and fixed width but for a range of start times and range of success proba-
bilities. The cost incurred for this mechanism is the total execution time plus additional costs
from VARQ and any slot idle time that come from gaps in the slots. There might be idle time
at the tail end of the slot which is not counted as a cost since in batch systems the resources can
be released as soon as jobs are done. The complexity of this algorithm is given by O(n? + n?)

i.e. O(n?).

o EC2 Task-based. We implement a task-based DAG scheduler for cloud (EC2) systems where
resources are procured independently for each task. The bootstrap time for the machines for
each task is added to the makespan of the workflow. In addition EC2 rounds up resource
usage to the closest hour and thus the wastage on each resource slot also gets added to the

cost. The complexity of this algorithm is O(n?).

e EC2 Slot-based. We also built a EC2 slot based planner where resources are assumed to be
acquired at the start for the entire workflow and subsequently the slot based DAG scheduler
is used. Resource usage is rounded to the closest hour and the slot overhead is added to the

makespan. The complexity of this algorithm is O(n?).

Experimental setup. We use the four grid workflow examples (Figure 9.6) that routinely run on
TeraGrid and/or other high performance systems. For our batch experiments we use probabilistic
resource data from three TeraGrid machines (tagged as ncsatg, abe and uctg) located at the National
Center for Supercomputing Applications and Argonne National Laboratory. We obtain resources

acquisition probabilities through QBETS [125] and VARQ [126] and reliability probabilities through

9. Workflow Orchestration 191

BQP(2 resources) —t— BQP(3 resources) BQP(2 resources) —— BQP(3 resources)

))
Task(2 resources) —»— Task(3 resources) —-o-- 80 - Task(2 resources) —»— Task(3 resources) --o--
Boundary(2 resources) ---%--- Boundary(3 resources) -:-®:- Boundary(2 resources) ---%--- Boundary(3 resources) -----
1+ Slot(2 resources) ---@--- Slot(3 resources) - -a- - Slot(2 resources) ---3--- Slot(3 resources) -« -&-- -
o 70 .- .o 0- 1
= A B A b DB B B obe DB Ao BB BB Ao A B A A A A v g
2 osf B} < £
g ° K 1
5 2
2 B-a-a _§
0.6 % =5 {3 =5 q 50 q
8 el Lo s 5
@ YA Z
g % 8 wl]
T 04 - 1 s
: £
i 30 1
02F % B
~ ~
20 | 1
0 1 1 1 1 1 1 1 1
0 5 10 15 20 25 0 5 10 15 20 25
Deadline (hrs) Deadline (hrs)
(a) Probability (b) Cost

Figure 9.11: Resource Procurement over Batch Systems for LEAD workflow. Comparison of differ-
ent resource acquisition techniques for the lead workflow. We compare (a) the effective probability
and (b) cost as deadline varies upto 24 hours.

AVP [11] for failure probabilities. For EC2 systems, we use the present day cost value of the re-

sources and data transfer.

In our first experiment we compare the orchestration techniques discussed above using a work-
flow planner simulation. We recalculate the probabilities for tasks when schedules are enhanced by
one or more mechanisms. We use the cost models (Chapter 8:Section 8.4.3) to calculate the cost for
each mechanism as the total number of used CPU hours. In addition, on batch systems, resources
can be vacated when a job or all jobs on a slot are done, thus incurring no costs for additional slot
time at the end of the schedule. We compare success probability of the workflows, makespans, and

associated resource usage costs.

On batch systems, for each workflow type we first use a task-based batch queue scheduler (BQP)
for the planning. We also use a workflow-level slot based mechanism (Slot). For the small work-
flows, we apply Task-based(Task) and Boundary-based (Boundary) VARQ requests on the schedule.
The probabilistic advanced reservation technique does have a known limitation; if there are multi-
ple concurrent large resource requests made through VARQ), the queries could potentially perturb

the predictions by dominating the workload behavior of the system. The perturbations induced

9. Workflow Orchestration

192

12

0.8

0.6

0.4

0.2

Workflow success probability

Figure 9.12:

f”‘wﬂ K

Rt isdasisiasasdd]

T T
Boundary ---%---
Slot ---@---

BQP - -+--
Task —»—

XK E

I 2
/

\

5 10 15 20 25
Deadline (hrs)

(a) Probability

Total cost for workflow (hrs) in log scale

10000 g

1000 E

100

10

T T T T
BQP --+-- Boundary ---%---
Task —»— Slot ---@---
H*¥H*H_
R K
pat 2t

5 10 15 20 25
Deadline (hrs)

(b) Cost

Resource Procurement over Batch Systems for SCOOP workflow. Comparison of

different resource acquisition techniques for scoop workflows. We compare (a) the effective proba-
bility and (b) cost (shown in log scale) as deadline varies upto 24 hours.

0.6
0.5
0.4
0.3
0.2
0.1

-0.1

Workflow success probability

S
N}

5y X D HXHXX b
HXXX
X

At b e]

5 10 15 20 25
Deadline (hrs)

(a) Probability

Total cost for workflow (hrs) in log scale

10000

1000 |

100

KA DK KD K K D 2 56 ¢ 2 %6 % 3 X
B e b e o AR o T e o S e S

5 10 15 20 25
Deadline (hrs)

(b) Cost

Figure 9.13: Resource Procurement over Batch Systems for Motifi workflow. Comparison of dif-
ferent resource acquisition techniques for motif workflow. We compare (a) the effective probability
and (b) cost (shown in log scale) as deadline varies upto 24 hours

9. Workflow Orchestration 193

by such requests are being studied by the VARQ team. Thus for large workflows (motif, ncfs) we
compare only the BQP and Slot mechanisms since the predictions from VARQ are not guaranteed
to be accurate. Each run is repeated multiple times over a period of three weeks. The probability

predictions are very stable resulting in identical output.

Batch systems, small workflows. Figure 9.11 shows the probability and cost comparisons for the
lead workflow for deadlines ranging from two to twenty-four hours on two (ncsatg and abe) and
three resources (additional resource uctg). The additional resource has a slightly higher slot acquisi-
tion probability. For the lead workflow, the Slot mechanism assures the highest level of probability
among the four techniques. The cost of the slot system is slightly higher than with vanilla BQP
but considerably lower than both Task and Boundary-based. We see that there is a slight drop in
the success probabilities for a deadline of 13 hours. This variation results from the granularity of
the parameter sweep in the heuristic used in VARQ queries. A static advanced reservation on the
TeraGrid for a 16 processor, 1.5 hour slot for lead workflow would cost anywhere from 24 CPU
hours to 48 CPU hours (for premium factors of 1 and 2). The Slot based mechanism costs less than

that.

Figure 9.12 shows the probability and cost comparisons for the scoop workflow for deadlines
ranging from one to twenty-four hours. In this case, using Task-based slots for the individual tasks
yields a higher probability than trying to get one big slot for the five parallel tasks. The Boundary
slot also yields higher probability values for deadlines that are higher than 15 hours. In terms of
cost, however, the boundary slots are significantly more expensive (about 100 to 1000 hrs) com-
pared to less than 25 hours for other mechanism. The static advanced reservation of 80 processors
for 17 minutes would cost between 22 and 44 CPU hours for this workflow and the Slot mechanism

is on the lower end of this range.

9. Workflow Orchestration 194

BQP Slot
Probability 0.0037 | 0.0066
Cost (Hours) | 5631.5 | 16640.4

Table 9.3: Resource Procurement for NCFS workflow. The table shows the cost and success prob-
ability that can be obtained for an ncfs workflow scheduled for a deadline of 36 hours over batch
systems.

Batch systems, medium and large workflows. Figure 9.13 shows the probability and cost compar-
isons for the motif workflow for the BOP and Slot-based mechanisms. The success probability of
the workflow from a Slot-based system is higher than the BQP schedule. However as the deadline
increases we see that the probability drops as a result of the reliability prediction for a 256-sized slot
dropping. The Slot mechanism has a steady cost that is slightly higher than BQP. We compare the
BQP approach with slot-based approach for the ncfs workflow for a 36 hour deadline (Table 9.3).

While the success probability from the Slot mechanism is slightly higher, the costs are also higher.

Cloud (EC2). Cloud systems today implement explicit resource control. However they do have
distinct overheads and cost models that affect the nature of workflow orchestration. For this set
of experiments we assume EC2 systems have high acquisition (0.9999) and success probabilities
(0.9999). We compare and contrast a Task-based and Slot-based policy. We calculate the EC2 costs
for the instance-hours used by the workflow. We consider both computational costs (for different
instance sizes) as well as data transfer costs for input and output data transfers to and from the
cloud. Figure 9.14 shows the cost comparison and the effect on makespan for the four workflows
for different instance sizes and overheads. In Figure 9.14(a) we see that for all instance sizes, the
slot-based system incurs lesser cost than a task-based mechanism for the lead, motif and scoop
workflows. However for the ncfs workflow, where each task executes for many hours, leaving

resources idle in the slot system makes the cost significantly higher than the task-based approach.

Earlier experiments reveal that startup overhead for a small instance image varies from 20 to 30

9. Workflow Orchestration 195

10000 F Task-EC2Small Ex=zza R 7 Task-based(20s) Bz TV
Slot-EC2Small m— _ Slot-based(20s) m— aaN
Task-EC2Medium t—=—2 H Task-based(70s) =—= R
Slot-EC2Medium =—3 A Slot-based(70s) =—= RENE
— Task-EC2Large o @ 10 | Task-based(120s) mx==wy NERS ,
5 Slot-EC2Large S Slot-based(120s) NENA
g 1000 F Task-EC2XLarge ——1 q E @ NERE
=3 Slot-EC2XLarge E==3, 2 2 B
o ’ 9 AN
= 2 = .
=] © T 5 \\
3 g I . g NENE
£ 100 A 1 < TR NENE
8 1 = N[1R NE N
c s 1f N TN A
£ | o IBNG [Nz N ¢
= g a . 8] NEN
17 Q RN R . N\ AN
o \E X ! o NENE N RN
o 10 N B g . \\\ \\\) N2 NENZ
| N 1 NENE REN& TN NE N
! NENE NENG NENE TR
1 K b Kl | ¢ 01 MENE : : RAND I
lead motif scoop ncfs lead motif scoop ncfs
(a) Cost (b) Makespan

Figure 9.14: Resource Procurement over Cloud Systems. Comparison of (a) cost and (b) makespan
from task-based and workflow-based scheduling for workflows on Cloud (EC2) resources. The Y
axis is in log scale.

seconds for 1 to 8 virtual machines [129]. We compare the makespans for overheads of 20, 70 and
120 seconds. Figure 9.14(b) shows the effect of startup and shutdown overheads on the makespan.
In the task-based strategy the startup and shutdown overheads get added to each task’s execution
time. Our results show that the slot based system produces better makespans than the task-based

systems. As the overheads increase, the difference also increases, as expected.

From our evaluation we see that probabilistic resource decisions help us understand the possi-
bility of meeting a workflow deadline. Slot-based acquisition works well for our small and medium
sized (lead, scoop, motif) workflow examples on both batch and cloud systems. For our larger

sized workflow example (ncfs) the benefits are not substantial due to increased costs.

9.7 Summary

In this chapter, we proposed and evaluated workflow orchestration atop resource models pro-
vided by grid and cloud systems. We proposed and evaluated a heuristic for slot requests using

DAG analysis methodology. To account for availability variations in distributed resources, we

9. Workflow Orchestration 196

evaluated a performability based DAG scheduling approach. The experiments demonstrate the
effectiveness of using performability as a metric to account for availability variations over machine

lifetimes, with minimal effect on makespan.

We design, implement and evaluate task-based and workflow-based deadline-sensitive orches-
tration algorithms. A workflow-based dynamic resource acquisition and planning strategy works
well for all workflows in our example set on both cloud and grid systems but sometimes at a higher
cost. Experiments demonstrate that effective orchestration is possible even on batch queue systems

that have no explicit resource control through slots implemented with virtual advanced reservations.

10

Workflow sets

The scientific exploration process often has uncertainties. Application codes have a number
of configurable input parameters and often a number of workflows need to be run concurrently.
Workflow planning techniques today are focused on scheduling individual DAGs and do not con-
sider the relationship between DAGs and constraints associated with scheduling a set of work-
flows [20, 112, 127, 205]. However as cyberinfrastructure deployments are used for complex scien-
tific endeavors, support for planning and executing multiple workflows is necessary in the work-
flow tools. We need a workflow orchestration approach that manages workflow sets to balance

cost, performance and reliability while meeting user constraints.

The problem of managing execution of concurrent workflows is especially common in the sci-
entific domains such as weather forecasting, storm surge modeling and other application codes
that use Monte-Carlo simulations where computing an exact result is impossible. In these cases it
is often necessary to run a large number of model runs with different initial parameters to manage
the accuracy of the result. Scientists would like to run an infinitely large set of workflows, but time
and resources are limiting factors. It is also necessary to run a minimal number of the workflows

to achieve desired accuracy. For such workflow sets, users specify that they minimally require at

197

10. Workflow sets 198

least a fraction of the workflows to finish by the deadline. Individual members of the workflow
might have different priorities requiring careful consideration of workflow properties while plan-
ning. Additionally it is necessary to coordinate individual workflow requirements with constraints
on the entire set. For example, we need to determine if available resources should be used for fault

tolerance strategies or scheduling additional workflows.

We developed a multi-phase workflow orchestration pipeline to balance performance, reliabil-
ity and cost considerations for a set of workflows. The workflow orchestration (a) orders workflows
within a set, (b) provides mechanisms to schedule minimal workflows required (c) provides provi-
sions to compare the effectiveness of various fault tolerance strategies with scheduling additional
workflows. We discuss the workflow orchestration pipeline (Section 10.1). We detail the workflow
queue preparation in greater detail in Section 10.2 and discuss the implications on the execution
system in Section 10.3. Finally, we consider three different case studies for the study of workflow
pipeline with different policies and constraints. Specifically, we discuss implementations of our

pipeline policies and present their evaluation as follows:

e We consider the simple case of scheduling a set of workflows on a set of slots and study the

effect of various scheduling parameters. (Section 10.4)

e We discuss the integration of the workflow orchestration with the virtual grid execution sys-
tem and present results from the integrated system and evaluate various parameters (Sec-

tion 10.5).

e Finally, we present a deadline and budget-sensitive orchestration that uses the performability

analysis and trade-offs with different fault tolerance strategies (Section 10.6).

10. Workflow sets 199

|:> Work(?) Resource) Mlnlm‘al L) Tradeoff | Addlthl'lal
Preparation procurement Scheduling Scheduling

User inputs:
Total workflows: N
Minimal Required: M
Deadline: D
Budget: B =X Bi

DAG
scheduler

Resource Layer

Figure 10.1: Workflow Orchestration Pipeline. It is a multi-phase orchestration strategy for schedul-
ing workflow sets. The user workflows are assigned to priority queues. Next, the workflow con-
straints guide a resource procurement strategy. The resource procurement step returns a Gantt
Chart that consists of a set of slots from the different sites. In the next phase the minimally required
workflows are first mapped using a DAG scheduler. Subsequently in the trade-off phase, increas-
ing fault tolerance for a scheduled workflow is compared with scheduling an additional DAG. The
more effective schedule to meet workflow constraints is selected. Finally, any additional schedul-
ing to use additional resources with different pricing or scheduling remaining DAGs or increasing
fault tolerance is applied.

10.1 Workflow Orchestration Pipeline

Workflow sets require careful coordination of a number of workflow parameters with resource
availability. Figure 10.1 shows a workflow orchestration pipeline for deadline-sensitive workflow
sets that require a minimal fraction of the workflows to finish by a given deadline. The pipeline
receives from the user workflow descriptions for each of the N workflows and a set of constraints
that include the minimal number of workflows required (M), budget (B) and a deadline (D) on the
entire set of workflows. Additionally each of the workflows in the queue may have additional time,

budget or resource constraints. The orchestration pipeline consists of the following stages:

Workflow Queue Preparation. In the first stage of the pipeline, the workflows are ordered in a pri-
ority queue. The workflow queue preparation step enables us to classify and order the workflows
by their importance and value. The other stages of the pipeline then consider workflows from the

priority queue in order for scheduling.

10. Workflow sets 200

Resource Procurement. In the next stage of the pipeline, resources are procured for the workflow
set. Resource procurement strategies can vary based on various factors including budget or time

constraints and workflow characteristics.

Minimal Scheduling. The goal of this phase is to schedule the minimal workflows (i.e., M of
N) required by the user to complete by the deadline. Subsequently in the pipeline the workflow
schedule is improved to either schedule additional workflows and/or increase fault tolerance of ex-
isting workflows. If enough resources are not available to schedule at least the minimally required
workflows an error is returned to the user. A user might then relax one or more conditions and
reinitiate the orchestration process. For scheduling the first M workflows from the priority queue
this component repeatedly calls a DAG scheduler (Section 9.4) with all constraints applicable to

this workflow derived from its individual as well as set-level constraints.

Trade-off. A challenging problem that is often faced in highly variable distributed systems is the
decision on whether available resources should be used for increasing fault tolerance of scheduled
workflows or scheduling additional workflows. In this stage of the pipeline we explore this trade-
off in the context of workflow sets. In this case a scheduling strategy with fault-tolerance for the M
scheduled workflows is compared with a scheduling strategy that includes additional workflows.
We use the probability that at least M out of N workflows will complete by the deadline as the

criteria for comparing the schedules.

Additional Scheduling. At the end of the pipeline, the orchestration handles special cases such
as using more expensive resources to increase the fault tolerance of the resources, using available
resource to schedule additional workflows or fault tolerance strategies for workflows or parts of

the workflow that were not considered in the trade-off stage.

10. Workflow sets 201

BEE T

Priority: 1 Priority: 2 Priority: 1 Priority: 3 Priority: 2
Criticality: 1 Criticality: 3 Criticality: 3 Criticality: 3 Criticality: 1

=IN|W|A~|n

Figure 10.2: Workflow Queue Preparation. Workflows with different priorities and criticalities
need to be placed in appropriate sequence for scheduling. Our queue is ordered by priority and
then criticality between the elements with same priority.

s

Initial conditions i Physical conditions
ensemble ensemble
N le..¢
P
5
............................... > 3 4
1 2

Figure 10.3: Queue of Queues. Often it is necessary to consider two subsets of workflows in con-
junction during schedule. Our queue of queues approach enables two sets to scheduled simultane-
ously.

10.2 Work Queue Preparation

Every workflow in our system has two assigned properties - priority and criticality (Chapter 6).
We assume priority and criticality have three values - High, Medium, Low. The priority is assigned
by the system and used to implement policy between different users of the system. For example,
a scientist would get a higher priority than a student using the system in a workshop. Criticality

is the property that enables a scientist to assign relative importance of workflows in a workflow

10. Workflow sets 202

set. Criticality values are expected to be associated with higher QoS and hence higher costs giving

users an incentive to assign accurate criticality values.

A priority queue data structure manages the elements in the queue such that the highest priority
element is always at the head of the queue. In our implementation workflows are ordered first
by priority and then criticality values. Figure 10.2 shows a simple workflow queue example and

ordering of a number of workflows.

Workflow sets in LEAD consist of two type of workflows - “initial condition” ensemble mem-
bers where only initial conditions were varied and “physics” ensembles where the initial conditions
were the same but different physics options to the model runs are used. The scientists require at
least a fraction of each of the subsets to complete within a certain deadline to derive accurate re-
sults. In this case we require these subsets to be concurrently scheduled such that the required
fraction from each subset is scheduled. Figure 10.3 shows the internal representation of the priority
queue for such a workflow set that enables the heads of each of the queues to be considered for
scheduling simultaneously. Thus, the priority queue is maintained as a queue of queues. Thus in
Figure 10.3, there are two virtual queues in our queue representation. Each queue itself is ordered

by priority and criticality values.

10.3 Execution Management

Workflow engines execute workflows based on DAG dependencies. However when consid-
ering workflow sets the execution plan will include execution dependencies on other workflow’s
tasks that are scheduled to run on the same resources. Figure 10.4 shows a schedule for two work-
flows A and B on a single slot. In the generated schedule, B3 and B4 wait for A4 and B2 to finish to

start executing. Similarly B5 needs to wait for A6 to complete. Execution management in slots or

10. Workflow sets 203

B2 || B3 |

LLI—I—IBI Al _ea | A6 B6
L =]

A2
Al ” A3 | AS

Figure 10.4: Execution dependency. When tasks from different workflows are scheduled on a slot
there are additional execution dependencies. B3 and B4 are ready to execute but need to wait for
A4 and B2 to finish. Similarly while B5 is ready to execute it must wait for A6.

containers is an active research topic. Batch queue software has been proposed as a mechanism to
manage execution [89]. In batch queue systems resources are allocated to the next job in queue for
which resources are available. In the above example, the workflow engine would launch B5 when
B2, B3 and B4 complete. Similarly A6 would be ready to execute when A5 is complete. During
execution, B5 would be ready to run before A6 and hence the slot batch queue software would start
executing B5 delaying the execution of A6. This occurs because the slot execution manager (vanilla
batch queue software) has no knowledge of the schedule imposed by higher-level tools. Thus we
need execution level support for workflow set execution in slots that respects the order of the DAG

and other workflow tasks scheduled on the same slot.

We implement a simple slot execution ordering mechanism in the Execution Manager. This
ordering mechanism submits jobs to the slot execution batch queue system using the schedule.
When a job is received at the execution manager it checks to see if all tasks that are scheduled
on the slot before this task have been submitted. If all tasks scheduled before this haven’t been
submitted the task is saved in a pending queue for later execution. Events in the system such as

job submission and job completion triggers a thread that checks the elements in the pending queue

10. Workflow sets 204

to see if a task is ready to run. This ordering mechanism is sufficient to sequence task execution on
slots as per generated schedule. However this ordering mechanism is not completely resistant to
failures. If an earlier task fails to arrive, a task will be stuck in the pending queue till it is rectified.
For example, if the workflow engine has a transient error which causes A6 to not be launched then
B5 will stall as well. Also if an earlier task starts execution and fails on the resource, the current task
will start execution not following the scheduling ordering i.e., if A6 fails during execution, B5 will
start execution. Then a rescheduled A6 will need to wait for B5 to finish or use other mechanisms
such as checkpointing or force B5 to vacate resources. Thus, in our implementation, the ordering
mechanism depends on external mechanism such as the monitoring system to diagnose errors and

rectify it.

10.4 Scheduling Workflow Sets Without Fault Tolerance

We consider a simple case of scheduling a workflow set with the constraint of M out of N work-
flows must complete by a given deadline with no fault tolerance. We detail the problem description
in Section 10.4.1 and discuss the pipeline policies in Section 10.4.2. We present evaluation results in

Section 10.4.3.

10.4.1 Problem Description

We consider a workflow set W = {Wy, Ws, ..., W,,} where workflow W; is a description of a
DAG that specifies the ordering of task execution. In addition for each task T'asky, its execution
on resource R; is given by [n,T1] where n is the number of processors required for the task and
T denotes execution time of the application. Workflow W; has higher priority than workflow W;

where j > i. The workflow set is specified to have the following constraint: workflows M where

10. Workflow sets 205

M < N must complete by a deadline D.

10.4.2 Pipeline Policies

We consider a simple pipeline that consists of workflow queue preparation, resource procure-
ment, minimal scheduling of M DAGs and additional scheduling to handle any additional DAGs

possible. We use the probabilistic DAG scheduler from Section 9.4.1.

We implement a simple set of policies using the slot based mechanism to procure resources for
a workflow set and use the slot based DAG scheduler to meet the constraint of scheduling at least M

out of N workflows by a given deadline.

In our implementation, the resource acquisition policy asks for slots for the duration between
expected start time and the deadline for the workflow set. We make a resource query that is de-
signed to ask for a resource width that minimally can satisfy the constraint M and possibly more.

The minimum width is calculated as:
minWidth = (M x durationO f(work flow)) /(durationO f Slot) x widthO f (work flow)
The maximum width is calculated as:
maxWidth = (N * durationO f(work flow)) /(durationO f Slot) x widthO f (work flow)

where durationO f (work flow) and widthO f (work flow) are the makespan and slot width for a sin-
gle DAG and durationO f Slot is the time between the start of the workflow set and the deadline.
The results from the resource query are sorted by highest success probability and maximum pro-
cessor width and the best result is picked for the schedule. The maximum number of possible
DAGs are scheduled on this slot and we calculate the effective success probability of M-out-of-N

workflows completing [137].

10. Workflow sets 206

10.4.3 Evaluation

We perform a set of experiments with the lead workflow set to meet the constraint that mini-
mally M out of N workflows must complete by deadline D. We assume workflows are scheduled
for a start time that is 12 hours which is a reasonable time frame for advanced reservation requests.
We explore the variation of the following parameters- effective success probability, deadline, M
and N. Figure 10.5(a) shows the variation in the effective success probability of getting M out of
N workflows with deadline and different M/N pairs. For short deadlines, limited resource time
is available and we see slightly lower success probabilities. As expected, the success probabil-
ity achievable increase as the deadlines are further out and remains fairly steady thereafter. For
a given workflow set with N workflows, as M (the required number of workflows) increases we
see that the effective success probability decreases. Figure 10.5(b) shows the number of workflows
that were scheduled for a given M/N combination as the deadline varies. For short deadlines, the
number of workflows scheduled is often less than N (the total), however at larger deadlines, all N
workflows are scheduled. Finally, Figure 10.5(c) shows the variation in the effective success proba-
bility with varying M at a deadline of 7 hours. We see that there is a rapid decrease in probability as
M increases for a given N since as more workflows are required to complete the guarantee that the
system can make is lower that all the required ones will complete. Thus by changing the deadline

and the value of M the user can determine various schedules that meet the user’s needs.

10.4.4 Summary

This case study demonstrates the resource procurement policies and scheduling techniques to
schedule the maximum number of workflows given the amount of resources available. The orches-

tration is simple since it does not account for fault tolerance strategies or any other trade-offs.

10. Workflow sets

Number of workflows scheduled Effective success probability (M of N)

Success Probability

235

T T T T T T T ‘l lofs - -t -
g W 72 e el e re e o s e o 30f5 —%—
pamrsogggeegey 3005 e
lof7 ---&--
4007 -
70f7 —-0--
lof9 --e--
509 —a—
90f9 ---a---
t lofll ---v---
5. 7 of 11 - -
7 1lof1l -
1of13 ---e--
70f13 - -@- -
130f13 - -
1

3 4 5 6 7 8 9 10
Deadline (Hrs)

(a) probability with D

0.8

0.6

0.4

0.2

3 4 5 6 7 8 9 10

Deadline (Hrs)
(b) no. of workflows with D

T T
5 workflows - -+- -
6 workflows
7 workflows
8 workflows
9 workflows
10 workflows
12 workflows
13 workflows
14 workflows

2 4 6 8 10 12 14
Number of workflows required

(c) probability with M

Figure 10.5: Study of Deadline and Accuracy Scheduling of Workflow Set. We apply a slot based
workflow orchestration to a workflow set to meet the constraint of at least M out of N workflows
must finish within the deadline D. We study the variation of (a) probability with deadline for dif-
ferent M/N, (b) number of workflows that get scheduled with deadline D (c) variation of effective
probability with variation in M for different N values and deadline of 7 hours

10. Workflow sets 208

10.5 Scheduling over Grid and Cloud Resources with Fault Tol-

erance

Scientific workflows often have access to disparate set of resources that are allocated through
different mechanisms. For example - LEAD uses a TeraGrid allocation for workflow execution.
Optionally, LEAD can use Amazon EC2 resources that are priced differently from the TeraGrid
resources. While these additional resources may not be used regularly, their use might be justified
for situations where higher QoS is needed. In this case study, we study the impact of scheduling

lead workflow sets on a mix of TeraGrid, local grid and cloud sites and EC2 resources.

This pipeline implementation uses the Virtual Grid Execution System (vgES) (described in
Chapter 3) that provides an execution abstraction over grid and cloud systems. The system enables
users to query, procure and execute on resources shielded from specific resource mechanisms. In
addition, we use the VGrADS task-based fault tolerance implementation. The task-based fault tol-
erance implementation enables us to address the issue of if an individual task’s success probability

can be enhanced by replication.

10.5.1 System Design

Figure 10.6 shows a comparison of current day cyberinfrastructure deployments with the LEAD-
VGrADS integrated system. Figure 10.6(a) shows workflow execution control flow in HPC scien-
tific environments today. Users use science gateways or portal interfaces to compose, launch and
monitor workflows. The portal interacts with a workflow engine that manages the task dependen-
cies and execution. For each task in the workflow, the workflow engine invokes the corresponding
application service that has knowledge about the application’s configuration and data. The appli-

cation service interacts with distributed sites using specific interfaces. In this architecture, resource

10. Workflow sets 209

User

4 I

Portal = Portal
Workflow Workflow
Engine Workflow Engine
Planner
query
Application

i . resource execution
Application X
Service planning plan Service
Manager ‘ Manager
standard

specific protocol
execution

Virtual Grid
Execution System

based exccution resource

binding
(Globus) (CEC2 interfaces) Glefus] (CEC2 intelfaces)
z 'Resources; 3 |- 'Resources
T 3]
(o] o]

(a) (b)

Figure 10.6: Comparison of the LEAD-VGrADS collaboration system with cyberinfrastructure pro-
duction deployments.

decisions are ad-hoc and distributed across different components. This makes workflow planning
and real-time adaptation extremely difficult and challenging. The performance and reliability vari-
ations associated with distributed environments, application requirements such as deadlines, cost
factors associated with recent cloud computing requires better coordination of different resources

types to meet user requirements.

Figure 10.6(b) shows the integrated system. The user interaction with the system remains iden-
tical to current day systems. However in addition to the normal execution flow, the workflow
planner and the Virtual Grid Execution System (vgES) handle resource planning for the execution.
This integrated system is an implementation of the WORDS architecture. The vgES system shields
much of the differences of different execution systems and provides a single interface for querying
and procuring resources across grid and cloud sites. In the vgES system, resources are represented
as a hierarchical tree structure. For the purposes of this integration effort, the vgES system was

expanded to return a Gantt chart representation of the slots.

10. Workflow sets 210

Workflow
Planner

A~ ;r A~

schedule

4

~ y
DAG Fault
Scheduler tolerance £E2

Phase 1,2,3 Phase 2,3 Phase 4

resource find
& bind

¢
<€

Virtual Grid
Execution System
7 I A
=)
55 gl = g
25 El = =
3, 2 > o8 £
N \ 2
R (FFRITT =
ey WL >
[BOP VARG =
il (il 2
2
(Globus) (CEC?'interfaces)

GT4,
Personal PBS
Clo

ﬁ Resources -gB

Figure 10.7: Interaction of Workflow Planner with VGrADS components. The workflow planner
iteratively queries for resources and once sufficient resources are obtained initiates the resource
binding process. The resource binding by vgES consists of a series of steps that include procuring
the resources and setting up the resource to be ready for application execution. In parallel, the
workflow planner determines the workflow execution plan on available resources.

In the integrated system, the workflow planner initiates a query for resources. The vgES sys-
tem then interacts with diverse resource interfaces including grid and cloud systems to procure
resources for a workflow or a set of workflows. The vgES system also sets up the resources as-
signed by the sites with standard interfaces that allows the execution manager in the application
service to interact with each of the sites for job execution and file transfer agnostic to what spe-
cific sites are running. In our implementation each site hosts a Globus-PBS interface letting the
LEAD infrastructure operate with the sites as it does with traditional batch queue supercomputing

centers.

Figure 10.7 shows the interaction of various system components. The first step initiated by the

workflow planner is resource procurement. The planner triggers the activities of vgES system and

10. Workflow sets 211

returns back a set of slots that represent the resources assigned for this request. The vgES system
interacts with grid and cloud systems with specific interfaces. It interacts with the virtual advanced
reservation system to procure slots probabilistically on the batch queue sites. It also uses any ad-
vanced reservations that has been be procured at the sites. In addition, it interacts with web service
interfaces with Amazon EC2 [5] and local cloud sites running Eucalyptus [129]. The workflow
planner receives a set of slots from vgES and determines using simple policies if it is sufficient for
its requirements. If resources received are insufficient or do not meet the original requirements the
workflow planner iteratively relaxes constraints on the resource request and requeries the system.
Once the workflow planner is satisfied with the requests, it requests vgES to “bind” or start the

resource setup process.

The workflow planner then implements a four stage planning process for the LEAD workflow
sets with the deadline and accuracy constraint. For the implementation we used an emulation
framework (Appendix A) that mimics the LEAD cyberinfrastructure components. We describe
the problem description for the workflow planning and the pipeline policies in Sections 10.5.2

and 10.5.3.

10.5.2 Problem Description

We consider a workflow set W = {Wy, Ws, ..., W,,} where workflow W; is a description of a
DAG that specifies the ordering of task execution. The resources are available on sites Riota1 =

R,...R,, where R, is a higher priced resource and must be used sparingly.

For each task T'ask, its execution on resource R; is given by [n,T] where n is the number of
processors required for the task and T' denotes execution time of the application. Workflow W; has
higher priority than workflows W; where j > i. The workflow set is specified to have the following

constraint: workflows M where M < N must complete by a deadline D.

10. Workflow sets 212

10.5.3 Pipeline Policies

We detail our pipeline policies in greater detail in this section:

Resource Procurement. Each resource site R; is queried for a certain number of processors from
now till the deadline. The workflow orchestration has two goals: to meet the specified deadline and
schedule the maximum number of workflows in the given time such as to increase the probability
of at least the minimum required workflows complete. Thus we pick an aggressive resource request
policy querying all sites for the maximum duration. When vgES returns a set of slots, we use the
width and total computational units required as a coarse grained criteria to determine if sufficient
resources are available. If the planner determines insufficient resources are available, it relaxes the

minimum success probabilities required of the slots and queries the system again.

Minimal Scheduling. The goal of this stage of the pipeline is to schedule the first M out of N
workflows in W over the set of resources other than R,, (Amazon EC2 in our implementation). The
probabilistic DAG scheduler (Section 9.4.1) is used for scheduling each DAG. If M DAGs can’t be

scheduled, the planner exits with an error.

Trade-off. In the trade-off stage we compare scheduling additional workflows with increasing
the fault-tolerance of one or more tasks of the scheduled M workflows. We compare the success
probability of M out of N workflows completing as the criteria for picking the schedule at this stage.
Probabilities of tasks completing are computed using the failure probability of the resources and
the probabilities of its parent tasks. We maintain a queue of tasks from the scheduled M workflows

that are sorted by their probability of completion. We compare:

e aschedule where a task 7} in T}, is replicated one or more times on available resources where
T; has the least success probability € T (The replication query is made to the VGrADS fault

tolerance component to see if the success probability of an individual task can be increased.),

10. Workflow sets 213

and

e a schedule from scheduling additional workflow Wi using the probabilistic DAG scheduler

(Section 9.4.1).

The schedule that yields the higher success probability is selected and this step is repeated till no
additional workflows can be scheduled or all tasks in the original M workflows have been checked

to see if fault tolerance can be applied.

Additional Scheduling. If any workflows in W have not been scheduled in the earlier step, an
attempt is made to schedule those. If any tasks in 7" have not been checked for fault tolerance in the
earlier step, an attempt is made to replicate those tasks to increase its success probability. Finally,
each of the tasks in the workflow is checked to see if using Amazon EC2 has an effect on the success
probability. Costs on Amazon EC2 are bounded by the number of processors (16 in our setup) and

the deadline.

10.5.4 Evaluation

In this section, we study the performance and behavior of our integrated system. Specifically
we study the a) event timeline, b) comparison of resource acquisition times from batch and cloud

resources, ¢) parameters of the workflow orchestration schedule.

Experiment Setup. Our setup consists of a mix of batch and cloud resources as shown in Table 10.1.
The testbed consists of a virtual machine (bottlenose) where our entire software stack is hosted.
The software consists of an Apache ODE workflow engine, the workflow planner service, the vgES
code base and associated databases. The distributed infrastructure consists of local batch queue
systems run at RENCI/Univ. of North Carolina - Chapel Hill (kittyhawk), Univ. of California- Santa

Barbara(mayhem), NCSA TeraGrid (mercury), Eucalyptus based cloud resources at Univ of Houston

10. Workflow sets

214

for vgES and Apache ODE,
vgES, WorkflowPlanner ser-
vice, Application Service emu-
lation, Apache ODE workflow
engine

Machine Software configuration Processors | Mode
Used
Mercury/NCSA Globus, NWS sensor, PBS 32 Advanced
reservation
KittyHawk/RENCI | Globus, NWS sensor, PBS 32 Advanced
reservation
Mayhem/UCSB Globus, NWS sensor, PBS 8 Batch queue
EC2 Web service interface 16 Cloud
UHEuca Eucalyptus, NWS 16 Cloud
UCSBEuca Eucalyptus, NWS 6 Cloud
UTKEuca Eucalyptus, NWS 6 Cloud
| tg-nws.cs.ucsb.edu | NWS memory and name server | 1 NWS
bottlenose/UCSB MySQL database for vgES and | 1 Launch of
Apache ODE, vgES, Workflow- software
Planner service, Application
Service emulation, Apache
ODE workflow engine
RENCI Euca Eucalyptus, MySQL database | 1 Launch of

software

Table 10.1: Demonstration Testbed for LEAD-VGrADS. Setup configuration of grid and cloud re-
sources in our testbed.

10. Workflow sets 215

(uheuca), Univ of Tennesse - Knoxville(utkeuca)), Univ of California - Santa Barbara(ucsbeuca) and
Amazon EC2(ec2). For these set of experiments advanced reservations were procured on mercury
and kittyhawk clusters. In addition, each of the cloud sites was set up with a Linux image with the
application binaries and data sets. In these experiments, we submit eight LEAD workflows which
are ready to run in five minutes from start of the experiment. The data set we use for the LEAD
workflow set is a small regional weather forecast and takes about 1.5 hrs to complete. The first few
steps of the workflow take a few minutes on single processors and the weather forecasting model
(WREF) takes over an hour and fifteen minutes on 16 processors. The constraint on the workflow set

is that at least one workflow must complete by a deadline of 2 hours.

Event timeline Figures 10.8 and 10.9 show the snapshot of an experiment timeline. Figure 10.8
shows the timeline of the planning phase of the orchestration. Each line on the graph represents the
duration of a particular event where the ends of the line signify the start and end time of the event.
In the first step, the planner queries the VGES which takes about 49 seconds. Once a set of slots are
determined to be sufficient, the binding process starts on all the sites in parallel. While the binding
is in progress, the planner queries bandwidth across all pairs of sites and launches the phased
workflow planning. The four phases takes about 7 seconds and complete well before the resource
procurement is complete. The resource procurement duration varies by site, but resources are ready
within 20 minutes. Once the resources are ready, the workflows begin execution (Figure 10.9). In
this snapshot the workflow1 failed and hence finished fairly early. All other workflows complete
by the deadline of 2 hours as expected. These figures demonstrate the effectiveness of our approach

in scheduling workflow sets across distributed resource sites.

These experiments are repeatable and while there is some runtime variation, the figures are
representative of the successful runs. It must be noted that the resources in our testbed have high

success probabilities (e.g., through advanced reservations) and hence have a fairly high probability

10. Workflow sets 216

of meeting the deadline. The effectiveness of the approach for meeting deadlines depends on the
probability of the resource set that is available to the user. Additional optimizations in the timings

are possible (e.g.,decreased levels of logging) when applied to production environments.

BANDWIDTH {4
PHASEL |
PHASE2 |
PHASE3
PHASE4 |-

Time (in mins)
o o 56 @&
T T T
VGESQuery
BINDING-ec2 p——t—"—
BINDING-uheuca fr————pee———i
+
+
+
+
I I I

BINDING-mercury pr——t+——
BINDING-utkeuca f——pe———t
BINDING-ucsbeuca fr———t——mt

BINDING-mayhem p—+—
BINDING-kittyhawk fr—+—

Events

Figure 10.8: Planning Timeline. The graph shows the timeline of the planning phase in the system.
The orchestration system queries the virtual grid execution system. Once prerequisite amount of
resources are obtained, the vgES system is directed to start the binding process. Simultaneously,
bandwidth between the sites is queried and the multi-phase pipeline process is launched. The end
of the bind process signifies that the resources are ready to execute jobs.

120
100
80
60
40

Time (in mins)
T
L

—_—

workflow2
workflow3
workflow4
workflow5
workflow6

workflow (failed) -

Events

Figure 10.9: Execution Timeline. The graph shows the timeline of execution of the workflows in the
system. In this run, workflow1 failed and hence completed earlier. All other workflows completed
by its deadline.

We compare the start and end times of workflow execution with that predicted by the schedule
(Figure 10.10). We see that the start and end times in the scheduler are different on the order of 13
to 22 minutes. The slots returned by VGES do not consider the overheads associated with resource
procurement and setup. From vgES’s perspective the slots are assigned to the user at the time the

resources were requested. The application-level planning in today’s systems has no estimates on

10. Workflow sets 217

the overheads. A simple workaround might be to assume a maximum overhead to the start time
of the slots. But long term, there is a need for better prediction and estimation mechanisms for
resource setup. Additionally, tools are required to support dynamic and staggered execution to

maximize slot utilization.

startTime ExZza
endTime m—

Schedule slip (in Mins)

Workflows

Figure 10.10: Comparison of Proposed and Actual Schedule. The graph shows a comparison of
workflow start and end times with the generated schedule. The difference in start time is due to
lack of tools for predicting resource binding and setup.

Resource Binding Figure 10.11 shows the average time required for binding each of the sites over
nine to thirteen runs. The variation in the number of data points comes from failures at sites in
some runs. The error bars show the minimum and the maximum values seen in the experiment set.
The batch systems (kittyhawk, mayhem and mercury) take lesser time to setup than the cloud sites.
The cloud sites based on Eucalyptus (uheuca, ucsbeuca, utkeuca) has more overhead than setting up
the batch systems since the virtual machines need to be booted with the image. The cloud sites -
uheuca and ec2 take longer since they boot 16 nodes. There is some variation in the bind time at
Amazon EC2, kittyhawk and mercury that is the result of runtime characteristics such as the load
on the machine. In this graph, we see that the overheads from cloud computing are slightly higher
than from batch systems. However the overhead on all sites is less than 25 minutes, which is not
significant for long running workflows. The batch queue wait times are minimized in these set of

experiments since we have advanced reservations on the sites.

10. Workflow sets 218

Duration for resource binding (in Mins)

Machines

Figure 10.11: Resource Binding. The graphs shows the time at each site for resource binding or
procurement. The average values are shown as bars and the high and low values are shown with
error bars.

Scheduling Parameters In this set of experiments we query the virtual grid execution system for
scheduling different sized workflow sets and evaluate the schedule that is generated by the orches-

tration component.

Figure 10.12 shows the number of workflows scheduled at different deadlines and sizes of the
workflow set where at least five workflows (i.e., M = 5) must complete. When the workflow set
has five workflows (i.e., N = 5), there are sufficient resources to schedule five workflows at any
deadline. However when there are more workflows at a deadline of two hours only five workflows
are scheduled. As the deadline is extended, resources are available for longer durations enabling
scheduling of additional workflows such as for N = 13 all workflows can be scheduled for a
deadline of five and six hours. Thus as the deadline increases, more workflows can be scheduled

since more resource time is available, as expected.

Figure 10.13 shows the number of workflows that are scheduled by the planner with varying
deadlines and for different values of M, i.e., number of workflows that must minimally complete
out of ten workflows in a workflow set. A value of zero for the number of workflows scheduled
indicates the planning failed to find a schedule that meets the accuracy constraint and hence zero

workflows were scheduled to run. Ata deadline of two hours, when five workflows were required,

10. Workflow sets 219

e — ETotal=5
M Total =7
~ MTotal=9

M Total =11
) M Total =13

Total =13

Workflows scheduled

Total =11

Total =9

Total Workflow:

Total =7

Total =5

Deadline (Hrs)

Figure 10.12: Schedule for Different Workflow Set Size. Number of workflows scheduled with
deadline and different number of workflows in the set. This graph shows the case for when five
workflows, i.e., M =5

the planner was able to meet the minimum criteria. When M > 5 the workflow planner is unable to
find a schedule that meets minimum criteria at a deadline of two hours. Similarly, at a deadline of
three hours and when ten workflows are required, the planner is unable to find a schedule. Thus, if
a user requires that more workflows must complete within a deadline, an acceptable schedule may

not be found.

Figures 10.14, 10.15 and 10.16 shows the effect on the schedule with varying values of M for
a set of workflows with nine members. Figure 10.14 shows the effective success probability of
the schedule generated at different deadlines. The final effective success probability of the sched-
ule meeting the deadline and accuracy constraints is close to 1 at low values of M. However as
the number of workflows that are required to complete increases the success probability drops.

Figure 10.15 shows the corresponding workflows that are scheduled at different values of M and

10. Workflow sets 220

M Required=10

_— - M Required=9

——_ MRequired=6

-7 — -, I Required=5

Required=5

Required=6

Workflows scheduled

Required=9

Required=10

Deadline (Hrs)

Figure 10.13: Schedule for Different User Requirements. Number of workflows scheduled with
deadline and different quantity of workflows required. The graph shows the case for a total of ten
workflows in the set.

deadline. We see that in the case of deadline of two hours only five workflows are scheduled. In
all other cases, all nine workflows are scheduled. Figure 10.16 shows the replicas scheduled with
varying M and at different deadlines. We see that as the deadline is extended for the same number
of workflows, the number of replicas increases. Similarly as the number of workflows required
increases. For the replication, each task is expected to meet a minimum success probability and as
the number of workflows required increases, the effective success probability decreases requiring

more replications.

Finally, in Figure 10.17, we compare the effects of each phase of our pipeline scheduling. Our
resource set has high success probability values associated with them. We compare the effective
success probability of the schedule at different stages for a workflow set with five workflows to
be scheduled for a deadline of two hours. We see that each of the phases increase the effective

success probability. Also in the case where a large number of workflows are required, the effective

10. Workflow sets 221

1.1 . : — .
z Deadline=2hrs ---=---

S Deadline=5hrs - V-

; Los Deadline=7hrs --%-- |
> Deadline=%hrs - -&- -

g 1F g _
o N

2

s 095 |
o +

@ o9t |
Q

= v

@ 085 A
2 \

= ‘

S 08 .
=

- 0.75 1 1 |)

0 2 4 6 8 10

Number of workflows required (M)

Figure 10.14: Schedule Success Probability with Different User Requirements. Effect on success
probability of the workflow schedule with varying number of workflows required for a workflow
set schedule with nine workflows.

10 T T T T
- — - — - —— W —— R — R —— % ——%
8 - .
2 6 i
o
= Honnnn +eeenn +eeenn enenn +
5
= 4t .
e Deadline=2hrs ---+--- |
Deadline=5hrs -
Deadline=7hrs —-—%--
Deadline=9hrs - -&- -
O 1 1 1 1

0 2 4 6 8 10
Number of workflows required (M)

Figure 10.15: Schedule for Varying M. Effect on number of workflows scheduled with varying
number of workflows required for a workflow set schedule with nine workflows.

10. Workflow sets 222

10 : : . .
8 i -
@ 6F |
]
a X
(7]
& 4+ X |
2 r Deadline=2hrs ---+--- |
Deadline=5hrs -
4resedeeenatenaeatoooop Deadline=7hrs —-%--—
Deadline=%hrs - -B- -
0 1 I | ;
0 2 4 6 8 10

Number of workflows required (M)

Figure 10.16: Effect on Fault Tolerance Strategy with Varying User Requirements. Number of repli-
cas in the schedule with varying number of workflows required for a workflow set schedule with
nine workflows

success probability is lower in the initial phases and is substantially improved by using Amazon

EC2 resources in the schedule.

1.1 T T T T T

TeeTezeYeTeN|
SOTOTOOON
1

TeTeTeTee
ITOTOTOTOTOS
1

oTo%e

oTeTeze
552

2

oo

<
ks %
sl
]
% |

Success Probability
OB DX
SO

5

ToTeTee%s
ToTeTeTee
1

Phase 1 Exzxxzs
Phase 2
Phase 3
Phase 4 ———3

IZOZ06

BT
TOTeTeee
1

PeZe%
o

1 2 3 4 s
Number of workflows required (M)
Figure 10.17: Effect on Success Probability from the Pipeline Scheduling. In this graph we see the

success probability at the end of each of the phases for a workflow set with five workflows and a
deadline of two hours

10. Workflow sets 223

10.5.5 Summary

This case study enables us to study (a) the trade-offs between replicating certain tasks in the
workflow and scheduling additional workflows, (b) the implications of using Amazon EC2 as a
overflow resource for scientific workflows. However this case study is simplistic because often
users will have budgets in terms of service units of dollars that they would like to spend for an
experiment. In addition, a post-scheduling task-based fault tolerance strategy has certain problems.
For example, a task could have been replicated if it was considered as part of the DAG scheduling
strategy. It is possible that after scheduling M workflows the task cannot be replicated since that
space is occupied by task from another workflow. In the next use case we consider an orchestration

pipeline that overcomes these issues.

10.6 Deadline and Budget Sensitive Workflow Orchestration

We present a multi-phase workflow planning approach that is used to schedule a set of work-
flows with time and cost considerations using the performability approach discussed in Chapter 7.
We state the formal problem description in Section 10.6.1. We present details on the implementa-
tion of the multi-phase planning strategy in Section 10.6.2 and present evaluation results in Sec-

tion 10.6.3.

10.6.1 Problem Description

We consider a workflow set W = {Wy, Ws, ..., W,,} where workflow W; is a description of a
DAG that specifies the ordering of task execution. The workflows have access to resources R;otal =

{R1, ..., Rw}. Inaddition for each task T'asky, its execution on resource R is given by [n, 71, Ts..., T5]

10. Workflow sets 224

where n is the number of processors required for the task and 77, 75..., 75 denotes execution time

of the application in High, Good, Medium, Low, Poor reliability states.

Workflow W; in the set has higher priority than workflows W; where j > i. The workflow
set is specified to have the following constraint: workflows M where M < N must complete by a

deadline D within a total budget of B.

The budget B is specified across all the set of resource sites R = R;...R,, such that the budget for
Resource R; is Bj and B = By + By + + B,,. Each resource site R; has failure-rate A;, repair-rate

w; and has cost-rates cy...c4 in the degraded states.

10.6.2 Pipeline Policies

We apply a multi-phase planning approach to schedule workflows and fault-tolerance to in-
crease the probability of a workflow-set meeting its constraints. The multi-phase approach trades
performance and fault tolerance to meet the M out of N workflow accuracy and the deadline con-
straints on the given resources. We outline here the policies at different stages of the planning

strategy:

Resource procurement. The first stage of the workflow planning is to procure resources for the
workflows. Each resource site R; is queried for a certain number of processors for the time duration
from now till the deadline for a given budget B;. Our workflow orchestration has two goals: to
meet the specified deadline and schedule the maximum number of workflows in the given time
such as to increase the probability of at least the minimum required workflows complete. Thus
we pick an aggressive resource request policy querying all sites for the maximum duration. We
use the budget at each site, B;, and the maximum width of resources required at the site w and

try to procure the best resource we can for the given duration between now and the deadline. We

10. Workflow sets 225

also assume that a maximum duration of the resource is required i.e., resources are required for the

entire duration from now till the deadline. Thus,

Total Budget(B;) = (costrate) * w * D (10.1)

B
wxD*

Thus cost-rate that we can afford at a given site is given by

The workflow planner uses the monitoring status of each of the sites and procure the resources

B

where the cost-rate < —5

. Thus we acquire a set of resources where each resource ; is described
by [D,w, state;] where D gives the duration and w is the number of resources allocated and state;
describes the current reliability state of the machine. Other appropriate policies for resource acqui-

sition can be applied to trade-off system state with cost.

Minimal scheduling. In the next stage, an attempt is made to schedule the first M out of N work-
flows. For each of first M out of N workflows in W the deadline-sensitive Hybrid DAG scheduler
(Section 9.4.3) is invoked. At this stage no fault-tolerance policies are applied. If M DAGs can’t be

scheduled, the planner exits with an error.

Trade-off. Next, the goal is to determine if the resources should be used to schedule additional
workflows or use the resources for increasing the fault-tolerance for each of the M workflows. We
compare the success probability of M out of N workflows completing as the criteria for picking the
scheduling at this stage. Probabilities of tasks completing are computed using the failure proba-
bility of the resources in the complete fail state (Chapter 7:equation 7.1) and the probabilities of its

parent tasks. The following two strategies are compared:

e a schedule where a workflow Wi € W)y, has fault-tolerance enabled where Wi has the least

success probability € W), using the DAG scheduler from Chapter 9:Section 9.4.3,

10. Workflow sets 226

e a schedule from mapping an additional workflow Wi without fault tolerance,

The schedule that yields the higher success probability is selected and this step is repeated till
no additional workflows can be scheduled or all of the original M workflows have been checked

to see if fault tolerance can be applied.

Additional Scheduling. If any workflow in W has not been scheduled in the earlier step, an at-
tempt is made to schedule them. Finally, the fault tolerance strategy is applied to one or more
workflows that are scheduled without fault tolerance to increase the probability of meeting the

constraints.

10.6.3 Evaluation

In this section, we evaluate the parameters of our multi-phase deadline-driven workflow plan-
ning strategy over the lifetime of the LANL system. We study the impact of the following factors
on the scheduling (a) failure-to-repair ratios (b) deadlines (c) user budgets. The results shown are

for scheduling minimally three out of ten workflows.

Figure 10.18 (b) shows the number of workflows scheduled by the multi-phase workflow plan-
ning approach. When the deadline is two hours, only the minimal number of workflows get sched-
uled. At a deadline of three hours, in the beginning and end of the system lifetime where failure
rates are high, only five workflows are scheduled but otherwise six workflows are scheduled. We
observe that the number of workflows scheduled increases with the deadline and is sometimes
affected by system properties. For example, when deadline is six hours we see that the number
of workflows scheduled drops at system lifetime of about 175 hours and 500 hours, but we see a

corresponding increase in number of replicas and checkpoints (Figures 10.18(b) and (c)).

Figures 10.19(a),(b) and (c) show the number of workflows scheduled, number of tasks that are

10. Workflow sets 227

12 20
o
2
2 1 @
2 £ 15¢]
o o
7] [=% *, +
g sl 1 K] .
= O 10 -+ s e e Rl e
5 S
3 6 ¥ Xoomee Xeoooee [RRREEE X X DRt SEEREEE X Bl 5
S - 2
s xx x £
@ S 5L i
E=] z
£ 4 r -
=1
z Keroee Xeonoonn R SEREEEE Xeonnn Rk BEREEE X
2 | | | | | | | 0 L L L L & L .
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
Time (Days) Time (Days)
Deadline 2 hrs o Deadline 4 hrs ---a@-- Deadline 2 hrs o Deadline 4 hrs ---@---
Deadline 3 hrs ---x--- Deadline 6 hrs - +--- Deadline 3 hrs ---x--- Deadline 6 hrs - +--
(@ (b)
40
35 - e . L
— [QRS
o 30r 1
«
(&
5 25 R
g
S 20 B
5
g2 151 g
2 ;
0F . A
X X R RRREEEE EREEE Xeonees XeoomeeX
5 4
0 | | | | | | |
0 100 200 300 400 500 600 700 800
Time (Days)
Deadline 2 hrs o Deadline 4 hrs --@--
Deadline 3 hrs ---x--- Deadline 6 hrs - +---
©

Figure 10.18: Performability Workflow Set Scheduling Over System Lifetime. Number of (a) work-
flows (b) checkpoints (c) replicas scheduled over the production use of systems lifetime at LANL.

10. Workflow sets

228

12
3 10
=]
°
Q
=
[*]
@
] 8
S
C)
£
o
s gl
S
@
o
5
Z 4r System lifetime 10 hrs
System lifetime 500 hrs ---x---
System lifetime 4000 hrs - -
2)) system lifetime 10000 hrs - +---
2 3 4 5 6 7 8
Deadline (Hours)
(a)
20
15 B
[%]
©
L
o
g
S 10 F
@
Qo
£
=]
z I's
5 / 1
System lifetime 10 hrs e
System lifetime 500 hrs ---x---
System lifetime 4000 hrs - -
System lifetime 10000 hrs - +--

5 6 7 8

Deadline (Hours)

(©

Number of checkpoints

Probability

40

System lifetime 10 hrs

5| System lifetime 500 hrs
System lifetime 4000 hrs - -
0)) System lifetime 10000 hrs -+~
2 3 4 5 6 7 8
Deadline (Hours)
(b)
1.01
1@
0.99 Bl
0.98 |- g
097 | ¢ q
0.96 | g
] System lifetime 10 hrs
0.95 - System lifetime 500 hrs
System lifetime 4000 hrs - -
System lifetime 10000 hrs - +---
0.94 | | I 1 !
2 3 4 5 6 7 8
Deadline (Hours)
(d)

Figure 10.19: Performability Workflow Set Scheduling with Varying Deadline. Number of a) work-
flows b) tasks checkpointed c) tasks replicated (d) effective success probability with variation in

deadline.
1 —
costFunctionl e
costFuncton2 --%--
costFunction3 ----&---
0.8 b costFunction4 ---»---

@ 0.6 [

[

I

o rd

o /

Medium Good High

System Level

(@

System Level

High

Good

Medium

Low

Poor

Fail

T T T T
deadline=2, costFunctionl ---e:

deadline=2, costFunction2 --x--
deadline=2, costFunction3 ----&---
deadline=2, costFunction4

15 20 25 30 35
Budget (cpu hours)

(b)

Figure 10.20: Effect of Budget on Resource Availability Level. Resource state variation with budget
(a) shows four cost rate functions we consider for the resource state (b) shows the variation of
resource stability level with budget.

10. Workflow sets 229

checkpointed and replicated as deadline is varied. We see that as the deadline interval increases the
system is able to schedule more workflows and guarantee higher level of fault-tolerance by check-
pointing and replicating tasks since resources are available for a longer duration. The behavior is
mostly similar across different points of system lifetime. Figure 10.19(d) shows the variation of the
effective success probability achieved with our planning approach. At shorter deadlines, we see
that the probabilities are lower especially in a system’s early life (e.g., system lifetime of 10 hrs and

500 hrs) when failure-rates are high.

Finally, we study the resource state variation with allocated budget. Figure 10.20(a) shows the
four costFunctions we consider for this analysis. For example, costFunctionl has a linear increase
in cost with the different resource states. For each of the cost functions, we vary a sites’s budget
at a deadline of two hours and study the state of the resource that can be afforded. As expected,
as the budget is increased the resource state improves (Figure 10.20(b)). The linear cost function
(costFunctionl) shows the slowest improvement in resource state with budget since the cost rates

are not significantly different between each state.

Our evaluation demonstrates the importance of using performability as a basis of workflow
scheduling and planning to achieve a certain level of QoS in degradable systems. The experiments
demonstrates the effect of varying various parameters to achieve user constraints such as deadline

and requiring minimally M out of N workflows under budget considerations.

10.6.4 Summary

Our workflow planning strategy accounts for performance, reliability and associated costs. This
multi-phase planning strategy (a) guarantees at least minimum number of required workflows are
scheduled, (b) applies fault tolerance strategies and/or (c) schedules additional workflows such

that it meets a deadline and a budget constraint. The resource acquisition has a complexity of O(n)

10. Workflow sets 230

and the DAG scheduler has a worst case complexity of O(n?). Thus, the workflow orchestration
approach has worst case complexity of O(n?). Next, we evaluate the parameters in the workflow

set planning strategy.

10.7 Summary

In this chapter, we demonstrated various orchestration strategies for workflow sets to balance
cost, performance and reliability of the scheduled workflows. A coordinated effort across the re-
source and workflow layer, enables an orchestration approach that can increase the success proba-
bility of meeting user constraints even in the presence of resource variability. The different param-
eters (e.g., deadline, cost) determine the exact schedule. The multi-phase workflow orchestration
approach provides a strong foundation for next-generation workflow planning and scheduling in

grid and cloud environments.

11

Conclusions and Future Work

Recent advances in computing, i.e., emergence of virtualization technologies, web-services and
multi-core processors, have accelerated advances in grid computing and spearheaded cloud com-
puting business models. These changes in turn necessitate the need to closely examine the software
stack that runs atop these systems and services provided by distributed data centers to provide pre-

dictable Quality of Service to scientific and business applications.

We developed WORDS that abstracts differences between specific resource models and pro-
vides a clear separation of concerns between application and resource layers in providing QoS to
end user. In the context of this architecture, we investigate the capabilities required in grid and
cloud resource control mechanisms to provide predictable performability guarantees. We also ex-
plore the application-level algorithms for deadline-sensitive workflow orchestration that can bal-
ance cost, performance, reliability. Specifically, we validate our hypothesis and answer the follow-

ing research questions (Chapter 5):

1. Is a common abstraction possible that captures the different properties of grid and cloud
systems and yet enables higher level systems to be shielded from specific system implemen-

tations?

231

11. Conclusions and Future Work 232

A: Yes. We present a common resource abstraction across different resource control mech-
anisms. We demonstrate how effective workflow orchestration can be built on top of that
abstraction while being shielded from specific system properties. The abstraction is based
on the lowest common denominator of the system properties, yet is also flexible enough to

accommodate advanced system properties such as resizable dynamic resource containers.

2. What information is required in next-generation data-center interfaces to improve support

for dynamic adaptive workflows?

A: Next-generation data center/resource interfaces need to reflect information regarding QoS
parameters including performance, failures and cost that users or tools acting on behalf of

users can use to trade-off various system parameters.

3. Can users be allowed to express dynamic user and resource constraints?
A:Yes. Application interfaces need to balance simplicity of use with giving users more control
that facilitate intelligent and autonomic scheduling decisions.

4. Isit possible to provide predictable quality of service atop systems that do not provide explicit
resource control?
A: Yes. We show that a probabilistic QoS model allows us to provide predictable quality of
service atop systems such as batch systems that do not provide explicit resource control.

5. How can workflows account for variability in performance, and reliability that are inherent
to distributed large-scale systems?

A: By using performability analysis based on Markov Reward Models, we show how work-
flows can account for variability in performance and reliability and represent associated costs

allowing workflows to do appropriate trade-offs.

11. Conclusions and Future Work 233

6. How can workflow sets be scheduled to meet multiple constraints such as deadline and accu-
racy? How can higher-level tools determine appropriate fault tolerance strategies with cost

and other constraints?

A: We show that by using an orchestration pipeline and a probabilistic QoS model we can
quantify the trade-offs between different constraints enabling a richer schedule that accounts

for the system properties and user constraints.

Next we outline the specific contributions of this work and future directions that are motivated

from the results in this work.

11.1 Resource Layer

We explore the interfaces and mechanisms required at the resource layer in next-generation data

centers supporting grid and cloud systems.

Resource Abstraction. WORDS lays the foundation for next generation dynamic adaptive dis-
tributed environments. The resource abstraction in WORDS enables resource providers to provide
specific bounds on QoS and facilitates higher-level applications to interact with and compare QoS
capabilities of different resource systems without needing to know specific policies or implemen-
tation details. This abstraction provides the necessary framework for dynamic resource contracts

that are required as cloud computing business models become mainstream.

Probabilistic QoS model. The cloud computing paradigm provides a clear separation between
resource, service providers and consumers. This makes predictable resource control with appro-
priate QoS abstractions critical in today’s distributed environments. We explore and demonstrate

probabilistic bounds on resource procurement and failure characteristics as a feasible approach

11. Conclusions and Future Work 234

to providing QoS service to end-user applications. The probabilistic QoS model accounts for un-
certainty in procurement and quantifies availability characteristics in highly variable distributed
systems. As cloud computing systems develop, it is important to explore QoS contracts between
different level providers (e.g., IaaS - Infrastructure as a service providers, SaaS - Software as a ser-
vice providers) in cloud environments that capture the resource behavior, business models and
consumer requirements. To meet this goal, it will be necessary to explore the set of services that
need to be hosted inside and outside cloud systems to facilitate end-user resource interactions for

workload and data management, monitoring and adaptation for QoS and cost.

Performance, reliability and cost-based contracts With large scale deployments of resources at
cloud computing centers, service providers need to handle degraded services at the compute, stor-
age and network levels to manage availability variations in hardware and software. We propose
and evaluate a Markov Reward Model for performability analysis i.e., measuring the effect of avail-
ability variations on performance and cost [141]. More recently energy efficiency or “green com-
puting” has become central to design of data centers. Long term, we need policies and cost-models
that enable higher-level applications to trade-off system parameters such as energy usage. The pro-
posed performability model can be further expanded to build dynamic resource contracts between
resource providers and consumers enabling criteria such as energy usage and failure characteristics

to become part of the mainstream business model.

Container-provisioning. Cloud computing models have spearheaded the use of customized vir-
tual environments. In this thesis, we illustrate the dynamic assignment of shared pools of comput-
ing resources to hosted grid environments. Our implementation shows how to extend grid man-
agement services to use a dynamic leasing service to acquire computational resources and integrate
them into a grid environment in response to changing demand. Each site controls a dynamic as-

signment of its local cluster resources to the locally hosted grid points of presence. Our approach

11. Conclusions and Future Work 235

addresses resource control at the container level, independently of the software that runs within the
container. Further investigation is required for policy choices required for resource provisioning at

the data center.

11.2 Application Layer

We develop the interaction of high-level application tools (e.g., workflow tools) with next-
generation data centers and interfaces required at the user-level for easy access to cloud computing

systems.

Constraint Specifications. We propose a user-level constraint space that allows users to specify
higher-level constraints such as budget, priorities, etc. on their work units to guide orchestrations
decisions. It is important to further explore constraint specifications at the user-level that allow end
users to specify performance, availability, cost, security and other QoS expectations. These need to

be mapped to appropriate policies at the resource level.

Programming models. Different programming models and tools have evolved in the grid and
cloud computing space. Higher-level workflow tools have various internal representations for
dependencies between different tasks. The Web Services Business Process Execution Language
(WS-BPEL) [202] is one such executable language for specifying interactions between web service
workflow components. On the other hand tools such as Apache Hadoop [7] and Dryad [84] have
evolved to handle execution in parallel clustered systems. Scientific applications are often com-
posed through Message Passing Interfaces, Master-Worker, Divide and Conquer or Single Pro-
gram Multiple Data programming paradigms. There is a disconnect between these programming
models at different levels requiring specific tools for specific applications. For example, workflow

tools today see only task dependencies, whereas resource planning in Hadoop develop execution

11. Conclusions and Future Work 236

plans based on resource availability and other concurrent workloads. The execution framework in
WORDS includes a prototype execution system that managed runtime execution dependencies in
addition to the task dependency managed by an Apache ODE [8] workflow engine. It is necessary
to further explore the interaction between application and cloud-level execution tools to manage

execution based on user constraints and resource availability characteristics.

Dynamic Scheduling. We explore multi-phase workflow orchestration approaches that balance
performance, reliability and cost trade-offs for deadline-sensitive workflows that have accuracy
and timeliness constraints. The workloads that were considered were scientific workflows from
diverse domains including bioinformatics and biomedicine, weather and ocean modeling. Dy-
namic scheduling techniques need further exploration for scientific workloads that require timely
coordination of streaming data from instruments, computational resources and access to large-scale
storage systems and periodic human intervention to resolve uncertainties during runtime that were
identified as requirements in our workflow survey. Dynamic scheduling is also critical for main-
stream business workloads such as mobile applications that process large data sets on distributed

cloud resources.

Adaptation. Uncertainty is a key element of distributed system. Preplanning techniques need
to be accompanied by real-time adaptation. An adaptation infrastructure needs to be supported
with monitoring infrastructure to detect performance and reliability fluctuations and policies at
different levels. For example,the adaptation infrastructure can receive millions of adaptation events
sometimes requiring conflicting actions requiring an arbitration policy. The WORDS architecture
provides the infrastructure to further explore adaptation requirements in next-generation grid and

cloud systems.

A

Workflow Emulator

In the last few years, workflows and workflow tools have become an integral part of cyberin-
frastructure. These workflow systems often interact with other middleware including planners,
schedulers, web services, provenance systems and resource-level services. The complex require-
ments of this software stack drives the research in computer science to investigate and apply in-
novative techniques and mechanisms to manage these environments. The complexity and cost of
these systems often makes it hard to experiment and test new computer science mechanisms dur-
ing actual workflow execution. Often there is also a need to replay a workflow execution to inspect
and generate the data events associated with workflow execution. We used a simple service based
workflow emulation model that serves as a benchmark platform to experiment with mechanisms

and policies in a controlled environment.

Figure A.1 shows the workflow emulation architecture. It consists of an existing workflow
engines that works coordinates an emulation service to recreate the workflow execution flow. The
workflow engine in our particular implementation is Apache ODE [8], a BPEL based workflow
engine that invokes the emulation service in place of the application service that is invoked during
real execution for each step in the workflow or directed acyclic graph(DAG). The emulation service
follows a state based execution flow that captures different stages of task execution including data

transfer, computation, post-processing, etc.

The specific information such as task execution time and data transfers are retrieved from a local

237

A. Workflow Emulator 238

Initialize

Grid and cloud
sites

Start
workflow
o o
Application ®e
Service == e o
Emulation ® o
{for each
task} e O

Figure A.1: Workflow Emulation Architecture. The figure shows the interaction of the different
components in the emulation environment.

database for each workflow during execution. The emulation service may also interact with exter-
nal systems like a grid emulator that emulates application running on different resource provider
sites [139]. For purposes of this research, the service emulation interacts with a workflow planner

service.

The workflow emulation architecture is a minimalistic framework that can be configured with
external event handlers to register the execution activities that is of interest for a particular case

study. In addition to this research it is being used to generate a provenance database for work-

flows [51].

A1 Application Service Handler Interface

The application service emulation execution flow is captured with the state diagram shown in
Figure A.2. The service is configurable to allow event handlers to be associated with each state for
a particular workflow or task execution. Each state may be associated with multiple event handlers
(e.g. for provenance generation and scheduling) that are specified before execution. The states are

described below.

A. Workflow Emulator 239

(no input data transfer)
Task started

(streaming data)

Input Data
Transfer
Started

Input Data
Transfer
Completed

Pre-
computation

Post
Computation

Computation

Output Data
Transfer
Completed

Output Data
Transfer
Started

(no output
data transfers)

Task
completed

Typical sequential flow ——>
Example alternatives _._._ >
Repetitive states "o =7

Figure A.2: Application Service Emulation Execution Flow. The figure shows the different states
supported by the emulation execution flow for each task in the workflow. Some states may be
skipped or repeated for different scenarios.

Task Started. This marks the start of an activity or task. The handlers for this state may invoke a
workflow planning component to get resource information and then retrieve the task information
(e.g. execution time, data sizes) based on the resource information. In addition handlers may

publish events to signify the task was invoked.

Input Data Transfer Started and Input Data Transfer Completed. These states are used to capture
the data transfers that may be required for the particular task at hand. These steps will be repeated
for each data product that may be required by the computation. These steps can also be skipped for
special circumstances - e.g. if there are no input data transfers that are required or the input data

transfer completed state may not be relevant in the case of streaming input data.

Pre-computation. In this state typically pre-computation steps are invoked. For example, input
data products may be registered with a meta-data catalog or specific resource based information

for the computation may be retrieved

A. Workflow Emulator 240

Computation. In this state the emulation of the computation stage will be emulated. This could
be a NOP (no operation) for the application execution time or an external grid emulator can be

invoked.

Post computation. This represents the post-computation activities that can include data product

registration.

Output Data Transfer Started and Output Data Transfer Completed. These states are used to
capture the data transfers that are required for the output data generated by the emulated task.
These steps will be repeated for each data product that is required by the computation. These steps

can also be skipped if data transfers are not required for this task.

Task Complete. This is the final state in a normal execution flow and the result of the task is sent

back to the workflow engine which then uses that to invoke the next task in the DAG.

A.2 Orchestration Handler

The application service handler interface is customizable. The orchestration handler in the em-

ulator handles the following to demonstrate and evaluate components of this research:

e For every task in the workflow it queries the workflow planner to determine the resources
the task must run on. There cab be replicas for the tasks and the resource mapping for each

of them is returned.

e It interacts with the expanded execution manager interface and triggers job submission with

a description of the job. This is repeated for each replica.

e It queries the execution manager for job status and wait till the job succeeds or fails.

A. Workflow Emulator 241

This emulation architecture is used in concert with other system components as a demonstra-
tion of the orchestration mechanisms over the Virtual Grid Execution System (vgES) (described in

Chapter 10).

B

LEAD Portal Resource Usage Analysis

The deployed LEAD system consists of a portal ! that allows users to interact with meteorolog-
ical workflows that run across a distributed testbed. The portal provides access to pre-composed
workflows that can be configured with specific data. The workflow types supported consist of
the weather forecasting and data mining workflows. The portal also provides other tools for vi-
sualization, to create and configure application services, and manage data products. The LEAD
meta-data sub-system collects and manages workflow data of the user’s experiments. We present
here a higher-level analysis of the data to highlight the types of workflows supported in the system

and the performance and reliability characteristics experienced by these workflows.

The data presented here is from user experiments run between October 2007 and March 2009.
Our system allows users to delete their experiments and the meta-data for the experiments is
purged from the system. Thus, more experiments were run than what is detailed here. The ex-
periments also consist of developer run workflows that were used to test the system components.
Other studies by other project members capture the problems and solutions that were put in place
for handling failures associated with job submission [114] and file transfer [171] that were encoun-

tered and rectified in the infrastructure.

Thttps:/ /portal.leadproject.org

242

B. LEAD Portal Resource Usage Analysis 243

B.1 System Details

The LEAD portal supports three primary type of workflows - data mining, and NAM-initialized
and ADAS-initialized weather forecasting workflows (described in Chapter 2: Section 2.2). Another
workflow type that has been deployed in the portal and primarily used for testing is a simple Echo

workflow.

The different execution components of the LEAD system publish notifications to a notification
bus. The LEAD meta-data system subscribes to the notifications and manages the data in backend

databases.

The LEAD infrastructure consists of a diverse set of geographically distributed resources. The
LEAD production services including the portal, application services are hosted on the tyr cluster.
The TeraGrid resources provide back-end computational infrastructure for job execution. Table B.1
shows the configuration of these machines. The TeraGrid systems are all batch queue resources
and applications incur wait time on these resources. During workshops and significant events,
administrators of the LEAD system procure out-of-band advanced reservations on these systems

to reduce wait times.

B.2 Overview

We parse the execution metadata to determine the type of the workflow. The parser detects
three primary types of workflows - NAM, ADAS and MINING workflows. The NAM and ADAS
workflows differ in just one task and sometimes hard to classify them when there are missing notifi-
cation messages or the workflow has failed. In addition some workflows have missing notifications

and can’t be classified and are tabulated as UNCLASSIFIED.

B. LEAD Portal Resource Usage Analysis 244

Machine Usage Specifications
tyr LEAD services 16 nodes, Dual AMD 2.0GHZ Opteron, 16GB
memory per node, Redhat Enterprise Linux
anl computation (Argonne Ter- | 62 nodes, Dual Intel Itanium 2 processors,
aGrid) 4GB memory per node, Redhat Enterprise
Linux
bigred computation (IU TeraGrid) | 768 nodes, Dual-core 2.5GHz PowerPC

970MP, 8GB memory per node, Suse Enter-
prise Linux

mercury computation (NCSA Tera- | 887 IBM nodes: 256 nodes with dual 1.3 GHz
Grid) Intel Itanium 2 processors (half with 4 GB of
memory per node, and the rest with 12 GB of
memory per node), 631 nodes with dual 1.5
GHz Intel Itanium 2 processors (4 GB of mem-
ory per node), SuSE Linux

tungsten computation (NCSA Tera- | 1280 nodes with dual Dell PowerEdge 1750
Grid - decommissioned) server, 3GB memory per node, Redhat Linux
(decommissioned in 2008)

Table B.1: LEAD Production Testbed. Machine specifications of systems used by LEAD.

Type Total Success Recovered Failed
NAM 1483 386 141 956
ADAS 1237 301 148 787
MINING 337 267 8 46
ECHO 68 8 0 60
NAM or ADAS 473 4 0 469
UNCLASSIFIED | 574 4 0 570
| Total | 4172 | 971 | 297 | 2904 |

Table B.2: LEAD Production Workflow Completion States. The table shows the classification of
workflows that are in different termination states - success, failed or recovered.

B. LEAD Portal Resource Usage Analysis 245

A workflow can be in one of three final states in our system. The workflow can complete suc-
cessfully without encountering failures or can fail during execution. In addition the LEAD system
has built in fault tolerance strategies such as task replication [87] and retries that were deployed in
the system during the time frame of this data collection. We classify a workflow that has duplicate
tasks as RECOVERED. A duplicate task will occur if the task failed or data transfer failed or the

system timed out due to large queue wait times and was resubmitted to a different resource.

Table B.2 shows the classification of the workflows by type and the number of workflows in
each of the final states. The majority of the workflows (76%) were identified as NAM or ADAS

workflows, of which 11% of the workflows could not be distinguished.

In the weather forecasting workflows only 35%(NAM) and 36% (ADAS) workflows completed
successfully with or without recovery. In contrast 81% of the MINING workflows completed suc-
cessfully out of which only 2% had to be recovered. The higher rates of success for the MINING
workflow are probably due their shorter running duration and hence less likely to encounter fail-

ures.

About 14% of the workflows could not be classified into correct workflow types. The successful
workflows in this class had missing notification messages that prevented them from being classified
automatically. The largest number of errors (85%) in the workflows are immediately after workflow

initialization. The remaining errors are from computational task or data transfer failures.

Figure B.1 shows the turnaround time distribution for the data mining and meteorological
workflows. The total turnaround time of workflows can vary due to a number of reasons includ-
ing user inputs, data transfer times, execution time and batch queue wait times. The data mining
workflow takes on the order of few minutes to a couple of hours though the largest number of
workflows finish within 40 minutes. The weather forecasting workflows vary from a few minutes

to a number of hours.

B. LEAD Portal Resource Usage Analysis 246

35
30 - —
2 q]
20 F Y b —

15 | 1

Lm L L o0 L L, L L

0 20 40 60 80 100 120 800 1000 1200 1400 1600
Workflow turnaround time (minutes) Workflow turnaround time (minutes)

Number of observations
Number of observations

10

(a) dataMining (b) meteorology

Figure B.1: LEAD Workflows Performance Variation.

B.3 Data Mining Workflow

The data mining workflow (Chapter 2, Section 2.2) has three primary tasks in the workflow for
a) storm detection, b) removing attributes and c) spatial clustering. We study the distribution of the

execution time of these tasks.

The storm detection algorithm algorithm takes in the order of two to three minutes for the
majority of the runs on all three machines(Figure B.2). However we see some variation on all

machines and the maximum variation is seen on tungsten.

The remove attibutes and spatial clustering tasks, in most cases, takes between one and three
minutes on all machines (Figures B.3 and B.4). The remove attributes is fastest on tungsten where
60% of the entries complete within one minute. The perturbation in execution time is minimal for

both these tasks.

B.4 Weather Forecasting Workflow

The weather forecasting workflows consists of six tasks. These are a) Terrain Preprocessor b)

WREF Static ¢) Nam Initial interpolators d) NAM Lateral or ADAS interpolators e) ARPS2WREF f)

B. LEAD Portal Resource Usage Analysis 247

100 100
90 1 90 1
. B80F 4 . B80F 4
s s
g 70t 4 g 70t 4
2 2
@ 60 4 2 4
2 5
S S
5 50 T 5 T
o @
g 4o} 4 g 4
€ €
8 a0 1 8 1
& &
20 1 1
10 q q
O o L L L L L L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Task turn around time (mins) Task turn around time (mins)
(a) bigred (b) mercury
100
90 1
. B80F 4
s
£ 10t 4
2
2 60 L 4
2
S
s 50 q
o
g 40 1
g
<] 30 —
&
20 1
10 q
1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90
Task turn around time (mins)

(c) tungsten

Figure B.2: Storm Detection. The distribution of execution times for the storm detection algorithm
code on bigred, mercury and tungsten.

B. LEAD Portal Resource Usage Analysis

248

Percentage of observations

10

Task turn around time (mins)

15

(a) bigred

Percentage of observations

100
20
80
70
60
50
40
30
20
10

25

100
20
80
70
60
50
40
30

Percentage of observations

20
10

< .

0 5 10
Task turn around time (mins)

15

(b) mercury

10

15

Task turn around time (mins)

(c) tungsten

25

Figure B.3: Remove attributes. The distribution of execution times for the remove attributes code
on bigred, mercury and tungsten.

Percentage of observations

Figure B.4: Spatial Clustering. Execution times on bigred, mercury and tungsten.

4

Task turn around time (mins)

6

(a) bigred

Percentage of observations

100
90
80
70
60
50
40
30
20
10

100

4 9 L 4

4 » 80 4
s

4 £ ot 4
2

4 § et 4
S

4 2 50 4
@

4 g a0t 4
3

4 S a0t 4
&

4 20 4

4 10 L 4

1 1 1 1
8 10 0 2 4 6 8
Task turn around time (mins)
(b) mercury
L R L RXXX
4 6 8 10

Task turn around time (mins)

(c) tungsten

B. LEAD Portal Resource Usage Analysis 249

9 — 9 —
80 — 80 —
70 —
60 [B
50 —
40 H —
30 —

Percentage of observations
@
g
T
L
Percentage of observations

20 1 20 1

10 q 10 q

1 1 1 1 1

0 50 100 150 200 0 50 100 150 200
Task turn around time (mins) Task turn around time (mins)

(a) anl (b) bigred

9 — 9 —
80 — 80 —
70 —
60 - B
50 —
40 —
30 —

Percentage of observations
@
g
T
L
Percentage of observations

il P s A A ‘ ‘ ‘
0 50 100 150 200 0 50 100 150 200
Task turn around time (mins) Task turn around time (mins)

(c) mercury (d) tungsten

Figure B.5: Terrain Preprocessor. Execution times (a) anl (b) bigred (c) mercury (d) tungsten.

WRE. In this section, we discuss the execution times observed for these tasks.

Terrain Preprocessor. The Terrain Preprocessor task takes order of a few seconds to few minutes on
all the machines. The perturbation is infrequently outside the five minute range(Figurefig:terrain)

and primarily see on mercury.

WREF Static. WREF Static typically takes order of two to three minutes for execution. The application

experiences some perturbation on mercury but rarely outside the 20 minute range (Figure B.6).

Interpolators. There are three types of interpolator tasks in the LEAD workflows. NAM Initial
(Figure B.7) has a typical execution time of two to three minutes and has minimal variation outside

the 20 minute mark. NAM Lateral and ADAS exhibit similar behavior (Figures B.8 and B.9).

ARPS2WRE. This application takes between two to fives minutes typically to execute on all ma-

chines. The application experiences more fluctuations on mercury and tungsten where less than

B. LEAD Portal Resource Usage Analysis

250

Percentage of observations

Percentage of observations

20 40 60 80
Task turn around time (mins)

(a) anl

100

120

i ‘ ‘ ‘

o
N
S

40 60 80
Task turn around time (mins)

(c) mercury

100

120

Percentage of observations

Percentage of observations

90
80
70
60
50
40
30
20

10

90
80
70
60
50
40
30
20

10

I L L L L L
0 20 40 60 80 100 120
Task turn around time (mins)
(b) bigred
é - ‘ ‘ ‘ ‘
0 20 40 60 80 100 120

Task turn around time (mins)

(d) tungsten

Figure B.6: Wrfstatic.Execution times (a) anl (b) bigred (c) mercury (d) tungsten.

Percentage of observations

Percentage of observations

L L L L L

0 20 40 60 80 100
Task turn around time (mins)

(a) anl

120

140

160

20 40 60 80 100
Task turn around time (mins)

(c) mercury

120

140

160

Percentage of observations

Percentage of observations

100
20
80
70
60
50
40
30
20

10

100
20
80
70
60
50
40
30
20

10

1 L L L L L L L
0 20 40 60 80 100 120 140 160
Task turn around time (mins)
(b) bigred
.
0 20 40 60 80 100 120 140 160

Task turn around time (mins)

(d) tungsten

Figure B.7: Nam Initial Execution times (a) anl (b) bigred (c) mercury (d) tungsten.

B. LEAD Portal Resource Usage Analysis

251

Percentage of observations

Percentage of observations

Figure B.8:

Percentage of observations

Percentage of observations

@ﬂ L. . A A . ‘ ‘ ‘
0 20 40 60 80 100 120 140 160
Task turn around time (mins)
(a) anl
Lo 1 L L L L L L
0 20 40 60 80 100 120 140 160

Task turn around time (mins)

(c) mercury

Percentage of observations

Percentage of observations

90
80
70
60
50
40
30
20
10

90
80
70
60
50
40
30
20
10

mL. .

20 40 60 80 100 120 140 160
Task turn around time (mins)
(b) bigred
i
0 20 40 60 80 100 120 140 160

Task turn around time (mins)

(d) tungsten

Nam Lateral Execution times (a) anl (b) bigred (c) mercury (d) tungsten.

0 20 40 60 80 100 120 140
Task turn around time (mins)
(a) anl
0 20 40 60 80 100 120 140

Task turn around time (mins)

(c) mercury

Percentage of observations

Percentage of observations

100
20
80
70
60
50
40
30
20
10

100
90
80

[‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100 120 140
Task turn around time (mins)
(b) bigred
0 20 40 60 80 100 120 140

Task turn around time (mins)

(d) tungsten

Figure B.9: ADAS Execution times (a) anl (b) bigred (c) mercury (d) tungsten.

B. LEAD Portal Resource Usage Analysis 252

100 100
90 1 90 1

70 —

60 —

Percentage of observations
@
g
L

Percentage of observations

L L L L L L L L L L
0 20 40 60 80 100 120 140 20 40 60 80 100 120 140

Task turn around time (mins) Task turn around time (mins)
(a) anl (b) bigred
100 100
90 1 90 1
» B80F 4 » B80F 4
s s
g 70t 4 g 70t 4
2 2
g eof 1 § eof J
S S
5 50 T 5 50 T
o o
g 40 4 g 4o} 4
= =
3 a0 g 3 1
& &
20 1 1
10 q q
0 20 40 60 80 100 120 140 20 40 60 80 100 120 140
Task turn around time (mins) Task turn around time (mins)
(c) mercury (d) tungsten

Figure B.10: ARPS2WRF Execution times (a) anl (b) bigred (c) mercury (d) tungsten.

50% of the entries fall within the same minute range.

WRE WRF which is a MPI application takes order of few minutes to a few hours based on the input
data size. Here we see that there is a huge variation in the execution time and less than 30% of the

entries fall in the same range.

B.5 Summary

The data from the LEAD system shows that workflows experience failures and performance
fluctuation during execution. While the perturbation in execution time for individual applications
is in the order of a few minutes and considered minimal, these can severely impact the workflow

turnaround time.

B. LEAD Portal Resource Usage Analysis

253

50

40

30

20

Percentage of observations

10

50

40

30

20

Percentage of observations

Figure B.11: WRF Execution times (a) anl (b) bigred (c) mercury (d) tungsten.

. .
0 2 4 6 10
Task turn around time (Hours)
(a) anl
m“lh. i 1wt . .
0 2 4 6 10

Task turn around time (Hours)

(c) mercury

Percentage of observations

Percentage of observations

o |.|..||| IH\ L
0 2

4 6
Task turn around time (Hours)

(b) bigred

40

OlI)I[I|||||I

|\ di Wi L L
2

4 6
Task turn around time (Hours)

(d) tungsten

Bibliography

[1] R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello, A. Frohner, A. Gianoli, K. Lorentey, and
E. Spataro. VOMS, An Authorization System for Virtual Organizations. In Proceedings of the

First European Across Grids Conference, February 2003.

[2] G. Alonso, C. Hagen, D. Agrawal, A. E. Abbadi, and C. Mohan. Enhancing the Fault Tolerance

of Workflow Management Systems. IEEE Concurrency, 8(3):74-81, 2000.

[3] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludscher, and S. Mock. Kepler: An Extensible

System for Design and Execution of Scientific Workflows, 2004.

[4] S. F. Altschul, W. Gish, E. M. W. Miller, and D. Lipman. Basic Local Alignment Search Tool.

Journal of Molecular Biology, 214(1-8), 1990.
[5] Amazon Web Services htt p://aws. anazon. coni .
[6] Apache Ant. http://ant. apache. org/.
[7] Apache hadoop. htt p:// hadoop. apache. or g/ core.
[8] Apache ODE. htt p:// ode. apache. org/.

[9] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee, D. A. Patterson,

A. Rabkin, I. Stoica, and M. Zaharia. Above the Clouds: A Berkeley View of Cloud Computing.

254

BIBLIOGRAPHY 255

Technical Report UCB/EECS-2009-28, EECS Department, University of California, Berkeley,

Feb 2009.

[10] D. Atkins. A Report from the U.S. National Science Foundation Blue Ribbon Panel on Cy-
berinfrastructure. In CCGRID ’02: Proceedings of the 2nd IEEE/ACM International Symposium on

Cluster Computing and the Grid, page 16, Washington, DC, USA, 2002. IEEE Computer Society.

[11] Availability Prediction Service. http://nws. cs. ucsb. edu/ ew ki / nws. php?i d=

Avail abil'ity+Prediction+Servi c%.

[12] Avian Flu Grid Website. ht t p: / / avi anf | ugri d. pragne- gri d. net /.

[13] P. Barham, B. Dragovic, K. Faser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the Art of Virtualization. In Proceedings of the Nineteenth ACM Sympo-

sium on Operating Systems Principles (SOSP), October 2003.

[14] P. Beckman, S. Nadella, N. Trebon, and I. Beschastnikh. SPRUCE: A System for Supporting

Urgent High-Performance Computing. In IFIP WoCo9 Conference Proceedings, 2006.

[15] F. Berman, H. Casanova, A. Chien, K. Cooper, H. Dail, A. Dasgupta, W. Deng, J. Dongarra,
L. Johnsson, K. Kennedy, C. Koelbel, B. Liu, X. Liu, A. Mandal, G. Marin, M. Mazina, J. Mellor-
Crummey, C. Mendes, A. Olugbile, M. Patel, D. Reed, Z. Shi, O. Sievert, H. Xia, and A. YarKhan.
New Grid Scheduling and Rescheduling Methods in the GrADS Project. International Journal of

Parallel Programming (IJPP), Volume 33(2-3):pp. 209-229, 2005.

[16] F. Berman, G. C. Fox, and anthony J.G. Hey. Grid Computing: Making The Global Infrastructure a

Reality. John Wiley & Sons, April 2003.

[17] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman, S. Figueira, J. Hayes,

G. Obertelli, J. Schopf, G. Shao, S. Smallen, N. Spring, A. Su, and D. Zagorodnov. Adaptive

BIBLIOGRAPHY 256

Computing on the Grid Using AppLeS. IEEE Transactions on Parallel and Distributed Systems

(TPDS), 14(4):369-382, April 2003.

[18] G. S. Blair, G. Coulson, A. Andersen, L. Blair, M. Clarke, F. M. Costa, H. A. Duran-Limon,
T. Fitzpatrick, L. Johnston, R. S. Moreira, N. Parlavantzas, and K. B. Saikoski. The Design and

Implementation of Open ORB 2. IEEE Distributed Systems Online, 2(6), 2001.

[19] B. Blanton, H. Lander, R. A. Luettich, M. Reed, K. Gamiel, and K. Galluppi. Computational

Aspects of Storm Surge Simulation. 2008.

[20] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, and K. Kennedy. Task Scheduling

Strategies for Workflow-based Applications in Grids. In CCGRID, pages 759-767, 2005.

[21] J. Brevik, D. Nurmi, and R. Wolski. Predicting Bounds on Queueing Delay for Batch-scheduled

Parallel Machines. In Principles and Practice of Parallel Programming (PPoPP 2006). ACM, 2006.

[22] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, and H. Zheng. Heterogeneous Con-
current Modeling and Design in Java (Volume 1: Introduction to Ptolemy II). Technical Report

UCB/EECS-2007-7, EECS Department, University of California, Berkeley, January 11 2007.

[23] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, and H. Zheng. Heterogeneous Con-
current Modeling and Design in Java (Volume 2: Ptolemy II Software Architecture). Technical
Report UCB/EECS-2007-8, EECS Department, University of California, Berkeley, January 11

2007.

[24] J. Buisson, F. Andri, and].-L. Pazat. Dynamic Adaptation for Grid computing. In P. M. A.
Sloot, A. G. Hoekstra, T. Priol, A. Reinefeld, and M. Bubak, editors, Advances in Grid Computing
- EGC 2005 (European Grid Conference, Amsterdam, The Netherlands, February 14-16, 2005, Revised

Selected Papers), volume 3470 of LNCS, pages 538-547, Amsterdam, June 2005. Springer-Verlag.

BIBLIOGRAPHY 257

[25] R. Buyya, D. Abramson, and J. Giddy. Economy Driven Resource Management Architecture

for Computational Power Grids, 2000.

[26] R. Buyya, D. Abramson, and J. Giddy. Nimrod/G: An Architecture of a Resource Manage-
ment and Scheduling System in a Global Computational Grid. In Proceedings of 4th Inter-
national Conference on High Performance Computing in ASis-Pacific Region, IEEE Computer Press,

¢s.DC/0009021, 2000.

[27] J. H. Byrne. Mrs. Byrne’s Dictionary of Unusual, Obscure, and Preposterous Words: Gathered from

Numerous and Diverse Authoritative Sources. Citadel, 1976.

[28] CaGrid Taverna Workflows. http://ww. cagrid. org/w ki/CaGri d: How To:

Create\ _CaGid_Workfl om _Usi %g\ _Taver na.

[29] Cancer Biomedical Informatics Grid (caBIG). htt p: / / ww. cagri d. or g/ .

[30] J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut. Quality of Service for Workflows
and Web Service Processes. Web Semantics: Science, Services and Agents on the World Wide Web,

1(3):281-308, April 2004.

[31] F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and M.-C. Shan. Adaptive and Dynamic Service
Composition in eFlow. In Conference on Advanced Information Systems Engineering, pages 13-31,

2000.

[32] S.]J. Chapin, D. Katramatos,]. Karpovich, and A. Grimshaw. Resource management in Legion.

Future Generation Computer Systems, 15(5-6):583-594,1999.

[33] J. S. Chase, D. E. Irwin, L. E. Grit,]. D. Moore, and S. E. Sprenkle. Dynamic Virtual Clusters

in a Grid Site Manager. In HPDC "03: Proceedings of the 12th IEEE International Symposium on

BIBLIOGRAPHY 258

High Performance Distributed Computing (HPDC’03), page 90, Washington, DC, USA, 2003. IEEE

Computer Society.

[34] A. Chien, H. Casanova, Y.-S. Kee, and R. Huang. The Virtual Grid Description Language:

vgDL. UCSD Technical Report C52005-0817, University of California San Diego, 2005.

[35] A. Chong, A. Sourin, and K. Levinski. Grid-based Computer Animation Rendering. In
GRAPHITE "06: Proceedings of the 4th international conference on Computer graphics and interac-

tive techniques in Australasia and Southeast Asia, pages 39-47, New York, NY, USA, 2006. ACM.

[36] D. Churches, G. Gombas, A. Harrison, J. Maassen, C. Robinson, M. Shields, I. Taylor, and
I. Wang. Programming Scientific and Distributed Workflow with Triana Services. Concurrency
and Computation: Practice and Experience (Special Issue: Workflow in Grid Systems), 18(10):1021-

1037, 2006.
[37] Cloudstatus —htt p://ww. cl oudst at us. coni .
[38] Condor DAGMan. htt p: //www. cs. wi sc. edu/ condor/ dagman/ .
[39] T. W. Crockett. An Introduction to Parallel Rendering. Parallel Computing, 23(7):819-843,1997.
[40] K. Czajkowski, L. Foster, and C. Kesselman. Agreement-based Resource Management, 2005.

[41] K. Czajkowski, I. Foster, C. Kesselman, V. Sander, and S. Tuecke. SNAP: A Protocol for Ne-
gotiating Service Level Agreements and Coordinating Resource Management in Distributed

Systems, 2002.

[42] K. Czajkowski, I. T. Foster, and C. Kesselman. Resource Co-Allocation in Computational

Grids. In HPDC, 1999.

[43] C. da Lu and D. A. Reed. Assessing Fault Sensitivity in MPI Applications. Proceedings of

Supercomputing, 2004.

BIBLIOGRAPHY 259

[44] A. Darling, L. Carey, and W. chun Feng. The Design, Implementation, and Evaluation of

mpiBLAST. 4th International Conference on Linux Clusters: The HPC Revolution 2003, June 2003.

[45] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. pages

137-150.

[46] E. Deelman, J. Blythe, Y. Gil, and C. Kesselman. Workflow Management in GriPhyN. Grid

Resource Management, J. Nabrzyski, J. Schopf, and J. Weglarz editors, Kluwer, 2003.

[47] E. Deelman,]. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, K. Blackburn, A. Lazzarini,
A. Arbree, R. Cavanaugh, and S. Koranda. Mapping Abstract Complex Workflows onto Grid

Environments. Journal of Grid Computing, 1:25-39, 2003.

[48] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, A. Lazzarini, A. Arbree, R. Ca-
vanaugh, and S. Koranda. Mapping Abstract Complex Workflows onto Grid Environments.

Journal of Grid Computing, Vol. 1, No. 1,, 2003.

[49] E. Deelman and Y. Gil. Report from the NSF Workshop on the Challenges of Scientific Work-

flows. Workflow Workshop, 2006.

[50] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good. The Cost of Doing Science on the

Cloud: The Montage Example. In Proceedings of SC'08, Austin, TX, 2008. IEEE.

[51] Digital Data Provenance. ht t p: / / ww. dat aandsear ch. or g/ pr ovenance/ .

[52] A. Downey. Predicting Queue Times on Space-Sharing Parallel Computers. In Proceedings of

the 11th International Parallel Processing Symposium, April 1997.

[53] A. Downey. Using Queue Time Predictions for Processor Allocation. In Proceedings of the 3rd

Workshop on Job Scheduling Strategies for Parallel Processing, April 1997.

BIBLIOGRAPHY 260

[54] K. K. Droegemeier, D. Gannon, D. Reed, B. Plale, J. Alameda, T. Baltzer, K. Brewster, R. Clark,
B. Domenico, S. Graves, E. Joseph, D. Murray, R. Ramachandran, M. Ramamurthy, L. Ramakr-
ishnan, J. A. Rushing, D. Weber, R. Wilhelmson, A. Wilson, M. Xue, and S. Yalda. Service-
Oriented Environments for Dynamically Interacting with Mesoscale Weather. Computing in

Science and Engg., 7(6):12-29, 2005.

[55] R.Duan, R. Prodan, and T. Fahringer. Run-time Optimization for Grid Workflow Applications.
In 7th IEEE/ACM International Conference on Grid Computing (Grid'06), IEEE Computer Society

Press, 2006.

[56] L. M. eSolva. Parallel Programming Models and Paradigms. In High Performance Cluster Com-

puting: Programming and Applications, 1999.

[57] N. K. et al. Pan-STARRS Collaboration. American Astronomical Society Meeting, (206), 2005.

[58] I. Foster. Globus Toolkit Version 4: Software for Service-Oriented Systems. In Network and

Parallel Computing, IFIP International Conference, pages 2-13, 2005.

[59] I. Foster, M. Fidler, A. Roy, V. Sander, and L. Winkler. End-to-end Quality of Service for High-

end Applications. Computer Communications, 27(14):1375-1388, 2004.

[60] I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit. The International
Journal of Supercomputer Applications and High Performance Computing, 11(2):115-128, Summer

1997.

[61] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastructure. Morgan

Kaufmann, 1999.

[62] I. Foster and C. Kesselman. The Grid 2: Blueprint for a New Computing Infrastructure (The Morgan

Kaufmann Series in Computer Architecture and Design). Morgan Kaufmann, November 2003.

BIBLIOGRAPHY 261

[63] 1. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration. Open Grid Service Infrastructure

WG, Global Grid Forum, June 2002.

[64] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scalable Virtual

Organizations. International Journal of Supercomputer Applications, 15(3), 2001.

[65] I. Foster, A. Roy, and V. Sander. A Quality of Service Architecture that Combines Resource

Reservation and Application Adaptation, 2000.

[66] 1. Foster, Y. Zhao, I. Raicu, and S. Lu. Cloud Computing and Grid Computing 360-Degree

Compared. Grid Computing Environments Workshop, 2008. GCE “08, pages 1-10, Nov. 2008.

[67]]. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke. Condor-G: A Computation Manage-
ment Agent for Multi-Institutional Grids. 10th IEEE International Symposium on High Performance

Distributed Computing (HPDC-10 "01), 00:0055, 2001.

[68] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat. SHARP: An Architecture for Secure
Resource Peering. In SOSP "03: Proceedings of the nineteenth ACM symposium on Operating systems

principles, pages 133-148, New York, NY, USA, 2003. ACM Press.
[69] Geni. htt p://ww. geni . net/.
[70] GEON Website. ht t p: / / www. geongri d. org.

[71] Y. Gil, E. Deelman, J. Blythe, C. Kesselman, and H. Tangmunarunkit. Artificial Intelligence and
Grids: Workflow Planning and Beyond. IEEE Intelligent Systems, special issue on e-science,

Jan/Feb, 2004.
[72] Google AppEngine. htt p: // code. googl e. coni appengi ne/ .

[73] GridEngine Website. ht t p: // gri dengi ne. sunsour ce. net/.

BIBLIOGRAPHY 262

[74] A.S. Grimshaw, W. A. Wulf, and C. T. L. Team. The Legion Vision of a Worldwide Virtual

Computer. Commun. ACM, 40(1):39-45, 1997.

[75] L. E. Grit. Extensible Resource Management for Networked Virtual Computing. PhD thesis,

Durham, NC, USA, 2007.

[76] GUR SDSC Co-scheduling system. http://ww. sdsc. edu/ us/t ool s/ coschedul e.

htm .

[77] B. R. Haverkort, R. Marie, G. Rubino, and K. Trivedi. Performability Modelling. Wiley, Chich-

ester, England, 2001.

[78] R. Huang, H. Casanova, and A. A. Chien. Using Virtual Grids to Simplify Application

Scheduling . In IEEE International Parallel & Distributed Processing Symposium. IEEE, 2006.

[79] S. Hwang and C. Kesselman. A Flexible Framework for Fault Tolerance in the Grid. Journal of

Grid Computing, 1:251-272,2003.

[80] S. Hwang and C. Kesselman. Gridworkflow: A Flexible Failure Handling Framework for the

Grid. HPDC, 00:126, 2003.

[81] A. Iamnitchi and I. T. Foster. A Problem-Specific Fault-Tolerance Mechanism for Asyn-
chronous, Distributed Systems. In International Conference on Parallel Processing, pages 4-14,

2000.

[82] INCA Real Time Monitoring Suite. ht t p: / /i nca. sdsc. edu/ .

[83] D. Irwin, J. Chase, L. Grit, A. Yumerefendi, D. Becker, and K. G. Yocum. Sharing Networked

Resources with Brokered Leases. In USENIX Annual Technical Conference, pages 199-212, 2006.

[84] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed Data-parallel Pro-

grams from Sequential Building Blocks. SIGOPS Oper. Syst. Rev., 41(3):59-72,2007.

BIBLIOGRAPHY 263

[85] J.L.Vazquez-Poletti, E. Huedo, R. Montero, and I.M.Llorente. Coordinated Harnessing of
the IRISGrid and EGEE Testbeds with GridWay. Journal of Parallel and Distributed Computing,

66(5):763-771, May 2006.

[86] J.Schopf and F. Berman. Performance Prediction in Production Environments. Proceedings of

IPPS/SPDP, 1998.

[87] G.Kandaswamy, A. Mandal, and D. A. Reed. Fault Tolerance and Recovery of Scientific Work-
flows on Computational Grids. In CCGRID ’08: Proceedings of the 2008 Eighth IEEE International
Symposium on Cluster Computing and the Grid (CCGRID), pages 777-782, Washington, DC, USA,

2008. IEEE Computer Society.

[88] K. Keahey, 1. Foster, T. Freeman, and X. Zhang. Virtual workspaces: Achieving Quality of

Service and Quality of Life on the Grid. Scientific Programming, 13(4):265-276,2005.

[89] Y.-S. Kee, C. Kessleman, D. Nurmi, and R. Wolski. Enabling Personal Clusters on Demand for
Batch Resources Using Commodity Software. In International Heterogeneity Computing Workshop

(HCWO08) in conjunction with IEEE IPDPS08, April 2008.

[90] Y.-S. Kee, D. Logothetis, R. Huang, H. Casanova, and A. Chien. Efficient Resource Description
and High Quality Selection for Virtual Grids. In Proc. of 5th IEEE Symp. on Cluster Comp. and the

Grid, 2005.

[91] Y.-S. Kee, K. Yocum, A. A. Chien, H. Casanova, and H. Casanova. Improving Grid Resource
Allocation via Integrated Selection and Binding. In International Conference on High Performance

Computing, Network, Storage, 2006.

[92] K. Kennedy, M. Mazina,]. Mellor-Crummey, K. Cooper, L. Torczon, F. Berman, A. Chien,

H. Dail, O. Sievert, D. Angulo, 1. Foster, D. Gannon, L. Johnsson, C. Kesselman, R. Aydyt,

BIBLIOGRAPHY 264

D. Reed, J. Dongarra, S. Vadhiyar, and R. Wolski. Toward a Framework for Preparing and
Executing Adaptive Grid Programs. In Proceedings of NSF Next Generation Systems Program
Workshop (International Parallel and Distributed Processing Symposium 2002), Fort Lauderdale, FL,

April 2002.

[93] O. Khalili, J. He, C. Olschanowsky, A. Snavely, and H. Casanova. Measuring the performance
and reliability of production computational grids. In The 7th IEEE/ACM International Conference

on Grid Computing, 2006.

[94] J. Klingemann, J. Wasch, and K. Aberer. Deriving Service Models in Cross-Organizational

Workflows. In RIDE, pages 100-107, 1999.

[95] P. Koksal, I. Cingil, and A. Dogac. A Component-Based Workflow System with Dynamic

Modifications. In Next Generation Information Technologies and Systems, pages 238-255, 1999.

[96] F. Kon, F. Costa, G. Blair, and R. H. Campbell. The Case for Reflective Middleware. Commun.

ACM, 45(6):33-38, 2002.

[97] F. Kon, M. Roman, P. Liu, J. Mao, T. Yamane, C. Magalhaes, and R. H. Campbell. Monitoring,
security, and dynamic configuration with the dynamicTAO reflective ORB. In Middleware '00:
IFIP/ACM International Conference on Distributed systems platforms, pages 121-143, Secaucus, NJ,

USA, 2000. Springer-Verlag New York, Inc.

[98] W. Kramer and C. Ryan. Performance Variability of Highly Parallel Architectures. Interna-

tional Conference on Computational Science, 2003.

[99] H.M. Lander, R. J. Fowler, L. Ramakrishnan, and S. R. Thorpe. Stateful Grid Resource Selection
for Related Asynchronous Tasks. Technical Report TR-08-02, RENCI, North Carolina, April

2008.

BIBLIOGRAPHY 265

[100] Large Hydron Collider. htt p: / /1 hc. web. cern. ch/.

[101] F. Leymann and D. Roller. Production Workflow: Concepts and Techniques. Prentice Hall PTR,

Upper Saddle River, NJ, USA, 2000.

[102] X. Li, B. Plale, N. Vijayakumar, R. Ramachandran, S. Graves, and H. Conover. Real-time
Storm Detection and Weather Forecast Activation through Data Mining and Events Processing.

Earth Science Informatics, May 2008.

[103] M. Litzkow and M. Livny. Experience with the Condor Distributed Batch System. In Proceed-

ings of the IEEE Workshop on Experimental Distributed Systems, Huntsville, AL, October 1990.

[104] C. Liu, M. E. Orlowska, and H. Li. Automating Handover in Dynamic Workflow Environ-
ments. In CAiSE '98: Proceedings of the 10th International Conference on Advanced Information

Systems Engineering, pages 159-171, London, UK, 1998. Springer-Verlag.

[105] C. Liu, L. Yang, I. Foster, and D. Angulo. Design and Evaluation of a Resource Selec-
tion Framework for Grid Applications. In In Proceedings of the 11th IEEE Symposium on High-

Performance Distributed Computing, July 2002.

[106] Los Almos Reliability Data. htt p: / /i nstitutes. | anl.gov/data/fdata/.

[107] B. Ludscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. Lee, J. Tao, and Y. Zhao.

Scientific Workflow Management and the Kepler System, 2005.

[108] R. Luettich, J. J. Westerink, and N. W.Scheffner. ADCIRC: An Advanced Three-dimensional
Circulation Model for Shelves, Coasts and Estuaries; Report 1: Theory and Methodology of
ADCIRC- 2DDI and ADCIRC-3DL. Technical Report DRP-92-6, Coastal Engineering Research Cen-

ter, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS, 1992.

BIBLIOGRAPHY 266

[109] V. Lynch, J. Cobb, E. Farhi, S. Miller, and M. Taylor. Virtual Experiments on the Neutron

Science TeraGrid Gateway. TeraGrid, 2008.

[110] R. Maia, R. Cerqueira, and F. Kon. A Middleware for Experimentation on Dynamic Adap-
tation. In ACM/IFIP/USENIX 3rd International Workshop on Adaptive and Reflective Middleware,

Grenoble, France, November 2005.

[111] G. Malewicz. Parallel Scheduling of Complex DAGs Under Uncertainty. In Proceedings of the

17th Annual ACM Symposium on Parallel Algorithms(SPAA), pages 66-75,2005.

[112] A. Mandal, K. Kennedy, C. Koelbel, G. Marin,]. Mellor-Crummey, B. Liu, and L. Johnsson.
Scheduling Strategies for Mapping Application Workflows onto the Grid. In High Performance

Distributed Computing (HPDC 2005)., pages 125-134. IEEE Computer Society Press, 2005.

[113] P.J. Mangan and S. W. Sadiq. A Constraint Specification Aproach to Building Flexible Work-

flows. Journal of Research and Practice in Information Technology, 35(1):21-39, 2003.

[114] S. Marru, S. Perera, M. Feller, and S. Martin. Reliable and Scalable Job Submission: LEAD
Science Gateways Testing and Experiences with WS GRAM on TeraGrid Resources . TeraGrid

Conference, June 2008.

[115] Maui Scheduler Website. ht t p: / / www. cl ust err esour ces. com product s/ maui /.

[116] J. F. Meyer. On Evaluating the Performability of Degradable Computing Systems. IEEE Trans.

Computers, 29(8):720-731, 1980.

[117] J. Michalakes, J. Dudhia, D. Gill, T. Henderson, J. Klemp, W. Skamarock, and W. Wang. The
Weather Reseach and Forecast Model: Software Architecture and Performance. Proceedings of
the 11th ECMWEF Workshop on the Use of High Performance Computing In Meteorology, October

2004.

BIBLIOGRAPHY 267

[118] Microsoft Azure. htt p: // www. i crosoft. conf azure/.
[119] J. W. E. Nabrzyski,].M. Schopf. Grid Resource Management. Kluwer Publishing, 2003.
[120] NEES Cyberinfrastructure Center Website. htt p: //it. nees. org.

[121] W. M. v. d. A. Nick Russell Arthur H.M.ter Hofstede and N. Mulyar. Workflow Management

Coalition Terminology Glossary, 1999.
[122] Nirvanix. htt p: /// www. ni r vani Xx. com
[123] North Carolina Floodplain Mapping Program. http://www.ncfloodmaps.com/.

[124] D. Nurmi, J. Brevik, and R. Wolski. Minimizing the Network Overhead of Checkpointing in

Cycle-harvesting Cluster Environments. In Proceedings of Cluster 2005, 2005.

[125] D. Nurmi, J. Brevik, and R. Wolski. QBETS: Queue Bounds Estimation from Time Series. In
Proceedings of 13th Workshop on Job Scheduling Strategies for Parallel Processing (with ICS07), June

2007.

[126] D. Nurmi, J. Brevik, and R. Wolski. VARQ: Virtual Advance Reservations for Queues. Pro-

ceedings 17th IEEE Symp. on High Performance Distributed Computing (HDPC), 2008.

[127] D. Nurmi, A. Mandal, J. Brevik, C. Koelbel, R. Wolski, and K. Kennedy. Evaluation of a Work-
flow Scheduler Using Integrated Performance Modelling and Batch Queue Wait Time Predic-

tion. In Proceedings of SC'06, Tampa, FL, 2006. IEEE.

[128] D. Nurmi, R. Wolski, and J. Brevik. Model-Based Checkpoint Scheduling for Volatile Re-
source Environments. Technical Report 2004-25, University of California Santa Barbara, De-

partment of Computer Science, Santa Barbara, CA, 93106, 2004.

[129] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and D. Zagorod-

nov. Eucalyptus:A Technical Report on an Elastic Utility Computing Archietcture Linking Your

BIBLIOGRAPHY 268

Programs to Useful Systems. Technical Report 2008-10, University of California, Santa Barbara,

California, August 2008.

[130] OASIS Web Services Resource Framework Technical Committee. Web Services Resource Frame-

work (WSRF) v1.2 Specification, April 2006.

[131] T. Oinn, M. Greenwood, M. Addis, M. N. Alpdemir, J. Ferris, K. Glover, C. Goble, A. Goderis,
D. Hull, D. Marvin, P. Li, P. Lord, M. R. Pocock, M. Senger, R. Stevens, A. Wipat, and C. Wroe.
Taverna: Lessons in Creating a Workflow Environment for the Life Sciences: Research Articles.

Concurr. Comput. : Pract. Exper., 18(10):1067-1100, 2006.
[132] Open Science Grid Website. ht t p: / / www. opensci encegri d. org/.
[133] PBSPro Website. ht t p: / / wwv. al t ai r. cont sof t war e/ pbspro. ht m

[134] L. Pearlman, V. Welch, I. Foster, C. Kesselman, and S. Tuecke. A Community Authoriza-
tion Service for Group Collaboration. In Proceedings of the Third IEEE International Workshop on

Policies for Distributed Systems and Networks, June 2002.

[135] B. Plale, D. Gannon, J. Brotzge, K. K. Droegemeier, J. Kurose, D. McLaughlin, R. wilhelmson,
S. Graves, M. Ramamurthy, R. D. Clark, S. Yalda, D. A. Reed, E. Joseph, and V. Chandrashekar.
CASA and LEAD: Adaptive Cyberinfrastructure for Real-time Multiscale Weather Forecasting.

IEEE Computer, (39):66-74, 2006.
[136] Planetlab. htt p: // www. pl anet- 1| ab. org/.

[137] G. Radke and J. Evanoff. A Fast Recursive Algorithm to Compute the Probability of M-out-

of-N events. In Reliability and Maintainability Symposium, 1994. Proceedings., Annual, 1994.

[138] L. Ramakrishnan, B. O. Blanton, H. M. Lander, R. A. Luettich, Jr, D. A. Reed, and S. R. Thorpe.

BIBLIOGRAPHY 269

Real-time Storm Surge Ensemble Modeling in a Grid Environment. In Second International Work-
shop on Grid Computing Environments (GCE), Held in conjunction ACM/IEEE Conference for High

Performance Computing, Networking, Storage and Analysis, November 2006.

[139] L. Ramakrishnan, L. Grit, A. Iamnitchi, D. Irwin, A. Yumerefendi, and J. Chase. Toward a
Doctrine of Containment: Grid Hosting with Adaptive Resource Control. In Proceedings of the
ACM/IEEE SC2006 Conference on High Performance Computing, Networking, Storage and Analysis,

November 2006.

[140] L. Ramakrishnan and D. A. Reed. Monitoring and orchestrating a mesoscale meteorological
cyberinfrastructure. In 21st International Conference on Interactive Information Processing Systems

(IIPS) for Meteorology, Oceanography, and Hydrology, 85th AMS Annual Meeting, January 2007.

[141] L. Ramakrishnan and D. A. Reed. Performability Modeling for Scheduling and Fault Toler-
ance Strategies for Grid Workflows. In ACM/IEEE International Symposium on High Performance

Distributed Computing, 2008.

[142] L. Ramakrishnan, M. S. Reed, J. L. Tilson, and D. A. Reed. Grid Portals for Bioinformatics.
In Second International Workshop on Grid Computing Environments (GCE), Held in conjunction with
ACMY/IEEE Conference for High Performance Computing, Networking, Storage and Analysis, Novem-

ber 2006.

[143] L. Ramakrishnan, Y. Simmhan, and B. Plale. Realization of Dynamically Adaptive Weather
Analysis and Forecasting in LEAD. In In Dynamic Data Driven Applications Systems Workshop

(DDDAS) in conjunction with ICCS (Invited), 2007 .

[144] R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed Resource Management
for High Throughput Computing. In Proceedings of the Seventh IEEE International Symposium on

High Performance Distributed Computing (HPDC?7), Chicago, IL, July 1998.

BIBLIOGRAPHY 270

[145] R. Raman, M. Livny, and M. Solomon. Policy Driven Heterogeneous Resource Co-Allocation

with Gangmatching, 2003.

[146] D. A. Reed, C. da Lu, and C. L. Mendes. Reliability Challenges in Large Systems. Future

Generation Computer Systems, 22(3):293-302, 2006.

[147] D. A. Reed and C. L. Mendes. Intelligent Monitoring for Adaptation in Grid Applications.

Proceedings of the IEEE, Volume 93(2):426—- 435, 2005.

[148] M. Reichert and P. Dadam. ADEPT flex -Supporting Dynamic Changes of Workflows Without

Losing Control. Journal of Intelligent Information Systems, 10(2):93-129,1998.

[149] RENCI Computational Resources. http://ww. renci . or g/ resour ces/ conputi ng.

php.

[150] R.L.Ribler, J.S. Vetter, H. Simitci, and D. A. Reed. Autopilot: Adaptive Control of Distributed

Applications. In HPDC, pages 172-179, 1998.

[151] L. D. Rose and D. A. Reed. SvPablo: A Multi-Language Architecture-Independent Perfor-

mance Analysis System. In International Conference on Parallel Processing, pages 311-318, 1999.

[152] N. Russell, A. H. ter Hofstede, D. Edmond, and W. M. van der Aalst. Workflow Exception
Patterns. In E. Dubois and K. Pohl, editors, Proceedings of the 18th Conference on Advanced Informa-

tion Systems Engineering (CAiSE’06), 4001:216-232,2006.

[153] N. Russell, W. M. van der Aalst, A. H. ter Hofstede, and D. Edmond. Workflow Resource
Patterns: Identification, Representation and Tool Support. In O. Pastor and]. Falcao e Cunha,
editors, Proceedings of the 17th Conference on Advanced Information Systems Engineering (CAiSE’05),

3520:216-232,2005.

BIBLIOGRAPHY 271

[154] R. A. Sahner, K. S. Trivedi, and A. Puliafito. Performance and Reliability Analysis of Computer
Systems: An Example-Based Approach Using the SHARPE Software Package. Kluwer Academic

Publishers, 1996.

[155] R. Sakellariou, H. Zhao, E. Tsiakkouri, and M. Dikaiakos. Scheduling Workflows with Budget
Constraints. In S. Gorlatch and M. Danelutto, editors, Integrated Research in GRID Computing,

CoreGRID, pages 189-202. Springer-Verlag, 2007.

[156] Salesforce. htt p:// wwv. sal esforce. cont .

[157] V. Sander, W. Adamson, I. Foster, and R. Alain. End-to-End Provision of Policy Information

for Network QoS, 2001.

[158] B. Schroeder and G. Gibson. A Large-scale Study of Failures in High-performance Comput-

ing Systems. In Proceedings of the International Conference on Dependable Systems, June 2006.

[159] SCOOP Website. htt p: / / scoop. sura. org.

[160] SDSC User Settable Reservations. http://portal.sdsc. edu/ sdsc?ci d=

reservati ons.

[161] S. Shirasuna. A Dynamic Scientific Workflow System for Web Services Architecture. PhD thesis,

Indiana University, Department of Computer Science, September 2007.

[162] M. Silberstein, D. Geiger, A. Schuster, and M. Livny. Scheduling Mixed Workloads in Multi-
grids: The Grid Execution Hierarchy. In Proceedings of the 15th IEEE Symposium on High Perfor-

mance Distributed Computing (HPDC-15), Paris, France, June 2006.

[163] G. Singh, C. Kesselman, and E. Deelman. Application-level Resource Provisioning on the
Grid. In Proceedings of 2nd IEEE Intl Conference on e-Science and Grid Computing, Amsterdam,

2006. IEEE.

BIBLIOGRAPHY 272

[164] A.Slominski. Adapting BPEL to Scientific Workflows. In 1. J. Taylor, E. Deelman, D. Gannon,
and M. S. Shields, editors, Workflows for e-Sciences: Scientific Workflows for Grids, pages 210-228.

Springer, To appear 2007.

[165] A. Slomiski. On using BPEL extensibility to implement OGSI and WSRF Grid workflows:

Research Articles. Concurr. Comput. : Pract. Exper., 18(10):1229-1241, 2006.

[166] W. Smith, I. Foster, and V. Taylor. Scheduling with Advanced Reservations. In Parallel and

Distributed Processing Symposium (IPDPS 2000), pages 127-132.

[167] W. Smith, I. Foster, and V. Taylor. Scheduling with Advanced Reservations. In International

Parallel and Distributed Processing Symposium, pages 127-132, 2000.

[168] W. Smith, V. Taylor, and I. Foster. Using Run-Time Predictions to Estimate Queue Wait Times
and Improve Scheduler Performance. In D. G. Feitelson and L. Rudolph, editors, Job Scheduling

Strategies for Parallel Processing, pages 202-219. Springer Verlag, 1999.

[169] Q. Snell, M. Clement, D. Jackson, and C. Gregory. The Performance Impact of Advance
Reservation Meta-Scheduling. In 6th Workshop on Job Scheduling Strategies for Parallel Processing,

pages 137-153, 2000.

[170] Sonian. htt p://ww\. soni an. net/ .

[171] Y. Sun, S. Marru, and B. Plale. Experience with Bursty Workflow-driven Workloads in LEAD

Science Gateway. TeraGrid Conference, June 2008.

[172] A.Sundararajand P. Dinda. Towards Virtual Networks for Virtual Machine Grid Computing.

In Proceedings of the Third Virtual Machine Research and Technology Symposium (VM), May 2004.

BIBLIOGRAPHY 273

[173] N. Taesombut and A. Chien. Distributed Virtual Computers (DVC): Simplifying the Devel-
opment of High Performance Grid Applications. In Proceedings of the Workshop on Grids and

Advanced Networks, April 2004.

[174] 1. Taylor, M. Shields, and I. Wang. Resource Management for the Triana Peer-to-Peer Services.
In J. Nabrzyski, J. M. Schopf, and]. Weglarz, editors, Grid Resource Management, pages 451-462.

Kluwer Academic Publishers, 2004.

[175] L. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields. Workflows for e-Science: Scientific

Workflows for Grids. Springer, December 2006.
[176] TeraGrid Service Units. htt p: // kb. i u. edu/ dat a/ ascf. htnl .
[177] TeraGrid Data Allocation. htt p: // dat acentral . sdsc. edu/ how\ _t o\ _appl y. htni .
[178] TeraGrid Service Units. ht t p: / / www. t er agri d. or g/ cgi - bi n/ kb. cgi ?doci d=ascf.
[179] TeraGrid Website. htt p: // www. t er agri d. or g.
[180] Test TCP. http://wwv. pcausa.conmf Utilities/pcattcp.htm

[181] D. Thain, T. Tannenbaum, and M. Livny. Condor and the Grid. In F. Berman, G. Fox, and
T. Hey, editors, Grid Computing: Making the Global Infrastructure a Reality. John Wiley & Sons

Inc., December 2002.

[182] N. Thomas. Challenges and Opportunities in Grid Performability. Technical Report Series

CS-TR-842, University of NewCastle upon Tyne.

[183] N. Thomas. Report on First Workshop on Grid Performability Modelling and Measurement.

http://ww. nesc. ac. uk/tal ks/ 379/ report. pdf.

[184] J. Tilson, A. Blatecky, G. Rendon, G. Mao-Feng, and E. Jakobsson. Genome-Wide Domain

Analysis using Grid-enabled Flows. 2007.

BIBLIOGRAPHY 274

[185] J. Tilson, G. Rendon, G. Mao-Feng, and E. Jakobsson. MotifNetwork: A Grid-enabled Work-
flow for High-throughput Domain Analysis of Biological Sequences:Implications for Study of

Phylogeny, Protein Interactions, and Intraspecies Variation. 2007.

[186] J. L. Tilson, M. S. Reed, and R. J. Fowler. Workflow for Performance Evaluation and Tuning.

IEEE Cluster, 2008.

[187] Torque Website. http://ww. cl ust erresources. com pages/ product s/

t or que- r esour ce- manager . %php.

[188] N. B. Tracy D. Braun, Howard Jay Siegel. A Comparision of Eleven Static Heuristics for
Maping a Class of Independent Tasks onto Heterogeneous Distributed Computing Systems. J.

of Parallel and Distributed Computing 61, 810-837.,2001.

[189] UDDI Spec Technical Committee. UDDI Specification Version 3.0.1., October 2003.

[190] Unidata Local Data Manager (LDM). http://ww. uni data. ucar. edu/ sof t war e/

[dn.

[191] S. Vadhiyar and]. Dongarra. A Metascheduler for the Grid. In Proceedings of the 11th IEEE

Symposium on High-Performance Distributed Computing, July 2002.

[192] W. M. P. van der Aalst, Ter, B. Kiepuszewski, and A. P. Barros. Workflow Patterns. Distributed

and Parallel Databases, 14(1):5-51, July 2003.

[193] S. Venugopal, R. Buyya, and L. Winton. A Grid Service Broker for Scheduling e-Science Ap-
gop Yy g p
plications on Global Data Grids: Research Articles. Concurr. Comput. : Pract. Exper., 18(6):685—

699, 2006.

[194] Vertica. htt p: // www. verti ca. coni cl oud.

BIBLIOGRAPHY 275

[195] J.S. Vetter and D. A. Reed. Real-Time Performance Monitoring, Adaptive Control, and Inter-

active Steering of Computational Grids. IJHPCA, 14(4):357-366, Winter 2000.

[196] 1. Wang, I. Taylor, T. Goodale, A. Harrison, and M. Shields. gridMonSteer: Generic Archi-
tecture for Monitoring and Steering Legacy Applications in Grid Environments. In S.]. Cox,
editor, Proceedings of the UK e-Science All Hands Meeting 2006. EPSRC, CD Rom Proceedings,

2006.

[197] J. B. Weissman. Fault Tolerant Computing on the Grid: What are My Options? In HPDC,

1999.

[198] J. B. Weissman, S. Kim, and D. England. A Framework for Dynamic Service Adaptation in
the Grid: Next Generation Software Program Progress Report. In 19th International Parallel and

Distributed Processing Symposium, 2005.

[199] D. N. Wfmc-Tc. Workflow Management Coalition Terminology Glossary, 1999.

[200] R. Wolski, J. S. Plank,]J. Brevik, and T. Bryan. Analyzing Market-Based Resource Allocation
Strategies for the Computational Grid. The International Journal of High Performance Computing

Applications, 15(3):258-281, Fall 2001.

[201] R. Wolski, N. T. Spring, and J. Hayes. The Network Weather Service: A Distributed Resource
Performance Forecasting Service for Metacomputing. Future Generation Computer Systems, 15(5—

6):757-768,1999.

[202] WS-BPEL Technical Committee. Web Services Business Process Execution Language Version 2.0,

Public review draft, November 2006.

[203] J. Yu and R. Buyya. A Taxonomy of Scientific Workflow Systems for Grid Computing. SIG-

MOD Rec., 34(3):44-49, September 2005.

BIBLIOGRAPHY 276

[204] J. Yu and R. Buyya. Scheduling Scientific Workflow Applications with Deadline and Budget

Constraints Using Genetic Algorithms. Scientific Programming, 14(3-4):217-230, 2006.

[205] Y. Zhang, A. Mandal, H.Casanova, A. Chien, Y. Kee, K. Kennedy, and C. Koelbel. Scalable
Grid Application Scheduling via Decoupled Resource Selection and Scheduling. CCGrid, May

2006.

[206] Y. Zhou, T. Kelly, J. L. Wiener, and E. Anderson. An Extended Evaluation of Two-Phase
Scheduling Methods for Animation Rendering. In Job Scheduling Strategies for Parallel Processing,

11th International Workshop, pages 123-145, 2005.

Curriculum Vitae

Lavanya Ramakrishnan
Education

M.S. Computer Science, Indiana University, 2002

B.E. Computer Engineering, VJTI, University of Mumbai, India, 2000
Professional Experience

Senior Research Programmer (2004-2006)
Renaissance Computing Institute, Chapel Hill, NC

Served as techincal lead on a number of national inter-disciplinary collaborations.
Responsibilities included providing coordination and leadership for the research
and development of open-source distributed solutions (e.g., Grid) to serve the
needs of application scientists. Key areas of research included portal solutions,
resource management, performance and reliability monitoring, and workflow or-
chestration. Other responsibilities included project management, assisting in the
development of technical strategies for the institute and hiring of personnel, pro-
posal development, mentoring graduate students, and representing the team at
key national meetings.

Research Engineer (2002-2004)
MCNC, Research Triangle Park, NC

Developed middleware and security architectures for grid based systems includ-
ing the North Carolina BioGrid. Integrated various middleware solutions for ac-
cess to grid resources. Worked on workflow audit representation for an insider
detection system.

Givens Associate (Summer 2002)
Argonne National Laboratory,Argonne, IL

Developed a graphical interface for composing and launching applications in Com-
mon Component Architecture (CCA) frameworks. Developed prototype XML
schema for standardization of component metadata to facilitate portability be-
tween frameworks.

Academic Experience

Research Assistant (2007-Present)
Indiana University, Bloomington, IN

Developing an architecture and associated techniques for workflow adaptation re-
quired in the context of meteorological workflows for the Linked Environments for
Atmospheric Discovery (LEAD) project in distributed environments (e.g., Grid,
cloud). Specifically this architecture enables proactive planning and adaptation
across the multi-layered web service architecture to balance the performance and
reliability needs of the application.

Research Assistant (2001-2002)
Indiana University, Bloomington,IN

Worked on developing an authorization framework for a component based dis-
tributed environment, XCAT. Component specification was based on the Com-
mon Component Architecture (CCA) Forum. Worked on designing the security
architecture for the Application Factory, that helps solve the problem of building
reliable, scalable grid applications, by separating the process of application de-
ployment from execution.

Teaching Assistant (2000-2001)
Indiana University, Bloomington,IN

Teaching, grading and designing lab activities for “Introduction to Computing”
course in the Department of Computer Science.

Honors, Awards and Grants

1. Co-Principal Investigator (PI: Jeffrey S. Chase, Duke University), A Grid Ser-
vice for Dynamic Virtual Clusters, National Science Foundation Middleware
Initiative [2003-2007].

2. Indiana University School of Informatics Diversity Committee Scholarship for
Grace Hopper [2007].

Anita Borg Institute’s Grace Hopper and Tapia Bridge Day Scholarship [2007].
. Google Anita Borg Scholarship Finalist [2007].

Best employee award, MCNC, NC [2004].

Givens Associate Fellowship, Argonne National Laboratory, IL [2002].

J.N. Tata Scholarship for higher studies abroad [2000].

Maharashtra State Fellowship for undergraduate studies [1996-1999].

©® N o G ok w

Activities

1. Technical/Program Committee: Grid Computing Environments Workshop
(GCE) [2007,2008].

2. Volunteer:
e Anita Borg Institute for Women and Technology’s Women of Vision Gala
Awards Dinner [2007, 2008].
e Girls for a Change Summit [2007].

3. Reviewer:

e TeraGrid Conference [2007,2008]

e International Conference on Distributed Computing Systems (ICDCS) [2007]
e IEEE Internet Computing (Special Issue: Virtual Organizations) [2007]

e ACM Symposium for Applied Computing [2005]

4. Participated in Global Grid Forum [2002-2004].

5. Technical Evaluation Committee, MCNC- Research and Development Insti-
tute [2003].

6. Student Volunteer at ACM/IEEE International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis [2001].

Selected Publications

1. L. Ramakrishnan, D. Nurmi, A. Mandal, C. Koelbel, D. Gannon, T. M. Huang,
Y.S. Kee, G. Obertelli, K. Thyagaraja, R. Wolski, A. Yarkhan, D. Zagorodnov,
VGrADS: Enabling e-Science Workflows on Grids and Clouds with Fault Tol-
erance, To appear Proceedings of the ACM/IEEE SC2009 Conference on High Per-
formance Computing, Networking, Storage and Analysis, 2009.

2. L. Ramakrishnan and D. A. Reed, Predictable quality of service atop degrad-
able distributed systems, in Journal of Cluster Computing, 2009.

3. R.]J. Fowler, T. Gamblin, G. Kandaswamy, A. Mandal, A. K. Porterfield, L. Ra-
makrishnan, and D. A. Reed, High Performance Computing and Grids in Action,
ch. Challenges of Scale: When All Computing Becomes Grid Computing. I0S
Press, 2008.

4. L. Ramakrishnan and D. A. Reed, PerformabilityModeling for Scheduling and
Fault Tolerance Strategies for Scientific workflows, in ACM/IEEE International
Symposium on High Performance Distributed Computing, 2008.

10.

11.

12.

13.

14

. L. Ramakrishnan, Y. Simmhan, and B. Plale, Realization of Dynamically Adap-
tive Weather Analysis and Forecasting in LEAD, in Dynamic Data Driven Ap-
plications Systems Workshop (DDDAS) in conjunction with ICCS (Invited), 2007.

L. Ramakrishnan, L. Grit, A. lamnitchi, D. Irwin, A. Yumerefendi, and J. Chase,
Toward a Doctrine of Containment: Grid Hosting with Adaptive Resource
Control, in Proceedings of the ACM/IEEE SC2006 Conference on High Performance
Computing, Networking, Storage and Analysis, (Tampa, Florida), November 2006.

L. Ramakrishnan, B. O. Blanton, H. M. Lander, R. A. Luettich, Jr, D. A. Reed,
and S. R. Thorpe, Real-time Storm Surge Ensemble Modeling in a Grid En-
vironment, in Second International Workshop on Grid Computing Environments
(GCE), Held in conjunction ACM/IEEE Conference for High Performance Comput-
ing, Networking, Storage and Analysis, November 2006.

L. Ramakrishnan, M. S. Reed, J. L. Tilson, and D. A. Reed, Grid Portals for
Bioinformatics, in Second International Workshop on Grid Computing Environ-
ments (GCE), Held in conjunction with ACM/IEEE Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, November 2006.

K. K. Droegemeier, D. Gannon, D. Reed, B. Plale, J. Alameda, T. Baltzer, K.
Brewster, R. Clark, B. Domenico, S. Graves, E. Joseph, D. Murray, R. Ra-
machandran, M. Ramamurthy, L. Ramakrishnan, J. A. Rushing, D. Weber, R.
Wilhelmson, A. Wilson, M. Xue, and S. Yalda, Service- Oriented Environments

for Dynamically Interacting with Mesoscale Weather, Computing in Science and
Engg., vol. 7, no. 6, pp. 12-29, 2005.

L. Ramakrishnan, Securing Next-Generation Grids, IT Professional., vol. 6, no.
2, pp- 34-29 2004.

D. Gannon, R. Ananthakrishnan, S. Krishnan, M. Govindaraju, L. Ramakr-
ishnan, and A. Slominski, Grid Computing: Making the Global Infrastructure a
Reality, ch. 9, Grid Web Services and Application Factories. Wiley, 2003.

T. J. Smith and L. Ramakrishnan, Joint Policy Management and Auditing in
Virtual Organizations., in GRID, pp. 117-124, 2003.

L. Ramakrishnan, H. N. Rehn, J. Alameda, R. Ananthakrishnan, M. Govin-
daraju, A. Slominski, K. Connelly, V. Welch, D. Gannon, R. Bramley, and S.
Hampton, An Authorization Framework for a Grid Based Common Compo-
nent Architecture, in Proceedings of the 3rd International Workshop on Grid Com-
puting, Baltimore,Maryland, pp. 169-180, Springer Press, 2002.

. D. Gannon, R. Bramley, G. Fox, S. Smallen, A. Rossi, R. Ananthakrishnan,

F. Bertrand, K. Chiu, M. Farrellee, M. Govindaraju, S. Krishnan, L. Ramakr-
ishnan, Y. Simmhan, A. Slominski, Y. Ma, C. Olariu, and N. Rey-Cenvaz, Pro-
gramming the Grid: Distributed Software components, P2P and GridWeb Ser-
vices for Scientific Applications, Journal of Cluster Computing, vol. 5, pp. 325-
336, July 2002.

