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Abstract

Large scale computations from various scientific endeavors are composed as workflows that

access shared data and high performance systems. Similarly, business applications in cloud com-

puting systems use distributed infrastructure as part of mainstream business models. Recent ad-

vances in grid and cloud computing provide tools to monitor and manage execution. However

they do not not provide predictable bounds on the Quality of Service (QoS) that can be expected

in such variable multi-user distributed environments. Understanding the dynamic properties of

resources and coordinated control of resources and workflows is critical especially for deadline-

sensitive workflows such as weather prediction.

In this dissertation we revisit the software stack that supports the multi-tier services and pro-

pose and evaluate the WORDS (Workflow ORchestrator for Distributed Systems) architecture that

abstracts the differences between specific resource models and provides a clear separation of con-

cerns between the resource-level and application-level tools. In the context of the WORDS architec-

ture we explore interfaces and mechanisms necessary for providing predictable quality of service

to web service workflows with time and accuracy constraints.

We make the following four primary contributions. First, we propose a resource abstraction

across grid and cloud resource control mechanisms that enables higher-levels tools to abstract the

viii



differences between systems. Second, we propose a probabilistic Quality of Service (QoS) model

that enables providers to quantify the variation in resource availability; both for resource procure-

ment due to competition and for the duration of the resource request from failures at various lev-

els. Third, we use performability analysis through a Markov Reward Model to quantify the loss

in performance and study the impact on cost due to availability variations. Finally, we propose a

multi-phase orchestration approach that balances performance, reliability and cost considerations

for a set of workflows.
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1

Introduction

In the last few years we have seen the emergence of multi-core processors, virtualization tech-

nologies andweb services that have revolutionized the computing models in use. Increasingly, dis-

tributed resources and data are shared across virtual communities and used to solve scientific and

business problems. More recently, companies are leveraging distributed computing infrastructures

through utility, grid and cloud computing as an integral part of mainstream business models. The

high performance computing domain at supercomputing centers has seen a similar trend in sup-

porting scientific applications such as drug discovery [12], cancer research [29], weather modeling

and prediction [54], earthquake engineering [120] through deployments of large-scale distributed

infrastructure such as TeraGrid [179] and Open Science Grid [132]. These trends are changing the

software services and the interaction of higher-level software with distributed systems.

The advent of the internet has also resulted in the emergence of sophisticated end-user tools

such as web interfaces and portals that enable the end-user to access distributed information and

resources. Workflow tools have emerged at the application later that allow users and businesses

to compose work units as a sequence of automated or semi-automated operations. Workflow tools

have been used to model business processes i.e., to automate information and task sharing among

1
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individuals of a company or business partners. More recently workflows and workflow tools have

become an integral part of cyberinfrastructure [10, 49]. Workflow tools allow a scientist to compose

and manage complex scientific distributed computation and data in distributed resource environ-

ments.

Workflow tools in distributed cyberinfrastruture support basic resource interaction functions

and provide limited Quality of Service (QoS) guarantees or failure recovery. Workflows and dis-

tributed system infrastructures have evolved in largely isolated environments and only have a

weak interaction model available today. The new resource models ushered in by cloud computing

models introduce additional challenges in assuring QoS since their dynamic characteristics exacer-

bate performance and reliability behavior of underlying hardware resources. In addition, workflow

tools are increasingly used for applications with more complex and diverse requirements operat-

ing in highly distributed environments that have large real-time variability. For example, scientific

explorations often have uncertainties that need to be resolved during runtime either through user

intervention or other rule-based mechanisms. Thus, while a general structure of the workflow is

known, the exact structure of the workflow is often determined during execution. Workflows with

timeliness requirements such asweather prediction, economic forecasting, hurricane track forecast-

ing require coordination and adaptation of the resources at runtime tomeet their QoS requirements.

For instance, the weather prediction workflows often have stringent deadlines and arriving data

determines the execution plan and hence resource requirements. Cyberinfrastructure supporting

such applications needs to have proactive planning and dynamic adaptation.

Distributed architectures are moving towards a web service oriented framework [5, 64]. A ser-

vice oriented framework helps define standard modular interfaces to functionality while allowing

separation of concerns and policies that may be tied with distinct applications or institutions. The

service oriented architecture also gives rise to a multi-layered system with the workflow, service
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and resource layer each implementing distinct policies. Thus there is a need for interaction mecha-

nisms between application layer tools and the resources for better management of the cyberinfras-

tructure to meet the needs of the user.

We develop WORDS (Workflow Orchestrator for Distributed Systems) in the context of dy-

namic web service workflows. The multi-level system takes a holistic view of the resource and user

space and defines the interaction between them. This thesis addresses the issues of being able to

provide predictable quality of service for scientific workflows in the presence of variability in the

underlying system characteristics. We use the weather prediction workflows from the Linked En-

vironments for Atmospheric Discovery (LEAD) project as the primary use case due to its timeliness

and accuracy constraints.

We discuss the hypothesis and contributions of this research in Section 1.1. We provide an

overview of WORDS in Section 1.2. We present an overview of the constraint space in WORDS

in Section 1.3 and the resource abstraction in WORDS in 1.4. We discuss the necessity of joint

analysis of performance and dependability in distributed environments in Section 1.5. We discuss

the development of container based provisioning approach in leased environments in Section 1.6.

We provide an overview of workflow orchestration approach for deadline sensitive workflows in

dynamic and environments (Section 1.7).

1.1 Thesis Hypothesis and Contributions

As distributed environments are used to solve larger and more complex scientific and busi-

ness problems from different domains, we need dynamic and adaptive elements in application

tools. Higher-level user tools such as workflow engines and portal frameworks need the ability

to express and enforce user specified constraints and changes. The system as a whole needs to be
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flexible, resilient to both resource variability in terms of performance and reliability, as well as able

to meet the end-user’s dynamic requests. The dynamic aspects of next-generation workflows that

are targeted to be run in the distributed environment require us to study the closer coordination of

user requirements with the resource management layer. Based on the following requirements, the

hypothesis is:

It is possible to design a multi-level adaptation architecture to meet performability (i.e., both performance

and reliability) guarantees to support dynamic changes in workflow and resource behavior

The following are the contributions towards the above stated hypothesis:

• the WORDS system architecture in the context of a service oriented architecture that defines

the interactions required between application and resource layers,

• probabilistic resource abstractions that allow higher level application techniques to be shielded

from specific resource models and yet account for the variability in policy and runtime be-

havior,

• a constraint model that defines the conditions and expectations a user can specify on single or

multiple workflows and extensions to a resource specification language to specify reliability

attributes,

• performability as a metric for capturing the multi-dimensional behavior of resources in terms

of performance, reliability and cost and study its impact on scheduling and fault tolerance

strategies,

• workflow orchestration for deadline-senstive workflows that leverages workflow character-

istics and resource behavior in the context of multi-user dynamic environments.
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Resources – clusters, sensors, radars, etc. 

Resource Control Plane – resource configuration, 
application middleware management. 

Resource Management Services – provides 
functionality for job and file management.

Workflow tools – multiple application coordination.

Portals or science gateways – user level interfaces 
to specify workflow DAGs and constraints.

Resource adaptation
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execution 
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monitoring

Resource
status
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user input
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change
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needs

Figure 1.1: Multi-level Adaptation. The two level adaptation plane that works in conjunction with the active
software hierarchy. The adaptataion plane is orthogonal to the main execution software stack. The two level

plan also facilitates a clear separation of concerns between the application and resource layers.

1.2 Workflow ORchestrator for Distributed Systems (WORDS)

Distributed resource systems today are composed of a hierarchy of software systems, com-

posed of (a) a resource management middleware that interacts with the underlying cluster, HPC

resources, instruments, sensors etc. and (b) an application tools layer consisting of scientific codes,

portal, workflow tools, web services. Dynamic changes from the user and/or the application im-

pact the system top-downwhereas changes in the resources - performance, reliability and availabil-

ity impact the system bottom-up. To support a dynamic environment, we needmulti-level adaptation

that supports local changes while balancing the global state of the system. Adaptation refers to (a)

coordinated planning of resources and services with workflow characteristics to meet the needs

of the user, (b) ability of the workflow to adjust to resources’ performance, reliability, availability

variations, (c) ability to react to application, workflow or other user-initiated changes.
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Figure 1.1 shows the interaction of the hierarchical adaptation planes with the software hierar-

chy of distributed middleware today. Users interact with web interfaces or portal environments

that in turn interact with workflow tools to manage the user’s execution environment. The work-

flows use resources where access is mediated through the resource management services. The

adaptation plane is orthogonal to the main execution path and hidden from the user. A critical

function of the application control plane is planning, monitoring and remediation. The resource

adaptation plane manages resource interactions including resource acquisitions, monitoring and

resource related remediation in consultation with the application control plane. These interac-

tions between the end-user, multiple levels of software infrastructure and the underlying resources

is a critical component for next generation dynamic cyberinfrastructure. The components of the

WORDS system are detailed in Chapter 5.

1.3 Constraint Model for Workflows and Resource Requirements

Today’s tools allow users to specify some higher level quantitative resource requirements (e.g.,

number of processors, processor type, etc) and thework unit dependencies through directed acyclic

graphs (DAG). However in a competitive multiple service provider community, ushered in by grid

and cloud computing business models, we requiremultiple levels of constraint specifications. First,

the user must be able to provide some higher level constraints and conditions (e.g., budget, priori-

ties, etc) on the work units to guide workflow orchestration decisions. Second, at the resource level

it is important to be able to capture the qualitative resource behavior that the workflow orchestra-

tion can in turn use to meet the user’s requirements.

Application level tools today have limited support to specify constraints and QoS requirements

on the workflow. Scientific users want to specify various constraints on the workflow such as time
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or resource constraints or priorities on parts of the workflow or relationships between different

workflows. Workflow standards such as WS-BPEL [202] and languages provided by tools [36, 48,

107, 174] are not rich enough to support such constraints. We explore the constraint model that

drives the resource plane interactions. The workflow constraint model is a limited set, focused on

resource needs for scientific workflows, and provides a strong foundation for expansion for other

needs.

Today’s resourcemanagement tools providemechanisms to select and discover resources and to

manage applications’ QoS requirements [205]. To guide lower level performability based workflow

planning, next generation resource management tools need to provide user-level interfaces that

allow users to specify performance and reliability requirements for the application. The virtual

grid description language [90] is a hierarchical language for resource abstractions that allows users

to specify qualitative resource performance specifications. We propose an extension to the existing

virtual grid description language that enables users to specify availability requirements guided by

resource cost models and budget of the user.

1.4 Resource Abstractions

Different resource models such as grid, utility or cloud computing provide standard interfaces

for interaction with different types of services including job management, data transfer and other

resource management functions like resource discovery. The application middleware available to-

day is largely focused on task coordination and placement of tasks on resources based on per-

formance. However the new resource models introduce additional burdens on the middleware:

resource types are virtualized making it hard if not impossible to predict accurate execution times

of applications on specific resources; additional services (e.g., advanced reservation) come at an
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extra cost requiring cost considerations in the scheduling mechanism; resource arrival and depar-

ture times vary. Thus the current approach is severely limiting as we move to next generation

infrastructure (e.g., cloud computing [9], GENI [69]) where business and service models are closely

associated with the underlying architecture of these networked systems. End consumers have a

choice of multiple service-providers and associated cost and value models that will need to be ex-

posed at the resource level and leveraged appropriately at the application tools layer in concert

with user requirements.

We explore the interaction of user level information and choices with resource management

models through a resource abstraction. We propose a probabilistic QoS abstraction that allows

us to capture the variability in distributed environments, with respect to resource allocation deci-

sions as well as runtime hardware and software failures. The communication flow, through the re-

source abstraction, between the user’s requirements and the resourcemodel’s ability to meet the re-

quirements allows consumers to exercise various cost-benefit variations. The abstraction also gives

providers the chance to provide alternatives that closely match the user’s requirements. This ab-

straction is essential for next-generation data centers as they balance needs of different user groups

with the variability in underlying resource hardware. This abstraction also gives users the ability

to compare and contrast QoS capabilities of various resource providers, and thus is a foundation to

a dynamic competitive market driven by user preferences.

1.5 Performability Modeling

Scientific applications have diverse performance and reliability requirements that are often dif-

ficult to satisfy, given the variability of underlying resources. Moreover, as grid and web services



1. Introduction 9

continue to evolve, rapidly changing software stacks with specific configuration and service re-

liability challenges exacerbate application execution times and failures. Availability variations in

these systems can be from hardware failures, dynamic performance variability, failures of software

services or bugs in the software (data from LEAD Production workflows available in Appendix B).

Today, resource selection decisions are typically made using simple resource status and perfor-

mance models, despite frequent component failures [93, 205]. Simplistically, a resource can be

considered to be in one of two states, either “fully-operational” or “failed.” However, the diversity

and the complexity of distributed environments makes graceful performance degradation in the

presence of failures critical. Availability can vary due to failure of one or more critical services,

load on one or more resource components, recovery from a failure, etc. These variations manifest

as a loss in performance that can result in increased application execution times or as a complete

failure that require rescheduling. Thus in addition to handling failures, workflow orchestration

needs to account for possible loss in Quality of Service (QoS) from resource availability variations

in any planning strategies

J. Meyer introduced the concept of performability [116] evaluation as a mechanism to combine

performance and availability analysis when considering resource behavior. We use performability,

as a composite measure of a resource’s performance and dependability i.e., a measure of the sys-

tem’s performance in the event of failures. We present a qualitative model to capture and analyze

the effect of resource reliability on application performance and cost models. Specifically, we ad-

dresses the following research challenges: (a) managing potentially conflicting resource selection

goals such as performance and reliability in workflow planning (b) determining appropriate fault

tolerance strategies based on application and resource characteristics.
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1.6 Container Provisioning

The increasing separation between resource providers and consumers in today’s grid and cloud

computing environments makes resource control very important and difficult. We propose and

evaluate a lease-based hosting architecture as a viable mechanism for resource providers and con-

sumers to manage a dynamic shared pool of resources. The approach illustrates the dynamic as-

signment of shared pools of computing resources to hosted environments. It shows how to extend

grid management services to use a dynamic leasing service to acquire computational resources and

integrate them into application environments in response to changing demand. In our prototype,

each user or group runs a private grid based on an instance of the Globus Toolkit (GT4)middleware

running within a network of virtual machines at the provider sites. Each site controls a dynamic

assignment of its local cluster resources to the locally hosted grid points of presence.

1.7 Workflow Orchestration

Workflow planning techniques so far have focused on performance based resource selection

and mapping in conjunction with run-time systems handling failures and variations. However in

a multi-user environment where multiple workflows are submitted by each user, priorities, budget

and other constraints need to be accounted for across the workflows. Current workflow scheduling

and planning methods prove to be insufficient for the additional requirements of next generation

workflows.

In addition, as these workflows run in resource environments such as grid and cloud comput-

ing, it is vital to account for the diversity and variability of the resources in planning techniques.

When resources are procured across a group of users or workloads, workflow planning needs to

be preceded by a separate resource acquisition phase and followed up with adaptation as resource
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properties change during workflow execution. We use the term workflow orchestration to refer to

a holistic, coordinated, dynamic and adaptive approach to workflow planning that works with

user requirements and variable resource characteristics while being shielded from specific resource

policy or systems. In this context, workflow orchestration handles planning and executionmanage-

ment that includes resource acquisition, workflow scheduling and real-time adaptation. We design,

develop and evaluate workflow orchestration techniques for deadline-sensitive workflows.

1.8 Thesis Outline

The rest of the thesis is organized as follows. We illustrates requirements of next-generation

scientific workflows through examples from various domains in Chapter 2. Next, we discuss the

characteristics of distributed systems that cater to the needs of these workflows (Chapter 3). In

Chapter 4, we present related work and discuss the current status of resource management systems

and workflow tools used in distributed environments. We present the WORDS system, discuss

the concepts and define related terminology in Chapter 5. We present a performability model to

capture performance and availability variations of distributed resources (Chapter 7). We discuss

the resource abstractions and the application interactions with the resource model in Chapter 8.

We detail the workflow orchestration in Chapters 9 and 10. We present our conclusions and future

directions in Chapter 11.



2

Understanding Workflow Requirements

Through Examples

Workflows and workflow concepts have been used to model a repeatable sequence of tasks or

operations in different domains including the scheduling of manufacturing operations, inventory

management, etc. The advent of internet and web services has seen the adoption of workflows as a

means for business process management [175] and as an integral component of cyberinfrastructure

for scientific experiments [10, 49].

Workflow tools allow users to compose and manage complex distributed computation and data

in distributed resource environments. Workflows have different resource requirements and con-

straints associated with them. For example, application workflows with stringent deadline driven

requirements such as weather prediction, economic forecasting are now increasingly run in dis-

tributed resource environments.

In this chapter, we discuss workflow examples from different domains: bioinformatics and

biomedicine, weather and ocean modeling, astronomy, etc. These examples have been obtained

by talking to domain scientists and computer scientists who composed or run these workflows.

12
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Each of these workflows has been modeled using different workflow tools and sometimes the flow

is even managed through scripts. For each workflow we specify the running time of applications

and input and output data sizes associated with each task node. Running time of applications and

data sizes for a workflow depend on a number of factors including user inputs, specific resource

characteristics and run-time resource availability variations [98]. Thus our numbers are approxi-

mate estimates for typical input data sets that are representative of the general characteristics of the

workflow.

The rest of the chapter is organized as follows. We present an overview of the projects that

were part of our survey in Section 2.1. The weather and ocean modeling workflows are detailed in

Section 2.2. Next, in Section 2.3, we describe the bioinformatics and biomedicine workflows. We

describe the astronomy and neutron science and computer science examples in Sections 2.4 and 2.5.

We discuss the use case scenarios and the characteristics of the workflow in Section 2.6 and finally

summarize our survey in Section 2.7.

2.1 Overview

Table 2.1 presents an overview of the survey that included workflows from diverse scientific

domains and cyberinfrastruture projects. In the following sections, we provide a brief description

of the project, workflow and usage model of the workflows as available today. For each workflow

we specify the running time of applications and input and output data sizes associated with each

task node. Running time of applications and data sizes for a workflow depend on a number of

factors including user inputs, specific resource characteristics and run-time resource availability

variations [98]. Thus our numbers are approximate estimates for typical input data sets that are

representative of the general characteristics of the workflow. For each of the workflows, we also
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Domain Project Website Tool

Weather and
Ocean
Modeling

Linked Environments for Atmo-
spheric Discovery (LEAD), TeraGrid
Science Gateway

http://portal.lead.
project.org

xbaya,
GPEL,
Apache
ODE

Southeastern Coastal Ocean Ob-
serving and Prediction Program
(SCOOP)

http://www.renci.
org/focusareas/
disaster/scoop.php

[Scripts]

North Carolina FloodplainMapping
Program

[Scripts]

Bioinformatics
and
Biomedical

North Carolina Bioportal, TeraGrid
Bioportal Science Gateway

http://www.renci.
org/focusareas/
biosciences/motif.
php

Taverna

MotifNetwork http://www.
motifnetwork.org/

Taverna

National Biomedical Computation
Resource (NBCR), Avian Flu Grid,
Pacific Rim Application and Grid
Middleware Assembly

http://nbcr.
sdsc.edu/ http:
//gemstone.mozdev.
org http://www.
pragma-grid.net/
http://avianflugrid.
pragma-grid.net/
http://mgltools.
scripps.edu/

Kepler,
Gem-
stone,
[Scripts]
and
Vision

cancer Biomedical Informatics Grid
(caBIG)

http://www.cagrid.
org/

Taverna

Astronomy Pan-STARRS http://pan-starrs.
ifa.hawaii.edu/
public/, http:
//www.ps1sc.org/

Neutron Sci-
ence

Spallation Neutron Source (SNS),
Neutron Science TeraGrid Gateway
(NSTG)

http://neutrons.
ornl.gov/

Table 2.1: Workflow Survey Project Overview. We surveyed workflows from different domains
including weather and ocean modeling, bioinformatics and biomedical workflows, astronomy and
neutron science. The table shows the project information and tools used by the scientists.
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provide a DAG representation of the workflow annotated with computation and data sizes.

2.2 Weather and Ocean Modeling Workflows

In the last few years the world has seen a number of severe natural disasters such as hurricanes,

tornadoes, floods, etc. The models used to study weather and ocean phenomenon use real-time

observational data in conjunction with a number of parameters that are varied to study the possible

scenarios for prediction. In addition the models must be run in a timely manner and information

disseminated to disaster response agencies. This creates the need for large scale modeling in the areas

of meteorology and ocean sciences, coupled with an integrated environment for analysis, prediction

and information dissemination. A number of cyberinfrastructure projects are building tools and

constructing workflows to facilitate next-generation weather and ocean modeling science.

1 4 7 M B1 4 7 M B
2 0 6 M B
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4 5 7 0 s e c s / 1 6 p r o c e s s o r s
0 . 2 M B4 8 8 M B 2 4 3 M B1 9 M B

0 . 2 M B

2 4 2 2 M B
Figure 2.1: LEADNorth American Mesoscale (NAM) Initialized Forecast Workflow. The workflow processes
terrain and observation data to produce weather forecasts.



2. Understanding Workflow Requirements Through Examples 16

1 4 7 M B1 4 7 M B
2 0 6 M B

W r f S t a t i c T e r r a i nP r e P r o c e s s o rL a t e r a lB o u n d a r yI n t e r p o l a t o r A D A SI n t e r p o l a t o rA R P S 2 W R FW R F

4 s e c s3 3 8 s e c s
1 4 6 s e c s 7 8 s e c s 2 4 0 s e c s

4 5 7 0 s e c s / 1 6 p r o c e s s o r s
0 . 2 M B4 8 8 M B 2 4 3 M B1 9 M B

0 . 2 M B

2 4 2 2 M B
Figure 2.2: LEAD ARPS Data Analysis System(ADAS) Initialized Forecast Workflow. The workflow pro-
cesses terrain and observation data to produce weather forecasts.
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Figure 2.3: LEAD Data Mining Workflow. The workflow processes weather data to identify regions where
weather phenomenon is present.
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2.2.1 Mesoscale Meteorology

The Linked Environments for Atmospheric Discovery (LEAD) [54] is a cyberinfrastructure

project that supports mesoscale meteorology. The infrastructure of LEAD needs to support real-

time dynamic, adaptive response to severe weather. A LEAD service workflow has constraints on

execution time and accuracy due to weather prediction deadlines. The typical inputs to a workflow

of this type are streaming sensor data [135] that must be pre-processed and then used to launch an

ensemble of weather models. The model outputs are processed by a data mining component that

determines whether some ensemble set members must be repeated to realize statistical bounds on

prediction uncertainty. Figures 2.1, 2.2 and 2.3 show the workflows available through the LEAD

portal that include weather forecasting and data mining workflows [102]. Each workflow task is

annotated with computation time and the edges of the directed acyclic graph (DAG), that repre-

sent the data dependencies between the tasks, are annotatedwith file sizes. Theweather forecasting

workflows are largely similar and vary only in their preprocessing or initialization step. While the

datamining workflow can be run separately today, it can trigger forecastworkflows or steer remote

radars for additional localized data in regions of interest [135].

2.2.2 Storm Surge Modeling

Southeastern Universities Research Association’s (SURA) Southeastern Coastal Ocean Observ-

ing and Prediction (SCOOP) program is a distributed project that is creating an open-access grid

environment for the southeastern coastal zone to help integrate regional coastal observing and

modeling systems [159, 138].

Storm surge modeling requires assembling input meteorological and other data sets, running
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models, processing the output and distributing the resulting information. In terms of modes of op-

eration, most meteorological and oceanmodels can be run in hindcast or forecast modes. The hind-

cast mode, initiated by a user, is used as an after fact of a major storm or hurricane, for post-analysis

or risk assessment. The forecast mode is used for prediction to guide evacuation or operational de-

cisions [138] and is driven by real-time data streams. Often it is necessary to run the model with

different forcing conditions to analyze forecast accuracy. This results in a large number of parallel

model runs, creating an ensemble of forecasts. Figure 2.4 shows a five member ensemble run of

tidal and storm-surge ADCIRC model. ADCIRC is a finite element model that is parallelized using

Message Passing Interface (MPI) [108]. For increased accuracy of forecast the number of concurrent

model runs is increased. The workflow has a predominantly parallel structure and the results are

merged in the final step.

The SCOOP ADCIRC workflows are launched according to the six hour synoptic forecast cy-

cle used by the National Weather Service and the National Centers for Environmental Prediction

(NCEP). NCEP computes an atmospheric analysis and forecast four times per day at six hour in-

tervals. Each of the member runs i.e. each branch of the workflow gets triggered when wind files

arrive through Local Data Manager (LDM) [190], an event-driven data distribution system that

selects, captures, manages and distributes meteorological data products. The outputs from the in-

dividual runs are synthesized to generate the workflow output that is then distributed through

LDM.

In the system today each arriving ensemble member is handled separately through a set of

scripts and Java code [138]. The resource selection approach [99] makes a real-time decision for

each model run and uses knowledge of scheduled runs to load-balance across available systems.

However this approach does not have any means of guaranteeing desired QoS in terms of comple-

tion time.
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Figure 2.4: SCOOP Workflow. The arriving wind data triggers ADCIRC that is used for storm-surge predic-
tion during hurricane season.

2.2.3 Floodplain Mapping

The North Carolina Floodplain Mapping Program [123, 19] is focused on developing accurate

simulation of storm surges in the coastal areas of North Carolina. The deployed system today

consists of a four-model system that consists of the Hurricane Boundary Layer (HBL) model for

winds, WaveWatch III and SWAN for ocean and near-shore wind waves, and ADCIRC for storm

surge. The models require good coverage of the parameter space describing tropical storm char-

acteristics in a given region for accurate flood plain mapping and analysis. Figure 2.5 shows the

dynamic portion of the workflow. Forcing winds for the model runs are calculated by the Hurri-

cane Boundary Layer (HBL) model that serve as inputs to the workflow. The HBL model is run on

a local commodity linux cluster. Computational and storage requirements for these workflows are

fairly large requiring careful resource planning. An instance of this workflow is expected to run for

over a day. The rest of the workflow today runs on RENCI’s Bluegene system [149].
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Figure 2.5: NCFS workflow. A multitude of models are run to model the storm surges in the coastal areas of
North Carolina.

2.3 Bioinformatics and Biomedical workflows

The last few years have seen large scale investments in cyberinfrastructure to facilitate bioin-

formatics and biomedical research. The infrastructure allows users to access databases and web

services through workflow tools and/or portal environments. We surveyed three major projects

- North Carolina Bioportal, cancer Biomedical Informatics Grid (caBIG), and National Biomedical

Computational Resource (NBCR) to understand the needs of this class of workflows. Significant

number of these workflows involve small computation but involve access to large-scale databases

that need to be preinstalled on available resources. While the typical use cases of today have input

data sizes in the order of megabytes, it is anticipated that in the future data sizes might scale to

gigabytes.
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2.3.1 Glimmer

The North Carolina Bioportal and The TeraGrid Bioportal Science Gateway [142] provides ac-

cess to about 140 bioinformatics applications and a number of databases. Researches and educators

use the applications interactively for correlation, exploratory genetic analysis, etc. The Glimmer

workflow is one such example workflow that is used to find genes in microbial DNA (Figure 2.6).

The Glimmer workflow is sequential and light on both compute and data.L o n g _ o r f se x t r a c tb u i l d _ i c mg l i m m e r 2
8 . 8 M B2 7 K B1 . 6 M B1 . 3 5 M B9 . 9 M B

2 s e c o n d s1 s e c o n d s5 s e c o n d s9 0 s e c o n d s
Figure 2.6: Glimmer Workflow. A simple workflow used in educational context to find genes in microbial
DNA.

2.3.2 Gene2Life

Let us consider the Gene2Life workflow used for molecular biology analysis. This workflow

takes an input DNA sequence, searches databases to find genes matching the sequence. It globally

aligns the results and attempts to correlate the results based on organism and function. Figure 2.7

depicts the steps of the workflow and the corresponding output at each stage. In this workflow the

user provides a sequence that can be a nucleotide or an amino acid. The input sequence performs

two parallel BLAST [4] searches, against the nucleotide and protein databases respectively. The
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results of the searches are parsed to determine the number of identified sequences that satisfy the

selection criteria. The outputs trigger the launch of ClustalW, a bioinformatics application that

is used for the global alignment process to identify relationships. These outputs are then passed

through parsimony programs for analysis. The two applications that may be available for such

analysis are dnapars and protpars. In the last step of the workflow plots are generated to visualize

the relationships, using an application called drawgram. This workflow has two parallel flows.

T r e e F i l e s( p s a n d . p d f f i l e s )

0 . 1 M B 0 . 1 M B1 8 0 s e c o n d s 1 8 0 s e c o n d s0 . 1 M B 0 . 1 M B4 K B 4 K B0 . 1 M B 0 . 1 M B1 M B1 M B
3 0 s e c o n d s 3 0 0 s e c o n d s3 0 0 s e c o n d s 3 0 s e c o n d s3 0 s e c o n d s 3 0 s e c o n d s4 K B4 K B 3 5 K B3 5 K B

b l a s t b l a s tc l u s t a l w c l u s t a l wd n a p a r s p r o t p a r sd r a w g r a m d r a w g r a m
Figure 2.7: Gene2Life Workflow. The workflow is used for molecular biology analysis of input sequences.
The dotted arrows show the intermediate products from this workflow that are required by the user and/or

might be used to drive other scientific processes.

2.3.3 Motif Network

The MotifNetwork project [184, 185] is building a software environment to provide access to

domain analysis of genome sized collections of input sequences. The MotifNetwork workflow

(Figure 2.8) is computationally intensive. The first stage of the workflow assembles input data

and processes the data that is then fed into Interproscan service. The concurrent executions of

InterProScan is handled through Taverna and scripts. The results of the domain “scanning” step

are passed to anMPI code for the determination of domain architectures. The motif workflow has a
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parallel split and merge paradigm where preprocessing spawns a set of parallel tasks that operate

on subsets of the data. Finally, the results from the parallel tasks are merged and feed into the

multi-processor application. P r eI n t e r p r o s c a nI n t e r p r o s c a n I n t e r p r o s c a nP o s tI n t e r p r o s c a nM o t i f
…

3 0 s e c s 5 4 0 0 s e c s
1 3 M B 1 0 0 K BN = 1 3 5 5 0 0 K B6 0 s e c s5 9 9 M B 5 9 9 M B1 4 3 2 M B

3 6 0 0 s e c s /2 5 6 p r o c e s s o r s 7 1 M B
Figure 2.8: Motif Workflow. A workflow used for motif/domain analysis of genome sized collections of
input sequences.

2.3.4 MEME-MAST

The goal of National Biomedical Computation Resource(NBCR) is to facilitate biomedical re-

search by harnessing advanced computational and information technologies. The MEME-MAST

(Figure 2.9) workflow deployed using Kepler [3, 107] allows users to discover signals or motifs

in DNA or protein sequences and then search the sequence databases for the recognized motifs.

This is a simple workflow often used for demonstration purposes. The workflow is a sequential

workflow similar to Glimmer.
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Figure 2.9: MEME-MAST Workflow. A simple demonstration workflow used to discover signals in DNA
sequences.
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Figure 2.10: Molecular Sciences Workflow. The workflow is used to study atomic structures of proteins and
ligands.
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2.3.5 Molecular Sciences

An important process in the drug-design process is understanding the three-dimensional atomic

structures of proteins and ligands. The Gemstone project, a client interface to a set of computational

chemistry and biochemistry tools, provides the NBCR community access to a set of tools that al-

lows users to analyze and visualize atomic structures. Figure 2.10 shows an example molecular

science workflow. The workflow in its current incarnation runs in an interactive mode where each

step of the workflow is manually launched by the user once the previous workflow task finishes.

The first few steps of the workflow involve downloading the desired protein and ligand from the

Protein Data Bank (PDB) database and converting it to a desired format. Concurrent preprocessing

is done on the ligand using the Babel and LigPrep services. Finally GAMESS and APBS are used

to analyze the ligand and protein. The results are finally visualized using the QMView which is

done as an offline process. First few steps have small data and small compute and finally produce

megabytes of data.

2.3.6 Avian Flu

The Avian Flu Grid project is developing a global infrastructure for the study of Avian Flu

as an infectious agent and as a pandemic threat. Figure 2.11 shows a workflow that is used in

drug design. It is used to understand the mechanism of host selectivity and drug resistance. The

workflow has a number of small preprocessing steps followed by a final step where up to 1000

parallel tasks are spawned. The data products from this workflow are small.
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Figure 2.11: Avian Flu Workflow. A workflow used in drug design to study the interaction of drugs with the
environment.

2.3.7 caDSR

The cancer Biomedical Informatics Grid(caBIG) is a virtual infrastructure that connects scien-

tists with data and tools towards a federated cancer research environment. Figure 2.12 shows a

workflow using the caDSR (Cancer Data Standards Repository) and EVS (Enterprise Vocabulary

Services) services [28] to find all the concepts related to a given context. The caDSR service is

used to define and manage standardized metadata descriptors for cancer research data. EVS in

turn facilitates terminology standardization across the biomedical community. This workflow is

predominantly a query type workflow and the compute time is very small in the order of seconds.

2.4 Astronomy and Neutron Science Workflows

In this section, we consider scientific workflow examples from the astronomy and neutron sci-

ence community.
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Figure 2.12: Cancer Data Standards Repository Workflow. A workflow used to query concepts related to an
input context.

2.4.1 Pan-STARR

The goal of the Pan-STARRS’s (Panoramic Survey Telescope And Rapid Response System)

project [57] is a continuous survey of the entire sky. The data collected by the currently deployed

prototype telescope ’PS1’ will be used to detect hazardous objects in the Solar System, and other

astronomical studies including cosmology and Solar System astronomy. The astronomy data from

Pan-STARRS is managed by the teams at John Hopkins University andMicrosoft Research through

two workflows. The first PSLoad workflow (Figure 2.13) stages incoming data files from the tele-

scope pipeline and loads them into individual relational databases each night. Periodically the

online production databases that can be queried by the scientists, are updated with the databases

collected over the week by the PSMerge workflow (Figure 2.14). The infrastructure to support the

PS1 telescope data is still under development. Both the Pan-STARRS workflows are data intensive

but require coordination and orchestration of resources to ensure reliability and integrity of the
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data products. The workflows have a high degree of parallelism achieved by working on small

subsets of the data. P r e p r o c e s sC S V B a t c h P r e p r o c e s sC S V B a t c h…n = 1 � 5L o a d C S VF i l e i n t oL o a d D B L o a d C S VF i l e i n t oL o a d D B… L o a d C S V … ……
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V a l i d a t eL o a d D B V a l i d a t eL o a d D BE n d
1 – 1 0 0 M B

~ 1 0 0 M B 1 0 s e c s
5 s e c o n d s
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Figure 2.13: PSLoad Workflow. Data arriving from the PS1 telescope is processed and staged in relational
databases each night. C o l d D B &L o a d D Bp r e p r o c e s s C o l d D B &L o a d D Bp r e p r o c e s s…N = 1 6
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Figure 2.14: PSMerge Workflow. Each week, the production databases that astronomers query are updated
with the new data staged during the week.

2.4.2 McStas workflow

Neutron science research enables study of structure and dynamics of molecules that constitute

materials. Neutron Source at Oak Ridge National Laboratory connect large neutron science facili-

ties that contain instruments with computational resources such as the TeraGrid [109]. The Neutron
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Science TeraGrid Gateway enables virtual neutron scattering experiments. These experiments sim-

ulate a beam line and enables experiment planning and experimental analysis. Figure 2.15 shows

a virtual neutron scattering workflow using McStas, VASP, and nMoldyn. VASP and nMoldyn

are used for molecular dynamics calculations and McStas is used for neutron ray-trace simula-

tions. The workflow is computationally intensive and currently runs on ORNL supercomputing

resources and TeraGrid resources. The initial steps of the workflow run for a number of days and

are then followed by an additional compute intensive step. The workflow is sequential and has

small data products.

Figure 2.15: McStats Workflow. This workflow is used for Neutron ray-trace simulations.

2.5 Computer Science Examples

Workflow tools are increasingly being used in different scenarios both in scientific as well as

business processes. In addition programming constructs such as map and reduce facilitate prob-

lems to be composed as distinct work units with stated dependencies. In this section, we explore

some examples that illustrate workflows whose users are often computer scientists or program-

mers.
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2.5.1 Animation

Rendering computer animation frames is fairly time consuming. Distributed rendering on mul-

tiple processors has been known to provide significant speedups over running on a single proces-

sor [39]. The animation workflow is based on distributed rendering that is commonly used today

for frame generation. The animation workflow has map-reduce style programming model where

work is distributed and the results are gathered and synthesized for the final result. The computa-

tional and data sizes are rough numbers used for illustration [35, 206].P r e A n i m a t i o n
P o s tA n i m a t i o n

F r a m eA n i m a t i o n F r a m eA n i m a t i o n F r a m eA n i m a t i o n… n = 2 01 . 5 h r s
1 8 0 s e c o n d s
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Figure 2.16: Animation Workflow. The rendering work is distributed across a multitude of nodes.

2.5.2 Performance Measurement

Applications running in distributed environments like Grid and cloud computing resources

often experience significant changes in performance. Benchmarking and performance experiments

are often critical in these environments to determine the best binary for a given set of resources.

Tilson et al. [186] describe a way to use workflow tools to facilitate the benchmarking of a large

number of variable parameters including compiler, link and runtime flags (Figure 2.17).
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Figure 2.17: Performance Measurement Workflow. The workflow is used for benchmarking applications
with various compiler, link and runtime flags.

2.5.3 Load Balancing

Recent computing models have resulted in application middleware investigating mechanisms

to dynamicallymanage the resource pool. Cloud computing services such as AmazonEC2 [5] allow

users and applications to increase their resource pool on increased load and decrease the number of

resources when the load drops. When considering the load from different users or applications that

use a defined resource pool we can consider the entire load managed by the middleware to be a

“workflow of workflows” where the task dependency is based on number of concurrent resources

available. For example if there are four independent tasks(Figure 2.18) and just one resource the

workflow would be a simple sequential workflow. However if there were two resources available,

two tasks would run and then subsequently the remaining two tasks would run. Similarly if three

resourceswere available, three tasks would initially execute in parallel. A similar strategywould be

followed for workflows where in addition to the workflow dependencies, execution dependency

is created between two tasks that need to run on the same resource (shown by dotted lines). In
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Figure 2.18 three workflows are scheduled on three processors. In this case the head nodes of the

workflow are scheduled on the workflows. Subsequently, the two parallel tasks from workflow

a is scheduled with one of the parallel tasks from workflow b. In this case, there is an execution

dependency between workflow b’s second task and the first task from workflow c.

In a more general case consider a cloud computing application that procures more resources as

the load increases and reduce the number of resources as the load decreases. Thus the resources

procured or allotted can be represented as a workflow task graph where each node in the graph

represents the resource slot (Figure 2.19).a b c db cd
a ca bd d a b cJ o b s aa aa bb bb cc ccaa aa bb bb

c
c cc

Figure 2.18: Load balancing workflow. When jobs or workflows are scheduled on resources, a dependency is
created from the resource availability constraint. In the left side of the figure, we show how jobs a, b, c, d are

scheduled on one, two or three processors. When scheduled on one processor, the jobs get mapped sequential

resulting in a virtual dependency where job b must wait for job a to finish. Similarly for workflows, if we

were to schedule them on three processors, in addition to their workflow task dependency, their execution

dependency is determined by the execution of one or more of the tasks from other workflows.

2.6 Discussion

In this chapter, we have presented a number of workflows from different domains. The work-

flows have varying requirements and constraints. In this section we provide a high level discussion
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Figure 2.19: Resource profile as a workflow. A dynamic application manager might procure resources as
load increases and release resources as load falls below a threshold. The resource profile over time can be

represented as a workflow structure.

on use case scenarios and workflow characteristics. Additionally, the workflow examples demon-

strate the required support in next-generationworkflow and resourcemanagement tools to support

dynamic and cloud computing environments.

2.6.1 Use case scenarios

It is often important to understand the use case scenarios for the workflows. Workflows are

used in a number of different scenarios - a new workflow may be initiated in response to dynamic

data or a number of workflows may be launched as part of an educational workshop. In addition,

the user may want to specify constraints to adjust the number of worklows to run based on resource

availability [143].

User-initiated workflows. The typical mode of usage of science cyberinfrastructure is where a user

logs into the portal and launches a workflow for some analysis. The user selects a pre-composed
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workflow and supplies the necessary data for the run. In this scenario, we needmechanisms to pro-

cure resources and enable workflow execution, provide recovery mechanisms from persistent and

transient service failures and adapt to resource availability or recover from resource failures during

workflow execution. The user may also want the ability to pause the workflow at the occurrence of

a predefined event, inspect intermediate data and make changes during workflow execution. The

LEAD (Section 2.2), bioinformatics and biomedicine (Section 2.3) workflows are all user-initiated

workflows through portal environments.

Workflow priorities Let us consider a scenario of an educational workshop with multiple com-

peting users. Resources are typically reserved for this event through out-of-band mechanisms for

advanced reservation. In this scenario resource allocation needs to be based on existing load on

the machines, resource availability, the user priorities and workflow load. The bounded set of re-

sources available to the workshop needs to be proportionally shared among the workflow users.

If there is a weather event during the workshop, resources need to be reallocated and conflicting

events need some arbitration. The LEAD (Section 2.2), bioinformatics and biomedical (Section 2.3)

workflows are also used in education workshops with competing user needs.

Dynamic Event. A number of scientific workflows get triggered by newly arriving data. Multiple

dynamic events and their scale need priorities between users for appropriate allocation of limited

available resources. Resources must be allocated to meet deadlines. Additionally, to ensure suc-

cessful completion of tasks, we might need to replicate some of the workflow tasks for increased

fault tolerance. It is possible that with advance notice of upcoming weather events, we may want

to anticipate the need for resources and try to procure them in advance. The weather forecasting,

storm surge modeling (Figure 2.4), flood-plain mapping (Figure 2.5) and the astronomy workflows

(Figures 2.13 and 2.14) are launched with the arrival of data.

Advanced User Workflow Alternatives and Constraints. An advanced user may to provide a set of
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constraints (e.g. time deadline) on a workflow. Scientific processes such as weather prediction, fi-

nancial forecasting have a number of parameters and computing an exact result is often impossible.

There is a need to run multiple workflows (i.e. workflow sets) that need to be scheduled together. It

is often necessary to run a minimal number of the workflows for confidence in the result. Thus for

workflow sets, users specify that they minimally require M out of N workflows to complete by the

deadline. Thus in the weather forecasting workflow, the user specifies that fewer parallel ensemble

members could be run to get a quicker result. Alternatively the user may be willing to sacrifice

forecast resolution to get some early results which then define the rest of the workflow.

These scenarios illustrate the need for an adaptation framework that implements online planning

and control of workflows to assess resource needs, proactively adapt to failures and workflow needs

based on priorities and policies specified by the user.

2.6.2 Workflow Types

The workflows described in this chapter vary significantly in their computational and data re-

quirements. A number of the bioinformatics workflows often have tasks that are based on querying

large databases in order of minutes for the task execution. In other cases we see each of the tasks

of a workflow require computation time on the order of hours or days on multiple processors.

In some cases sub-parts of the workflow may also present different characteristics. In addition,

the sizes of the intermediate data products also vary. Workflow management strategies for each of

these workflows can vary and thus require the understanding of the workflow to apply appropriate

techniques. We consider the characteristics that help classify workflow types in this section.

Structure. The size of the workflow is an important characteristic to determine resource require-

ments, etc. We consider the tasks of the workflow as its structural characteristic. The size of the

workflows that are deployed today in most production environments are relatively small. The
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largest workflows in our set contain hundreds of independent tasks. The Avian Flu (Figure 2.11)

and PanSTARRS(Figures 2.13 and 2.14) workflows has over a thousand nodes but the computation

at each node is expected to take only a few minutes to an hour. Scientists express a need to run

larger sized workflows but are often limited by available resources or workflow tool features that

are needed to support such large-scale workflows. Today, workflow tools have limited composi-

tion support for large workflows - ability to specify repeated tasks, display parts of a workflow,

etc. In addition, they have little or no support to specify resource requirements, conditions or other

constraints on part or the entire workflow. It is also often difficult in grid environments today

to scale workloads up or down due to batch queue wait times and other factors. In addition to

the total number of tasks in a workflow it is also important to consider the width and length of the

workflows. The width of the workflow (i.e. maximum number of parallel branches) determines the

concurrency possible and the length of the workflow characterizes the makespan (or turnaround

time) of the workflow. We observe that in our workflow examples, the larger sized workflows such

as the motif workflow (Figure 2.8) and the astronomy workflows (Figures 2.13 and 2.14) the width

of the workflow is significantly larger than the length of the workflow.

Pattern. The workflows that we surveyed depict the basic control flow patterns such as sequence,

parallel split, synchronization [192]. The parallel split-synchronization pattern has similarities to

the map-reduce programming paradigm. A number of workflows divide the work units into dis-

tinct work units and the results are then combined - e.g. Animation (Figure 2.16), Motif workflow

(Figure 2.8), Pan-STARRS workflows (Figures 2.13 and 2.14).

Computation. In addition to the structure and pattern of a workflow it is important to under-

stand the computational requirements. In our workflow examples we observe that computational

time required by the workflows can vary from a few seconds to several days. A number of the
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bioinformatics workflows depend on querying large databases and have small compute times in-

cluding the Glimmer workflow (Figure 2.6), Gene2Life (Figure 2.7), caDSR (Figure 2.12). Similarly

the initial parts of the LEAD forecast workflow (Figures 2.1 and 2.2) and the LEAD data mining

workflows (Figure 2.3) have small computational load. A number of the workflows including the

forecasting parts of the LEAD workflow, Pan-STARRS workflows (Figures 2.13 and 2.14), SCOOP

(Figure 2.4), SNS (Figure 2.15), Motif (Figure 2.8), NCFS (Figure 2.5) have medium to large sized

compute requirements.

Data. The workflows are associated with different types of data including input data, backend

databases, intermediate data products, output data products. A large number of the bioinformat-

ics applications often have small input and small data products but often rely on huge backend

databases that are queried as part of task execution. These workflows require that the databases be

pre-installed on various sites and resource selection is often based on selecting the resources where

the data is available. Workflows such as LEAD (Figures 2.1 and 2.2), SCOOP (Figure 2.4), NCFS

(Figure 2.5) and Pan-STARRS workflows (Figures 2.13 and 2.14) have fairly large sized input, inter-

mediate and output data products. The Glimmer workflow (Figure 2.6) has similar sized input and

output data products but its intermediate data products are smaller. In today’s production envi-

ronments workflows often compress data products to reduce transfer times through intermediate

scripts etc. When scheduling workflows on resources, a number of data issues need to be consid-

ered including the availability of the required data as well as the data transfer time of both input

and output products.

The combination of the structural and pattern characteristics, the computational and data sizes

helps in understanding the workflow requirements when making planning and adaptation deci-

sions. We present a workflow analysis approach to determine workflow characteristics that affect

resource planning and adaptation decisions in Chapter 9
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2.6.3 Multiple workflows

The user interacts with applications through various portal and graphical interfaces for work-

flow tools. Workflow management techniques today are focused on managing single workflows in

a distributed environment [112, 205]. However portal environments facilitate simultaneous multi-

user access to the same workflows and underlying resources. In addition, a number of scientific

explorations including the weather and ocean modeling workflows (Section 2.2) often require a

large number of parallel runs to be launched to study different parameters to increase result accu-

racy.

Competing workflows. Portal and gateway environments allow a number of workflows from dif-

ferent users to be launched simultaneously. In such cases workflows from different users are often

competing for the same resource. For example, a LEAD forecasting workflow will need to have

higher priority than a workflow launched by a user in an educational workshop. Workflow man-

agement techniques needs to account for the different classes of workflow users when allocating

resources.

Data sharing and reuse. When multiple workflows exist in the system, there is an opportunity to

save computational time by reusing data products from identical executions [47]. However in these

situations it is also important to manage data privacy concerns whenmanaging data products from

potentially competing workflows.

Workflow set. Scientists often conduct parametric or exploratory studies that involve launching

multiple parallel workflows. The workflows might share data products between them or use the

same set of resources. We use the term workflow set to refer to workflows that need to be scheduled

together to meet their relationship constraint such as data dependencies or accuracy constraint.

In addition, there are workflows from different users which have the same priority and similar
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constraints requiring them to be scheduled such as to ensure fairness. There is limited capabilities

to be able to ensure such policies in the workflow engines available today.

Thus we need tools and mechanisms to manage competing workflows or workflow sets in a

system. Workflow tools will need to support the multiple workflow scenario or “workflow of

workflows”. In addition, as we move to more dynamic resource environments such as cloud sys-

tems, usage of tools such as the Dryad execution engine [84] or MapReduce [45] tomanagemultiple

workflow execution must be studied.

2.6.4 Workflow Capabilities

Workflow tools have limited capabilities today to allow users to specify constraints and other

expectations from their workflows. We outline the capabilities that users might need in workflow

composition tools.

Exploratory. Scientific explorations often have uncertainties that need to be resolved during run-

time. Input data sizes can vary largely affecting the characteristics of the workflow. In a number of

explorations scientists and their workflows interact with real-time data collecting instruments such

as the Large Hadron Collider (LHC) [100], sensors, radars [54, 135], etc. Thus in these cases while a

general structure of the workflow is known, the exact characteristics of the workflow is determined

during execution.

Interactive. Business workflows and scientific explorations often require a “human-in-the-loop” as

part of the workflow. Workflow management techniques often have to consider sub-parts of the

workflow for scheduling and adaptation.
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Constraints. In addition to the workflow description, users often need to specify various con-

straints on the workflow. The weather and ocean modeling workflows (Section 2.2) are time-

sensitive. The workflow results must be obtained in advance for weather response agencies to

be take appropriate action. In addition the cost of resources (either allocation seconds on TeraGrid

or real dollars on resources such as Amazon EC2) might be a consideration for the end user.

2.6.5 Resource coordination.

Scientific workflows largely run in batch queue based grid environments and business work-

flows run on monolithic corporate systems. However the advent of utility and cloud computing

systems change the mode of operation of scientific processes. Cloud computing systems allows

users to customize software environments allowing workflow tools to be able to manage applica-

tion specific software and data on the resources. In addition procuring resources in advance for

later workflow steps can be achieved with the new resource access mechanisms thus minimizing

workflowmakespan by reducing resource wait times. Thus newmechanisms are required in work-

flow and resource management tools.

2.7 Summary

In this chapter, we investigated workflows from various domains that have different structures,

computational and data requirements. We summarize the results of the workflow survey and their

characteristics in Table 2.2.

We consider the structural, computational and data aspects of the workflows. The total number

of tasks and the number of parallel tasks are useful in understanding the structure of the work-

flow. The workflows in our survey vary from a handful of tasks to thousands of components. The
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Workflow
Name

Total no.
of tasks

Max
width

Max
task pro-
cessor
width

Computation Data sizes Pattern

LEAD Weather
Forecasting

6 3 16 hours megabytes
to giga-
bytes

Sequential

LEAD Data
Mining

3 1 1 minutes kilobytes Sequential

Storm Surge 6 5 16 minutes-
hours

megabytes Parallel-
merge

Flood-plain
mapping

7 2 256 days gigabytes Mesh

Glimmer 4 1 1 minutes megabytes Sequential
Gene2Life 8 2 1 minutes kilobytes

to
megabytes

Parallel

Motif 138 135 256 hours megabytes
to giga-
bytes

Parallel-
split

MEME-MAST 2 1 1 minutes kilobytes Sequential
Molecular
Sciences

6 2 1 minutes megabytes Parallel-
merge

Avian Flu ∼ 1000 1000 1 minutes kilobytes
to
megabytes

Parallel-
split

caDSR 4 1 1 seconds megabytes Sequential
PanSTARRS
Load

∼ 1600 -
41000

800 -
40000

1 minutes megabytes Parallel-
split-
merge

PanSTARRS
Merge

∼ 4900 -
9700

4800 -
9600

1 hours gigabytes
to ter-
abytes

Parallel-
split-
merge

McStats 3 1 128 days kilobytes
to
megabytes

Sequential

Table 2.2: Summary of Workflow Characteristics. The total number of tasks and the number of
parallel tasks are useful in understanding the structure of the workflow. The maximum proces-
sor width of a task helps us understand the number of processors required simultaneously. The
computation and data sizes shows a rough order of the time and the size of data products from this
workflow. Each of the workflow may include one or more patterns. Our goal is to capture the dom-
inant pattern seen in the workflow. Workflows are classified as Sequential (mostly tasks that follow
one after the other), Parallel (multiple tasks run at the same time), Parallel-split(one task’s output
feeds to multiple tasks), Parallel-merge(multiple tasks merge into one task), Parallel-merge-split
(both parallel-merge and parallel-split) and Mesh (where task dependencies are interleaved).
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maximum processor width of a task helps us understand the number of processors required simul-

taneously. A number of the workflows are simple and usually require a single processor per task.

However the motif, flood-plain mapping andMcStats workflows often require multiple processors

for parallel data processing either for an MPI style application or a number of parallel tasks.

The computation and data sizes shows a rough order of the time and the size of data products

from this workflow. The majority of our workflows have about megabytes to gigabytes of data.

However a few workflows such as PanSTARRS merging can result in large sized databases as

outputs.

In addition, each of the workflow may include one or more patterns. Our goal is to capture

the dominant pattern seen in the workflow. Workflows are classified according to their structural

characteristics as:

• Sequential: consists of tasks that follow one after the other.

• Parallel: consists of multiple tasks that can be run at the same time.

• Parallel-split: one task’s output feeds to multiple tasks.

• Parallel-merge: multiple tasks merge into one task.

• Parallel-merge-split: both parallel-merge and parallel-split.

• Mesh: task dependencies are interleaved.

Workflow vary significantly in their structure, user constraints associated with them and envi-

ronments they run in. Additional mechanisms to understand the characteristics of the workflows

and other capabilities and coordinate their execution with underlying resource layer is necessary

for applying specific orchestration techniques in dynamic grid and cloud environments.



3

Distributed Systems

Scientific workflows have varied requirements that include access to distributed data sets and

high performance computational resources (Chapter 2). High performance computing and storage

systems deployed at supercomputing centers serve the needs of large scale science and engineer-

ing problems. The need to share data and resources across organizational boundaries resulted in

the evolution of grid computing protocols. Grid deployments, such as TeraGrid [179], Open Sci-

ence Grid [132], serve the needs of scientific communities. Similar distributed deployments have

evolved in other environments as well. For example, PlanetLab [136] provides a research network

that supports the research and development of new internet services. More recently, cloud com-

puting has evolved to support mainstream business models on a pay-as-you-go model for storage

and compute cycles.

These trends have resulted in a variety of protocols and access models that provide access to

underlying resources. For example, scientific users are granted access to supercomputing resources

through a competitive proposal review process and are allocated “service units” [176]. Users can

use their service units by submitting jobs to a batch queue system, which executes the job on the

user’s behalf once enough resources become available. Cloud computing systems today grant users

43
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access to resources and are charged for the computational and storage services they use [5]. Cloud

systems, unlike batch systems, enable explicit resource control, i.e. users request specific quantities

and types of resources at specific times. Yet users of both these systems cannot expect strong QoS

assurances due to availability variations.

The computing and storage infrastructure landscape has been continuously changing in the last

few years. End consumers have a choice of multiple resource providers, however the diversity

in extant interfaces makes the task of comparing QoS capabilities extremely difficult. Thus there

is need for closely examining the interaction between application middleware and resource-level

software. We detail the characteristics of distributed systems in Section 3.1. We compare and con-

trast grid and cloud systems in greater detail in Section 3.2. This research is a result of collaboration

with a number of grid and utility computing projects. We present an overview of these collabora-

tive projects in Section 3.3 and finally summarize in Section 3.4.

3.1 Overview

We have seen parallel trends in the development and deployment of advanced IT infrastructure

in the last decade. We have seen the deployment of large-scale government funded HPC envi-

ronments at supercomputing centers that serve the needs of science and engineering problems.

These HPC environments are coupled together with grid computing protocols that enable shar-

ing of resources and data across organizational boundaries. Similarly, utility and cloud computing

are ongoing efforts focused on packaging compute and storage resources as metered services that

are available over the internet. We study the characteristics of these systems with respect to their

resource management and QoS capabilities.
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3.1.1 High Performance and Grid Computing

Traditional high performance supercomputing systems have batch queuing software such as

Maui/PBS [115], Sun Grid Engine [73], PBS [133, 187], etc. These sites implement different policies

for user job priority, backfill, and other job scheduling optimizations. In the batch model users

specify a job duration and incur wait times since most of these systems are under provisioned.

Batch queue software manages the mapping of user workloads to resources through a space-

sharing policy, where user jobs are granted exclusive access to their requested resources. These jobs

can rarely be pre-empted or migrated. The amount of time an individual job will wait in the queue

is difficult to predict at the time of job submission. This uncertainty comes from various features

of the batch queue system. First, most batch queue schedulers have a FIFO queue at their core and

sites often configure complex site policies that grant special priorities to individual users and/or

groups that are not known to the end user. Also, users typically specify a maximum amount of time

their job will execute, most jobs finish in much less time [52, 53]. Various tools have been developed

to aid resource selection and workflow planning decisions based on queue wait time predictions

and performance models [127, 205].

The traditional grid computing protocols provide an overlay atop these batch systems that are

made accessible through standard web services interfaces. Globus, an open source toolkit, pro-

vides standard job submission and data transfer interfaces that allows applications to interact with

multiple sites through a single interface.

3.1.2 Utility and Cloud Systems

On-demand or utility computing provides metered infrastructure and services akin to public

utilities such as electricity, water, etc. There have been various research prototypes that implement
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on-demand computing environments where resources are requested for a specified time period and

obtained under concrete terms and conditions [136, 83]. Resource providers in this model are able

to provide stronger guarantees through explicit resource control since the requests are bounded in

both time and space [75]. However it is possible that over-subscription leads to lease requests being

rejected when they are redeemed. Leases are also be granted for future time periods providing the

advanced reservation capability similar to batch systems [139].

Cloud computing or Infrastructure as a Service(IaaS), a more recent trend, provides a relatively

new resource model where multiple virtual servers hosted in data centers are used by individu-

als or groups through a paid subscription model. Amazon’s EC2 system [5] is the most prevalent

example in operation. At the time of writing, for more than 20 machine instances from Amazon’s

EC2 service, a user had to fill an online form that was processed out of band. Cloud computing

provides an illusion of infinite computing resources available on demand, i.e.,in current cloud sys-

tems resources are accessible to the user almost instantly, with startup time of the instance and

image imposing the only delays [9]. Compute resources in EC2 today are charged for the closest

instance hour consumed i.e., if you use a resource for 10 minutes, you get charged for one hour.

Thus the provisioning of EC2 resources could be considered to be “leases” which are available in

one hour increments. This might be considered a simplifying assumption since EC2 allows a user

to retain a resource for any number of hours whereas leasing systems typically provide stricter

bounds on finish time. This model requires resource providers to provision resources such that

all user requests can always be met. However, as cloud systems are configured to grant different

service level agreements, providers will under-provision resources to increase profits and decrease

idle time on resources requiring additional resource control policies.
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3.2 Grids and Clouds: A Comparison

Grids and cloud systems vary widely in their specific mechanisms and protocols. In fact, the

exact definition of what constitutes cloud systems is still being debated widely in the community.

However, as cloud systems evolve and grid systems mature, there is a need to investigate the

software stack running on these systems towards providing predictable quality of service for end

users. In this section, we compare and contrast the different dimensions of these systems. Earlier

efforts have summarized [9] and compared [66] various aspects of these systems. Our comparison

is focused on studying the interaction of different aspects of the software stack for managing QoS.

Additionally, specific related work is covered in Chapter 4.

3.2.1 Applications

Grid systems have been used for computational modeling and data analysis for large-scale sci-

ence and engineering problems. National and regional grid deployments serve the needs of sci-

entists from varied domains including bioinformatics and biomedicine [142], geology [70], earth-

quake engineering [120], astrophysics [132], weather [54] and storm-surge modeling [138]. These

environments are used for scientific modeling and data analysis, educational purposes, etc (Chap-

ter 2).

Cloud computing systems provide different levels of abstraction to the end-user. Services such

as Amazon EC2 [5] provide web service interfaces to procure virtual machine interfaces that can

then be customized by higher-level tools, services or end-users. In addition platforms and appli-

cations services are layered atop the hardware layer for specific purposes. Some current examples

include Google AppEngine [72] provides a platform for web applications, Microsoft Azure [118]
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provides Windows based internet services, Vertica [194] and Sonian [170] provides data warehous-

ing facility and archive services over Amazon S3 respectively. Salesforce [156] provides Customer

Relationship Management (CRM) software services.

3.2.2 User Roles

Grid and cloud services serve the needs of multiple user groups simultaneously, thus often be-

ing referred to as multitenant architectures. These environments have a hierarchy of user roles.

Resource providers such as TeraGrid sites manage underlying hardware and infrastructure soft-

ware such as batch queues and Globus services for job management and file transfer. Cloud or

Infrastructure as a Service (IaaS) providers are the resource providers in cloud systems, that pro-

vide customizable virtual machines.

Software-as-a-Service(Saas) and Platform-as-a-service providers build specialized services on

existing cloud systems catering to specific user groups. Similarly, programmers and IT personnel

manage project-specific services such as eventing system, science gateways or portals, data ser-

vices, application web services, etc in grid deployments today. In grid environments, programmers

often work closely with scientific users and manage higher-level tools and application codes.

3.2.3 Programming Models

Scientific applications in grid environments are predominantly based on three execution mod-

els - Master-Worker, Divide and Conquer and Single-Program Multiple-Data (SPMD) [56]. Cloud

computing applications are composed using the MapReduce programming model for processing

large data set applications [45]. Dynamic workflows consist of elements composed from the ba-

sic execution models [20, 54]. We discuss the programming models and its impact on resource
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Figure 3.1: Scientific Application Programming Models (a) Master-Worker (b) Divide and Conquer
(c) Single-ProgramMultiple-Data (SPMD)

management in this section.

Master-Worker. In the Master-Worker paradigm (shown in Figure 3.1(a)), the master decomposes

the problem into small tasks and distributes these tasks for execution. Primary communication is

between the master and the workers, as the master is responsible for collecting partial results to

produce the final result. Depending on the master and workers’ execution characteristics (e.g. long

or short running), coupled with resource availability, one resource selection policy may choose a

more reliable node to execute the master task and an appropriate fault tolerance strategy.

Divide and Conquer. Similarly, as seen in Figure 3.1(b), the Divide and Conquer strategy parti-

tions the problem into two or more smaller problems that can be solved independently and com-

bined. Each subtask may be further split into separate tasks. Unlike the Master-Worker model,

the subtasks are interdependent. Hence the performance and reliability requirements (e.g. for the

communication links) may vary significantly from the Master-Worker model.

SPMD. In the SPMD model (Figure 3.1(c)), each task executes common code on different data.

Failure of one task adversely affects the entire application, requiring global coordination.

MapReduce. In the MapReduce programming model, the user expresses the computations as two

functions: Map and Reduce. This programming model is similar to constructs in programming

languages and database operations that splits the input data into disjoint units and processes them

separately. The Map function splits the problem into smaller parts and distributes the problem on
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separate processors. The Reduce function, in turn merges results from the distinct computations.

This programming model facilitates parallelism enabling the use of distributed systems for pro-

cessing. Google’s implementation of MapReduce has support for backup operations that handle

stragglers and failed operations on the systems.

Workflows. Finally, workflows allow applications to define data and condition dependent execu-

tion. The workflow itself is a hybrid of one or more execution models mentioned above. As we

observed in Chapter 2 workflows have different structures that capture its degrees of parallelism

that influence resource selection decisions.

3.2.4 Resource Procurement

Resource procurement is implicit in batch queue systems. Users submit a job description to the

batch queue and the job then waits its turn to acquire resources. When the requested resources be-

come available, the job starts executing. The job is killed if it exceeds the requested wall clock time.

Thus users do not have specific bounds on when resource are available. The QBETS(Queue Bound

Estimation from Time Series) [125] service provides the methodology for predicting bounds on the

amount of queue wait times or the probability that a job will finish within a specified duration.

Specialized queues or other policies are in place at sites to provide higher level of quality of service

to specific user groups, e.g., urgent applications [14].

Resource procurement in leasing systems is explicit, i.e., users request fixed quantity of re-

sources at a specific start time and for a specified duration. Leasing systems provide additional

capabilities to extend or vacate leases [75, 83]. Users in cloud systems today request resources and

pay for services as long as they are used.
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Supercomputing centers today allow explicit resource control in the form of offline or online ad-

vanced reservation requests. These advanced reservations allow users to specify a fixed start time

in the job description at a premium charge [76, 160]. The service units are charged irrespective of

whether resources are actually used. While most job schedulers support advance reservations, this

feature has typically been reserved for special users since it is expected to negatively impact both

system utilization and regular batch job wait times [166, 169]. These pre-arranged agreements are

also not effective as mechanisms for dealing with dynamic load conditions.

3.2.5 Data and Storage Management

In addition to access to computing resources, applications in both grid and cloud systems need

access to backend databases, storage for intermediate and output data, access to archival services,

etc. Grid sites often have shared file system (e.g., NFS, GPFS) on all the nodes. Data management

across grid sites are handled through Globus based services such as GridFTP and Reliable File

Transfer(RFT) and Replica Location Service(RLS). Storage, archiving of user data are handled on

an individual basis by application services and/or user. Cloud systems provide different data

management solutions. Companies such as Amazon Web Services [5] and Nirvanix [122] provide

storage services accessible through web service interfaces. In addition, databases are accessible

to cloud applications. In addition, Amazon also provides persistent block level storage volumes,

called Elastic Block Store, accessible from Amazon EC2 instances.

3.2.6 Cost Models

The cost models for batch systems are expressed in terms of service units(SUs), where one SU

originally represented one CPU-hour on an IA-64 cluster [178]. A normalization factor is used
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based on benchmarking results to account for different machine configurations. The service unit

model is used for calculating computing units, however more recently a similar metric is being

used for access to high performance storage systems [177].

Cost models in cloud systems are based on a pay-as-you-go model. Systems such as Amazon

Web Service [5] and Google AppEngine [72] charge for use of CPU for every hour. Storage and data

transfers are also charged similarly.

3.2.7 Service Guarantees

Both grid and cloud systems have mechanisms to provide various levels of service guaran-

tees at different places in the stack. Both grid and cloud systems have services that monitor

resources and services [201, 82]. In cloud systems, some application level tools such as Google

AppEngine [72], Apache Hadoop [7] have built in mechanisms to handle unreliable nodes. Inter-

nally applications use fault tolerance and recoverymechanisms such as automatic retry, replication,

checkpoint-restart. Similar mechanisms are available at various levels in the grid software stack to

monitor and manage failures [43, 79, 81, 124].

However both these systems undergo various availability variations including complete fail-

ures [9, 93]. Resource providers such as TeraGrid offer user a service unit credit back when re-

sources undergo a complete failure. Similary, Amazon’s user service agreement gives credit back if

reliability falls below 99.9%. However, for predictable QoS, we need to account for these availabil-

ity variations in planning and scheduling decisions.
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3.2.8 Summary

Both grid and cloud systems today are composed of a complex hierarchy of resource and soft-

ware systems that consist of scientific codes, portals, workflow tools, web services, resource man-

agement middleware and underlying clusters and distributed resources. These tools provide vari-

ous capabilities with the goal of harnessing data and computational cycles distributed across vari-

ous organizations to meet the needs of the users.

The complex set of interactions between the end-user, different layers of software infrastructure

and the underlying resources is a critical component of next generation cyberinfrastructure. We

summarize the software stack running atop these distributes systems as:

• A resource control plane that can manage QoS of the underlying resource as a commodity

that can be specialized for the user’s needs.

• A higher level services layer that can be used for coordination of the underlying resources for

efficient and reliable execution.

• Application level tools like workflow tools, that can harness the distributed resources through

the services layer to support user needs.

• End-user portal interfaces that allow the users to specify needs and constraints to interact

with the underlying resource needs.

Grid and cloud computing protocols provide the substrate for wide-area resource access. How-

ever, there are common challenges across grid and cloud systems

• Grid and cloud systems have ad hoc resource interaction protocols. Application mechanisms

such as workload planning are closely tied to specifics of the resource model. As grid and
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cloud systems evolve to support mainstream business models and scientific processes it is

necessary that algorithms and mechanisms in each layer of the software hierarchy can evolve

independent of specific mechanisms and the interaction between the layers are well defined.

• Each of the systems has protocols to query, procure resource allocations. However there is

limited ability to compare and contrast QoS capabilities of resource allocations both in terms

of guarantees for receiving the allocation and runtime failures.

• Application level tools and programming models provide support for specifying application

dependencies. There is limited support to allow users to specify dynamic user requirements

and constraints that better represent the needs of the user.

• Application tools handle fault tolerance (i.e., minimization software and hardware failures

affecting workflow completion) and recovery from failures at different levels in the hierarchy.

However systems often suffer a number of availability variations that impact performance

that are unaccounted by applications.

• Data centers have policies in place to serve multiple user groups that have varied require-

ments. But providing predictable quality of service, with differentiated service levels and

cost structures, is still an open challenge

3.3 Collaborations

This work addresses the above challenges in the context of providing predictable quality of ser-

vice for scientific workflows that use distributed resources. We revisit the software stack deployed

in the context of distributed systems such as grid, utility and cloud computing and this has been

possible due to various collaborative efforts. The three primary collaborative projects are:
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• LinkedEnvironment for AtmosphericDiscovery (LEAD). is a cyberinfrastructure project for

mesoscale meteorology. The deadline-sensitive workflows in LEAD provide the motivation

for this thesis. This work builds upon the existing foundation provided by web services

workflow framework in LEAD.

• Virtual Grid Application Development Software (VGrADS). explores the resource level in-

terfaces required to facilitate grid programming and application development. The proba-

bilistic model over batch systems uses the virtual advanced reservations from VGrADS. This

thesis also demonstrates the interaction of the workflow orchestration component with the

virtual grid execution system.

• Open Resource Control Architecture. is a leasing architecture for utility computing. We

demonstrate the interaction of application-level components with the leasing core for schedul-

ing scientific applications on leased virtual machines.

In this section we describe these projects and the resulting collaborative efforts in greater detail.

3.3.1 Linked Environment for Atmospheric Discovery (LEAD)

Linked Environments for Atmospheric Discovery (LEAD) [54] is an NSF funded project that is

building a scalable national cyberinfrastructure for mesoscale meteorology. The goal of LEAD is to

provide a service oriented dynamic adaptive workflow orchestration system. The LEAD cyberin-

frastructure consists of a TeraGrid Science Gateway, i.e., portal, that provides an interface to interact

with applications and resources. The user composed workflows access application and data web

services to launch, monitor andmanage user computations and data sets. The LEAD software stack

has various monitoring [54] and fault-tolerance measures [87] to handle runtime failures.
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The LEAD workflows and its requirements are the primary motivation for this work. The na-

ture of weather modeling that imposes stricter constraints on time and accuracy make predictable

quality of service from underlying resources more challenging. Events that cause adaptive behav-

ior can occur at any level in the LEAD system - a new workflow might be initiated in response to

a weather condition, there might be inefficiencies in an ongoing workflow execution at the mid-

dleware layer, or there might failures or performance variabilities in the system layer [140]. Thus

the system needs to be able to adapt to multi-level changes while meeting the needs of the given

workflow. Specifics of the LEAD workflows and its requirements were discussed in Chapter 2.

The WORDS architecture and various sub-components are more generally applicable to dif-

ferent scenarios accessing grid and cloud systems but were developed in the context of the LEAD

cyberinfrastructure. The service oriented web services architecture in WORDS is inherited from

the LEAD project. The LEAD production deployment consists of about thirty different persistent

services. A subset of these services was used to prototype a system that demonstrate the effective-

ness of the proposed research. These components are described in the context of the architecture

(Chapter 5). In addition, an emulation environment (described in Appendix A) has been developed

for a more thorough evaluation of the workflow planning and resource layer policies.

3.3.2 Virtual Grid Application Development Software (VGrADS)

The VGrADS projects explores the challenges with application development and management

of performance for scientific applications that run in grid environments. The virtual grid execution

system (vgES), the software environment developed by the VGrADS project, abstracts resources

from grid and cloud systems and provides a uniform execution interface. The virtual grid ab-

straction enables applications to interact with local batch queue systems, advance reservations on

TeraGrid resources, Amazon EC2 systems and local cloud sites running Eucalyptus, an open source
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cloud software [129]. We describe here the relevant details of the VGrADS project:

Virtual Grid Execution System. The Virtual Grid Execution System (vgES) [90] provides an ab-

straction for dynamic grid applications to deal with complex resource environments. The virtual

grid description language is a hierarchical language for resource abstractions that allows users to

specify users to specify qualitative resource specifications [34]. This qualitative specification shields

users from the complexity of the metrics of the underlying resources. The language supports two

specific language constructs: associators for describing the relationship between the nodes and

operators that describe the network bandwidth requirement between nodes or associators them-

selves. The virtual grid description language supports three high-level associators LooseBagOf,

TightBagOf, Cluster to describe a set of processors with different connectivity. The language also

has operators (close, far, highBW, lowBW) that can be used to describe the network connectivity

between the high-level resources defined by the associators. The vgES provides an integrated re-

source selection and binding approach to resource allocation enabling higher tolerance to lower

resource availability [91].

Virtual Advanced Reservations. The vgES system uses probabilistic reservations to provide guar-

antees on resource acquisition on grid systems using Virtual Advanced Reservation for Queues

(VARQ) [126]. VARQ builds on queue wait time prediction techniques from QBETS [125] to give

users the ability to request “virtual advanced reservations” i.e., a user can specify a fixed start time

for the job. QBETS consumes historical resource request data and makes job completion proba-

bility predictions using statistical methods such as a clustering algorithm to categorize similar job

requests, an on-line change point detection heuristic to detect abrupt variations in the data, and an

empirical quantile prediction technique. Previous studies show that though the queue wait time

experienced by jobs is highly variable, the upper bound predictions produced by QBETS are more
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stable, often over days or weeks. Thus VARQ computes a probability trajectory, at 30 second inter-

vals, between the time a user makes a reservation request and the specified deadline and uses the

trajectory to find the latest point in time where a resource request can be submitted to meet a spec-

ified minimum success probability. Through this methodology, users obtain access to probabilistic

or virtual advanced reservations that attempt to achieve some level of resource control over systems

that provide little or no explicit resource control. The mechanism does have certain cost trade-offs;

for example., a resource request can start earlier than the predicted start time, thus using additional

resource allocation time.

There are numerous connections between this work and the VGrADS project as listed below:

• We explore reliability extensions required in resource request specifications in the context of

virtual grid description language in vgES (Chapter 6).

• We explore probabilistic reservations as an overlay over existing systems to provide QoS

guarantees. We use VARQ (Virtual Advanced Reservations for Queues) [126] based reser-

vations to determine if effective workflow orchestration is possible without explicit resource

control in batch systems. A virtual advanced reservations obtained through VARQ is an in-

stance of the resource slot abstraction with probabilistic bounds on obtaining a slot of certain

duration by a given time.

• The LEAD and VGrADS collaboration has resulted in the ability to orchestrate deadline-

driven meteorological workflow sets atop distributed grid and cloud systems. The evolving

integrated system has been demonstrated on the exhibition floor at the premier Supercom-

puting conference (SC) for the last three years. The workflow orchestration techniques that

have driven this integrated environment are based on WORDS (Chapter 10)
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3.3.3 Open Resource Control Architecture (ORCA)

Open Resource Control Architecture (ORCA) is an extensible architecture for on-demand net-

worked computing infrastructure developed at Duke University. ORCA provides a resource con-

trol plane to manage a diverse computing environments on a common pool of hardware resources

such as virtualized resources. Shirako [83] provides a substrate of actors that provide a leasing

mechanism separating resource allocation policies from the management of the service or a re-

source. Shirako is a Java-based resource leasing core that is based on a common, extensible resource

abstraction. Shirako contains an implementation of Cluster-On-Demand, which supports dynamic

leasing of resources from cluster provider sites.

We explore the interfaces required by a resource coordinator that interacts with various grid and

cloud systems. In Chapter 8 we use Shirako and COD to implement a dynamic resource control

plane for Globus grids, based on Xen virtual machines.

3.4 Summary

We compared and contrasted grid and cloud systems and their resource control policies. The

interaction between user and resource is critical to build a rich, flexible, dynamic and adaptive en-

vironment. This interaction is necessary for the application requirements to be coordinated with

resource characteristics. Thus while advancing mechanisms and algorithms in each layer of the

software hierarchy, it is important for the layers to interoperate and coordinate adaptation strate-

gies to support dynamic workflows. We use the lessons learned from the different distributed

systems available today to develop the WORDS architecture. The WORDS architecture provides

a resource abstraction that addresses the separation of concern between resource and application

layers while guiding their interaction.
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Related Work

Grid computing [61, 62] concepts were first explored in the mid-90s in national laboratories

and academic institutions. The first generation of grid technologies and research (e.g. Globus [60],

Legion [74], Condor [103]) focused on the ability to harness distributed grid resources to run

scientific applications. In early 2000s, grid computing attracted interest from industry. The col-

laboration between the grid community, largely composed of researchers in academic and national

laboratories, with the business community led to a service-oriented grid architecture [64] embodied

in OGSA [63] and subsequently in WSRF(Web Services Resource Framework) [130]. Most of the

techniques for management of adaptation in grid environments are handled by resource manage-

ment architectures. More recently cloud computing systems have evolved that support mainstream

business models. We compared and contrasted the different interfaces provided by these systems

in Chapter 3. In this chapter, we focus primarily on specific implementations of resource and work-

flow management that have common elements with this work.

Grid computing is increasingly used to deploy and run grid applications [16] in various scien-

tific domains. Science gateways or portals or workflow tools [175] are used to handle the complex

interactions of the applications and data and provide intuitive user interfaces. As workflow tools

60
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are evolving, there is a need to understand the interactions between these tools and resource man-

agement architectures in meeting user’s QoS requirements. In this chapter, we describe the related

work in the area of resource management and workflow tools for managing the QoS guarantees for

workflows.

4.1 Resource Management

There are various resourcemanagement systems [119] in the context of grid systems with differ-

ent scheduling and adaptation techniques to meet the needs of the applications. Monitoring tools

are used to evaluate system and application performance to aid in scheduling and rescheduling

decisions.

4.1.1 Resource Selection and Meta-schedulers on the Grid

AppLeS [17] provides a framework for adaptive scheduling on the grid through distinct steps

for resource discovery and selection, schedule generation and selection, application execution and

schedule adaptation. AppLeS supports long-running grid applications by iteratively computing

and implementing refined resource schedules. Various site selection policies and meta-schedulers

such as Grid Service Broker, GridWay, Nimrod/G, etc [85, 26, 191, 193] are being explored in the

context of the grid. These provide an interface for applications to submit jobs to multiple sites and

use standard monitoring tools to collect monitoring information from different grid sites.

Silberstein [162] propose grid execution hierarchy and a scheduling algorithm that adapts to

the multilevel queue feedback to manage mixed workloads. The resource management in Legion

[32] provides a resource selection and policy framework that has a stronger support for local auton-

omy among member sites through its object oriented programming model. SPRUCE [14] provides
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gateway extensions for urgent computing through the idea of right-of-way tokens.

While resource selection and mapping techniques aid scheduling, there is still a need to be able

to represent and enforce user policies to guide the scheduling in real-time for user workflows.

4.1.2 Resource Provisioning

Several works have proposed resource reservations with bounded duration for the purpose of

controlling service quality in a grid. Globus toolkit’s GARA (General-purpose Architecture for

Reservation and Allocation) proposes a QoS architecture that has support for advanced reserva-

tions, brokered co-reservations, and adaptation [65]. The architecture has three primary compo-

nents - online control interfaces that allow applications or agents to modify resource characteristics,

sensors that detect the need for adaptation and decision procedures that provide a policy frame-

work. The prototype GARA implementation supports differentiated service mechanisms for coor-

dinated management of high-end networked applications [59]. Other GARA extensions [42, 157]

focus on co-allocation policy decisions in a bandwidth broker architecture when users attempt to

make bandwidth reservations across administrative domains. Smith et al. [167] study the impact

of resource reservations on scheduling through mean wait times of queued applications. The wait

times of applications submitted to the queues increases when reservations are supported. The re-

sults also show that best performance is achieved when applications can be stopped and restarted,

backfilling is used and accurate run-time predictions are used [168].

SNAP (Service Negotiation and Acquisition Protocol) [41] provides a generalized model in

which resource interactions are mapped into a well-defined set of resource independent service

level agreements. The SNAP protocols define negotiation protocols for three types of SLAs - re-

source acquisition agreements, task submission agreements, task-resource binding agreements.
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Condor [181] is a a specialized workload system to manage compute-intensive jobs across clus-

ters and idle desktop workstations. The ClassAd mechanism in Condor provides a flexible and

expressive framework for matching job requirements with resource availability [144]. Gangmatch-

ing [145] and set matching [105] are extensions to the Condor matchmaking mechanisms that can

handle multilateral and multiple-resource selections. The Condor-G [67] system leverages Globus

and Condor to provide multi-domain resource discovery and scheduling.

Czakowski et al. [40] introduce the underlying concepts for an agreement based resource man-

agement. Agreements represent management policy in strict policy terms that can be asserted.

Singh et al. [163] propose an agreement-based resource provisioning model that allows user mech-

anisms to discover a set of provisionable resources and a policy for pricing these resources that can

then guide user scheduling decisions. The resource availability in this model is represented as a

“slot” that is the number of resources available from a certain start time.

Several research efforts have proposed bounded resource units such as leases, slots, slices, ad-

vanced reservations, etc [41, 65, 83, 90]. These abstractions define properties for time and resource

information but have little or no QoS information. The concept of decoupled resource selection and

scheduling [205] and the slot abstractions[83, 163] has been discussed earlier.

Thus, while we need lower-level protocols and agreements for resource provisioning, we also

need mechanisms to coordinate them with higher level user workflows.

4.1.3 Workflow Scheduling

Mandal et. al [112] propose a heuristic strategy using performance model based in-advance

scheduling for optimal load-balancing on grid resources using the GrADS infrastructure [92]. Batch

queue prediction has been used to predict queue wait times [21] and used in conjunction with the
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performance model for workflow scheduling [127]. Huang and Chien [78] discuss using Virtual

Grids to simplify the application scheduling process [90]. The scalability of scheduling algorithm

is improved by pre-selecting a set of “good” resources for workflows.

Blythe et. al. [20] identify and evaluate two resource allocation strategies for workflows -

task-based and workflow-based. The task-based algorithm greedily allocates tasks to resources.

Workflow-based algorithms find an optimal allocation for the entire workflow and perform better

for data-intensive applications.

Various DAG scheduling algorithms have been proposed for grid environments for optimizing

makespan, meeting deadline and/or budget constraints or dealingwith uncertainty [111, 155, 204].

The underlying assumption of all these algorithms is that resources are guaranteed to be available

at a given time, whereas resource availability is highly variable. Deelman et al. [50] detail the

computational and storage costs of running the Montage workflow on Amazon EC2 resources.

Heuristic techniques are often used to qualitatively select and map resources to available re-

source pools. Most use performance as criteria for resource selection. Reliability of resources as

a metric coupled with performance has not been used for resource selection in the context of grid

applications.

4.1.4 Economy Based Grid Resource Management

Grid environments enable resource providers to serve multiple user communities. As grids

are increasingly used in mainstream, an economy based resource management is required for fair

sharing and accountability. GRACE (GRid Architecture for Computation Economy) [25] proposes

an infrastructure to enable flexible application scheduling using dynamic resource trading services.

The Nimrod/G resource broker implements a scheduling mechanism that takes an application
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deadline for a job and a resource access budget.

Wolski et al. [200] investigate G-commerce - computational economies for controlling resource

allocation using commodities markets and auctions. The authors conclude that commodities mar-

kets are a natural choice for grid environments.

Economic models for the grid can truly work only when the user can evaluate his options in

real-time or specify guidelines that capture his buying choices to service agents. This requires a

two-way communication between resources and the user-space, that is missing in today’s cyberin-

frastructure.

4.1.5 Monitoring and Adaptation frameworks

Various monitoring tools including Network Weather Service [201] and CloudStatus [37] are

used in grid and cloud deployments today. These tools provide a way to monitor resource status -

availability and performance.

In addition, tools like Autopilot [147, 150, 195] and SvPablo [151] provide techniques in which

applications and source code can be instrumented to collect performance data that can then be

used to control or steer the applications. Autopilot provides a sensor-actuator framework to allow

steering of grid applications. Autopilot demonstrates the use of a fuzzy logic decision procedure

infrastructure to manage grid application performance variability during execution. These tech-

niques are applied directly at the resource level and/or individual application level. The emergence

of web services and workflow tools indicates the need for multi-level monitoring and adaptation

techniques in addition to existing resource-level techniques.

TheGrid ApplicationDevelopment Software (GrADS) project developed a framework that used

the notion of a configurable object program that contains application source code, resource selection
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and mapping strategies. The execution framework also provided a mechanism for contract mon-

itoring using Autopilot for interrupting and remapping an application when performance falls

below acceptable levels. The GrADS workflow scheduler [15] uses a performance-model based

workflow scheduling, rescheduling by stop-restart and rescheduling by process swapping.

Weissman et al. [198] present a dynamic grid service architecture that supports dynamic service

hosting and resource allocation, a dynamic leasing framework and a model for service robustness

that can represent the sensitivity of the service to fluctuations in the environment. Previously, an

architecture for adaptable software in grid environments has been proposed [24]. The paper also

discusses a consistency model for components that encapsulates parallel codes.

Reflective middleware is organized as a set of collaborating components that can interact with

traditional middleware and allow for customizing component behavior dynamically [96]. Reflec-

tive architectures also allow for fine-grain resource management through system meta-interfaces.

DynamicTAO [97], OpenORB [18] and OiL ( ORB in Lua) [110] are among the implementations of

reflective middleware that allow dynamic replacement of application components.

4.1.6 Virtualization

The Virtual Grid Execution System (vgES) [90] provides an abstraction for dynamic grid ap-

plications to deal with complex resource environments. The vgES provides an integrated resource

selection and binding approach to resource allocation allowing higher tolerance to lower resource

availability [91]. The Cluster on Demand (COD) project [33] proposes the idea of “on-demand”

workspaces configured to the application’s specific requirements including possibly the operating

system. Shirako [83] provides a substrate of actors that provide a leasing mechanism separating

resource allocation policies from the management of the service or a resource.
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Keahey et al [88] propose a virtual workspace abstraction for grid applications that can imple-

mented using virtual machines and/or CODmechanism. A community broker is then used by the

user or application to request and configure virtual workspaces.

Cloud computing interfaces today are based on virtualization with front-end web service in-

terfaces. The most prominent cloud computing service provider today is Amazon [5]. Amazon

provides compute power, storage and other services on a pay per usage model enabling other ser-

vice providers to use the elastic IT infrastructure to host various web based applications or to use

the infrastructure to handle peak or overflows from their regular systems. Eucalyptus [129] pro-

vides a software infrastructure that enables sites to setup “cloud computing” with EC2 compatible

interfaces on their local infrastructure.

Virtualizations provided by these system greatly simplify the resource interaction. But we need

higher-level services that can interact with these systems on behalf of users and their policies.

4.1.7 Fault Tolerance and Performability

Khalili et. al [93] measured the performance and reliability of production computation grids

such as the TeraGrid [179] and GEON [70]. The results showed that the success rate for benchmark

and application runs was between 55% and 80%. The performance variations was in the 50% range

largely due to batch scheduler delays.

Reed et al. [146] present examples and data quantifying reliability of current systems and tech-

niques to detect imminent failures in the environment. The paper also shows how intelligent and

adaptive software can be used to react to failures and for efficient system use.

Weissman [197] describes a wide-area scheduler that supports two fault tolerance options for

SPMD applications, a very common programming model for grid applications. The scheduler
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supports replication and application-level checkpointing with performance models. Nurmi et

al [124, 128] describes a model that combines historical measurements of resource availability with

an checkpoint-recovery delay estimate to generate model-based checkpointing intervals to mini-

mize overhead.

Hwang and Kesselman [79, 80] propose a flexible framework for fault tolerance in grid envi-

ronments. The framework has a failure detection service that uses an event mechanism to monitor

and detect failures. A flexible workflow failure handling framework built on top of the failure de-

tection service applies task and workflow fault tolerance techniques. The workflow framework is

evaluated with multiple failure recovery techniques including checkpoint-restart, replication and

retrying.

Alonso et. al [2] discuss the limited fault tolerance capabilities in commercial workflow sys-

tems and specifically discuss increasing fault tolerance using exception handling and replication

strategies for increased availability. Specifically, the authors discuss the idea of providing different

availability levels such as critical, important and normal to workflows that determine the recovery

criticality and fault tolerance strategy that should be used.

Performability is the joint treatment of performance and availability that started in the 1970s.

The term was defined by J. Meyer as a composite measure of a system’s performance and relia-

bility and to qualify system performance in the event of failures [116]. Performability has been

recognized as an important metric for grid environments which have a high amount of variability

in reliability and performance [183, 182]. Performability analysis has been applied in the context

of lower level computer networks and communication systems but has not been applied to study

the higher level workflow behavior in distributed environments [77, 154].
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4.2 WorkflowManagement

Workflow tools are increasingly becoming a critical component of cyberinfrastructure [49]. Work-

flow tools first evolved in the commercial sector to represent business transaction processes. More

recently workflow tools are increasingly being applied to capture the scientific experimentation

process in a grid environment. Some of the business techniques and tools such as WS-BPEL [202]

have been applied to grid workflow tools. However scientific workflows differ largely from busi-

ness workflows. Business workflows are fairly static and changes are fairly infrequent. Scientific

workflows such as the ones discussed in Chapter 2 are more dynamic and require adaptation to

the scientific exploration process (e.g. undecided workflow steps) as well as the adaptation to the

underlying resource behavior [175]. The focus of QoS guarantees for business workflows are on

usability and successful service completion.

In this section, we discuss the support for dynamic and adaptive workflows in business pro-

cesses and also detail the scientific grid workflow tools and supported capabilities available today.

4.2.1 Dynamic and Adaptive Workflows in Business Processes

Workflows have been used to model business processes for a long time. There have been tools

and reference models developed in the Workflow Management Coalition (WfMC) for a long time

now [101]. The WfMC defines workflow as “the automation of a business process, in whole or

part, during which documents, information or tasks are passed from one participant to another

for action, according to a set of procedural rules” [199]. Business workflows that invoke multiple

services over the internet have to accommodate for failures and a dynamic environment. They

usually support ACID(Atomicity, Consistency, Isolation, and Durability) transaction processing to

guarantee against failures.
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One such system is eFlow [31], a system that supports composition and execution of composite

services. eFlow supports definition of adaptive and dynamic service processes through dynamic

service discovery during execution, supports the notion of multiservice nodes that can be used to

invoke multiple parallel instances of the same type of service. eFlow also has support for dynamic

service node creation that uses a generic service node in the representation that resolve to a specific

instance at runtime. eFlow uses consistency rules to prevent run-time errors from modifications.

It is often necessary to deviate from the pre-planned process definition during workflow ex-

ecution. For cases where it is not cost-effective to specify all possible changes in the workflow

plan, ADEPTflex provides a way to modify the workflow execution at runtime [148]. It verifies

correctness of dynamic changes and management of concurrent, temporary or permanent changes.

Koksal et al. [95] describe a component based workflow system that allow users to make dy-

namic modifications through a Dynamic Modification Tool that can be used to make permanent

changes to the workflow definitions or temporary changes to instances of the workflow. Liu et

al. [104] proposes a handover policy specification that allows users to specify policy on how work-

flow instances may change when a process definition changes.

The need to cooperate across loosely coupled business organizations has lead to the develop-

ment of web-service oriented architectures. This has led to the evolution of high level workflow

languages such as WS-BPEL (Web Services Business Process Execution Language), often referred

to as BPEL that allow methods to define and support orchestration of fine grained loosely coupled

processes. BPEL workflow engines provide fault tolerance support through dynamic binding of

the services through look-up registries using the UDDI protocol [189].

Business workflow tools provide some level of fault tolerance and adaptability. These tech-

niques cannot be directly applied to scientific workflow tools due to difference in workflow and

resource characteristics.
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4.2.2 Scientific Grid Workflow Tools

New workflow tools have been developed to represent and run scientific processes in a dis-

tributed grid environment. There are various workflow tools such as Kepler [3, 107], Taverna [131],

Pegasus [46, 48], Triana [36], that allow users to compose their applications and services into a log-

ical sequence. These tools are developed in the context of specific application domains and have

various features to allow users to compose and interact with workflows through a graphical in-

terface, provides seamless access to distributed data, resources and web services. Yu and Buyya

provide a taxonomy for scientific workflow systems that classify systems based on four elements

of a grid workflow systems - a) workflow design, b) workflow scheduling, c) fault tolerance and d)

data movement [203]. We provide here a summary of the features provided by the primary work-

flow systems in the context of dynamic and adaptive workflows, resource management and fault

tolerance.

Kepler [3, 107] builds on Ptolemy II [22, 23], a java based component assembly framework, that

uses actor oriented design that emphasizes concurrency and communication between components.

Kepler provides uniform mechanism for reporting errors but does not have any adaptation com-

ponents at this time.

Pegasus [48, 71] provides a planning system for use in grid environments. Pegasus integrates an

AI planning system to generate a concrete workflow plan froman abstract description from the user

that is then submitted to a Condor Directed Acyclic Graph Manager (DAGMan) [38]. The Condor

DAGMan uses the graph representation to manage dependencies between jobs and hence acts as

a meta-scheduler for Condor jobs. Pegasus allows constraints to be specified regarding feasible

resources and data dependencies on input fields. Pegasus also applies optimization techniques

such as node aggregation, data product reuse. Deelman et al. [46] discuss the higher level workflow

management issues in grid environments. They discuss the tradeoffs of different scheduling and
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planning techniques for workflows such as global and local decisions; full-plan-ahead, in-time local

and in-time global scheduling. The authors also propose the idea of using multiple abstract and

concrete workflows coupled with execution monitoring as techniques for fault tolerance planning.

Duan et al. [55] use the approach of workflow partitioning and optimization using a master-

slave communication model in the ASKALON Workflow Enactment Engine. This configuration

allows for a more scalable and fault tolerant coordination of workflows in a grid environment.

Triana [36] provides a graphical problem solving environment that allows users to compose

workflows through a drag-and-drop interface. Triana has a simple XML language to describe the

components and their interactions. Triana can use other external language representations such

as WS-BPEL through pluggable language converters. Triana’s workflow language has no explicit

support for control constructs such as loops and branching. These are described by specific compo-

nents that operate over a sub-workflow. Triana can distribute group tasks across multiple machines

in a grid environment either in parallel or in a pipeline through distributed services. The Triana

Controlling Service [174] allows the task-graph to be updated incrementally and also supports con-

trol commands that can be used to control functionality such as start/stop algorithm. etc. The

gridMonSteer [196] is a simple non-intrusive monitoring and steering architecture that can work

with Triana to allow scientists to interact with a workflow to receive intermediate results and inter-

act with legacy applications running in grid environments. The gridMonSteer has an application

wrapper that sends monitoring events to a controller with a standard interface. The controller itself

then can be tailored for different types of requirements i.e., a generic application, visualization or

a workflow controller. In the current implementation of the application controller, it receives input

requests and output notifications from the application wrapper.

The Taverna workbench [131] developed in the context of myGrid enables the composition and
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execution of workflows in the Life Sciences. Taverna has a XML based language - Simplified con-

ceptual workflow language (Scufl) that allows users to link third party applications and web services

into workflows. Scufl is a data flow centric language and provides implicit support for handling

collections, control structures such as iterations. Taverna implements fault tolerance where it will

retry failed service invocations a certain number of times with exponential back-off delays. Taverna

does not differentiate between failure of services and failure of the underlying resources such as the

network fabric. Taverna does not support automatic substitution of services since their scientific

equivalence is hard to determine. Taverna allows users to specify alternate but identical services

for any step in the workflow. Taverna uses UDDI registries, local disk scavenging for service dis-

covery and provides user service selection tools such as FETA for semantic searching for candidate

services.

The GPELworkflow engine [164, 165] usesWS-BPEL [202] to manage long running applications

in a grid environment. The GPEL Engine provides the capabilities to control the workflow execu-

tion instance through a state document. This capability allows users to pause execution, replay

workflow steps, etc. The LEAD system uses both GPEL based workflow engine and Apache ODE,

which is an open source BPEL workflow engine [8].

Workflow tools today allow scientist to link complex scientific process through various XML

languages and supporting graphical interfaces. They also provide some level of planing and op-

timization techniques and fault tolerance to react to changes in grid resource and services perfor-

mance and reliability. The need for adaptation at the workflow engine to both system and user

behavior has been recognized as a critical requirement to support next generation cyberinfrastruc-

ture science [49]. However, the tools available today do not handle dynamic elements of scientific

workflows. The spectrum of QoS issues that arises from the interplay of user constraints and re-

source behavior has not been considered.
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4.2.3 Workflow Constraints and Quality of Service

In addition to the workflow tools and systems discussed already, we discuss some related work

to QoS, constraint specifications and exception handling in workflow systems.

Mangan and Sadiq [113] present a constraint approach to workflow process modeling using a

relational model to capture flexible business processes. The approach uses a standard set of mod-

eling constraints and process constraints to develop a workflow schema. Each constraint is consid-

ered as a composition of one or more elementary conditions. The two types of constraints are task

conditions, for describing task dependencies, and instance data conditions, for complex constraints

where a certain value must be satisfied. This constraint language provides the flexibility required

in business processes. However the language is not rich enough to capture the uncertainties of the

scientific exploration process and the constraints that are required for adaptation decisions.

The METEOR workflow system [30] implements a predictive quality of service model that ac-

counts for task performance and reliability and using that to then compute workflow QoS metrics

based on workflow patterns. Klingemann et al. [94] describe a technique for deriving a model of

web service behavior in cross-organizational workflows from the externally observed service be-

havior. The approach is based on Markov chains that is constructed from the log of past executions

of services. These models are based in a service oriented environment and cannot directly capture

the complexity of distributed grid environments.

Aalst et al [192] and Russell et al. [121] describe in great detail the workflow control patterns

that are encountered when modeling and analyzing workflows. The workflow patterns can largely

influence resource management decisions (e.g., taking advantage of parallel tasks by coallocation).

In addition, Russell et al. [153] investigate the workflow resource patterns which describe the in-

teraction of workflow tasks with resources, where resources include humans. These patterns are
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useful in specifying authorization, resource constraints between workflow tasks, etc. Occurrence

and handling of workflow exceptions has been detailed earlier [152]. They use their analysis of

eight workflow systems to propose a graphical, technology-independent language for exception

handling strategies in workflows.

Workflow systems for grid environments need a rich language to support user constraints, abil-

ity to adapt to conflicting constraints across workflows and the environment, the ability to adapt to

failures and exceptions through the system. We also need to be able to use workflow patterns and

dependencies for appropriate resource allocation decisions.

4.3 Summary

The resource management tools available in the grid provide mechanisms to select and dis-

cover resource services to manage grid applications’ QoS requirements. More recently scheduling

techniques have been applied to optimize resource selection for a Directed Acyclic Graph (DAG).

These techniques are harder to apply to dynamic and adaptive gridworkflows. There is also limited

availability of tools and techniques for workflows to dynamically change to resource availability.

While there is some support for dynamic and adaptive capabilities available in workflow tools,

we need additional capabilities to allow us to express and enforce complex constraints of the appli-

cation as well as the underlying resources, often high performance supercomputing centers in grid

environments.
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Workflow Orchestrator for Distributed

Systems

In this chapter, we present theWorkflowORchestrator forDistributed Systems (WORDS ) that

facilitates the separation of concerns between resource and application layers for effective work-

flow orchestration. WORDS enables an holistic, coordinated, dynamic and adaptive approach to

workflow management using user requirements and variable resource characteristics while being

shielded from specific resource policy or systems. In the context of this system architecture we

explore a standard set of interfaces and mechanisms required at the resource layer in grid and

cloud systems to implement effective workflow orchestration for deadline-sensitive applications.

WORDS has the following characteristics:

• It provides a separation of concerns between the resource and application level. This enables

specific protocols to be implemented in each level of the software stack while not affecting

the interaction protocols.

• The interaction between application and resource layer is through a powerful resource ab-

straction that shields the differences in grid and cloud protocols and represents resource

76
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properties and its QoS capabilities.

• The orchestration system in WORDS is orthogonal to the main execution stack enabling

higher degrees of planning and adaptation.

The rest of this chapter is organized as follows. We present the overview of the WORDS archi-

tecture in Section 5.1. We discuss the resource abstraction in WORDS that defines the interaction

between the application and resource layers in Section 5.2. We provide an overview of the re-

source and application layers in Sections 5.3 and 5.4. User roles (Section 5.5) and terminology (Sec-

tion 5.6)in the context of this architecture is detailed. Finally we summarize the research questions

that we address in the context of this architecture (Section 5.7).

5.1 Overview

Figure 5.1 shows the WORDS system that introduces a separation between the resource layer

and application layer. The orchestration system receives a specification of a workflow or as a set of

workflows and user constraints. Each workflow in the set is represented as a directed acyclic graph

(DAG). The constraints may include time, accuracy, etc. The workflow planner communicates user

requirements to the resource coordinator which initiates resource procurement. The resource coor-

dinator interacts with both grid and cloud sites through conventional scheduling mechanisms and

interfaces. The resource coordinator can also work with other execution abstraction systems such

as the virtual grid execution system [90] that mitigate the job and data management differences

from each model (more in Chapter 10).

The resource coordinator interacts with various site specific resource control mechanisms and

returns a Gantt chart to the application layer. A Gantt chart consists of a set of resource slots from
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Figure 5.1: WORDS Architecture. The orchestration system introduces a clean separation of re-
source level and application-level functionality through a resource abstraction (slot). The workflow
planner interacts with the resource coordinator to facilitate resource acquisition.

different sites and each slot is annotated with its associated properties. A resource slot is an abstract

unit of a resource set on a site that has been assigned to the application or user by the resource

layer with defined width (i.e., number of processors) and length (i.e., duration). The resource slot is

central to our resource abstraction and may represent resources allocated to a job through the batch

queue system or to a user in cloud systems or through advanced reservation or probabilistic mech-

anisms. Analogously, we use abstract resource slot as a representation to communicate resource

requirements from the workflow planner to the resource coordinator. The abstract resource slot is

not tied to a particular site or system and communicates the properties of the resources desired. Let

us consider an example, for a workflow A, the workflow planner can request one resource slot of

16 processors for two hours with a minimum probability of 0.9 of getting the slot and a minimum

probability of 0.99 that the slot will not fail. The resource coordinator in turn interacts with the sites

and return a slot of 16 processors starting at 8 am and ending at 10 am with a 0.93 probability of



5. Workflow Orchestrator for Distributed Systems 79

getting the slot and 0.99 probability that the slot will not fail.

The workflow planner determines a schedule by assigning tasks on the slots using criteria such

as computational time, data transfers, success probabilities, cost, etc. Additionally the characteris-

tics of the slots are used to determine appropriate fault tolerance strategies. This process of resource

acquisition and task mapping is iterative with the goal of enhancing the schedule for some or all

tasks in the workflow.

The execution system (bottom of Figure 5.1), consisting of the workflow engine and web ser-

vices requires only minimal change to support the orchestration system. The execution manager

handles slot-based resource functions such as job submissions in concert with the resource coordi-

nator. The workflow planner cannot anticipate all runtime failures that might occur.The WORDS

architecture provides resistance to runtime failures through the execution system that is responsi-

ble for detecting deviations from the original schedule or other failures. The execution manager

invokes the orchestration components with updated DAG (e.g., the parts of the DAG that have

not been run yet) and resource information to reevaluate if user constraints can still be met under

changed circumstances.

The WORDS architecture provides a clear separation of functions between the resource and

application layer for orchestration decisions. This separation of concerns allows the workflow

planner to concentrate on user space and the resource coordinator handles site interaction. The

WORDS architecture also has an hour-glass model similar to the Internet Protocol (IP) hour-glass

model. It enables resource-layer and application-layer protocols and policies to evolve indepen-

dently. The communication between the two layers is facilitated through the slot abstraction. Thus,

the WORDS architecture provides a resource abstraction that the higher level workflow orchestra-

tion can use for planning workflows to meet user constraints atop dynamic distributed systems.
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5.2 Resource Abstraction

Fundamentally, grid and cloud computing systems have different access models and policies.

However there are also similarities - resources are assigned to jobs or leases for durations of time;

resources are often provisioned across competing user groups and resource requests can fail; large

scale systems also experience hardware and software failures. The resource abstraction needs to

capture the various dimensions of resource property including cost, policy and variability associ-

atedwith policy and hardware. The WORDS architecture is based on a least common denominator

resourcemodel that abstracts the specific properties of grid and cloud systems. Themodel captures

the common minimal set of of properties across the systems that enables the higher-level workflow

orchestration to provide effective QoS guarantees for deadline-sensitive workflows. The model

does not capture additional resource properties that are provided by specific systems. The degree

of effectiveness of workflow orchestration over each system varies based on specific resource con-

trol policies. For example, if the resource coordinator returns a set of slots from cloud systems that

enable explicit resource control the workflow orchestration can provide higher-levels of QoS.

The resource abstraction in WORDS is powerful enough to abstract various systems and flexi-

ble to accommodate various dynamic environments. For example, if mechanisms are available in

resource systems to support dynamic resizing of resource reservations or slots the resource coor-

dinator can update the Gantt chart with the new information. The workflow orchestration then

uses this information while being shielded from specific underlying implementations. Such dy-

namic adaptation might also require user/application intervention to determine trade-offs in cost

and time. The WORDS architecture enables this interaction which is otherwise difficult if not im-

possible in today’s systems.
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The QoS model in the resource abstraction is probabilistic and captures the variability asso-

ciated with resource procurement (i.e., advanced reservations, job submissions, etc) and failure

characteristics during allotted duration. The probabilistic model is important since with or with-

out explicit resource control, strong QoS guarantees cannot be made in distributed systems due

to the variability and complexity of the underlying resources and policy. Explicit resource control

through advanced reservations in batch systems or in cloud systems has certain impacts - resource

providers need to over-provision resources for peak demand and there can be an adverse effect

on system utilization and wait times [166, 169]. Probabilistic guarantees help resource providers

manage the variability in QoS including unexpected load, utilization and other runtime factors.

We explore probabilistic resource procurement for enabling dynamic workflow orchestration

over resources with little or no explicit resource control. As cloud systems advance, the same tech-

niques can be applied to them since lease or cloud resource requests are similar to job requests

with fixed time units [75]. In overbooked leasing systems we can calculate an equivalent prob-

ability using the number of resource lease requests that are overbooked. In addition to resource

procurement, hardware and software services have failure characteristics. Thus we define QoS

properties that captures the variability aspect of the resources. The probabilistic resource model al-

lows providers to specify quantitative bounds on resource requests e.g., there is a 95% chance that

a request for a three hour slot of 16 processors starting in one hour can be met and there is a 99%

chance that resources will stay up during the required duration. The probabilistic resource model

is presented in greater detail in Chapter 8.
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5.3 Resource Layer

In the orchestration system in WORDS , the resource layer is responsible for interacting with

different resource systems such as grid and cloud systems and shield higher-level tools from spe-

cificmechanisms or site policies. The resource layer queries resource status and availability (through

the Resource Coordinator) and monitors execution for failures or changes in performance or reli-

ability (through the Execution Manager) and feeds the information to the application layer. In the

WORDS architecture the resource layer has the following key functions:

Resource procurement. A primary function of the resource layer is resource recruitment or pro-

curement. The resource layer receives a set of resource requests, represented as abstract slot re-

quests, from the application layer. The abstract slot requests guides resource procurement strate-

gies across multiple grid and cloud sites.

Site monitoring. The resource layer additionally monitors the sites for resource changes such as

resources becoming available, failures or performance fluctuations that can then drive additional

workload scheduling or adaptation decisions.

Execution monitoring. Despite rigorous planning, failures and changes in the underlying re-

sources tend to occur during workflow execution. In addition to monitoring the resources, the

resource layer would also interface with application level execution systems to monitor execution

of individual jobs or workloads on the mapped resources.
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5.4 Application Layer

The goal of existing application tools such asworkflow planners has largely been time optimiza-

tions based on task execution times and data transfer times. Workflow planners apply resource se-

lection techniques [20] to map abstract workflows onto a concrete set of resources. Workflow tools

also apply optimization techniques such as intermediate data product reuse, node aggregation, etc

in the workflow planning stage [48]. However in addition to the workflow task-resource map-

ping based on performance it is often necessary to make adjustments in the plan based on resource

availability and reliability characteristics in the workflow planning.

The application layer provides an effective adaptation framework that can react to resource

behavior in conjunction with user specified constraints and application changes. In addition, the

application layer in WORDS acts as a global coordinating adaptation agent allowing arbitration in

the occurrence of conflicts. Specifically, the application layer in WORDS has the following func-

tions:

Workflow admission. The workflow planner provides a twoway communication between the user

and the resource layer enabling users to interact with the system and adjust workload character-

istics with availability. This interaction makes possible a joint decision between the system and

end-user on workflow admission into the system prior to execution. WORDS enables the dynamic

scientific process such as when users setup triggers to be notified when resources become available

so they can pursue additional scientific explorations.

Resource procurement. The workflow planner uses the specified workload information to deter-

mine and drive the resource recruitment and selection choices in the resource layer. Workload

characteristics such as sensitivity to time and cost considerations result in different policies that

can be applied at this level. We consider some illustrative policies for deadline and cost sensitive
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workloads (Chapters 9 and 10).

Execution plan. The workflow planner applies user constraints and available resources to develop

an execution plan for the specified workload. The execution plan developed by the planner ac-

counts for resource availability characteristics and includes fault tolerance strategies to enhance

the success probability of completion. This plan is then used by the execution system to monitor

and orchestrate the progress of the workflow.

Dynamic adaptation. The orchestration system handles adaptation changes and can react to changes

in resources or user requirements and create a new execution plan. The application layer would

also be responsible for arbitrating conflicting adaptation events from different sources.

We handle cases that require dynamic execution level control for deadline-sensitive workflows

at the execution manager level. More generally, it is desirable to have a higher-level workflow con-

troller component that manages execution systems like workflow engines. In that case, a workflow

controller, in concert with the planner would be the final decision authority for making dynamic

adaptation changes. Resource layer implements local policies to react to resource availability char-

acteristics that are shielded from the application. However any significant event that results in a

change in the workflow execution (e.g. rescheduling due to a resource failure) will go through the

workflow controller. The workflow engine can also be configured to consult the workflow con-

troller on significant events such as failures, etc. The workflow controller also would constantly

monitor the system and initiate an adaptation of the workflow execution in consultation with the

workflow planner. However workflow engines today have limited support for such dynamic con-

trol during execution, hence evaluation of this capability is outside the scope of this work.

The orchestration system in WORDS is the focus of this research. The orchestration system fa-

cilitates a higher degree of control in adaptation decisions by a clear separation of concerns between

application and resource layer.
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5.5 User Roles

Both grid and cloud systems today have different user roles such as end users, service providers,

system administrators. Each of these users interact with the WORDS system.

Infrastructure providers. Grid and cloud systems alike have distinct infrastructure or resource

providers that include personnel at infrastructure sites for managing the machines, network, oper-

ating system and resource-level services. The infrastructure providers manage the needs of com-

peting user groups. The probabilistic QoSmodel inWORDS enables resource providers to quantify

the uncertainty associated with allocation and failures.

Service Providers. Service providers operate on existing infrastructure to provide specialized ser-

vices to the end-user. The clear separation of functions in WORDS between the resource and ap-

plication layers allows a transparent resource acquisition process that can be reflected back to the

user. In addition, this enhances accountability in service contracts between different user-levels.

Users. The end-user interacts with the WORDS architecture through user specialized interfaces

such as web interfaces, that allows the user to specify workload description and user-level con-

straints. The WORDS architecture enables the end-user to specify constraints to guide scheduling

and resource-level decisions. The WORDS architecture enables user-participation in adaptation

decisions. Unless otherwise specified, user or scientific user is used to refer to this class of users.

5.6 Terminology

This research explores the WORDS architecture in the context of resource interfaces and work-

flow tools in grid and cloud systems. Components have evolved in separate and diverse worlds

with different and sometimes overlapping terminology. In this section, we provide a clarification
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terminology used in the context of WORDS and the rest of this dissertation.

Workflow and Task We use the term workflow to depict a sequence of operations, applications

or service calls that have dependencies on their execution. The workflows may be BPEL based

workflows that consist of a sequence of web service calls or a sequence of binary applications

invoked through a script. We use the term task or service to refer to components of the workflow.

All workflows in our system are represented as directed acyclic graphs (DAG). The vertices in our

DAG represent tasks and edges represent data flow operations. We do not consider workflows or

workloads that have loops or cycles in their representation.

Workflow Set. We consider the use case where workflows may have dependencies between them

in Chapter 2. We use the term workflow set to indicate a collection of workflows that need to be

considered for scheduling concurrently.

Constraint and Policy. We use the term constraint or user constraint to identify conditions that

users specify on workflows or workflow sets. We use the term policy to indicate priorities and rules

that service or infrastructure providers have in place to differentiate between users or groups of

users.

Resource and Site. We use the term resource and site frequently. The term resource refers to a

single node or a cluster. Site may be used in place of resource to indicate resources under one ad-

ministrative unit. We specifically do not address federation of clusters within an organization. If

an organization has multiple clusters, each addressable separately for purposes of resource inter-

action, then our system is oblivious to the relationship that exists between clusters. However if

these clusters on a single site are connected by high-speed networks our planning algorithm will

automatically select sites with proximity as part of the data transfer cost analysis.
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5.7 Summary

The WORDS architecture supports the needs of workflow orchestration atop grid and cloud

systems. The degree of effectiveness of workflow orchestration over each system varies based on

specific resource control policies they implement, that is reflected in the resource abstraction. The

goal of the architecture is the “separation of concerns” between the resource and application layers.

The resource layer is responsible for resource acquisition and other specific resource management

mechanisms whereas the application layer uses the abstracted resource properties to make orchestra-

tion decisions. The slot abstraction is the center of the interaction model between the two layers.

The concept of decoupled resource selection and scheduling [205] and the slot abstractions[83, 163]

has been discussed earlier. However the interaction and the interfaces between the application

layer requirements and resource model variability and its impact on high-level workflow orches-

tration has not been studied before.

In the context of the WORDS architecture, we address the following research questions:

• Is a common abstraction possible that captures the different properties of grid and cloud

systems and yet enables higher level systems to be shielded from specific system implemen-

tations?

• What information is required in next-generation data-center interfaces to improve support

for dynamic adaptive workflows?

• Can users be allowed to express dynamic user and resource constraints?

• Is it possible to provide predictable quality of service atop systems that do not provide explicit

resource control?
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• How can workflows account for variability in performance, and reliability that are inherent

to distributed large-scale systems?

• How can workflow sets be scheduled to meet multiple constraints such as deadline and accu-

racy? How can higher-level tools determine appropriate fault tolerance strategies with cost

and other constraints?



6

Constraint Model

Dynamic scientific workflows (e.g. LEAD) require the ability to specify various criteria, such

as time and accuracy, on the workflows and the relationship between workflows. Similarly the

application level tools need the ability to express qualitative expectations on resources queried. In

today’s cyberinfrastructure environments there are mechanisms to monitor performance and en-

sure reliability, to select and discover resources and tools to express task dependencies. However

there is little or no support available at the resource or user level that allow users to express require-

ments relevant to the application workload. Workflow planning mechanisms need to understand

constraints or requirements that come from the scientific experiments to be able to trade-off various

system characteristics. For example, a user with a time sensitive workflow may be willing to use

more expensive resources and a scheduling strategy needs to take that into account.

In this chapter, we explore the constraint space at the user and resource layer to facilitate speci-

fying dynamic user requirements. Specifically, we address the following issues.

• We explore the type of requirements that users would like to specify on workflows and

workflow-sets. We use these requirements to define a constraint space that defines the scope

of constraints a user can specify on various elements in the WORDS architecture.

89
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• We explore the resource specifications that are needed for scientific application codes. The

virtual grid description language (vgdl) allows users to specify qualitative performance re-

quirements during resource selection. We propose extensions to vgdl that capture availability

expectations from resources.

In this chapter, we address the interfaces necessary at the user level to specify constraints on the

workflows and the ability to specify resource requirements at the resource level that can translate

to user requirements to specific resource properties.

6.1 Workflow Constraints

In this section, we explore the type of constraints that a user likes to specify on a workflow or a

workflow set. First we present some examples and then present the model.

6.1.1 Examples

We consider a user’s workflow set W = {W1, W2, ..., W9} where workflow Wi is a description

of a DAG. These workflows can run on any of the resources in the set R = {R1, R2, ..., R5}.

Deadline. A user specifies that the workflow set must complete by a deadline D from now. Addi-

tionally the user specifies thatW3 must finish by D3 whereD3 < D.

Accuracy. The user specifies that in the given set at least four out of the nine workflows must

complete by the specified deadline.

Workflow Importance. The user specifies that in the given set,W1,W8 andW9 are most important

followed byW2 andW7.
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Figure 6.1: Workflow Constraint Model UML. The figure shows the various components in WORDS and the
relations and constraints the user can specify on those components.

Budget. The user is willing to use 1000 computational units on each site.

Success Probability. Each task in the workflow that is scheduled must have a 50% chance of com-

pleting by the deadline.

6.1.2 Model

Figure 6.1 shows the conceptual view of the elements in the WORDS system and the constraints

the user can specify on the artifacts. A WorkflowSet is composed of Workflows. Each workflow is

composed of Tasks. AWorkflow or Task can have a Property that captures the priority and criticality

of the workflow or task. In our implementation, the criticality is the value assigned by the user and

the priority is assigned by the system. Criticality captures the value of the entity to the user relative
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to other entities that belong to the user. The priority is assigned by the system to indicate the user’s

priority relative to other users in the system. Priority and criticality values are expected to be tied

with cost-models in the long-term to prevent misuse. AWorkflowSet is associated with a Constraint

Collection that details the user requirements on the workflows. A Constraint Collection may have

two types of user constraints, i.e., constraints on a workflow or task (Component Constraint) or on

a set (Set Constraint). The constraint model is motivated by the LEAD workflows and address the

following types of constraints.

• Probability. A user can specify a desired success probability of completion at either the task

or workflow or workflow set level. This quantitative guarantee the user requires on a specific

workflow.

• Deadline. Time-sensitive workflows such as weather prediction have deadline associated

with them. Thus a user can specify a deadline on a workflow set, workflow or task that

guides scheduling decisions.

• Budget. Distributed resource models are increasingly made available as metered services,

with different costs associated with quality of service. Thus it is important to let users specify

a budget that they are willing to expend on an experiment. A budget may be specified per

site or a cumulative budget across all sites may be specified.

• Accuracy. In addition to the above constraints, a user can also specify an accuracy constraint

for a workflow set. The accuracy constraint captures the minimum number of workflows in a

set that must complete successfully to satisfy the science accuracy requirements (Chapter 2).

The goal of WORDS is to determine an execution plan that satisfies the set of constraints. The

plan is represented in a Gantt Chart as a set of mappings of tasks on the resource slots.
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6.1.3 Conflict Resolution

The constraints that users specify may have inconsistencies or result in conflicts. Generally,

aggressive or invalid constraints such as a deadline or an accuracy constraint that can’t be met are

directly handled by the planning components in the system. These will result in the user being

asked to modify constraints since a valid execution plan could not be determined. We ensure the

following checks for resolution in the WORDS system.

• Property may be specified at various levels - task, workflow or workflow set. A component

inherits the higher level’s property. For example, if a criticality is not specified at the task

level, it has the same criticality as its parent workflow.

• A deadline may be specified at the task, workflow or workflow set. If a deadline is not spec-

ified at the task level the workflow’s deadline is used to determine the task deadline. If a

workflow does not have a specified deadline, it has the same deadline as the workflow set it

belongs to. If a task deadline is specified that is not consistent with the workflow set deadline,

the orchestration system in WORDS will not be able to come up with a valid execution plan

and return an error to the user.

• Our constraint model allows the user to specify a budget per site as well as a total budget. If

the budget is specified for all sites and a total budget is specified by the user, the sum is ver-

ified. If individual site budget is not specified the total budget is considered to be uniformly

distributed across the sites.

• Workflows in WORDS are ordered by their priority and criticality. User roles and associated

cost models are envisioned to stop users from specifying aggressive criticality values. If pri-

ority and criticality are identical for two or more workflows, the deadline and submission

time of the workflow is used for determining the order of the workflow.
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6.2 Resource Request Specifications

In WORDS , the user constraints are received by the workflow planner that translates the re-

quirements and drives the resource procurement through the coordinator. The resource coordinator

queries different sites to request resources. The virtual grid execution system (described in detail

in Chapter 3) allows high-level, qualitative performance requirements to be specified that guides

resource selection. The language in vgES is a hierarchical language for resource abstractions that

allows users to specify qualitative resource performance specifications. We provide an extension to

the virtual description language that enables users to specify availability requirements.

A critical dimension to managing an application’s reliability requirements is understanding its

specific characteristics. We discuss the reliability requirements for grid applications with differ-

ent execution models in Section 6.2.1. In addition, we illustrate the virtual grid extensions us-

ing two application examples - mpiBLAST [44] and the Weather Research and Forecasting (WRF)

model [117].

6.2.1 Reliability Requirements of Scientific Applications

In Chapter 3, we identified that scientific codes are composed with common parallel program-

ming model representations - (a) Master-Worker, (b) Divide and Conquer, (c) SPMD and (d) work-

flows.

In the master-worker paradigm, the master decomposes the problem into small tasks and dis-

tributes these tasks for execution. Primary communication is between the master and the workers,

as the master is responsible for collecting partial results to produce the final result. Depending on

the master and workers’ execution characteristics (e.g. long or short running), coupled with re-

source availability, one resource selection policy could be to choose a more reliable node to execute
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the master task and an appropriate fault tolerance strategy.

Similarly, the Divide and Conquer strategy partitions the problem into two or more smaller

problems that can be solved independently and combined. Each subtask may be further split into

separate tasks. Unlike the master-worker model, the subtasks are interdependent. Hence the per-

formance and reliability requirements (e.g. for the communication links) might vary significantly

from the master-worker model. In the SPMDmodel, each task executes common code on different

data. Failure of one task adversely affects the entire application, requiring global coordination.

Finally, workflows allow applications to define data and condition dependent execution. The

workflow itself is a hybrid of one or more execution models mentioned above. For workflows, as-

suring high reliability and high performance for the entire workflow duration can be very expen-

sive. In such cases, the workflow planning software may request a combination of high reliability

and lower reliability nodes to offset costs. The workflow planning strategy could then apply addi-

tional fault-tolerance mechanisms such as replication or checkpoint-restart to increase the success

probability. To summarize, a cost-benefit analysis of application characteristics in concert with re-

source characteristics is required to determine an appropriate resource selection and corresponding

fault tolerance strategy. Next, we present some examples of scientific codes and possible resource

requests to satisfy their needs.

6.2.2 Examples

mpiBLAST. The Basic Local Alignment Search Tool (BLAST) [4] compares nucleotide or protein

sequences and finds regions of similarity between them to detect functional and evolutionary rela-

tionships. The parallel version of BLAST, mpiBLAST, follows the master-worker execution model.

Consider an mpiBLAST resource request for a master node connected to a set of worker nodes,

each with at least 4 GB of memory. In the virtual grid description language (vgDL), this would be
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specified as follows:

mpiBLAST1 = MasterNode = {memory >= 4GB, disk >

20GB}highBW LooseBagOf < WorkerNode > [4 : 32]; WorkerNode = {memory >=

4GB}

One fault tolerance strategy might require the network link between the master and the worker

to have ”good” reliability (Section 6.2.3). The modified vgDL might look like the following:

mpiBLAST2 = MasterNode = {memory >= 4GB, disk >

20GB}(goodReliability AND highBW) LooseBagOf < WorkerNode > [4 :

32]; WorkerNode = {memory >= 4GB}

In addition to the network being reliable, the request could also specify that the master node be

highly reliable:

mpiBLAST3 = HighReliabilityBag < MasterNode >= {memory >=

4GB, disk > 20GB}(goodReliability AND highBW) LooseBagOf < WorkerNode >

[4 : 32]; WorkerNode = {memory >= 4GB}; MasterNode = {memory >= 4GB, disk >

20GB}

WeatherResearch and Forecast (WRF)ModelTheWeather Research and Forecasting (WRF)model [117]

is a mesoscale numerical weather prediction system. The WRF model is an SPMD computation

where geographic regions are modeled in parallel. For a simple WRF execution, the request might

be for a cluster with 8 to 32 nodes, each with at least 4 GB of memory:

wrf1 = TightBagOf < CNode > [8 : 32]; CNode = {memory >= 4GB}

Wemight require all the nodes and the network connecting them to be highly reliable since this

is an SPMD computation. A modified request is shown below to request a HighReliabilityBag:

wrf2 = HighReliabilityBag < ManyNodes > [1 : 1]; ManyNodes = TightBagOf <

CNode > [8 : 32]; CNode = {memory >= 4GB}



6. Constraint Model 97

From these examples we see that applications can have varied reliability requirements based

on their characteristics. Workflow planning components need higher-level interfaces to describe

collective qualitative reliability requirements in the resource selection process. These requirements

are based on application characteristics and other real-time constraints such as deadlines or budget.

These user-specified attributes can then guide selection allowing the system to apply scheduling

and adjust fault tolerance levels and expectations at run-time.

6.2.3 Reliability Specification

In this section, we discuss the extensions required to the virtual grid description language to

support reliability specifications. We define a high-level qualitative reliability metric space that

can be used to request resources. The qualitative levels are mapped to well-defined quantitative

reliability levels in the virtual grid to enable runtime monitoring and adaptation. We define a five

point qualitative reliability scale that maps to quantitative levels of availability as follows:

• Excellent (90-100 %)

• Good (80-89%)

• Satisfactory (70 - 79%)

• Fair (60-69%)

• Poor (59-0%)

We expect the exact definition of the levels to vary in specific deployment contexts and evolve

with advances in underlying computer hardware architectures. These qualitative levels map di-

rectly to resource cost models enabling users or application level tools to trade-off resource quality
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with cost considerations. This prevents users from requesting high reliability resources when it is

not required. This situation is analogous to when users specify an expected wall clock time on their

batch jobs today in HPC systems - specifying a longer than required wall clock time could result

in being penalized with longer queue wait times and a short wall clock time can result in the job

getting killed earlier.

We define a set of associators for collective node reliability. These associators map to the quali-

tative reliability set defined earlier

• HighReliabilityBag. A set of nodes with Excellent reliability.

• GoodReliabilityBag. A set of nodes with Good reliability.

• MediumReliabilityBag. A set of nodes with Satisfactory reliability.

• LowReliabilityBag. A set of nodes with Fair reliability.

• PoorReliabilityBag. A set of nodes with Poor reliability.

Similarly, we define operators for specifying network reliability levels.

We add the following operators that describe network link reliability and are mapped to similar

quantitative levels as above:

• highReliability. A set of nodes with network link reliability that is Excellent.

• goodReliability. A set of nodes with network link reliability that is Good.

• mediumReliability. A set of nodes with network link reliability that is Satifactory.

• lowReliability. A set of nodes with network link reliability that is Fair.

• poorReliability. A set of nodes with network link reliability that is Poor.
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Typically a reliability specification for components are expressed as a value for an associated in-

terval with a desired confidence level (e.g., the disks on the head node of a cluster are 90% reliable

between 10 pm and 4 am, with a 95% confidence interval). The vgDL’s extensible attribute mech-

anism allows these to be additionally specified if required. These resource request specifications

map to the reliability states that a resource encounters during its lifetime (Chapter 7).

6.3 Summary

In this chapter, we explored the user constraint model and resource reliability specifications to

support dynamic scientific workflows. This space of requirements from user and resource prop-

erties provides the foundation for the orchestration to explore various trade-offs in application

execution.
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Performability Modeling

Workflows experience significant variations in performance and reliability during their real-

time execution. In this chapter we explore performability, a measure of lost QoS due to reliability

variations, as a basis for workflow scheduling and fault tolerance strategies. Workflow orches-

tration needs to account for user and application level requirements and consider the resource

space behavior in real time. As explained earlier today’s workflow and resource planning relies

on resource status and performance models, despite frequent component failures [93, 205]. Thus

resources are considered to be in one of two states, either “fully-operational” or “failed.” Realisti-

cally, the availability of resources can vary greatly based on failure of one or more critical services,

load on one or more resource components, recovery from a failure, etc. These variations manifest

as a loss in application performance that can result in increased application execution times or as

a complete failure that might require rescheduling. In addition, earlier studies show the variation

of application performance on a resource over multiple executions [98]. Thus it is often impossible

to predict accurately the exact running time of an application on a diverse set of resources. The

prediction problem gets further exacerbated as resources are made available through virtualization

and cloud computing. The advent of new technologies in recent years and the complexity of the

100
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multi-level software stack makes the current day methodologies insufficient to make accurate de-

cisions. Thus we need methodologies in application middleware that not only handle failures but

also account for possible loss in Quality of Service (QoS) from resource availability variations in

any planning strategies. For this, a resource provider needs to provide an assured level of service

under a cost model even as there are performance and reliability variations in hardware.

Today’s grids are composed of a conceptual resource hierarchy (e.g., individual systems, data

systems and clusters) and a software hierarchywith a multiplicity of executionmodels (e.g., SPMD,

parameter sweep, workflow). To build a resilient environment one needs a multi-level strategy

that can detect and adapt to performance variations and failures at each level and across levels.

As an example, consider the previously discussed meteorological application (Chapter 2) with

constraints on execution time and accuracy due to weather prediction deadlines [54]. The inputs

to a typical workflow of this type are streaming sensor data that must be pre-processed and then

used to launch an ensemble of weather models. The model outputs are processed by a data min-

ing component that determines whether some ensemble set members must be repeated to realize

statistical bounds on prediction uncertainty. In this environment, both performance and reliability

guarantees (i.e., the critical workflow elements must complete and must do so within the given

time constraint) are essential. Thus the application and resource layer must interact and adjust

strategies to balance and manage user expectations as discussed in Chapter 5. In this chapter, we

propose and develop a performability model that enables workflow scheduling and planning to

account for dynamic resource behavior.

We use performability [116], as a composite measure of a grid’s performance and dependability

(i.e., a measure of the system’s performance in the event of failures) and present a qualitative model

to capture and analyze the effect of resource reliability on application performance. We propose a



7. Performability Modeling 102

model to analyze performability as a metric for workflow planning (Section 7.1). We discuss per-

formability modeling based workflow planning (scheduling and fault tolerance) in Section 7.2.1.

We present an experimental evaluation of performance on real applications with induced avail-

ability variations, and an analytical evaluation of parameters affecting performability (Section 7.3).

Subsequently in Chapters 9 and 10 we apply the performability modeling to workflow orchestra-

tion.

7.1 Degradaded Service Modeling

Grid systems are often able to survive the failure of one or more components and continue to

provide service, but with reduced performance. The behavior and status of systems with multiple

interacting components is typically captured using stochastic process modeling. J. Meyer intro-

duced the concept of performability [116] evaluation as a mechanism to combine performance and

availability analysis when considering resource behavior. In this context, performability is defined

as “the probability that a system reaches an accomplished level y over a utilization interval (0,t).”

Grid systems often have multiple hardware and software components or services that contribute

to system state. The probability of staying in a certain state with respect to transition rates between

states is used to quantify system performance and reliability.

Markov Reward Models (MRM) are typically used to model degradable systems and capture

joint performance and system reliability. A Markov reward model consists of a Markov chain that

describes a system’s possible states and an associated reward function. By modeling the system as

an MRM, we associate reliability levels with states in the Markov chain. The reward rates corre-

spond to system performance in the different states allowing us to model the behavior and capture

the probability of the system delivering performance at different availability levels. If detailed
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Figure 7.1: Resource Reliability Model. A Markov chain representing the five reliability states of
the machines and the transitions between the states represent the failure and repair rates.

monitoring data was available from systems, we can classify the current state of the system and

then use appropriate probabilities to determine its behavior during workflow execution.

We develop and describe the model for resource state reliability in Section 7.1.1 and apply re-

ward rates to the state based on application performance and cost, developing our performability

model in Section 7.1.2.

7.1.1 Resource State Reliability Model

In today’s systems, quantitative reliability metrics are used (e.g. mean time to failure (MTTF),

mean time to repair (MTTR) and mean time between failures (MTBF =MTTF +MTTR.) These relia-

bility metrics are used for different system components, including storage, network and computing

resources and often guide fault tolerance strategies. We use the qualitative five point reliability scale

(described in Chapter 6) in conjunction with reliability metrics to assess system performability.

Resources can be in a variety of states based on the functioning of each component in the system

- hardware and software. Accurately capturing each state for changes in behavior can be a tedious

and complicated task. However, we seek the high-level system behavior in terms of delivered QoS.

Distributed resources exhibit the Markov property - the next system reliability level depends only

on the present state and is independent of previous states. For example, if a service resets from an

error, and is restored to an operational state it does not matter if it has failed at some earlier point.

Thus we define a Markov chain (Figure 7.1) representing the five reliability levels - High, Good,

Medium, Low, Poor and the complete failure state “Fail.” This model represents the reliability
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states of a resource where each resource might be a composite object such as a cluster of nodes. In

this analysis, we classify the reliability levels based on the cumulative resource reliability level that

includes hardware and software components required for application execution. We use resource

failure (λ) and repair (µ) rates that are inverses of the MTTF and MTTR respectively to model the

transition rates from a state.

This qualitative model helps characterize the system with a Markov chain that can be easily

modeled, avoiding the state space explosion problem, while capturing the salient aspects of system

behavior [77]. In our model, the transitions occur between adjacent failure states, i.e., a series of

failures will shift the system from the High to Good state and corresponding repairs will move

the system back to the higher reliability state. Such a Markov chain, where transitions only occur

between adjacent states (Figure 7.1), is defined as a birth-death process [154]. We define the Markov

chain with uniform failure (λ) and repair rates (µ) that are consistent with the qualitative nature

of the virtual grid system. These simplifying assumptions can be relaxed given more detailed

performance data and models of cluster, grid and cloud resources.

The transient analysis of the Markov chain gives the instantaneous reliability of the system (i.e.,

the probability that the system is working at time t, regardless of the number of times it may have

failed in the time (0,t)). For simplicity, we consider the steady state probability of occupancy in each

state - the likelihood that the resources are collectively in one of the states shown in Figure 7.1. The

steady state solution for a birth-death process is given by:

πn = ρnπo (7.1)

π0 = 1 − ρ (7.2)
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where ρ is the failure-to-repair ratio (ρ = λ/µ) and n is the state identifier such that n=0,1, 2, 3,

4 represents “High”, “Good”, “Medium”, “Low”, “Poor” respectively. Thus π0 is the steady state

probability of being in the High reliability and π4 is the steady state probability of being in the Poor

state. Because resources are considered repairable, the system will be in an operational state if the

repair rate exceeds its failure rate, i.e., λ < µ or ρ < 1, else the system’s steady state would tend

towards complete failure. From equations ( 7.1) and ( 7.2), we see that the steady state probabilities

of being in the respective reliability states depend on the failure-to-repair ratio of the resources.

7.1.2 Performability Model

In this section, we extend the simple resource reliability model defined in the previous section

to create a Markov Reward Model (MRM) that includes system performance and cost enabling a

joint treatment of performance, cost and reliability. The MRM consists of a Markov chain shown in

Figure 7.1 and an associated reward function that represents system performance. For each state

i ∈ S, ri represents the reward obtained for time spent in that state, measured either as reward

obtained per unit time or reward obtained on transition from a state.

To measure overall system performability, wemust measure the quantum of work achievable in

a given interval or alternatively assess the rate the system can performwork, given the probabilities

of being in different states. We measure performability as the accumulated reward rate over a

specified time interval. If Z(t) is the system reward rate at time t, the expected instantaneous

reward rate is given by

E[Z(t)] = Σriπi(t) (7.3)
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where i ∈ S and πi(t) is the probability of being in a particular state and ri is the corresponding

reward at time t.

However a resource might visit infinitely large number of states during execution, making it

important to measure the expected steady-state reward rate of a given machine, which can be ex-

pressed as

E[Z] = Σriπi (7.4)

Combining these results (Equations 7.2 and 7.4) the performability of a set of resources depends

on the resources’ failure-to-repair ratio (reliability ρ) and the rewards associated (ri) with each state.

Performance. Let us assume that the application run time on a resource in High reliability state

is T time units. Earlier work has shown that the performance variation follows a normal distri-

bution [98]. Thus, we denote performance of the application in the other states as (T + n1x), (T +

n2x), (T +n3x), (T +n4x) units respectively. The parameters x, n1, n2, n3, n4 are performance degra-

dation factors used to capture the increase in the application’s execution time at lower reliability

levels. The increase in time in each state is given by ni ∗x. The parameter x is the constant degrada-

tion factor that is seen due to machine availability characteristics and is independent of the appli-

cation characteristics. The parameters n1, n2, n3, n4 captures the time increase experienced by the

application on the machine at degradation factor of x. The parameters n1, n2, n3, n4 have the unit of

time. In cyberinfrastructure deployments, the performance degradation factors will be determined

by historical information of the resource failure characteristics and benchmarking results of the ap-

plication on the resource. The reward rate indicates the performance level of the system within the

operation constraints (i.e. reliability level) of that state. Thus, we use the inverse of the time taken
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by an application in a particular state to denote the reward level in the state. This enables us to

capture the performance associated with various reliability levels.

If an application is in the “High” state the amount of work completed in unit time would be

greater than the work completed in the “Fair” state. For a particular application running on a

specific machine, the reward rate is the inverse of the running time in the state. If a machine is in

the “Good” state throughout, the applicationwould take (T+n1x) time units to finish or 1/(T+n1x)

work units would be completed per unit time. The expected reward rate is obtained by substituting

the performance reward rates in equation 7.4:

E[ZT ] =
1

T
π0 + Σ

1

T + nix
πi (7.5)

The inverse of the steady-state reward rate is the projected application execution time on degrad-

able systems and is given by:

Tprojected = 1/E[ZT ] (7.6)

Thus knowing the failure-to-repair ratio of a machine and the application’s behavior in different

reliability levels, we can predict the execution time of an application that accounts for the reliability

variations.

Cost Model. Today’s grid and cloud systems have different cost models associated with them.

On production grids (e.g., TeraGrid), users are allocated service units through an allocation review

process and service units are deducted from the quota for storage and processor usage. Systems
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such as Amazon EC2 charge users for data transfers and the instance hours used on the machines.

Both systems provide fixed pricing models for a given machine to all end-users and complete fail-

ures are handled through a refund process. However, the scale of these systems require differen-

tiated pricing models that account for dynamic service levels during execution. Thus cost models

on degradable systems need to correspond to the system state. We assume that the cost-rate (i.e.

cost per unit time) for a system in the High reliability state is given by c0. Correspondingly the

cost in the “Good”, “Medium”, “Low” and “Poor” states are given by c1, c2, c3, c4 units. Thus the

expected steady-state cost rate can be given by:

E[ZC ] =Σciπi (7.7)

where i ∈ S and πi is the steady state probability of being in a particular state and ci is the corre-

sponding cost rate in that state. Thus the expected steady-state total cost for an application is given

by

TotalCost =
1

E[ZT ]
∗ E[ZC ] (7.8)

An important question that arises in degradable systems is how does a resource provider set its

pricing such that it accounts for the variability in the system while making the prices competitive.

A consumer will use resources in a degradable state only if the total cost incurred by the application

is equal or lower in the degradable state. Thus for a given application,
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TotalCostPoor ≤ TotalCostLow...

≤ TotalCostHigh

where TotalCoststate is the total cost incurred by application when a resource is in the given state

during execution. Let us consider an example application with execution time T in the High relia-

bility state. At a cost-rate of c0 it would incur a total cost of T ∗ c0 in the High reliability state. The

same application would take (T + n1x) in the Good reliability state and hence cost (T + n1x) ∗ c1.

Thus for the pricing to be competitive, the Good reliability state must be priced as shown:

TotalCostGood ≤ TotalCostHigh

(T + n1x) ∗ c1 ≤ T ∗ c0

c1 = costFactor1
T ∗ c0

T + n1x

Thus, more generally the pricing in a given state is given by:

ci = costDegradationi

T ∗ c0

T + nix
(7.9)

where costDegradationi is the cost factor in state i. At costDegradationi = 1 the total cost to run an

application in state i is the same as the cost in the High reliability state even though the application

might take longer to complete. A costDegradationi < 1 gives the user an incentive to use the
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Parameter
Machines

A B C D
Application running
time T

30 min 30 min 25 min 15 min

Failure-to-repair rate ρ 0.1 0.4 0.4 0.6
Perform. x=2 0.033 0.032 0.038 0.055

Perform. x=100 0.031 0.0224 0.027 0.029

Effective cost rate 0.99 0.93 0.93 0.82

Total Cost at x=2 0.50 0.49 0.48 0.25
Total Cost at x=100 0.54 0.69 0.58 0.46

Table 7.1: Performability Example. Table shows performability and cost for different performance
model numbers and reliability characteristics where n1 = 1, n2 = 2, n3 = 3, n4 = 4

resources in degraded states. In deployments, a resource provider will use benchmark applications

to measure the degraded performance in the different system states to set the appropriate pricing.

7.1.3 An Example

As an example, consider an applicationwith different run times on differentmachines, as shown

in Table 1. We use example values for the failure-to-repair-rate (ρ) and performance degradation

factors (x, n1, n2, n3, n4) to study the variation in expected steady state reward rates. If we consid-

ered only performance, we would pick machine D as it completes the application most quickly. If

we were to select a resource based on reliability, we would pick machine A, the one with the lowest

failure-to-repair ratio.

Now let us calculate the performability for the application running on machine D at a degrada-

tion factor of x = 2 where T = 15, ρ = 0.6 and n1 = 1, n2 = 2, n3 = 3, n4 = 4 using equation 7.4
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E[Z] = Σriπi

= r0 ∗ π0 + r1 ∗ π1 + r2 ∗ π2 + r3 ∗ π3 + r4 ∗ π4

=
1

T
∗ (1 − ρ) +

1

T + n1 ∗ x
∗ ρ ∗ (1 − ρ) +

1

T + n2 ∗ x
∗ ρ2 ∗ (1 − ρ)

+
1

T + n3 ∗ x
∗ ρ3 ∗ (1 − ρ) +

1

T + n4 ∗ x
∗ ρ4 ∗ (1 − ρ)

=
1

15
∗ (1 − 0.6) +

1

15 + 1 ∗ 2
∗ 0.6 ∗ (1 − 0.6) +

1

15 + 2 ∗ 2
∗ (0.6)2 ∗ (1 − 0.6)

+
1

15 + 3 ∗ 2
∗ (0.6)3 ∗ (1 − 0.6) +

1

15 + 4 ∗ 2
∗ (0.6)4 ∗ (1 − 0.6)

= 0.027 + 0.014 + 0.008 + 0.004 + 0.002

= 0.055

For a low performance degradation factor (x=2), performance outweighs the importance of

the reliability, making machine D superior. However, at higher performance degradation factor

(x=100), machine A is a better choice than machine D.

Similarly we assign the cost rates in the different states to be c0 = 1, c1 = 0.9, c2 = 0.8, c3 =

0.7, c4 = 0.6 units/hr. We calculate the steady-state effective cost rate (using equation 7.7) that

assigns a basic rate for the resource accounting for its reliability characteristics. We see that machine

A has the highest cost rate whereas machine D has the lowest cost rate. Using the cost-rate and the

projected application running time we finally calculate the cost for the given application on the

given resources. At lower degradation factor, the cost on machine D is significantly less than the

cost on the othermachines. However as the degradation factor increases, the cost increases since the

applications are projected to take longer on the resource. At higher degradation factor of x = 100

the cost of application running on machine D is still the cheapest but the cost difference is minimal.



7. Performability Modeling 112

Thus, the combined analysis of performance and reliability and cost through the performability

metric helps resource selection decisions by considering multiple dimensions of resource behavior.

7.2 Workflow Planning for Performability

Complex scientific applications in distributed environments are composed as workflows where

each step is a parallel or sequential application with a specific programming model. These com-

plex applications are often run over a distributed set of resources that are selected based on the

performance of the applications on a resource and associated data movement costs [20]. Moreover,

workflows in domains such asmesoscalemeteorology [54] and storm surgemodeling [138] are time

sensitive and often require additional fault tolerance strategies to meet deadlines. Time sensitive

workflows are dependent on both high performance and reliability, making performability anal-

ysis critical. The first stage in workflow planning is a resource selection based on performability

characteristics and programming models. The second stage includes resource mapping to reduce

the makespan or cumulative workflow execution time and applying fault tolerance strategies to

increase the reliability. In this section, we discuss the implications of performability analysis on

workflow scheduling and fault tolerance strategies in greater detail.

7.2.1 Programming Models

Grid applications have different programming models that affect resource selection and fault

tolerance strategies (illustrated in Chapter 3). The effective system performability is the minimum

performability of its individual components. For example, a Master-Worker programming model

needs higher reliability for the master and the communication network connecting the master and

worker. Typically in the master-worker programming model, the masters are longer lived than the
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workers. The performability of the master can be considered to be the system performability for a

master-worker application.

E(M−W ) = Minimum (EMaster , EWorkers, ENetwork) = EMaster (7.10)

when TMaster >> TWorkers and TMaster >> TNetwork and TMaster and TWorkers is the running

time of the master and workers respectively, and TNetwork is the effective data transfer time on the

network links.

The Divide and Conquer model is an extended case of the master-worker paradigmwhere each

subtasks might spawn additional tasks. Typically, the higher the task is in the tree, the longer

the running time and the more critical is its performability. Hence extending the model from the

master-worker discussion, we can see that the performability of this programming model will be

the performability of the head of the chain.

In an SPMD computation, multiple sub-components operate on different pieces of data. The

subcomponents communicate with each other requiring the entire SPMD computation to be sched-

uled on resources that have similar performability characteristics. The performability of the SPMD

computation is: E(SPMD) = Minimum(Esystemcomponents).

7.2.2 Workflow scheduling

Heuristic techniques are typically used for workflow-level planning and scheduling [205]. Weights

are assigned to the nodes of the graph representing the computational needs of the task on partic-

ular resources. The edges are assigned values representing the communication (i.e. data transfer
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needs) between the adjacent tasks. By applying performability analysis at two levels - the compu-

tational resources and the network - we can obtain the application’s overall execution time given

the failure levels of resources it might encounter. This model can be expanded to model storage

and other resources as well. Specifically, using equations ( 7.1), ( 7.2) and ( 7.4) we can obtain the

expected accumulated reward rate for an application on the given resources. The projected appli-

cation running time that accounts for the performance variations during resource failures is given

by:

Tprojected = 1/E[Z](computation) (7.11)

where T(projected) is the projected application running time and E[Z](computation) is the performa-

bility of the computational elements.

In systems where application performance is unaffected by reliability levels, systems can be

considered to be perfect (i.e., ρ = 0 and thus from equation( 7.2), the probability of being in the

“High” state is one). Thus, the performability for an application would be 1/T and the projected

application running time would be T. Note that these are the performance estimates used in current

day workflow scheduling (i.e, no failures). Our model enhances existing mechanisms by providing

a more detailed estimate of the running time capturing performance variations across reliability

levels.

Next, we construct a Markov Rewardmodel for the network availability where the reward rates

are the inverse of the data transfer time at different availability and reliability levels. The failure-

and-repair rates would represent the availability and reliability of the network links between sites.

In this case, the projected data transfer time in presence of various reliability levels would be the
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inverse of the network performability.

Tprojected−data = 1/E[Z](communication) (7.12)

where Tprojected−data is the projected data transfer time based on the performability analysis, and

E[Z](communication) is the network performability.

Once these values are determined, traditional scheduling algorithms [188] can be applied to the

workflows and the schedule with minimum makespan can be selected for the workflow execution

plan (more details in Chapter 9).

7.2.3 Fault Tolerance Strategies

As discussed earlier, some workflows such as weather forecasting are time sensitive and must

meet deadlines for the forecast to be useful. In these cases, users often specify a deadline for work-

flow completion. When considering the makespan, it is possible to judge whether this deadline

can be met by using the projected workflow completion time. Often the composite system reliabil-

ity can be enhanced by applying additional fault tolerance strategies. Two commonly used fault

tolerance strategies are replication and checkpoint-restart; each with different trade-offs. Given

unlimited resources, all components could be replicated to increase effective reliability without

affecting performance. In practice, users will incur costs on application runs (e.g. service units

spent in TeraGrid or cost of resource time on Amazon EC2), necessitating a balance between per-

formance and reliability. On the other hand, checkpoint-restart guarantees a very high level of

reliability (probability of successful completion is almost 1) but at the cost of performance degra-

dation due to checkpoint overheads. We use a simple cost-model and the performability analysis

presented earlier to determine if a fault tolerance strategymight improve system performability for
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an application

Consider the cost of replication to be the lost time on the resources that could have been used

by another application. Further assume that an application is replicated on a resource with similar

performability. The cost of replication (CR) can be represented as:

CR = Tprojected ∗ n (7.13)

where n is the number of replicas and Tprojected is the application running time from the per-

formability analysis. Similarly, the cost of checkpoint-restart (CCR) is represented as

CCR = Ccheckpoint + Crestart−on−failure (7.14)

Ccheckpoint = Cper−checkpoint ∗ Tprojected/Tinterval (7.15)

where Tprojected is the application running time from the performability analysis, and Tinterval rep-

resents the optimal checkpoint interval to meet the performability level. Replication will be the

preferred fault-tolerance strategy if CR < CCR.

We present a more detailed analysis of the optimal fault tolerance strategy in Section 7.3 for

different application running times. Once the fault tolerance strategy is determined performability

modeling can be used to recalculate the projected application running time from the model above.

Specifically, these values will then be used to estimate task completion times during each iteration

of the workflow scheduling algorithm as shown below.

Case 1: Checkpoint-restart. In this case Tprojected−FT will be the new expected running time (ρ = 1)

calculated as Tprojected−FT = Tprojected + Ccheckpoint + Crestart−on−failure.
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Case 2: Replication. In replication, if the resources that are used for replication are similar, the

Tprojected−FT is obtained by the performability analysis described (where ρ = 1 − π(1 − ρi) and

i ∈ 1, n) .

7.3 Evaluation

It is critical to understand both the application’s characteristics and resource behavior when

considering a resource for scheduling or making fault tolerance decisions. We present results col-

lected from the execution of a scientific application on TeraGrid that highlight the variability in

application running time in Section 7.3.1. In Section 7.3.2, we present experimental data from a set

of meteorological and ocean modeling applications [138] that are subjected to simulated interfer-

ences to degrade resource reliability, with consequent changes in observed performance. The ex-

perimental data is then provided as input to our performability model and analyzedwith respect to

varying failure-to-repair ratios. We study the effect of application running time and performance

degradation factor(x, ni) on application performability at different failure-to-repair ratios in Sec-

tion 7.3.3. We evaluate the various parameters affecting the fault tolerance strategy for applications

in Section 7.3.4.

7.3.1 Application Performance Variability

Figure 7.2 shows histograms of application running times of WRF (a weather prediction code,

see Table 7.2) on two TeraGrid NCSA clusters observed over two weeks. Mercury is an IBM IA-64

cluster with amixture of 1.3GHz and 1.5GHz Intel Itanium 2 processors and Tungsten is a collection

of Dell PowerEdge 1750 servers with Intel Xeon 3.2GHz processors. The data presented consists

of 132 runs on Mercury and 77 runs on Tungsten. On mercury a large number of application runs
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Name Application Description
arps2wrf Generates initial and lateral

boundary conditions for WRF.
wrfstatic Processes static data sets such as

terrain, vegetation, soil texture, etc
that serves as input for a meteoro-
logical model WRF.

adcirc Finite element hydrodynamic
model for storm surge modeling
(run on 64 processors)

wrf Mesoscale numerical weather pre-
diction system (run on 128 proces-
sors)

Table 7.2: Application Descriptions. The table provides a bried description of the application codes
from weather and ocean modeling that we use for our experiments.

(a) (b)

Figure 7.2: Application Performance Variation. Figure shows the running time variability observed
for WRF over TeraGrid machines (a) Mercury (b) Tungsten.
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Figure 7.3: Effects of Failure Levels on Applications. The projected application running time for
meteorological and ocean modeling applications (a) Short running - arps2wrf, wrfstatic (b) Long
running - wrf, adcirc.

take around 103 minutes. However 27% of observations fall outside this range. On Tungsten most

run times are distributed from 150 to 170 minutes. This variation of 20 minutes can significantly

impact workflow planning strategies. Workflow scheduling needs to account for this variation

while mapping applications to resources especially for deadline-sensitive applications.

7.3.2 Effect of Failure Levels on Applications

In this section, we present experimental data on application running times induced with sim-

ulated failure levels. Table 2 provides brief application descriptions, which consist of a mix of

single-node preprocessing applications and message-passing-interface (MPI) multiprocessor jobs.

We subject the applications to simulated availability stress tests that affect memory, cpu and net-

work bandwidth (for the MPI jobs). A matrix multiplication, a program blocking memory and Test

TCP (TTCP) benchmarking tool [180] were run individually and then in combination during ap-

plication execution. Data for single node jobs were collected on a 35 node Linux cluster with Intel

Xeon processors running at 3.2 GHz (cluster 0) and on a 70 node Dell PowerEdge cluster, where

each node has 2 x 2.66Ghz Intel Woodcrest 5150 (dual core) processors (cluster 1). Data for wrf and
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adcirc was collected on the Dell PowerEdge cluster (cluster 1).

The application running times at different failure levels are then substituted in our model (Sec-

tion 7.1) to study the performability under different failure-to-repair rates. In this experiment, we

make a assumption that considers performance levels in the Good and Medium levels to be iden-

tical for MPI jobs and Poor and Low states to be identical for the single-node and MPI jobs. This

simplifying assumption is appropriate since all systems might not exhibit all failure states and cor-

responding performance fluctuations. Figure 7.3(a) shows the projected application running time

for arps2wrf and wrfstatic on both clusters. Both applications perform better on cluster 1, how-

ever the execution time of wrfstatic on cluster1 is affected more than on cluster0 when subjected

to failures. Similarly arps2wrf on cluster0 is affected at higher values of failure-to-repair rate. We

compare wrf and adcirc (Figure 7.3(b)) which have similar running time (on different number of

processors), as the failure-to-repair rates increase we see that wrf is more affected than adcirc. Thus

we see that different failures modes and underlying hardware characteristics have an impact on

applications.

7.3.3 Factors affecting Performability

In this section, we consider more general cases of application running time to explore the pa-

rameter space. Figure 7.4 shows the expected steady state reward rate with varying values of

failure-to-repair rates for performance degradation factors x=2 and x=70 for a range of application

running times (20 -140 minutes), that are typical of grid applications. At x=2 (Figure 7.4(a)), and for

application running time of 20 minutes we see that the performability does not change for smaller

values of ρ but decreases significantly for large values of ρ. At x=70 (Figure 7.4(b)), the performa-

bility decreases almost linearly for application running time of 20 minutes. As the application

running time increases, the expected reward rate stays constant for larger values of ρ. Workflows
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Figure 7.4: Study of Performance with Availability Variations. The expected steady-state reward
rate for different application run times with performance degradation factors n1 = 1, n2 = 2, n3 =
3, n4 = 4 (a) x = 2 and (b) x = 70.
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typically consist of a mix of jobs with different running times. From this analysis we see that longer

running components might be less sensitive to ρ allowing more scheduling alternatives than the

more sensitive components (low running times) that might need to be run on specific machines. A

workflow algorithm in the future might account for these characteristics when optimizing resource

choices for workflow tasks. This can help minimize costs in workflow planning. Although generic

metrics like MTTF and MTTR can indicate the general suitability of resources, it is critical to con-

sider the application’s running time in making resource selection decisions. At small values of ni

the performability decreases linearly. At higher values of ni the decrease is more rapid as resource

reliability decreases (Figure 7.5). For large values of ni (i.e. performance difference between the

High and other states is significant) the performability decreases linearly.
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7.3.4 Fault Tolerance Strategies

Fault tolerance strategies depend on application and resource characteristics. To determine a

fault tolerance strategy associated costs for each technique must be considered. The most com-

monly used fault tolerance strategies are replication and checkpoint-restart. From our earlier anal-

ysis, the system will replicate if the cost of replication is lower than the cost of checkpoint-restart:

CR < CCR.

Figure 7.6 shows the cost of fault tolerance strategies for different replication factors and check-

point intervals. Replication is more cost effective for smaller application running times. If we

checkpoint too frequently, the cost of checkpoint-restart increases, as expected. If the checkpoint

interval is very low (i.e, 0.5 minutes) the cost of checkpoint-restart is significantly higher and repli-

cating twice is more cost-effective. Thus, we can apply a fault tolerance strategy and select appro-

priate values for the replication factor and checkpoint-interval to minimize cost while increasing

performability. If the application is very critical and the cost of replication and checkpoint-restart

is immaterial both strategies might also be used simultaneously

7.4 Summary

In this chapter, we presented a framework that provides a basis to evaluate the performance

of distributed resources in the presence of failures. We explore the trade-offs of performability on

resource selection and fault tolerance strategies appropriate for different programming models of

scientific applications. The joint treatment of performance and reliability using performability anal-

ysis through Markov Models lays the foundation for next generation dynamic workflow schedul-

ing and fault tolerance strategies required in grid and cloud environments. The performability

model provides a generic framework that allows plug-and-play of resource behavior to study the
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variation in QoS and its effect on performability guarantees to the application. We explore one such

approach in using the performability model for workflow scheduling in Chapter 9. As more dis-

tributed resource deployments make available underlying resource reliability information, work-

flow planning components will be able to use that information with application characteristics for

appropriate workflow planning and resource management decisions.



8

Resource Layer

Grid and cloud computing systems have evolved to provide different abstractions at the re-

source layer. We compared and contrasted the different resource models and their interfaces and

capabilities in Chapter 3. Each system provides different types of access, cost modeling and Quality

of Service(QoS) capabilities. The resource layer is responsible for interacting with these different

systems to support mechanisms that can balance the needs of both resource providers and con-

sumers.

Resource provider sites should have autonomy to control how much of each resource type they

allocate to each consumer at any given time. Resource consumers need predictable service quality

(performance isolation and reliability expectation) even in the presence of competition for shared

resources. Service quality is especially crucial for urgent computing applications such as weather

prediction and disaster response.

In this chapter, we explore the resource layer abstractions, interfaces and interactions across

different resource systems. Specifically,

• We propose a hosting model in which independent, self-contained middleware deployments

125
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run within isolated containers on shared resource provider sites. Sites and hosted environ-

ments interact via an underlying resource control plane to manage a dynamic binding of

computational resources to containers. Central to the hosting model is GROC (Grid Resource

Oversight Coordinator). GROC is an implementation of resource coordinator that manages

the dynamic containers (i.e., instances of slots) for the end user. The resource coordinator

interacts with the resource mechanisms at the sites to query, procure a dynamic binding of

resources. Our implementation is built with Shirako, a leasing framework for cluster sites

and the hosted middleware is Globus middleware. However, the design and architecture are

more widely applicable to cloud sites.

• We also propose the lowest-common-denominator probabilistic Quality of Service (QoS) ab-

stractions atop grid and cloud services that enables providers to quantify the variation in

resource availability in probabilistic measures. Users of both grid and cloud environments

cannot expect strong QoS assurances since they experience reliability variations due to hard-

ware and software failures and availability fluctuations from shared user environments. The

probabilistic abstractions allows resource providers to realistically quantify the level of ser-

vice.

The proposed resource layer abstractions in this chapter enables higher level tools to assess re-

source status and implement higher level policies and techniques to meet user needs (more details

in Chapter 9).

The rest of this chapter is organized as follows. We discuss the dimensions to resource control

policy in grid and cloud systems. We present the container based hosting model in Section 8.2 and

discuss the resource co-ordinator’s functions and roles in greater detail in Section 8.3. We discuss

our probabilistic QoS model in greater detail in Section 8.4.1. Finally we evaluate the container

hosting model and the probabilistic resource acquisition mechanisms in Section 8.5.
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8.1 Resource Control Policy

In grid systems, user communities, or virtual organizations (VOs), generate streams of jobs to

execute on shared resource sites, e.g., cluster farms. Similarly, cloud clients or SaaS (Software as

a Service) providers generate streams of resource requests. Cluster sites and data centers provide

computational resources to these virtual organizations. We refer to the entities that generate the

jobs as application managers. The term denotes a domain-specific entry point to a set of distributed

resources; VO users may submit jobs through a portal framework or gateway, a workflowmanager,

or a simple script interface. Figure 8.1(a) depicts an example of a standard Globus grid with two

VOs executing on two sites. A VO’s application manager submits each task to a “gatekeeper” at

one of the sites, which validates it and passes it to a local batch scheduling service for execution.

There are four key aspects to resource control policy in such a system:

• Resource allocation to VOs. The sites control their resources and determine how to allocate

them to serve the needs of the competing user communities. A site may assign different

shares or priorities to contending VOs, and/or may hold resources in reserve for local users.

• Resource control within VOs. VOs determine the rights and powers of their users with respect

to the resources allocated to the VO.

• Task routing. The application managers for each VO determine the routing of tasks to sites for

timely and efficient execution.

• Resource recruitment. Entities acting on behalf of the VOs negotiate with provider sites for

resources to serve the VO’s users.

Grid sites such as TeraGrid and Open Science Grid implement their own resource allocation poli-

cies as job-level policies within the batch schedulers in current practice in grid systems. A scheduler



8. Resource Layer 128

V O j o b s
V O j o b s

V O j o b s
V O j o b s( a ) ( b )

G R O C G R O CA M A MA M A M
Figure 8.1: Two Architectural Alternatives for Serving Multiple User Communities, or VOs. In
(a), the VOs’ application manager (AM) submit jobs through a common gatekeeper at each site;
job scheduling middleware enforces the policies for resource sharing across VOs. In (b), each VO
runs a private grid within isolated workspaces at each site. Isolation is enforced by a foundational
resource control plane. Each VO grid runs a coordinator (GROC) that controls its middleware and
interacts with the control plane to lease resources for its workspaces.

may give higher priority to jobs from specific user identities or VOs, may export different queues

for different job classes, and may support job reservations. Resource recruitment is based primarily

on reciprocal and social agreements requiring human intervention; a recent example is the notion

of right-of-way tokens in the SPRUCE [14] gateway extensions for urgent computing. Most cloud

deployments have static resource allocation policies. Currently, Amazon EC2 allows users to reg-

ister on the website and access upto 20 machine instances. Additional instance requests must be

pre-approved through out-of-band communication. Many current deployments also rely on ad hoc

routing of tasks to grid sites, given the current lack of standard components to coordinate task rout-

ing. However for next-generation dynamic application environments it is critical that the software

stack has mechanisms to represent and enforce these four dimensions of resource control.
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8.2 Container Hosting Model

Figure 8.1(b) depicts the architectural model we propose for hosted grids with container-level

resource control. Each site instantiates a logical container for all software associated with its host-

ing of a given VO. The container encapsulates a complete isolated computing environment or

workspace [88] for the VO grid’s point-of-presence at the site, and should not be confused with

the individual JVMs that run Java components at the site. Each VO grid runs a separate batch task

service within its workspace. The site implements resource control by binding resources to con-

tainers; the containers provide isolation, so each instance of the batch scheduler only has access to

the resources bound to its container, and not other resources at the site. Condor-G “gliding-in” [67]

provides similar mechanisms to instantiate appropriate Condor services in Globus based batch

queue systems. Similar mechanisms are also available in the Virtual Grid Execution System (vgES)

to enable slots on grid and cloud systems (discussed in Chapters 3 and 10). However Condor-G

and vgES does not address dynamic container resizing that is addressed in the container model we

propose in this chapter.

Thus we propose integrating resource control functions at two different levels of abstraction:

jobs and containers. Jobs —individual independent tasks or tasks in a workflow—are the basic unit

of work for high-throughput computing, so middleware systems for clusters and grids focus on job

management as the basis for resource control. Our premise is that the architecture should also in-

corporate resource control functions at the level of the logical context or “container” within which

the jobs and the middleware services run. Advances in virtualization technologies—including

but not limited to virtual machines—create new opportunities to strengthen container abstractions

as a basis for resource control and for isolation and customization of hosted computing environ-

ments [33, 83, 88, 172, 173].
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In essence, in our container model we propose a “Grid” comprising a set of autonomous re-

source provider sites hosting a collection of independent “grids”:

• Each grid serves one or more communities; we speak as if a grid serves a single VO, but our

approach does not constrain how a hosted grid shares its resources among its users.

• Each grid runs a private instance of its selected middleware to coordinate sharing of the data

and computing resources available to its user community.

• Each grid runs within a logically distributed container that encapsulates its workspaces and

is bound to a dynamic “slice” of the Grid resources.

In this chapter, we show how hosted grids can negotiate with the resource control plane to

procure resources across grid sites in response to changing demand. We present the design and

implementation of a prototype system based on the Shirako [83] toolkit for secure resource leasing

from federated resource provider sites. Cluster sites are managed with Cluster-on-Demand [33]

and Xen virtual machines [13]; the hosted grid software is based on the Globus Toolkit (GT4) [58].

Within this supporting infrastructure, we explore coordinated mechanisms for programmatic, au-

tomatic, service-oriented resource adaptation for grid environments.

8.2.1 Resource Coordinator

While the sites control how they assign their resources to each hosted grid, the grids control the

other three policies internally. We propose that each hosted grid include a coordinating manager,

which we will call the GROC—a loose acronym for Grid Resource Oversight Coordinator.1 The

1The novelist Robert Heinlein introduced the verb grok meaning roughly “to understand completely”. The verb
“groak” [27] originally was used to refer to watching people silently while they eat, hoping they will ask you to join them. Both
meanings have significance here. The name GROC emphasizes that each hosted grid has a locus of resource policy that op-
erates with a full understanding of both the resources available to the grid and the grid’s demands on its resources. GROC
also actively watches the resources and can opportunistically procure them.
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GROC performs two interrelated functions, which are explained in detail in Section 8.3:

• The GROC is responsible for advising application managers on the routing of tasks to sites. In

this service brokering role the GROC can be called a metascheduler or superscheduler.

• The GROC monitors the load and status of its sites (points of presence), and negotiates with

providers to grow or shrink its resource holdings. It may resize the set of batch worker nodes

at one or more sites, set up new grid sites on resources leased from new providers, or tear

down a site and release its resources.

The GROC thus serves as the interface for a VO applicationmanager tomanage and configure its

resource pool, and may embody policies specific to its application group. Crucially, our approach

requires no changes to the grid middleware itself. Our prototype GROC is a service built atop the

Shirako and Globus toolkits and it is the sole point of interaction with the underlying resource

control plane.

8.2.2 Resource Control Plane

The GROC uses programmatic service interfaces at the container-level resource control plane

to acquire resources, monitor their status, and adapt to the dynamics of resource competition or

changing demand. The control plane is based on the SHARP [68] leasing abstractions as imple-

mented in the Shirako toolkit [83]. Each lease represents a contract for a specified quantity of typed

resources for some time interval (term). Each resource provider runs a local resourcemanager called

Cluster-on-Demand (COD [33]), and exports a service to lease virtual clusters from a shared server

cluster. Each virtual cluster comprises a dynamic set of nodes and associated resources assigned

to some guest (e.g., a VO grid) hosted at the site. COD provides basic services for booting and
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imaging, naming and addressing, and binding storage volumes and user accounts on a per-guest

basis.

The GROC interacts with the site to configure its virtual clusters and integrate them into the

VO’s grid (Section 8.3.4). When the lease expires, the grid vacates the resource, making it available

to other consumers. The site defines local policies to arbitrate requests for resources from multiple

hosted grids. In our prototype the leased virtual clusters have an assurance of performance iso-

lation: the nodes are either physical servers or Xen [13] virtual machines with assigned shares of

node resources. In our implementation we use Xen VMs because they boot faster and more reliably

than physical servers, but the concept applies equally to physical servers.

8.2.3 Separation of Concerns

While the hosted VOs and their grid middleware retain their control over job management, the

GROC managers interact with the resource control plane to drive the assignment of resources to

VOs. The assignment emerges from the interaction of GROC policies for requesting resources and

the resource provider policies for arbitrating those resource demands. In effect, the architecture

treats the grid nodes and their operating systems as managed entities. Provider sites allocate re-

sources to workspace containers without concern for the details of the middleware, applications,

or user identities operating within each workspace isolation boundary.

Grid hosting with container-level management is particularly important as the grid evolves

toward a stronger separation between resource providers and consumers. TeraGrid and Open Sci-

ence Grid are examples of the growth of large infrastructure providers in the academic community.

A similar trend has been observed in industry from cloud offerings through Amazon, Google, Mi-

crosoft, etc. They signal a shift from a traditional emphasis on reciprocal peer-to-peer resource

sharing within VOs to a new emergence of resource providers that serve computational resources
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to multiple competing user communities or VOs. Containment and container-level management

also enable resource providers to serve more diverse needs of their VOs. A resource provider site

can host different grid stacks or other operating software environments concurrently.

Our approach assumes that the grid middleware can adapt to a dynamically changing set of

worker nodes at the sites. In fact, adaptation is always required in a dynamic world: compute

servers may fail or retire, and provider sites deploy new servers in response to bursts of demand or

funding. With a container based hosting model, grids and clouds may grow dynamically to use ad-

ditional resources as they become available. One limitation is that batch services often do not have

adequate support to checkpoint or reschedule nodes when worker nodes fail or shutdown. Check-

pointing, replication and migration continue to be active research topics, and these capabilities are

increasingly crucial for long-running jobs in a dynamic world. We investigated the tradeoffs in-

volved with checkpoint-restart and replication for applications in dynamic resource environments

that can be applied to long jobs running in Chapter 7. These principles are applicable to jobs run-

ning within a container. Further investigation of these topics during runtime execution is outside

the scope of this work.

8.3 GROC

We present the design and implementation of a prototype system that coordinates dynamic

resource leasing and task routing, based on the grid hosting architecture outlined above. Our pro-

totype uses the standard Globus Toolkit (GT4) for resource management within each hosted grid:

job management, resource discovery, identity management and authorization, and file transfer.

Dynamic resource leasing is based on Shirako, a service-oriented toolkit for constructing SHARP

resource managers and COD cluster sites [83].
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Figure 8.2: GROC Components. Overview of components for a GROC managing a VO grid hosted
on virtual clusters leased from multiple cluster sites. The application manager interacts with
Globus services, instantiated and managed by the GROC, for job and data management.

Figure 8.2 illustrates the interactions among the most important components within a hosted

grid, as implemented or used in the prototype.

• The nucleus of the hosted grid is the GROC, which orchestrates task flow and resource leasing.

The GROC is the point of contact between the Globus grid and the Shirako resource control

plane.

• The application managers (e.g., portals) control the flow of incoming job requests. They con-

sult the GROC for task routing hints (Section 8.3.2), then submit the tasks to selected sites.

• AGlobus ResourceAllocationManager (GRAM) runs on amaster node (head node) of a virtual

cluster at each provider site, acting as a gatekeeper to accept and control tasks submitted for

execution at the site.

• The application managers interact with a secure staging service on each head node to stage

data as needed for tasks routed to each site, using Reliable File Transfer (RFT) and Grid File
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Transfer Protocol (GridFTP).

• When a task is validated and ready for execution, GRAM passes it to Torque, an open-source

batch task service incorporating the Maui job scheduler.

• The GROC receives a stream of site status metrics as a feedback signal to drive its resource re-

quests (Section 8.3.1). Each site exposes its status through a GlobusMonitoring and Discovery

Service (MDS) endpoint.

• The GROC acts as a Shirako service manager to lease resources on behalf of the VO; in this

way, the GROC controls the population of worker nodes bound to the hosted grid’s batch task

service pools (Section 8.3.3). The GROC seamlessly integrates new worker nodes into its grid

(Section 8.3.4) from each site’s free pool.

The following subsections discuss the relevant aspects of these components and their interac-

tions in more detail.

8.3.1 Site Monitoring

In our prototype, the GROC acts as a client ofWS-MDS (aweb service implementation of MDS in

GT4) to obtain resource status at each site, including the number of free nodes and the task queue

length for each batch pool. The WS-GRAM publishes Torque scheduler information (number of

worker nodes, etc.) through the MDS aggregator framework using the Grid Laboratory Uniform

Environment (GLUE) schema. MDS sites may also publish information to upstreamMDS aggrega-

tors; in this case, the GROC can obtain the status in bulk from the aggregators.

The GROC queries the MDS periodically at a rate defined by the MDS poll interval. The poll

interval is a tradeoff between responsiveness and overhead. We use a static poll interval of 600
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ms for our experiments. The results of the site poll are incorporated immediately into the task

routing heuristics. A simple extension would use MDS triggers to reduce the polling, but it is not a

significant source of overhead at the scale of our implementation.

8.3.2 Task Routing

A key function of the GROC is to make task routing recommendations to application managers.

The GROC factors task routing and other resource management functions out of the application

managers: one GROC may provide a common point of coordination for multiple application man-

agers, which may evolve independently. The task routing interface is the only GROC interface used

by a grid middleware component; in other respects the GROC is non-intrusive.

To perform its task routing function, the GROC ranks the sites based on the results from its site

poll and a pluggable ranking policy. Information available to the policy includes cluster capacity

at each site, utilization, and job queue lengths. In addition, the policy module has access to the

catalog of resources leased at each site, including attributes of each group of workers (e.g., CPU

type, clock rate, CPU count, memory size, interconnect).

The coordinating role of the GROC is particularly important when multiple user communities

compete for resources. The GROC maintains leases for the resources held by the VO grid: its task

routing choices are guided by its knowledge of the available resources. Since it observes the com-

plete job stream, it can also make informed choices about what resources to request to meet its

demand.

The goal of our work is to evaluate the hosting architecture, rather than to identify the best

policies. Our prototype policy considers only queue length and job throughput for homogeneous

worker nodes. More sophisticated techniques such as batch queue prediction [125] can be used for
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job start predictions within the container. Also, we do not consider data staging costs. Job routing

in our prototype uses a simple load balancing heuristic. It estimates the aggregate runtime of the

tasks enqueued at each site, and the time to process them given the number of workers at each site.

It selects the site with the earliest expected start time for the next job.

8.3.3 Resource Leasing

In the absence of support for resource leasing, the GROC could act as a task routing service for

a typical grid configuration, e.g., a set of statically provisioned sites with middleware preinstalled

and maintained by administrators at each site. In our system, the GROC can also use the resource

control to change the set of server resources that it holds. The GROC invokes Shirako’s program-

matic resource leasing interface to acquire and release worker nodes, monitor their status, and/or

instantiate points of presence at new cluster sites when resources are available and demand exists.

This control is dynamic and automatic.

The GROC seeks to use its resources efficiently and release underutilized resources by shrinking

renewed leases or permitting them to expire. This good-citizen policy is automated, so it is robust

to human failure. An operator for the VO could replace the policy, but we presume that the VO

has some external incentive (e.g., cost or goodwill) to prevent abuse. Note that our approach is

not inherently less robust than a conventional grid, in which a greedy or malicious VO or user

could, for example, submit jobs that overload a site’s shared storage servers. In fact, the leased

container abstraction can provide stronger isolation given suitable virtualization technology, which

is advancing rapidly.

The GROC uses pluggable policies to determine its target pool sizes for each site. In Section 8.5.1,

we define the policies used in our experiments. The prototype GROC uses a predefined preference

order for sites, which might be based on the site’s resources or reputation, peering agreements,
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and/or other factors such as cost. Similarly, the sites implement a fixed priority to arbitrate re-

sources among competing GROCs.

8.3.4 Configuring Middleware

Typically, grid middleware is configured manually at each site. One goal of our work is to show

how to use Shirako/COD support to configure grid points of presence remotely and automatically.

The responsibility—and power—to manage and tune the middleware devolves to the VO and its

GROC, within the isolation boundaries established by the site. This factoring reduces the site’s

administrative overhead and risk to host a grid or contribute underutilized resources, and it gets

the site operators out of the critical path, leaving the VOs with the flexibility to control their own

environments.

Configuration of a COD node follows an automated series of steps under the control of the

Shirako leasing core. When a site approves a lease request for new worker nodes, the GROC passes

a list of configuration properties interpreted by a resource-specific plugin setup handler that executes

in the site’s domain. The setup handler instantiates, images, and boots the nodes, and enables key-

based SSH access by installing a public key specified by the GROC. It then returns a lease with unit

properties for each node, including IP addresses, hostnames, and SSH host keys. The GROC then

invokes a plugin join handler for each node, which contacts the node directly with key-based root

access to perform an automated install of the middleware stack and integrate the node into the

VO’s grid. Similarly, there is a teardown handler that reclaims resources (e.g., machines), and a leave

handler that cleanly detaches resources from the middleware stack. To represent the wide range

of actions that may be needed, the COD resource driver event handlers are scripted using Ant [6],

an open-source OS-independent XML scripting package. We implemented join and leave handler

scripts to configure the middleware components shown in Figure 8.2.
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To instantiate a point of presence at a new site, the GROC first obtains separate leases for a

master node (with a public IP address) that also serves as a scratch storage server for data staging. It

instantiates and configures the Globus components, Torque andMaui on the master, and configures

the file server to export the scratch NFS volume to a private subnet block assigned to the virtual

cluster. When a new worker node joins, the join handler installs Torque and registers the worker

with the local master node. The join handler for the master configuration is about 260 lines of Ant

XML, and the worker join handler is about 190 lines.

Our prototype makes several concessions to reality. It assumes that all worker nodes are reach-

able from the GROC. It is possible to implement a proxy that handles the worker join operations

through the public head node for each virtual cluster so that workers may use private IP addresses.

This work is outside the scope of this thesis. The setup attaches a sharedNFS file volume containing

the Globus distribution to each virtual cluster node, rather than fetching it from a remote reposi-

tory. For the sake of simplicity, all the hosted grids use a common certificate authority (CA) that

is configured using Globus’s SimpleCA, although there is nothing in the architecture or prototype

that prevents the hosted grids from each using a private CA. Interaction with the CA is not yet au-

tomated; instead, the GROC has preconfigured host certificates for the DNS names that its master

nodes will receive for each potential site that it might use. Our implementation also uses a set of

common user identities that are preconfigured at the sites. Finally, we prestage all applications and

data required by the VO’s users when we instantiate the site.

We use the default First Come First Served (FCFS) scheduling policies for Torque/Maui, but the

GROC is empowered to set policies at its points of presence as desired. Thus, the application man-

ager is able to rely on the VO’s GROC to implement policies and preferences on how its available

resources might be used by different members of the community, and to adapt these policies as the

resource pool size changes.
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8.3.5 Robustness

The GROC is stateless and relies on recovery mechanisms in Shirako, which maintains all lease

state in a local LDAP repository. If a GROC fails, it will recover its knowledge of its sites and

resource holdings, but it will lose its history of task submissions and the MDS feedback stream

from the sites. Once recovered, the GROC maintains its existing leases and monitors grid operation

for a configurable interval before adjusting its lease holdings. Reliable job submission and staging

are handled using existing Globus mechanisms that do not involve the GROC.

As noted in Section 8.2.3, robust grid services must be capable of restarting jobs when nodes fail

or leave the service. In our approach, nodes may depart due to resource competition, as governed

by the site policies and the GROC interactions with the dynamic resource control plane. Although

the GROC has advance warning of node departures, the Torque batch service in our current pro-

totype is not able to suspend or migrate tasks running on those nodes; thus some tasks may be

interrupted. We believe that support for virtual machine checkpoint/migrate is a promising path

to a general solution. Xen supports live VM migration, but we do not explore its use for robust

adaptation.

8.3.6 Security

The important new security requirement of our architecture is that each GROC must have a se-

cure binding to each of its candidate hosting sites. Each SHARP actor has a keypair and digitally

signs its control actions. To set up the trust binding, there must be some secure means for each site

and GROC to exchange their public keys. Other related systems that delegate policy control to a

VO, or a server (such as a GROC) acting on behalf of a VO, also make this assumption. Examples in-

clude the VOMembership Service (VOMS) [1] and Community Authorization Service (CAS) [134].
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Similarly, Amazon EC2 uses X.509 certificate for authentication to their cloud systems [5].

One solution is to designate a common point of trust to endorse the keys, such as a shared cer-

tificate authority (CA). Although each grid selects its own CA to issue the certificates that endorse

public keys within the grid, the provider site authorities exist logically outside of the VO grids in

our architecture. Thus reliance on a common CAwould presume in essence that the public key cer-

tificate hierarchy (PKI) extends upwards to include a common CA trusted by all resource provider

sites and all hosted grids. An alternative is to rely on pairwise key exchange among the sites and

VO operators. In this prototype the public keys for the brokers and GROC s are installed through a

manual operator interface.

To instantiate a new site point of presence, the GROC passes the gateway host certificate and

private key in an encrypted connection during join. Note, however, that the GROC cannot hide

the site private keys used by its middleware from the hosting resource provider, since the resource

provider knows the private SSH key of each leased node. There are many ways that a malicious

resource provider can subvert or spy on its guests. However, our implementation is not inherently

less secure than grid and cloud sites today.

8.3.7 Summary

The GROC coordinates container-level functions such as resource leasing and configuration and

guides task routing decisions. The GROC enables the higher-level application tools to focus on

job and data management and abstracts the resource-level variations through the container. The

evolution of computing models such as cloud computing and the variability in these distributed

resources requires a concrete representation of resources and their properties that is facilitated by

the container representation. In Section 8.4.1 we discuss the resource properties associated with the

container model that represent its QoS properties.
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8.4 Probabilistic QoS Model

Resource providers often implement policies that balance different customer needs that result in

variability of guarantees. For example, in a leasing or cloud system, a broker may oversubscribe re-

source requests to minimize idle time. Similarly, in batch systems services such as QBETS [125] and

VARQ [126] provide probabilistic bounds on when a job or a reservation will start. Thus resource

contracts are often not designed to be “strong”. In addition, hardware and software services have

failure characteristics that the user needs to know about in advance of resource procurement. Thus

we propose a probabilistic QoS model in which resource providers can make a promise within a

certain guarantee - e.g., a resource provider can say that there is a 95% chance that a user’s resource

request can be met and a 99% chance the resource will stay up during the allotted time.

Our probabilistic QoS model provides a ”least-common denominator model” that abstracts out

the differences from the resource models, i.e. grid and clouds. The abstraction captures the com-

mon key elements across the systems and allows the higher-level mechanisms (e.g. scheduling) to

work with different resource models and underlying policies. This is analogous to the IP hourglass

model used in computer networks, where irrespective of the specific protocols in the application

layer or transport layer, the only protocol used for passing data packets is the IP.

The core of the probabilistic QoS model is the slot abstraction. The slot abstraction is the center

of the interaction model between the two layers. The concept of decoupled resource selection and

scheduling [205] and the slot abstraction [83, 163] has been discussed earlier. A slot is a term used

to refer to resource units assigned by a resource provider for a specified duration to the consumer

which have a set of properties.

Our QoS abstraction allows the higher-level stack to abstract out existing site mechanisms and
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policies including underlying scheduling systems and plan for the uncertainty. This does not af-

fect the resource procurement and execution system interaction with underlying systems. Other

systems like the virtual grid execution system [90] provide interfaces to abstract the differences

in execution system. Thus probabilistic guarantees help resource providers maintain QoS while

anticipating unexpected load, utilization and other runtime factors.

We discuss probabilistic resource procurement in Section 8.4.1. We define the properties re-

quired on the slot abstraction for our QoS model in Section 8.4.2 . In Section 8.4.3 we discuss the

cost models associated with the slots under different resource systems.

8.4.1 Probabilistic Resource Procurement

Explicit resource control is possible in today’s batch systems through offline or online advanced

reservations that allow users to specify a fixed start time at higher costs. Thus advanced reserva-

tions yield resource slots that have guaranteed start and end times and probability of procurement

very close to one. We use VARQ (Virtual Advanced Reservations for Queues) [126] based resource

slots to determine if effective workflow orchestration is possible without explicit resource control

in batch systems. A virtual advanced reservations obtained through VARQ is an instance of the re-

source slot abstraction with probabilistic bounds on obtaining a slot of certain duration by a given

time. In overbooked leasing systems we can calculate an equivalent probability using the number

of resource lease requests that can be overbooked.

8.4.2 Resource Properties

We define the following properties on the slot abstraction:

Estimated start and end time. Each resource slot has a projected start and end time during which
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the resource will be available. For a batch system, the start and end times are bound by queue wait

times. Leases and advanced reservations have fixed start and end-times.

Width. Each slot has a width that denotes the number of computational units (e.g., processors) that

will be available for a given resource request.

Projected cost. Each slot has a cost for resource usage over the estimated slot duration. Cost models

for each of the resource models are discussed in detail in Section 8.4.3.

Probability of meeting the resource request.We define a probability value that is analogous to the

chance that a resource request is successfully fulfilled. Statistical methods have be used to predict

stretch factors and probabilities of meeting resource requests using historical traces [125, 126]. The

probability of meeting a resource request when using an advanced reservationmechanism or leases

is 1. We use job wait time predictions for standard batch queue systems as a means of predicting

probability of resource arrival. For virtual advanced reservations, there is a probability associated

with the ability to meet the reservation request. In overbooked leasing systems we can calculate an

equivalent probability using the number of resource lease requests that can be overbooked.

Probability of resource failures during the estimated duration. Most systems undergo hardware

and software failures during their lifetime. The probability of the machine failing during a given

duration can typically be calculated using uptimes and downtimes of the nodes and constituent

services. Monitoring services on both grid (e.g., NWS [201], INCA [82]) and cloud systems (e.g.,

CloudStatus [37]) collect some failure information, but these are often not directly accessible to the

end user. The properties associated with the slot abstraction enable this information to be easily

accessible by the user.

Start early and end extension time flexibilities. In addition to knowing the estimates on start and

end time the user is interested in knowing if the resource allocation may start early or if the end
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time is extensible. In a traditional batch queue system, a wall clock duration is specified during job

submission. In this case the resource cannot overrun the duration but may finish early without a

penalty. In the virtual advanced reservation while the end time cannot be extended, the resource

can become available earlier. In a leasing system, start times are typically fixed while there may be

an option to extend the leases. In the context we consider, late starts and early ends are handled

as exceptions since these occur as failures in resource acquisition guarantees or from failures of

resources etc. In addition these situations do not incur additional costs for the user.

8.4.3 Resource Cost models

An important decision factor when it comes to selecting resources is the resource cost. HPC

systems like the TeraGrid use service units as basic units of TeraGrid time. Services like Amazon

EC2 similarly charge per instance-hour. In this section, we discuss the cost models associated with

batch and lease systems:

Batch model. In a typical batch model, users pay for only the execution time of the task on the

resource. Thus, the cost for an application per processor on a batch system is

Costbatch = tbi ∗ cbi

where tbi is the time to execute and cbi is unit cost on resource i.

Capabilities like out-of-band or online advanced reservations come at additional costs which

are a function of execution time or a fixed overhead. For e.g., on the SDSC TeraGrid, advanced

reservations have a premium that ranges from 1.2 to 2 times the actual cost of the resource. Thus

the cost of an offline advanced reservation per processor is given by
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Costadvres = tsi ∗ csi ∗ premium

where tsi is the time requested and csi is the unit cost on resource i. In the virtual reservations

mode, the users pay for any additional time that the resource is procured in advance of the actual

task execution. Thus the cost of a virtual advanced reservation per processor is

Costvirtual = tsi ∗ csi + (idletime)

Leases. In a leasing system, a user will pay for a lease that is acquired which includes the running

time and wasted time on the resource. The cost of a lease per processor is

Costleases = tli ∗ cli

where tli is the time of the lease (in closest hours for EC2) and cli is the cost of the resource.

If the same lease is used by multiple jobs or different workloads the wasted cost is amortized

over the workflows. For EC2 systems the cost varies from $0.10 to $0.80 based on the size of the

instance.

The cost models inherently represent the differences in the overheads in the systems. Our QoS

model represents the cost-rate that can be used by different systems to gauge relative costs when

considering these systems for workloads.
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Site A
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Priorities
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SCOOP: Low
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SCOOP: Same
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Bioportal: Low

SCOOP: High
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Pool
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B:2
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SCOOP
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Pool

A:3
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Figure 8.3: GROC Testbed. The testbed has three cluster sites with a maximum capacity of 15
virtual machines each. There are two hosted grids (the Bioportal and SCOOP applications). Each
site assigns a priority for local resources to each grid, according to its local policies.

8.5 Evaluation

We have proposed a hosting model and a probabilistic QoS model to facilitate interaction of the

higher-level software stack with the underlying resources. In this section, we evaluate implemen-

tation that demonstrate these ideas.

We present an experimental evaluation of the container hosting model prototype built atop the

Globus and Shirako toolkits to demonstrate its feasibility and understand the trade-offs in different

policy and site setup choices in Section 8.5.1 .

Probabilistic QoS models come with some variations that can be bounded within certain lim-

its to be feasible. Virtual advanced reservations are implemented atop batch queue systems as a

mechanism to assure resource procurement within certain probabilistic bounds. Virtual advanced

reservations by design come with variations in when they start and incur additional costs when

they start earlier than required. We present an experimental evaluation of the effect on start-times

and costs obtained through virtual reservations atop under-provisioned TeraGrid batch systems in

Section 9.6.3.
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8.5.1 Container Hosting Model

We conducted an experimental evaluation of the prototype to illustrate how hosted grids con-

figure and adapt their resources to serve streams of arriving jobs. The experiments demonstrate

on-demand server instantiation for hosted grids, dynamic adaptation driven by GROC policies,

and the interaction of policies at the sites and grids

Application workloads. We consider here two specific grid application services: Bioportal [142],

a web-based interface that allows VO users to submit bioinformatics jobs, and SCOOP [138], a

system that predicts storm surge and local winds for hurricane events. Bioportal uses a simple

policy to route user jobs to a local cluster and the TeraGrid. In its original incarnation it has no

mechanism to ensure predictable service quality for its users. We selected four commonly used

Bioportal applications (blast, pdbsearch, glimmer, clustalw) from the Bioportal tool suite to represent

the workload.

The North Carolina SCOOP StormModeling system (described in Chapter 2) is an event-based

system that triggers a series of Advanced Circulation (ADCIRC) runs on arrival of wind data. Ex-

ecutions are triggered periodically during the hurricane season based on warnings issued by the

NOAA National Hurricane Center (NHC). One interesting aspect of SCOOP is its ability to fore-

cast its demand since the hurricane warnings are issued every six hours during storm events. In

the original version, a simple resource selection interface schedules the runs when each warning

arrives; although SCOOP knows when runs will be issued, it cannot ensure that sufficient resources

will be available to complete the models in a timely manner.

Policy. The experiments use GROC policies appropriate for each workload. Bioportal uses an on-

demand policy that maintains a target upper bound on waiting time. The total number of nodes to
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request at each decision point is given by:

BioportalRequest(t) =

max



(WaitingJobs(t) − FreeCPUs(t))

WaitingFactor ∗ Resources(t)
, 0

ff

whereWaitingJobs(t) are the total number of jobs in the queue at and FreeCPUs(t) are the num-

ber of CPUs available andResources(t) are the total number of resources at time t. Our experiments

useWaitingFactor = 2.

SCOOP’s GROC uses a look-ahead policy to reserve resources in advance of expected demand. It

considers the current backlog and expected arrivals over a sliding time window. The total number

of new nodes to request is given by:

SCOOPRequest(t) =

max

( 

(WaitingJobs(t) − FreeCPUs(t)) +

t+∆t
X

i=t

ExpectedJobsi

!

, 0

)

Experimental setup. All experiments run on a testbed of IBM x335 rackmount servers, each with

a single 2.8Ghz Intel Xeon processor and 1GB of memory. Some servers run Xen’s virtual machine

monitor version 3.0.2-2. All experiments run using Sun’s Java Virtual Machine (JVM) version 1.5.

COD uses OpenLDAP version 2.2.23-8, ISC’s DHCP version 3.0.1rc11, and TFTP version 0.40-4.1 to

drive network boots.

We partition the cluster into three sites (Figure 8.3). Each site consists of a COD server that

configures and monitors allocated machines, a broker server that implements the site’s policy for
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(b) With advance reservations

Figure 8.4: Effect of reservations. Figure shows the average number of waiting jobs across three
sites. In (b), the SCOOP grid reserves servers in advance to satisfy its predicted demand.

allocating its resources to competing consumers, and five physical machines. The sites divide the

resources of each physical machine across three virtual machines, giving a total resource pool of

45 machines for our experiment. Previous work [83] has shown that the leasing and configuration

mechanisms scale to much larger clusters. The sites in these experiments use a simple priority-

based arbitration policy with priorities as shown in Figure 8.3. All leases have a fixed preconfigured

lease term.

Reservations and priority. This experiment illustrates how GROCs procure resources to serve

growing load, and illustrates the mechanisms and their behavior. We consider two synthetic load

signals that have a linearly increasing number of jobs arriving over a short interval. The duration

of the load is 50 minutes and a worker node lease term is 4 minutes.

Figure 8.4 shows the average number of waiting jobs across the three sites (a) without and

(b) with advance reservations. In both cases, the sites use priorities as shown in Figure 8.3, and

Bioportal uses its simple on-demand resource request policy. In Figure 8.4 (a), SCOOP’s look-ahead

horizon is zero, so it effectively uses an on-demand request policy as well. In Figure 8.4 (b), SCOOP

reserves resources in advance of its anticipated need, significantly reducing its job delays and queue
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(c) Progress of server configuration events.

Figure 8.5: Resource Holdings and Priority. Site resources are allocated to competing GROCs ac-
cording to their configured priorities. (a) shows the decrease in resources available to Bioportal
as more machines are reserved to SCOOP, as shown in (b). Bioportal reacquires the machines as
SCOOP releases them. (c) shows the progress of resource configuration events on sites and GROCs.

lengths.

Figures 8.5 (a) and (b) show the distribution of resources among the two GROCs, illustrating the

impact of site policy. This experiment is slightly different in that the Bioportal load submits jobs at

a constant rate after it reaches its peak, producing a backlog in its queues. As more computation

is allocated to serve the SCOOP burst, Bioportal’s worker pool shrinks. The impact is greatest on

Site C where Bioportal has lower priority. As SCOOP’s load decreases, Bioportal procures more

resources eventually reduces its backlog.
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The GROCs adapt to changing demand by adding and removing worker nodes as the experi-

ment progresses, using the mechanisms described in Section 8.3.4. Figure 8.5 (c) shows the com-

pletion times of configuration events across all three sites for an experiment similar to Figure 8.5.

At the start of the experiment, each GROC leases and configures a master node at each of the three

sites. These six nodes boot (setup) rapidly, but it takes about 336 seconds for the master join handler

to copy the Globus distribution from a network server, and untar, build, install, and initialize it. As

jobs arrive, the GROC also leases a group of six worker nodes. Once the master nodes are up, the

workers join rapidly and begin executing jobs; as load continues to build, both GROCs issue more

lease requests to grow their capacity. After each worker boots, it takes the GROC’s worker join han-

dler about 70 seconds to initialize the node with a private copy of Torque, and register it with its

Torque master at the site. The GROCs permit some leases to expire as the queues clear; the leave

(deregister) and teardown handlers complete rapidly. In this experiment, the Bioportal takes a while

to clear its queued jobs, so the remainder of the leaves and teardowns occur later in the experiment.

Adaptive provisioning with varying load. This experiment demonstrates adaptive resource pro-

visioning by competing grids under a more realistic load signal. The Bioportal workload consists

of a steady flow of jobs, with occasional spikes in job arrivals. The job arrival times were obtained

from traces of a production compute cluster at Duke University. We scaled the load signals to a

common basis that is appropriate for the size of our resource pools. The SCOOP workload runs

a small set of ADCIRC jobs periodically according to a regular schedule. In practice, the resource

demand for the runs in each period may vary according to weather conditions or post-processing

results. For this experiment we use a synthetic load generator to create load spikes lasting a small

time period (approximately 1 minute), at intervals of approximately 50 minutes. The duration of

this experiment is 420 minutes and the lease length of each worker node is set to 25 minutes.

Figure 8.6(a) shows the load signal, (b) the waiting jobs queued at Site A, and (c) the resources
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Figure 8.6: Adaptive Provisioning under Varying Load. The load signal (a) gives job arrivals. (b) shows the
waiting jobs queue at Site A, while (c) shows a stacked plot of the resource holdings of each grid across the

three sites.

that each GROC holds across the three sites. We see that each GROC is able to procure resources ac-

cording to its varying load. SCOOP periodically demands resources to complete its runs, temporar-

ily reducing Bioportal’s resource holdings. However, Bioportal successfully retrieves resources be-

tween SCOOP’s periods of activity. For simplicity, we omit the distribution of waiting jobs at Site

B and Site C, which are similar to Site A.

Resource efficiency and lease length. The last experiment compares container-level control with

job-level control with respect to efficiency and fairness of resource assignments to two competing
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Figure 8.7: System Efficiency. (a) shows the load signal and (b) the variation of efficiency with lease
length across multiple cluster sizes.

VO grids. The power and generality of container-level resource control comes at a cost: it schedules

resources at a coarser grain, and may yield schedules that are less efficient and/or less fair. In

particular, a container holds any resources assigned to it even if they are idle—in our case, for the

duration of its lease. Another container with work to do may be forced to wait for its competitor’s

leases to expire. Our purpose is to demonstrate and quantify this effect for illustrative scenarios.

In this experiment, the job-level control is a standard First Come First Served (FCFS) shared

batch scheduler at each site. The container-level policy is Dynamic Fair Share assignment of nodes

to containers: the GROCs request resources on demand and have equal priority at all sites. Node

configuration and job execution are emulated for speed and flexibility. We implement a grid em-

ulator as a web service that emulates the Globus GRAM and MDS interfaces (job submission and

status query) and also exports an interface to instantiate grid sites and add or remove worker

nodes from a site. An external virtual clock drives the emulation. The site emulation incorporates a

Maui scheduler with a modified resource manager module to emulate the job execution on worker

nodes. Note that the core components (GROC, Shirako/COD, Maui) are identical to a real deploy-

ment. One difference is that the emulation preempts and requeues any job running on an expired

worker node, although the batch scheduler configured in our prototype (Torque) does not support
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Figure 8.8: Stretch Factor. We study stretch factor as a measure of fairness, of two competing GROCs
- Bioportal and SCOOP with varying lease lengths

preemption.

Figure 8.7 (b) shows the utilization of container-level control with different lease lengths using a

bursty load signal derived from a real workload trace (Figure 8.7 (a)) across different cluster sizes.

We measure utilization as how effectively GROCs use their allocated resources: one minus the

percentage of unused computational cycles. As lease length increases, container-level utilization

decreases because the system is less agile and it takes longer for resources to switch GROCs. The

decline is not necessarily monotonic: if the job and lease lengths are such that jobs complete just

before the lease expires, then the Dynamic Fair Sharing container policy will redeploy the servers,

maintaining high utilization. However, an advantage of longer leases is that they can reducing

“thrashing” of resources among containers; in this emulation we treat the context switch cost as
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negligible, although it may be significant in practice due to initialization costs. Also, at smaller

cluster sizes, resources become constrained, causing utilization to increase.

To compare job-level and container-level control, we also measure the efficiency of the resource

pools. We define efficiency as one minus the percentage of usable resources that are wasted. A

server is “wasted” when it sits idle while there is a job at the same site which could run on it. By

this measure, the efficiency of a site-wide batch scheduler using FCFS is 100%, since it will always

run the next job rather than leave a server idle. In contrast, a local batch scheduler running within

a container may hold servers idle, even while another task scheduler in a different container has

jobs waiting to run. For the given workload, in a resource constrained case (10 resources per site),

the average efficiency across sites is 92% and in the overprovisioned case (30 resources per site)

the average efficiency is 78%. As with utilization, efficiency is higher on smaller clusters since the

GROCs are more constrained and may make better use of their resources. Efficiency is lower on

larger clusters—but of course efficiency is less important when resources are overprovisioned.

Fairness is a closely related issue. One measure of fair resource allocation is the relative stretch

factor of the jobs executed at a given provider site. Stretch factor is the ratio of completion time

to job duration. That is, we might view a site as “fair” if a job incurs equivalent waiting time

regardless of which grid submitted the job to the site. (Of course, the benefits of container-level

resource control include support for differentiated service and performance isolation, which are

“unfair” by this definition.) Both the FCFS job policy and the Dynamic Fair Share container policy

strive to be “fair” in that they do not afford preferential treatment. Even so, these simple policies

allow one of the GROCs to grab an unfair share of resources if a burst of work arrives while another

is idle.

Figure 8.8 shows the average stretch factors for two job streams (Bioportal and SCOOP) running

under both job-level and container-level resource control. Bioportal submits an initial burst of short
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jobs, which fill the global FCFS queue (for job-level control) or trigger lease requests for a block of

servers (for container-level resource control). A subsequent burst of longer SCOOP jobs must wait

for servers to become available. These bursts are followed by another pair of bursts of Bioportal

and SCOOP jobs as shown in Figure 8.8 (a).

The Bioportal (Figure 8.8 (b)) shows a higher stretch factor than SCOOP (Figure 8.8 (c)) in all

cases. In this particular scenario, the SCOOP bursts submit longer jobs to the queue, increasing

the waiting time for the subsequent burst of Bioportal jobs. However, resource leasing can allow

either workload to hold its resources longer so that some are still available for the next burst. In

this case, longer leases improve the stretch factor for Bioportal and increase the stretch factor for

SCOOP, improving fairness of the overall system.

In general, efficiency and fairness properties result from the interaction of the policy choices

and the workload; it is less significant whether resource control is implemented at the job level or

container level. A rich range of policies could be implemented at either level. The advantage of

container-level control is that its policies generalize easily to any middleware environment hosted

within the containers. On the other hand, the granularity of that control must be coarser to avoid

sacrificing efficiency and utilization.

8.5.2 Probabilistic Advanced Reservations

Next, we evaluate our probabilistic advanced reservations atop grid systems. For this experi-

ment, we use resource data from two TeraGrid machines (tagged as ncsatg and abe in the graphs)

located at the National Center for Supercomputing Applications. We obtain resources acquisition

probabilities through QBETS and VARQ services. We setup experiments on ncsatg and abe to obtain

probabilistic resource slots using the VARQ service. The experiments request 90 minute, 16 node

slots (the approximate time required for a single LEAD workflow) one, two, three and four hours
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(a) advance request of 1 hour
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(b) advance request of 2 hours
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(c) advance request of 3 hours
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Figure 8.9: Start Times of Probabilistic Advanced Reservations. Probabilistic reservations have
variable start times. We show the historgram of difference in actual start times from expected start
times on two resources for requests made (a) 1 hour (b) 2 hours (c) 3 hours (d) 4 hours in advance.
NOTE: Only intervals with entries have been shown in this graph.
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Figure 8.10: Costs of Probabilistic Advance Reservations. Probabilistic reservations incur addi-
tional costs if and when they start before expected start time. Here we show the cost variations
between the predicted and actual cost over a set of requests on two TeraGrid resources (a) ncsatg
(b) abe.
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Figure 8.11: Effect on Cost for Different Guarantees. Higher levels of guarantees i.e., higher success
probabilities result in greater costs.

in advance, with success probabilities ranging from 0.1 to 0.99.

Start time. When considering probabilistic advanced reservations, the slots can arrive exactly at,

before or after the expected start time. Figure 8.9 shows the start time variation for one, two, three

four hour advance requests over a period of four weeks. The majority of the experiments start in

the [-10,10] minute range around the expected start time.

Cost. If the slot arrives on time or later, there is no extra cost since the job is ready to run. However

if the slot arrives earlier, the idle time is the extra cost. In all our experiments the cost incurred is

always equal to or lower than that predicted by VARQ. Figure 8.10 shows the distribution of the

difference between the predicted and actual costs for all advanced requests on (a) ncsatg and (b) abe.

The largest percentage of runs have a prediction that is higher by 31 to 90 seconds on ncsatg and by

1 to 60 seconds on abe. Finally, Figure 8.11 shows the variation in predicted cost with probability

values. The predicted cost increases as the desired probability value increases.



8. Resource Layer 160

8.6 Summary

The increasing separation between resource providers and consumers makes resource control in

today’s grid and cloud system both more important and more difficult. This chapter illustrates the

dynamic assignment of shared pools of computing resources to hosted environments. It demon-

strates the role of the resource coordinator in managing a dynamic binding of resources across

different sites driven by workload requirements. Our approach addresses resource control at the

container level, independently of the application middleware that runs within the container. The

implementation of resource control at the container-level becomes more critical especially in cloud

environments.

We also presented a lowest-common-denominator probabilistic QoS model that abstracts the

differences in the different systems and lets the application middleware (e.g. workflow tools) con-

centrate on higher-level mechanisms required to manage user requirements and constraints in vari-

able and competitive resource environments. Our experimental evaluation atop over-provisioned

grid systems demonstrates the feasibility of this QoS model.



9

Workflow Orchestration

Distributed resources are increasingly used for time-sensitive workflows such as weather fore-

casting, storm-surge modeling, etc. These applications typically require a higher-level of QoS that

has been hard to guarantee in current day production environments. There is a similar trend in

industry where business services are relying on cloud computing to manage its peak workload

capacity. These two parallel trends require us to revisit how higher-level tools that coordinate re-

sources and user requirements and their interaction with new resource models.

We investigate these issues in the context of workflow tools that are increasingly used in cyb-

terinfrastructure environments to coordinate data and computational tasks in this chapter. Today’s

workflow planning techniques can provide a “yes” or “no” answer to the question of whether a

workflow will meet its deadline [20, 127]. However this information alone is often insufficient for

deadline-driven applications such as weather prediction, where users are willing to run the work-

flow so long as the odds of completion are “reasonable”. Users are often willing to pay extra or

trade-off application requirements to ensure timely workflow completion. In addition, even if ap-

plications are not deadline sensitive, experiments have uncertainties and users often use resource

availability and costs as a criteria to define their experiment parameter space. Current workflow

161
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planning approaches and their interaction with resource models are severely limiting as we move

to next generation infrastructure.

We presented a resource layer abstraction that enables uniform access across different com-

puting models and the properties associated with the the resource abstraction in turn help with

higher-level decisions (Chapter 8). Thus, we investigate a holistic workflow planning approach

that considers workflow characteristics and coordinates (a) resource acquisition, (b) directed acyclic

graph (DAG) scheduling, and (c) scheduling enhancements that can improve the chance of work-

flow completion. We use the term workflow orchestration to collectively describe these mechanisms.

The rest of this chapter is organized as follows. We present an overview of workflow orchestra-

tion in Section 9.1. We present an approach for DAG analysis that helps understand the resource

needs and characteristics of a workflow in Section 9.2. We describe resource acquisition, task map-

ping and schedule enhancement in greater detail in Sections 9.3, 9.4 and 9.5 Finally, we present our

evaluation of our orchestration approaches (Section 9.6) .

9.1 Orchestration: An Overview

Figure 10.1 shows the various aspects of workflow orchestration. We use the term workflow or-

chestration to denote a collection of mechanisms that describe the coordination of workflows and

resources to meet end user expectations while accounting for resource characteristics. Resource

level activities (e.g. resource querying and acquisition) are managed by interaction with the re-

source coordinator whereas the workflow planner manages workflow and user level activities(e.g.

understandingworkflow requirements). The components interact with each other and share logical

data structures that hold workflow information and resource information. The shared data struc-

ture for workflow information has DAG description as well as user constraints on time, budget,
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Figure 9.1: Workflow Orchestration Functional Blocks. Workflo orchestration has multiple stages
for understanding workflow requirements and constraints, querying resource status and schedul-
ing a workflow. The different functional boxes interact with and share data structures of workflow
representation and the schedule.

etc. The resource information is stored in a Gantt Chart structure that has information about the

“slots” at different sites and its properties. We discuss the dimensions of workflow orchestration in

greater detail:

Workflow Admission. In today’s environment, the user submits a workflow to an execution sys-

tem that uses application performance models and resource monitoring data to make resource

mapping decisions. However, before execution starts it is necessary to consider whether or not

workflow constraints can be met with available resources and make priority decisions at the appli-

cation layer. The user and the system have to consider the value of executing a workflow against its

associated costs before execution starts. While a workflow might eventually finish, resource time

may be wasted if the workflow does not complete by its deadline. In the case of critical applications

users are also willing to risk some wastage of resource for increasing the odds of the workflow com-

pleting. Thus we need high-level planning and interaction techniques that allow users and service

providers to jointly decide if a workflow must be run.

DAG Analysis. As complex workflows with different characteristics and constraints are run in

distributed environments, we need automatedmechanisms to understandworkflow characteristics
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that then drive planning strategies appropriately. It is critical to understand the structure and the

resource requirements of the workflows.

Resource Acquisition. Resource acquisition is critical for workflow scheduling decisions. Higher-

level tools require knowledge of resource quantity, type and availability times to make decisions.

In batch systems resource acquisition is closely associated with the execution queue. Jobs are sub-

mitted to a queue from which jobs are mapped onto resources. However, as we move to cloud or

lease based systems, resource acquisition is a separate phase that precedes planning strategies.

Task Mapping. Job or workflow scheduling strategies have been used for a long time to map

tasks onto appropriate resources. Various scheduling strategies have been proposed that account

for execution time, data transfer time and monitoring status of the resources while scheduling a

DAG. Here we present task mapping approaches that uses (a) probabilities of task completion and,

(b) performability as criterion for mapping decisions(Section 9.4). These approaches demonstrate

how workflow DAG scheduling strategies can leverage resource properties to plan for not just

performance but also reliability.

Schedule enhancement. Both lease and batch systems allow mechanisms to get higher guarantees

on QoS through mechanisms such as advanced reservations. These facilities come at higher costs

and the system needs to decide if it is worth the cost. We investigate schedule enhancements using

advanced reservations in this work.

9.2 Workflow DAG Analysis

Understanding workload characteristics and predicting resource needs has been an area of ac-

tive research. In today’s grid systems people use performance models and historical data to predict

resource requirements [112]. On batch systems, users have to specify an expected wall clock time
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for their jobs in batch systems. Specifying longer than required durations can result in longer queue

wait time, however specifying lower than what is required can result in the job getting killed. As

we move to more dynamic resource environments with virtual advanced reservations, leasing and

cloud based systems projecting resource requirements during the resource acquisition phase be-

comes critical and challenging.

Workflow orchestration needs to estimate and specify the set of resources and their properties

during resource acquisition phase. In over-subscribed environments resource requests may not

be immediately satisfied and it is necessary to iterate the resource request by changing its prop-

erties. Thus it becomes critical to do an analysis of the workload to understand its requirements.

We propose a heuristic and define a set of properties that help understand the workflow structure

and its computational and data requirements. Our methodology provides a strong foundation for

understanding workload characteristics and estimating resource requests. We discuss the struc-

tural analysis of the workflow in Section 9.2.1 and we outline our approach to understanding the

resource requirements of the workflow in Section 9.2.2. Finally, we describe heuristics for deter-

mining resource requests based on workflow characteristics in Section 9.2.3.

9.2.1 Structural Analysis

The structural elements of the workflow are considered for higher level understanding of the

workflow. The structural characteristics of the workflow are useful if each of the tasks performed

approximately the same quantum of work. We define the following properties that capture the

characteristics of the workflow.

Maximum Task Width of Workflow. We define the property to capture the maximum number of

concurrent tasks at any part of the workflow.
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Figure 9.2: Example of Structural Analysis: A simple workflow with its associated structural prop-
erties

Minimum Task Width of Workflow. The minimum number of tasks at any level of the workflow

gives the minimum width of the workflow.

Length ofWorkflow Chain. The number of tasks from the start to the bottom of the directed acyclic

graphs along its longest path captures the length of the workflow chain.

Number of Tasks at Each Level. A critical element in workflow planning is understanding the

possible parallelism achievable during workflow execution thus knowledge of the number of tasks

at each level is useful.

Figure 9.2 shows an example workflow and the value of its associated structural properties. The

workflow has six tasks and a maximumwidth of two and minimum width of one. The workflow’s

length is four. Also based on the structural analysis, there are two tasks in levels one and two, and

one task each in levels three and four.
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Figure 9.3: Example of Work Unit Analysis. A simple workflow annotated its work quantum char-
acteristics

9.2.2 Work Unit Analysis

We illustrated the resource requirements of scientific workflow examples in Chapter 2. A num-

ber of scientific applications run on multiple processors and vary in their execution times. Thus it

is important to consider the actual computational and data units required by the workflow in ad-

dition to its higher-level structural characteristics. We assume that a DAG description is annotated

with rough estimates of the performance information. For each task in the workflow, the time (T)

on N processors is specified. For example in Figure 9.3), we see that task A is expected to take five

minutes on one processor. In addition the data sizes between two or more tasks in the workflow is

specified. Performance models are not always accurate on Grid resources. The following analysis

can be plugged in with average numbers to get a rough order estimate. Alternatively worst-case

timings can be used which would give a pessimistic schedule.

We define the following properties for our work unit DAG analysis.

Single Processor Computational Units. We calculate the time units the workflow will take if it

were to run on a single processor. This is useful in judging the total quantum of work performed
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by this workflow.

Ideal Processor SequentialMakespan. It is often useful to understand the sequential aspect of the

workflow in a multi-processor environment. Thus we calculate the turn-around time or makespan

of the workflow for the case where a resource acquisition strategy is able to get the desired number

of processors for each task but at a time only one task can run.

Ideal Processor Makespan. It is the turn-around time of the workflow where there are no resource

constraints and resource requests are met immediately. This represents the ideal makespan of the

workflow and is usually what is possible in under-subscribed resource environments.

Maximum Processor Width of Workflow. The parallelism of the workflow is an important criteria

in resource planning decisions. We capture the maximum number of processors that is required in

parallel for a workflow at any given time during its execution.

MinimumProcessorWidth of Workflow. We also capture the minimum number of processors that

are required at any level of the workflow.

Task Data Ratios. For each task in the workflow, we calculate the output to input data ratios, thus

enabling us to gauge the data aspects of the task.

Workflow Computational Classification. At a higher level it is often important to understand the

computational distribution of the workflow. In our classification we characterize workflows on the

distribution of the work load in the top, middle and bottom of the workflow. Our classification

includes the following categories

• TOP COMPUTATION HEAVY indicates that the top one third of the workflow is computa-

tion intensive

• MIDDLE COMPUTATION HEAVY indicates that the middle one third of the workflow is

computation intensive
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• BOTTOM COMPUTATION HEAVY indicates that the bottom one third of the workflow is

computation intensive

• TOP MIDDLE COMPUTATION HEAVY indicates that the top half of the workflow is com-

putation intensive

• MIDDLE BOTTOM COMPUTATION HEAVY indicates the the bottom half of the workflow

is computation intensive

• UNIFORM COMPUTATION indicates that the workflow is roughly uniform in its computa-

tion distribution

The nature of the workflow can determine resource acquisition strategies. For e.g., a BOT-

TOM COMPUTATION HEAVYworkflow might benefit from a real-time advanced reservation re-

quest.

Workflow Data Classification. We use the ratio of the total output data from the workflow to its

input data to classify the workflow based on its data. Our categories for this classification currently

are

• DATA PRODUCER indicates that the outputs of the workflow are larger than the inputs to

the workflow.

• DATA REDUCER indicates that the inputs to the workflow are larger than its outputs.

• DATA UNIFORM indicates that workflow inputs and output sizes are mostly similar.
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Figure 9.4: Resource Request Merging in Time. Examples that shows how slot merging is applied
with timeSlack (a) newSlot’s start and end times fall within timeSlack units of currentSlot’s start and
end times the slots are merged (b) If the start time of the new slot is timeSlack units within the end
time of the slot and the processor width is identical, the slots are merged.
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Figure 9.5: Resource Request Merging in Time and Processor Width (i.e.,processorSlack = true). Ex-
amples that shows how slot merging is applied with timeSlack and processorSlack (a) newSlot’s start
times falls within timeSlack units of currentSlot’s start time or newSlots’s end times fall within cur-
rentSlot’s end times slots are merged (b) If the start time of the new slot is timeSlack units within the
end time of the slot, the slots are merged.
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9.2.3 Resource Requests

Resource requests often come with certain overheads for e.g., wait time in the batch queues or

virtual machine startup overhead. Thus it is often beneficial to merge resource requests for multi-

ple consecutive tasks to minimize overheads. This might incur a wastage of a resource when the

resource is idle waiting for the next task. However for applications with strict timeliness require-

ments (e.g. LEAD) this wastage is often inconsequential. Thus we define two properties, on the

time and processor width dimension of a slot that control the merging of the slots while trading

wastage.

• Time slack factor. The timeSlack factor captures the variation in time units that can be tol-

erated from an existing slot’s start and end times. For example, using this factor a new slot

whose start time is within the start time ± timeSlack units would be considered for a merge.

Similarly a new slot that has an end time within the end time ± timeSlack units would be

considered for a merge.

• Processor slack factor. In addition to the time dimension it is also important to consider the

width (i.e. number of processors) of the resource request. A user can specify a true or false

value for the processor slack factor to control slot wastage when considering the processor

based merging of slots.

The above two parameters help us in defining how resource requests must be formulated for a

particular workflow. Figures 9.4 and 9.5 show examples of slot merging without (Case 1 in Algo-

rithm 1) and with processor slack (Case 2 in Algorithm 1). When the timeSlack factor is considered

for merges, a width-wise merge is performed only when both start and time times of the slots are

within ± timeSlack units are merged (Figure 9.4(a)). Similarly, a length-wise merge is performed if
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the start time of the newSlot is within± timeSlack units of a currentSlot (Figure 9.4(b)) if the processor

widths for the two slots are identical.

The processorSlack factor allows a more lenient merge. If either the start time of a slot or the end

time of a slot is close to the end time within± timeSlack units of a current slot, a merge is performed

(Figure 9.5(a)). Similarly a length-wise merge is performed if the start time of the newSlot is within

± timeSlack units of a currentSlot (Figure 9.5(b)) irrespective of their processor widths.

Algorithm 1 describes the slot merging methodology for merging an existing slot currentSlot

with a new slot request newSlot. Two slots can be merged either in width, i.e. the slot request’s

processors is increased to accommodate both requests, or in length where one slots end time is

closer to the other’s start time. In our methodology we traverse the DAG from top to bottom and

comparing each new slot request for a task with already processed slot requests. We obtain the

set of slots required by the workflow calculated under the conditions imposed by the slack factors

described above. Individual slots from each task in the workflow are merged to come up with an

optimal set that are constrained by the time slack and processor slack factors. A time slack factor of

zero would be the most aggressive resource request and can result in a separate slot for each task.

Let us now consider the complexity of this heuristic. If a workflow has n tasks, our heuristic

in the worst case has to do zero comparisons for the first element, one comparison for the second

element, (n-1) comparisons for the nth element. Thus, the worst case complexity of our algorithm

is given by:
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f(n) = 0 + 1 + ... + (n − 1)

=

n−1∑

i=1

i =
(n − 1)(n)

2

=
n2 − n

2
= O(n2)

9.3 Resource Acquisition

Newer resource models have changed the way higher-level tools interact with resources. One

of the fundamental differences is how and when resources are acquired. In batch queue based sys-

tems, resource acquisition is closely tied with the execution system. However with newer resource

models the procurement of resources is explicit and occurs before planning strategies can be ap-

plied. This presents some new challenges to workflow orchestration including the need to predict

resource requirements. Resource acquisition strategies that are possible with workflows are:

Task-based. In a task based strategy, resources are acquired just-in-time for each task or each job

in the workflow separately. This is similar to the state of the art in workflow grid systems. In

today’s batch queue based grid systems, each task of the workflow is submitted as a job to the

queue. In a task-based strategy the overheads from queue wait time in batch systems and machine

startup-overhead in cloud or utility systems are incurred for each task.

Workflow-based. In a workflow based strategy, resources are acquired prior to scheduling for an en-

tire workflow. In this case, we need mechanisms to determine appropriate resource requests. Also,

gaps in the schedule result in resource wastage that is an additional cost that must be accounted

for in workflow planning.
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Algorithm 1 Slot merging: Merging newSlot with a currentSlot

{Case 1: TIME SLACKMERGE: when processorSlack is false and only timeSlack is specified}
{Case 1(a): WIDTH MERGE if newSlot’s start and end times are close to an existing slot, it can
be expanded in width}
if (newSlot.startT ime ≥ (currentSlot.startT ime − timeSlack)) and
(newSlot.startT ime ≤ (currentSlot.startT ime + timeSlack)) and
(newSlot.endT ime ≤ (currentSlot.endT ime + timeSlack)) and
(newSlot.endT ime ≥ (currentSlot.endT ime − timeSlack)) then

currentSlot.processorWidth ⇐ currentSlot.processorWidth + newSlot.processorWidth
Update start time and end time of the currentSlot to accommodate the new slot if required
return
end if
{Case 1(b): LENGTHMERGE: if newSlot’s start time is close to the end time and processorWidth
of newSlot is less than or equal to currentSlot}
if (newSlot.startT ime ≤ (currentSlot.endT ime + timeSlack)) and
(newSlot.startT ime ≥ (currentSlot.endT ime − timeSlack)) then
if newSlot.processorWidth == currentSlot.processorWidth then
Update start time and end time of the currentSlot to accommodate the new slot if required
return
end if
end if
{Case 2: PROCESSOR SLACKMERGE: even a slight overlap in time, consider merging slots}
if processorSlack then
{Case 2(a): LENGTHMERGE: if newSlot’s start time is close to the end time}
if (newSlot.startT ime ≤ (currentSlot.endT ime + timeSlack)) and
(newSlot.startT ime ≥ (currentSlot.endT ime − timeSlack)) then
if newSlot.processorWidth > currentSlot.processorWidth then

currentSlot.processorWidth ⇐ newSlot.processorWidth
Update start time and end time of the currentSlot to accommodate the new slot if required
return
else if newSlot.processorWidth < currentSlot.processorWidth then
Update start time and end time of the currentSlot to accommodate the new slot if required
return
end if
end if
{Case 2(b): WIDTH MERGE if newSlot’s start or end times are close to an existing slot, it can
be expanded in width}
if ((newSlot.startT ime ≥ (currentSlot.startT ime − timeSlack)) and
(newSlot.startT ime ≤ (currentSlot.startT ime + timeSlack))) or
((newSlot.endT ime ≤ (currentSlot.endT ime + timeSlack)) and
(newSlot.endT ime ≥ (currentSlot.endT ime − timeSlack))) then

currentSlot.processorWidth ⇐ currentSlot.processorWidth + newSlot.processorWidth
Update start time and end time of the currentSlot to accommodate the new slot if required
return
end if
end if
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The resource acquisition strategy affects the availability of resources accessible to higher-level

workflow planning components. Both task-based and workflow-based resource acquisition have

trade-offs. We evaluate the tradeoffs between a task-based and workflow-based resource acquisi-

tion in the context of our workflow orchestration implementation (Section 9.6.3). The workflow-

based strategy can be expanded to includemultiple workflows or the active workload that is visible

to the application-level components (more details in Chapter 10).

9.4 Task Mapping

Scheduling distributed workflows on heterogeneous resources is a known NP-complete prob-

lem and a number of heuristics have been proposed [127, 188]. These heuristics focus on optimizing

the makespan of the workflow using projected application running times and data transfer times.

However application running times vary in real-time due to a number of factors including load

and availability of machines [141]. Thus we need task mapping strategies that account for perfor-

mance and reliability. For deadline-sensitive workflows it is necessary to consider the best chance

of workflow completion when making resource decisions.

We explored the effect of availability variation on performance in Chapter 7. We develop

deadline-driven DAG scheduling approaches focused on probability of a task finishing in Sec-

tion 9.4.1. Nect, we develop DAG scheduling strategies that use the performability model to ac-

count for the performance impact due to availability variation (Section 9.4.2).

9.4.1 Probabilistic DAG Scheduler

We describe a probabilistic workflow scheduling approach that takes into account the probabil-

ity of resource acquisition as well as the probability of resource failure during the allotted duration
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while scheduling each task.

Algorithm 4 describes the probabilistic task mapping approach. The node priority assigning

phase traverses the DAG from bottom-up and assigns deadlines for the tasks given a workflow

deadline (Algorithm 2). Subsequently the tasks are sorted by deadline for the scheduling phase.

Each task T has a duration d andmust be scheduled no earlier than earliestStartTime andmust finish

no later than latestFinishTime. The only difference in the slot based system is that the algorithm

tries to find a space on the slot where the task can be mapped. The difference arises from the

resource model characteristics. In a batch queue system, resource requests are bound by the size of

the cluster whereas when resource procurement is decoupled from the mapping, the scheduler is

bound by the size of the slot already returned by the site. Subsequently all task mappings that meet

the task deadline are considered for selection and the best success probability mapping is selected.

For any task in a workflow, the probability that it will succeed depends on the resource on

which it is scheduled as well as the probability of its parent tasks finishing. When two tasks are

scheduled on independent resource slots their probabilities are independent and the probability

of a task is the joint probability of its parent and itself. However in a slot abstraction, if a Task T

and its parents are scheduled on the same resource slot then the Task T has the same probability

of finishing as its weakest parent. Algorithm 3 shows how the task probability of every task in a

workflow is calculated according to this mechanism. Also the probability of a workflow completing

is the minimum of the success probability of all tail nodes. The process is repeated for all tasks in

the workflow. This heuristic finds a mapping in polynomial time (O(n2)).

9.4.2 Performability based DAG Scheduler

We showed that performability modeling can be used to project the effect on performance from

availability variations in Chapter 7. Specifically we showed that we can use the performability
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Algorithm 2 Deadline Assignment: Calculating latest completion times for tasks in a DAG

while T in tailnode do
taskdeadline ⇐ DAGdeadline

unassignedtasks ⇐ parentsofT

end while
while T in unassignedtasks do
if children of T have been assigned deadlines then

taskdeadline ⇐minimumAcrossChildren(deadlineOfChild(T )− durationOfChild(T ))
end if
unassignedtasks ⇐ parentsofT

end while

Algorithm 3 Task Probability: Calculating task success probability

MinParent ⇐ Get minimum probability of all parent tasks
ifMinParent is on same resource slot S as task then

taskSuccessProbability ⇐ MinParentProbability
else

taskSuccessProbability ⇐ MinParentProbability ∗ TaskProbability
end if

Algorithm 4 DAG Scheduler: Probabilistic DAG Scheduler for batch and slot systems

Assign latest completion times for the tasks (using Deadline Assignment Algorithm ( 2))
Sort the tasks by latest finish times
for all T in DAG in sorted order do

earliestStartT ime ⇐ LatestF inishT ime(Parents(T ))
for each resource slot do
if BATCH then

latestF inishT ime ⇐ Maximum(earliestStartT ime, (taskDeadline− duration))
else

latestF inishT ime ⇐ find position where task will fit on slot
end if
if task can complete by deadline then

resourceAcqProb ⇐ ProbSlotAcquisition
resourceUpProb ⇐ ProbSlotDoesNotFail
taskSuccessProbabilityOnResource ⇐ resourceAcqProb ∗ resourceUpProb
taskSuccessProbabilityRelativeT oParents⇐ calculate task success probability consider-
ing placement of parent tasks
end if
end for
selectedResource ⇐ Resource where task has
Maximum(taskSuccessProbabilityRelativeToParents)
end for
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values to project running time and data transfer times for a task on machines and network with

reliability variations.

We modify two commonly used DAG scheduling heuristics - Min-min and Max-min [188] to

account for performability.

Min-min: In this heuristic, at each pass the minimum completion times of each task that can be

scheduled given its performance model is calculated. The earliest finishing task is then selected to

be scheduled next. This is repeated till all components in the workflow are mapped

Max-min: The philosophy behind this heuristic is to schedule the bigger components first. Once

the minimum completion time for all possible components is calculated the latest finishing task (i.e.

largest component) is then selected to be mapped first.

We modified the implementation of these algorithms to consider the projected times from the

performability analysis. The calculate projected running time for the application uses application

performance distribution with the resource’s failure and repair rates. The algorithms using per-

formability have been shown in Algorithm 5. The approach has the same complexity as the the

version of the algorithms that consider just performance i.e. both heuristics find a mapping in

polynomial time (O(n2).)

We compare workflow scheduling simulation results from the performance and performability

approaches using failure data collected on production systems at Los Alamos National Labora-

tory [106, 158] in Section 9.6.2.
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Algorithm 5 Performability DAG scheduler: The algorithm shows the modified version of the
min-min and max-min heuristic that uses the performability analysis for projected timings. The
modified lines from the original algorithm is shown in bold.

readyTaskList ⇐Determine components that are ready to be scheduled based on dependencies
while T in readyTaskList do
for all R in resourceList do

projectedRunningT ime ⇐ 1
PerformabilityComputation(T,R) {from equation 7.11}

dataT ransferT ime ⇐ 1
PerformabilityNetwork(T,R) {from equation 7.12}

EstimatedCompletionT ime(T ) ⇐ MaxParentF inishT ime(T )+projectedRunningT ime+
dataT ransferT ime
end for
For min-min: Find minimum completion time of task T over all resources R and finalize map-
ping
For max-min: Find maximum completion time of task T over all resources R and finalize map-
ping
readyTaskList ⇐ Determine components that are ready to be scheduled based on dependen-
cies
end while

9.4.3 Hybrid DAG Scheduler

Finally, we developed a hybrid version of the deadline-sensitive DAG scheduler that uses the

performability metrics. We also modified the DAG scheduler to consider fault-tolerance strate-

gies (Section 7.2.3) in the mapping phase. The DAG scheduler is similar to the probabilistic DAG

scheduler and first assigns deadlines to the tasks in the DAG based on the deadline specified for

the workflow. For this step it uses the performability based projected application running time that

accounts for impact on running time due to availability variations that can occur during execution.

In the next step, for each task in the DAG, it then uses the performability model and the state of

the resource from the model (e.g. High, Good) to calculate the projected running time of the appli-

cation on each of the resources. It finally considers all the resources for the task that can meet the

deadline, and the task is mapped onto the resource that will incur the least cost for the application.

If fault tolerance is enabled during DAG scheduling, the cost of replication and checkpoint-restart

for this application is considered. If the cost of replication is lower, an additional mapping is sought

for the task on the resources. If checkpoint-restart is a better strategy, the resources are checked for
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availability with the additional time overheads for checkpoint-restart. If resources are available to

accommodate the overheads the task mapping is updated appropriately.

9.5 Schedule Enhancement

Both lease and batch systems allow users to get higher QoS guarantees through facilities that

come at higher costs, and workflow orchestration must balance costs with the need. In batch queue

systems today, users often use online or out-of-band advanced reservations for guaranteed resource

access. However these often require considerable lead time and the costs for these are often pro-

hibitive limiting its use only when there is a predictable load anticipated. Cloud systems today

work on a model where you are guaranteed immediate access to N resources that are agreed upon

out-of-band and thus do not have explicit notion of promise of resources in the future. However as

mentioned previously, when cloud systems are over-subscribed, a similar notion can be expected.

For workflows, schedule enhancement can be implemented at a task-level or workflow-level or a

hybrid approach which we refer to as boundary reservations.

Task-based. In task-based advanced reservations, we query the resource coordinator on a task-

by-task basis for the entire workflow to see if the workflow success probability can be enhanced

by using an advanced reservation for a task. In our implementation we use the schedule from the

probabilistic DAG scheduler sorted by the task success probabilities as a guidance mechanism to

enhance the “weak” links in the workflow. While, for time-sensitive applications cost is not a con-

sideration, this mechanism also allows enhancements to the approach that controls acquisition by

priority of the tasks and the cost. For each task we query the resource for an advanced reservation

and sort the results by the highest probability followed by minimum cost. We pick the best result,

if the probability of that task completing is higher than what is obtained through the probabilistic
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batch scheduler. With this mechanism, the cost of obtaining the advanced reservation is incurred

on each task of the workflow.

Boundary-based.Workflow components may be scheduled on multiple sites, hence we investigate

an intermediate approach of procuring a single advanced reservation on each site for parts of the

workflow that are scheduled on it. In this mechanism we consider the earliest task and latest task

scheduled on the resource to define the time boundary and the maximum width of any task on the

resource as the slot width for the request.

Workflow-based. In workflow-based advanced reservations, the resource is requested for the en-

tire slot during the resource acquisition phase. In this mechanism, the overhead (i.e., wait time on

batch systems and machine startup overhead on cloud systems) of slot acquisition is incurred only

once for the entire workflow. The cost for this approach is the entire cost of the slot that is used.

The wastage in the slot comes from idle time on the slots and earlier slot arrival.

9.6 Evaluation

Wehave presented a number of workflow orchestration strategies in this chapter. In this section,

we evaluate our orchestration strategies in the context of select workflow examples fromChapter 2.

The workflow examples used in this evaluation is shown in Figure 9.6. We model the structure of

the workflows using Xbaya [161], a graphical composition tool that is used in the Linked Environ-

ments for Atmospheric Discovery(LEAD) [54] project.

We evaluate our heuristic for slot request and discuss workflow properties for our example

workflows in Section 9.6.1. We evaluate our performability-based and probabilistic DAG sched-

ulers in Sections 9.6.2 and 9.6.3.
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Figure 9.6: Scientific workflow examples.(a) a weather forecasting workflow (b) storm surge mod-
eling workflow (c) domain analysis of biological sequences (d) flood-plain mapping workflow

Workflow Number of
Tasks

Number of
Levels

Number of
Tasks by
level

Maximum
Width

Minimum
Width

lead 6 4 2,2,1,1 2 1
scoop 6 2 5,1 5 1
ncfs 7 4 2,2,2,1 2 1
motif 138 4 1,135,1,1 135 1

Table 9.1: Structural Workflow Analysis. The table shows the structural properties for some exam-
ple workflows.
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Figure 9.7: Impact of Slack Factor on Slot Requests. The graphs shows the slot analysis for the four
sample workflows with varying timeSlack and processorSlack parameters (a) and (b) show the slot
count and corresponding wastage as timeSlack varies, (c) and (d) show the slot count and corre-
sponding wastage (in log scale) timeSlack varies when processorSlack= true.

Workflow Total com-
putational
units

Workflow
Data ratio

Computational
Classification

Data Classification

lead 20.63 hours 8.0 MIDDLE BOTTOM DATA PRODUCER
scoop 20.82 hours 0.36 TOP MIDDLE DATA REDUCER
ncfs 5968 hours 3.0 TOP DATA PRODUCER
motif 459.17

hours
2.13 BOTTOM DATA PRODUCER

Table 9.2: Work Unit Workflow Analysis. The table shows the properties that describe that deter-
mine the work units to be performed for each of our example workflows.
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9.6.1 DAG Analysis

Tables 9.1 and 9.2 show the value of the properties for the example workflows. As mentioned

earlier each of the workflows varies significantly in their structure and work units. The leadwork-

flow has a small number of tasks and is a data producer and the computation is heavy in the middle

to bottom of the workflow. The scoopworkflow reduces its input data and the top to middle of the

workflow has the computation. The ncfs workflow is very computationally heavy requiring total

of almost 6000 processor hours and the top of the workflow is more computationally heavy. The

motifworkflow has its computation in the bottom of the workflow and is also a data producer.

Figure 9.7 shows the effect on slot count and slot wastage for varying values of the parame-

ters timeSlack and processorSlack. Figure 9.7(a) shows the slot count as timeSlack is varied. The lead

workflow has a number of small tasks and the slot count decreases quickly with increasing times-

lack. The scoop workflow’s slot count decreases at about 900 seconds which is the largest part of

the workflow. In Figure 9.7(c) the number of slots decreases rapidly as the processorSlack=true since

it allows more lenient merging of slots. Figures 9.7(b) and (d) captures ths slot wastage as timeSlack

is varied. We observe that as the slot count decreases, the wastage from the slot increases since a

large part of the slot goes unused. The ncfs workflow does not encounter any slot wastage since a

slot is requested for each task in the workflow since the tasks are large and merging of slots does

not occur. Workflow orchestration strategies need to compare the effects from the overheads as-

sociated with individual slots with the wastage on the slots to determine the right slot acquisition

parameters.
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Figure 9.8: Failure Characteristics of Production Systems. Failure to repair rates over time in pro-
duction use of systems at LANL.
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Figure 9.9: Schedule Comparision with Different Availability Levels. Comparison of workflow
tasks scheduled on the resources in Experiment 1 with no prior accumulated resource history and
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Figure 9.10: Study of Performability based Workflow Schedules On Production Systems. Ratio of
a) makespan b) performability over time in production use of systems (averaged over 100 runs per
data point.)

9.6.2 Performability Workflow Scheduling Simulation

Next, we present results from a set of experiments in workflow scheduling using a simulation

framework. Recently, resource providers such as TeraGrid have been collecting and publishing

machine (e.g., Availability Prediction Service [11], INCA Real Time Monitoring Suite [82]). How-

ever, the quantity of data is still insufficient for any extensive evaluation. As more data is collected

on systems it will be possible to classify the current availability level (e.g. High, Good, etc) of the

resource and plug that additional information into the model. We use the operational data made

available by Los Alamos National Laboratory (LANL) that includes data collected from about 22

high performance computing systems over a period of 9 years [158]. The reliability data provides

significant samples similar to current production HPC systems. The simulation framework evalu-

ates workflow scheduling algorithms using performability and performance as metrics. Numerous

studies have proposed variousworkflow scheduling heuristics for different grid applications [205] ;

we choose two scheduling algorithms: min-min and max-min [188] described in Section 9.4.2. With

each heuristic we first consider application performance time on each resource in the high state and

generate a schedule for the workflow (referred to as PERF hereafter) and then apply the algorithms



9. Workflow Orchestration 187

shown that considers performability (referred to as HYBRID). Our approach is orthogonal to the

choice of the exact algorithm and can be used with other algorithms.

Performance data Our simulation framework uses the lead workflow - a mesoscale meteorology

workflow that is used for weather prediction. A sample directed acyclic graph is shown in Fig-

ure 9.6(a). In the simulation we generate the application run times in different reliability states

from a normal distribution [98] where the mean is from real observations on TeraGrid machines.

Bandwidth data required to model data transfer times is generated from long-tailed Pareto distri-

butions [86].

Reliability data The LANL reliability data provides details on failures and repair times over the

life of a number of systems. We use systems 2 (6152 cpus), 5 (512 cpus) and 9 (512 cpus) in this

simulation. We calculate the failure and repair rates at time t for these machines using failure data

available till time t. We take this approach since in real systems decisions will be made with data

available to date. We select data points from this set of observations for our scheduling simulation

and compare the effect on workflows as the systems failure and repair times change over their

lifetime. Figure 9.8 shows the failure-to-repair ratio of the data points selected for the simulation

for the three systems. In Experiment 1, we use the first 18000 hours of system lifetime for the

simulation, i.e. all systems have no prior accumulated resource history. For experiment 2, we

consider system 2 to have prior accumulated failure data history i.e., we use system 2’s data from

20000 to 38000 hours.

Results. Figure 9.9 shows the total number of workflow tasks scheduled on each resource in each

experiment. In Experiment 2, the corresponding failure-to-repair rates for system 2 are signifi-

cantly higher than the other two resources and we see a drop in the number of components that

are scheduled on this resource. Figure 9.10(a) shows the ratio of makespan from the HYBRID ap-

proach and the corresponding performance heuristic. At high failure-to-repair rates, the HYBRID
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approach produces a longer schedule accounting for the failure possibilities. In Experiment 1, the

HYBRID approach produced slightly longer makespans for the workflows than the PERF heuristic.

Experiment 2 demonstrated slightly higher increase in the makespan where system 2 had a much

higher rate of failure-to-repair ratio compared to the other two systems. This is largely because

workflow components do not get scheduled on the best performance machine when reliability of

that machine is lower.

In Figure 9.10(b) we compare the performability of the computational parts of the workflows.

The performability for the PERF algorithm is calculated using the corresponding failure-to-repair

rates of the machines onwhich each task was scheduled. As expectedwe see that performability ra-

tio corresponds closely to the resource failure-to-repair rates. As the failure-to-repair rates increase,

the performability from the HYBRID approach is significantly higher than the PERF. Thus we see

that using performability as a metric can result in a better workflow schedule that accounts for the

machine availability in addition to application performance. We see that the difference between

min-min and max-min is minimal on the makespan and the performability. These experiments

demonstrate the performability and makespan variance over machine lifetimes, emphasizing the

importance of performability as ametric in workflow scheduling that improves performabilitywith

minimal effect on makespans.

9.6.3 Probabilistic Workflow Orchestration

In this section, we present experimental results that compare and contrast our probabilistic

orchestration techniques in grid and cloud environments. In Section 9.6.3, we demonstrated the

feasibility of probabilistic slots through trials performed on the TeraGrid. Here we use simulation

to compare the effect of orchestration technique parameters when using both TeraGrid and EC2

resources through probabilistic orchestration.
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Implementation. We implemented a set of workflow orchestration strategies for resource acqui-

sition, task mapping and schedule enhancement to facilitate comparison. Our implementation

consisted of the following planners:

• Batch Queue (BQP).We implemented a vanilla batch queue scheduler that used batch queue

prediction data (BQP) and Availability Prediction Service (AVP) [11] data to select resources

during the mapping phase selecting the resource with best probability for each task. The

complexity of this algorithm is the complexity of the DAG scheduler which is O(n2).

• Batch Queue and Task-based advanced reservations (Task). We use the batch scheduler to

map tasks onto resources. We sort the tasks by their success probabilities. We use VARQ to

query for each task in the sorted list to see if a task-based advanced reservation enhances

the success probability. VARQ queries use a heuristic to vary the parameters to find a possi-

ble resource combination that meets the users requirements. The VARQ query is for a fixed

duration, width and start time and range of success probabilities. The cost incurred for this

mechanism is the total execution time plus additional costs from VARQ for the slots. The

complexity of this algorithm is given by the complexity of the DAG scheduler (O(n2)) and

the complexity of the VARQ query which is O(n). Thus the complexity of this approach is

given by O(n2 + n) i.e., O(n2).

• Batch Queue and Boundary-based advanced reservations (Boundary). We use the batch

scheduler to map tasks onto resources and then use VARQ to procure advanced reservations

grouping all the mappings on a single resource into a single slot request. The VARQ query

is for a fixed duration, width and start time and range of success probabilities. The cost in-

curred for this mechanism is the total execution time plus additional costs from VARQ and

any slot idle time that comes from gaps in the slots. The complexity of this algorithm is given

by O(n2 + n) i.e. O(n2).
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• Batch Queue Advanced Slot and Workflow-based task mapping (Slot). In this approach we

query the resources to get appropriate “advanced reservation” slots. We then apply the prob-

abilistic DAG scheduler to map tasks onto these slots. For every task we make a VARQ query

for a fixed duration and fixed width but for a range of start times and range of success proba-

bilities. The cost incurred for this mechanism is the total execution time plus additional costs

from VARQ and any slot idle time that come from gaps in the slots. There might be idle time

at the tail end of the slot which is not counted as a cost since in batch systems the resources can

be released as soon as jobs are done. The complexity of this algorithm is given by O(n2 + n2)

i.e. O(n2).

• EC2 Task-based. We implement a task-based DAG scheduler for cloud (EC2) systems where

resources are procured independently for each task. The bootstrap time for the machines for

each task is added to the makespan of the workflow. In addition EC2 rounds up resource

usage to the closest hour and thus the wastage on each resource slot also gets added to the

cost. The complexity of this algorithm is O(n2).

• EC2 Slot-based. We also built a EC2 slot based planner where resources are assumed to be

acquired at the start for the entire workflow and subsequently the slot based DAG scheduler

is used. Resource usage is rounded to the closest hour and the slot overhead is added to the

makespan. The complexity of this algorithm is O(n2).

Experimental setup. We use the four grid workflow examples (Figure 9.6) that routinely run on

TeraGrid and/or other high performance systems. For our batch experiments we use probabilistic

resource data from three TeraGrid machines (tagged as ncsatg, abe and uctg) located at the National

Center for Supercomputing Applications and Argonne National Laboratory. We obtain resources

acquisition probabilities through QBETS [125] and VARQ [126] and reliability probabilities through
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Figure 9.11: Resource Procurement over Batch Systems for LEADworkflow. Comparison of differ-
ent resource acquisition techniques for the leadworkflow. We compare (a) the effective probability
and (b) cost as deadline varies upto 24 hours.

AVP [11] for failure probabilities. For EC2 systems, we use the present day cost value of the re-

sources and data transfer.

In our first experiment we compare the orchestration techniques discussed above using a work-

flow planner simulation. We recalculate the probabilities for tasks when schedules are enhanced by

one or more mechanisms. We use the cost models (Chapter 8:Section 8.4.3) to calculate the cost for

each mechanism as the total number of used CPU hours. In addition, on batch systems, resources

can be vacated when a job or all jobs on a slot are done, thus incurring no costs for additional slot

time at the end of the schedule. We compare success probability of the workflows, makespans, and

associated resource usage costs.

On batch systems, for eachworkflow typewe first use a task-based batch queue scheduler (BQP)

for the planning. We also use a workflow-level slot based mechanism (Slot). For the small work-

flows, we apply Task-based(Task) and Boundary-based (Boundary) VARQ requests on the schedule.

The probabilistic advanced reservation technique does have a known limitation; if there are multi-

ple concurrent large resource requests made through VARQ, the queries could potentially perturb

the predictions by dominating the workload behavior of the system. The perturbations induced
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Figure 9.12: Resource Procurement over Batch Systems for SCOOP workflow. Comparison of
different resource acquisition techniques for scoopworkflows. We compare (a) the effective proba-
bility and (b) cost (shown in log scale) as deadline varies upto 24 hours.
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by such requests are being studied by the VARQ team. Thus for large workflows (motif, ncfs) we

compare only the BQP and Slot mechanisms since the predictions from VARQ are not guaranteed

to be accurate. Each run is repeated multiple times over a period of three weeks. The probability

predictions are very stable resulting in identical output.

Batch systems, small workflows. Figure 9.11 shows the probability and cost comparisons for the

lead workflow for deadlines ranging from two to twenty-four hours on two (ncsatg and abe) and

three resources (additional resource uctg). The additional resource has a slightly higher slot acquisi-

tion probability. For the leadworkflow, the Slotmechanism assures the highest level of probability

among the four techniques. The cost of the slot system is slightly higher than with vanilla BQP

but considerably lower than both Task and Boundary-based. We see that there is a slight drop in

the success probabilities for a deadline of 13 hours. This variation results from the granularity of

the parameter sweep in the heuristic used in VARQ queries. A static advanced reservation on the

TeraGrid for a 16 processor, 1.5 hour slot for lead workflow would cost anywhere from 24 CPU

hours to 48 CPU hours (for premium factors of 1 and 2). The Slot based mechanism costs less than

that.

Figure 9.12 shows the probability and cost comparisons for the scoop workflow for deadlines

ranging from one to twenty-four hours. In this case, using Task-based slots for the individual tasks

yields a higher probability than trying to get one big slot for the five parallel tasks. The Boundary

slot also yields higher probability values for deadlines that are higher than 15 hours. In terms of

cost, however, the boundary slots are significantly more expensive (about 100 to 1000 hrs) com-

pared to less than 25 hours for other mechanism. The static advanced reservation of 80 processors

for 17 minutes would cost between 22 and 44 CPU hours for this workflow and the Slotmechanism

is on the lower end of this range.
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BQP Slot
Probability 0.0037 0.0066
Cost (Hours) 5631.5 16640.4

Table 9.3: Resource Procurement for NCFS workflow. The table shows the cost and success prob-
ability that can be obtained for an ncfs workflow scheduled for a deadline of 36 hours over batch
systems.

Batch systems, medium and large workflows. Figure 9.13 shows the probability and cost compar-

isons for the motif workflow for the BQP and Slot-based mechanisms. The success probability of

the workflow from a Slot-based system is higher than the BQP schedule. However as the deadline

increases we see that the probability drops as a result of the reliability prediction for a 256-sized slot

dropping. The Slot mechanism has a steady cost that is slightly higher than BQP. We compare the

BQP approach with slot-based approach for the ncfs workflow for a 36 hour deadline (Table 9.3).

While the success probability from the Slotmechanism is slightly higher, the costs are also higher.

Cloud (EC2). Cloud systems today implement explicit resource control. However they do have

distinct overheads and cost models that affect the nature of workflow orchestration. For this set

of experiments we assume EC2 systems have high acquisition (0.9999) and success probabilities

(0.9999). We compare and contrast a Task-based and Slot-based policy. We calculate the EC2 costs

for the instance-hours used by the workflow. We consider both computational costs (for different

instance sizes) as well as data transfer costs for input and output data transfers to and from the

cloud. Figure 9.14 shows the cost comparison and the effect on makespan for the four workflows

for different instance sizes and overheads. In Figure 9.14(a) we see that for all instance sizes, the

slot-based system incurs lesser cost than a task-based mechanism for the lead, motif and scoop

workflows. However for the ncfs workflow, where each task executes for many hours, leaving

resources idle in the slot system makes the cost significantly higher than the task-based approach.

Earlier experiments reveal that startup overhead for a small instance image varies from 20 to 30
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seconds for 1 to 8 virtual machines [129]. We compare the makespans for overheads of 20, 70 and

120 seconds. Figure 9.14(b) shows the effect of startup and shutdown overheads on the makespan.

In the task-based strategy the startup and shutdown overheads get added to each task’s execution

time. Our results show that the slot based system produces better makespans than the task-based

systems. As the overheads increase, the difference also increases, as expected.

From our evaluation we see that probabilistic resource decisions help us understand the possi-

bility of meeting a workflow deadline. Slot-based acquisition works well for our small andmedium

sized (lead, scoop, motif) workflow examples on both batch and cloud systems. For our larger

sized workflow example (ncfs) the benefits are not substantial due to increased costs.

9.7 Summary

In this chapter, we proposed and evaluated workflow orchestration atop resource models pro-

vided by grid and cloud systems. We proposed and evaluated a heuristic for slot requests using

DAG analysis methodology. To account for availability variations in distributed resources, we
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evaluated a performability based DAG scheduling approach. The experiments demonstrate the

effectiveness of using performability as a metric to account for availability variations over machine

lifetimes, with minimal effect on makespan.

We design, implement and evaluate task-based and workflow-based deadline-sensitive orches-

tration algorithms. A workflow-based dynamic resource acquisition and planning strategy works

well for all workflows in our example set on both cloud and grid systems but sometimes at a higher

cost. Experiments demonstrate that effective orchestration is possible even on batch queue systems

that have no explicit resource control through slots implemented with virtual advanced reservations.
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Workflow sets

The scientific exploration process often has uncertainties. Application codes have a number

of configurable input parameters and often a number of workflows need to be run concurrently.

Workflow planning techniques today are focused on scheduling individual DAGs and do not con-

sider the relationship between DAGs and constraints associated with scheduling a set of work-

flows [20, 112, 127, 205]. However as cyberinfrastructure deployments are used for complex scien-

tific endeavors, support for planning and executing multiple workflows is necessary in the work-

flow tools. We need a workflow orchestration approach that manages workflow sets to balance

cost, performance and reliability while meeting user constraints.

The problem of managing execution of concurrent workflows is especially common in the sci-

entific domains such as weather forecasting, storm surge modeling and other application codes

that use Monte-Carlo simulations where computing an exact result is impossible. In these cases it

is often necessary to run a large number of model runs with different initial parameters to manage

the accuracy of the result. Scientists would like to run an infinitely large set of workflows, but time

and resources are limiting factors. It is also necessary to run a minimal number of the workflows

to achieve desired accuracy. For such workflow sets, users specify that they minimally require at

197
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least a fraction of the workflows to finish by the deadline. Individual members of the workflow

might have different priorities requiring careful consideration of workflow properties while plan-

ning. Additionally it is necessary to coordinate individual workflow requirements with constraints

on the entire set. For example, we need to determine if available resources should be used for fault

tolerance strategies or scheduling additional workflows.

We developed a multi-phase workflow orchestration pipeline to balance performance, reliabil-

ity and cost considerations for a set of workflows. Theworkflow orchestration (a) ordersworkflows

within a set, (b) provides mechanisms to schedule minimal workflows required (c) provides provi-

sions to compare the effectiveness of various fault tolerance strategies with scheduling additional

workflows. We discuss the workflow orchestration pipeline (Section 10.1). We detail the workflow

queue preparation in greater detail in Section 10.2 and discuss the implications on the execution

system in Section 10.3. Finally, we consider three different case studies for the study of workflow

pipeline with different policies and constraints. Specifically, we discuss implementations of our

pipeline policies and present their evaluation as follows:

• We consider the simple case of scheduling a set of workflows on a set of slots and study the

effect of various scheduling parameters. (Section 10.4)

• We discuss the integration of the workflow orchestration with the virtual grid execution sys-

tem and present results from the integrated system and evaluate various parameters (Sec-

tion 10.5).

• Finally, we present a deadline and budget-sensitive orchestration that uses the performability

analysis and trade-offs with different fault tolerance strategies (Section 10.6).
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Figure 10.1: WorkflowOrchestration Pipeline. It is a multi-phase orchestration strategy for schedul-
ing workflow sets. The user workflows are assigned to priority queues. Next, the workflow con-
straints guide a resource procurement strategy. The resource procurement step returns a Gantt
Chart that consists of a set of slots from the different sites. In the next phase the minimally required
workflows are first mapped using a DAG scheduler. Subsequently in the trade-off phase, increas-
ing fault tolerance for a scheduled workflow is compared with scheduling an additional DAG. The
more effective schedule to meet workflow constraints is selected. Finally, any additional schedul-
ing to use additional resources with different pricing or scheduling remaining DAGs or increasing
fault tolerance is applied.

10.1 Workflow Orchestration Pipeline

Workflow sets require careful coordination of a number of workflow parameters with resource

availability. Figure 10.1 shows a workflow orchestration pipeline for deadline-sensitive workflow

sets that require a minimal fraction of the workflows to finish by a given deadline. The pipeline

receives from the user workflow descriptions for each of the N workflows and a set of constraints

that include the minimal number of workflows required (M), budget (B) and a deadline (D) on the

entire set of workflows. Additionally each of the workflows in the queue may have additional time,

budget or resource constraints. The orchestration pipeline consists of the following stages:

WorkflowQueue Preparation. In the first stage of the pipeline, the workflows are ordered in a pri-

ority queue. The workflow queue preparation step enables us to classify and order the workflows

by their importance and value. The other stages of the pipeline then consider workflows from the

priority queue in order for scheduling.
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Resource Procurement. In the next stage of the pipeline, resources are procured for the workflow

set. Resource procurement strategies can vary based on various factors including budget or time

constraints and workflow characteristics.

Minimal Scheduling. The goal of this phase is to schedule the minimal workflows (i.e., M of

N) required by the user to complete by the deadline. Subsequently in the pipeline the workflow

schedule is improved to either schedule additional workflows and/or increase fault tolerance of ex-

isting workflows. If enough resources are not available to schedule at least the minimally required

workflows an error is returned to the user. A user might then relax one or more conditions and

reinitiate the orchestration process. For scheduling the first M workflows from the priority queue

this component repeatedly calls a DAG scheduler (Section 9.4) with all constraints applicable to

this workflow derived from its individual as well as set-level constraints.

Trade-off. A challenging problem that is often faced in highly variable distributed systems is the

decision on whether available resources should be used for increasing fault tolerance of scheduled

workflows or scheduling additional workflows. In this stage of the pipeline we explore this trade-

off in the context of workflow sets. In this case a scheduling strategy with fault-tolerance for the M

scheduled workflows is compared with a scheduling strategy that includes additional workflows.

We use the probability that at least M out of N workflows will complete by the deadline as the

criteria for comparing the schedules.

Additional Scheduling. At the end of the pipeline, the orchestration handles special cases such

as using more expensive resources to increase the fault tolerance of the resources, using available

resource to schedule additional workflows or fault tolerance strategies for workflows or parts of

the workflow that were not considered in the trade-off stage.



10. Workflow sets 201

…
12345

P r i o r i t y : 1C r i t i c a l i t y : 1 P r i o r i t y : 2C r i t i c a l i t y : 3 P r i o r i t y : 1C r i t i c a l i t y : 3 P r i o r i t y : 3C r i t i c a l i t y : 3 P r i o r i t y : 2C r i t i c a l i t y : 1
Figure 10.2: Workflow Queue Preparation. Workflows with different priorities and criticalities
need to be placed in appropriate sequence for scheduling. Our queue is ordered by priority and
then criticality between the elements with same priority.… …I n i t i a l c o n d i t i o n se n s e m b l e P h y s i c a l c o n d i t i o n se n s e m b l e

135 24
Figure 10.3: Queue of Queues. Often it is necessary to consider two subsets of workflows in con-
junction during schedule. Our queue of queues approach enables two sets to scheduled simultane-
ously.

10.2 Work Queue Preparation

Every workflow in our system has two assigned properties - priority and criticality (Chapter 6).

We assume priority and criticality have three values - High, Medium, Low. The priority is assigned

by the system and used to implement policy between different users of the system. For example,

a scientist would get a higher priority than a student using the system in a workshop. Criticality

is the property that enables a scientist to assign relative importance of workflows in a workflow
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set. Criticality values are expected to be associated with higher QoS and hence higher costs giving

users an incentive to assign accurate criticality values.

A priority queue data structuremanages the elements in the queue such that the highest priority

element is always at the head of the queue. In our implementation workflows are ordered first

by priority and then criticality values. Figure 10.2 shows a simple workflow queue example and

ordering of a number of workflows.

Workflow sets in LEAD consist of two type of workflows - “initial condition” ensemble mem-

berswhere only initial conditions were varied and “physics” ensembles where the initial conditions

were the same but different physics options to the model runs are used. The scientists require at

least a fraction of each of the subsets to complete within a certain deadline to derive accurate re-

sults. In this case we require these subsets to be concurrently scheduled such that the required

fraction from each subset is scheduled. Figure 10.3 shows the internal representation of the priority

queue for such a workflow set that enables the heads of each of the queues to be considered for

scheduling simultaneously. Thus, the priority queue is maintained as a queue of queues. Thus in

Figure 10.3, there are two virtual queues in our queue representation. Each queue itself is ordered

by priority and criticality values.

10.3 Execution Management

Workflow engines execute workflows based on DAG dependencies. However when consid-

ering workflow sets the execution plan will include execution dependencies on other workflow’s

tasks that are scheduled to run on the same resources. Figure 10.4 shows a schedule for two work-

flows A and B on a single slot. In the generated schedule, B3 and B4 wait for A4 and B2 to finish to

start executing. Similarly B5 needs to wait for A6 to complete. Execution management in slots or
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Figure 10.4: Execution dependency. When tasks from different workflows are scheduled on a slot
there are additional execution dependencies. B3 and B4 are ready to execute but need to wait for
A4 and B2 to finish. Similarly while B5 is ready to execute it must wait for A6.

containers is an active research topic. Batch queue software has been proposed as a mechanism to

manage execution [89]. In batch queue systems resources are allocated to the next job in queue for

which resources are available. In the above example, the workflow engine would launch B5 when

B2, B3 and B4 complete. Similarly A6 would be ready to execute when A5 is complete. During

execution, B5 would be ready to run before A6 and hence the slot batch queue software would start

executing B5 delaying the execution of A6. This occurs because the slot execution manager (vanilla

batch queue software) has no knowledge of the schedule imposed by higher-level tools. Thus we

need execution level support for workflow set execution in slots that respects the order of the DAG

and other workflow tasks scheduled on the same slot.

We implement a simple slot execution ordering mechanism in the Execution Manager. This

ordering mechanism submits jobs to the slot execution batch queue system using the schedule.

When a job is received at the execution manager it checks to see if all tasks that are scheduled

on the slot before this task have been submitted. If all tasks scheduled before this haven’t been

submitted the task is saved in a pending queue for later execution. Events in the system such as

job submission and job completion triggers a thread that checks the elements in the pending queue
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to see if a task is ready to run. This ordering mechanism is sufficient to sequence task execution on

slots as per generated schedule. However this ordering mechanism is not completely resistant to

failures. If an earlier task fails to arrive, a task will be stuck in the pending queue till it is rectified.

For example, if the workflow engine has a transient error which causes A6 to not be launched then

B5 will stall as well. Also if an earlier task starts execution and fails on the resource, the current task

will start execution not following the scheduling ordering i.e., if A6 fails during execution, B5 will

start execution. Then a rescheduled A6 will need to wait for B5 to finish or use other mechanisms

such as checkpointing or force B5 to vacate resources. Thus, in our implementation, the ordering

mechanism depends on external mechanism such as the monitoring system to diagnose errors and

rectify it.

10.4 Scheduling Workflow Sets Without Fault Tolerance

We consider a simple case of scheduling a workflow set with the constraint of M out of N work-

flows must complete by a given deadlinewith no fault tolerance. We detail the problem description

in Section 10.4.1 and discuss the pipeline policies in Section 10.4.2. We present evaluation results in

Section 10.4.3.

10.4.1 Problem Description

We consider a workflow set W = {W1, W2, ..., Wn} where workflow Wi is a description of a

DAG that specifies the ordering of task execution. In addition for each task Taskk its execution

on resource Rj is given by [n, T1] where n is the number of processors required for the task and

T1 denotes execution time of the application. Workflow Wi has higher priority than workflow Wj

where j > i. The workflow set is specified to have the following constraint: workflows M where
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M ≤ N must complete by a deadlineD.

10.4.2 Pipeline Policies

We consider a simple pipeline that consists of workflow queue preparation, resource procure-

ment, minimal scheduling of M DAGs and additional scheduling to handle any additional DAGs

possible. We use the probabilistic DAG scheduler from Section 9.4.1.

We implement a simple set of policies using the slot based mechanism to procure resources for

a workflow set and use the slot based DAG scheduler to meet the constraint of scheduling at least M

out of N workflows by a given deadline.

In our implementation, the resource acquisition policy asks for slots for the duration between

expected start time and the deadline for the workflow set. We make a resource query that is de-

signed to ask for a resource width that minimally can satisfy the constraint M and possibly more.

The minimum width is calculated as:

minWidth = (M ∗ durationOf(workflow))/(durationOfSlot) ∗ widthOf(workflow)

The maximum width is calculated as:

maxWidth = (N ∗ durationOf(workflow))/(durationOfSlot) ∗ widthOf(workflow)

where durationOf(workflow) and widthOf(workflow) are the makespan and slot width for a sin-

gle DAG and durationOfSlot is the time between the start of the workflow set and the deadline.

The results from the resource query are sorted by highest success probability and maximum pro-

cessor width and the best result is picked for the schedule. The maximum number of possible

DAGs are scheduled on this slot and we calculate the effective success probability of M-out-of-N

workflows completing [137].
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10.4.3 Evaluation

We perform a set of experiments with the lead workflow set to meet the constraint that mini-

mally M out of N workflows must complete by deadline D. We assume workflows are scheduled

for a start time that is 12 hours which is a reasonable time frame for advanced reservation requests.

We explore the variation of the following parameters- effective success probability, deadline, M

and N. Figure 10.5(a) shows the variation in the effective success probability of getting M out of

N workflows with deadline and different M/N pairs. For short deadlines, limited resource time

is available and we see slightly lower success probabilities. As expected, the success probabil-

ity achievable increase as the deadlines are further out and remains fairly steady thereafter. For

a given workflow set with N workflows, as M (the required number of workflows) increases we

see that the effective success probability decreases. Figure 10.5(b) shows the number of workflows

that were scheduled for a given M/N combination as the deadline varies. For short deadlines, the

number of workflows scheduled is often less than N (the total), however at larger deadlines, all N

workflows are scheduled. Finally, Figure 10.5(c) shows the variation in the effective success proba-

bility with varyingM at a deadline of 7 hours. We see that there is a rapid decrease in probability as

M increases for a given N since as more workflows are required to complete the guarantee that the

system can make is lower that all the required ones will complete. Thus by changing the deadline

and the value of M the user can determine various schedules that meet the user’s needs.

10.4.4 Summary

This case study demonstrates the resource procurement policies and scheduling techniques to

schedule the maximum number of workflows given the amount of resources available. The orches-

tration is simple since it does not account for fault tolerance strategies or any other trade-offs.
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Figure 10.5: Study of Deadline and Accuracy Scheduling of Workflow Set. We apply a slot based
workflow orchestration to a workflow set to meet the constraint of at least M out of N workflows
must finish within the deadline D. We study the variation of (a) probability with deadline for dif-
ferent M/N, (b) number of workflows that get scheduled with deadline D (c) variation of effective
probability with variation in M for different N values and deadline of 7 hours
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10.5 Scheduling over Grid and Cloud Resources with Fault Tol-

erance

Scientific workflows often have access to disparate set of resources that are allocated through

different mechanisms. For example - LEAD uses a TeraGrid allocation for workflow execution.

Optionally, LEAD can use Amazon EC2 resources that are priced differently from the TeraGrid

resources. While these additional resources may not be used regularly, their use might be justified

for situations where higher QoS is needed. In this case study, we study the impact of scheduling

leadworkflow sets on a mix of TeraGrid, local grid and cloud sites and EC2 resources.

This pipeline implementation uses the Virtual Grid Execution System (vgES) (described in

Chapter 3) that provides an execution abstraction over grid and cloud systems. The system enables

users to query, procure and execute on resources shielded from specific resource mechanisms. In

addition, we use the VGrADS task-based fault tolerance implementation. The task-based fault tol-

erance implementation enables us to address the issue of if an individual task’s success probability

can be enhanced by replication.

10.5.1 System Design

Figure 10.6 shows a comparison of current day cyberinfrastructure deploymentswith the LEAD-

VGrADS integrated system. Figure 10.6(a) shows workflow execution control flow in HPC scien-

tific environments today. Users use science gateways or portal interfaces to compose, launch and

monitor workflows. The portal interacts with a workflow engine that manages the task dependen-

cies and execution. For each task in the workflow, the workflow engine invokes the corresponding

application service that has knowledge about the application’s configuration and data. The appli-

cation service interacts with distributed sites using specific interfaces. In this architecture, resource
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Figure 10.6: Comparison of the LEAD-VGrADS collaboration system with cyberinfrastructure pro-
duction deployments.

decisions are ad-hoc and distributed across different components. This makes workflow planning

and real-time adaptation extremely difficult and challenging. The performance and reliability vari-

ations associated with distributed environments, application requirements such as deadlines, cost

factors associated with recent cloud computing requires better coordination of different resources

types to meet user requirements.

Figure 10.6(b) shows the integrated system. The user interaction with the system remains iden-

tical to current day systems. However in addition to the normal execution flow, the workflow

planner and the Virtual Grid Execution System (vgES) handle resource planning for the execution.

This integrated system is an implementation of the WORDS architecture. The vgES system shields

much of the differences of different execution systems and provides a single interface for querying

and procuring resources across grid and cloud sites. In the vgES system, resources are represented

as a hierarchical tree structure. For the purposes of this integration effort, the vgES system was

expanded to return a Gantt chart representation of the slots.
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Figure 10.7: Interaction of Workflow Planner with VGrADS components. The workflow planner
iteratively queries for resources and once sufficient resources are obtained initiates the resource
binding process. The resource binding by vgES consists of a series of steps that include procuring
the resources and setting up the resource to be ready for application execution. In parallel, the
workflow planner determines the workflow execution plan on available resources.

In the integrated system, the workflow planner initiates a query for resources. The vgES sys-

tem then interacts with diverse resource interfaces including grid and cloud systems to procure

resources for a workflow or a set of workflows. The vgES system also sets up the resources as-

signed by the sites with standard interfaces that allows the execution manager in the application

service to interact with each of the sites for job execution and file transfer agnostic to what spe-

cific sites are running. In our implementation each site hosts a Globus-PBS interface letting the

LEAD infrastructure operate with the sites as it does with traditional batch queue supercomputing

centers.

Figure 10.7 shows the interaction of various system components. The first step initiated by the

workflow planner is resource procurement. The planner triggers the activities of vgES system and
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returns back a set of slots that represent the resources assigned for this request. The vgES system

interacts with grid and cloud systems with specific interfaces. It interacts with the virtual advanced

reservation system to procure slots probabilistically on the batch queue sites. It also uses any ad-

vanced reservations that has been be procured at the sites. In addition, it interacts with web service

interfaces with Amazon EC2 [5] and local cloud sites running Eucalyptus [129]. The workflow

planner receives a set of slots from vgES and determines using simple policies if it is sufficient for

its requirements. If resources received are insufficient or do not meet the original requirements the

workflow planner iteratively relaxes constraints on the resource request and requeries the system.

Once the workflow planner is satisfied with the requests, it requests vgES to “bind” or start the

resource setup process.

The workflow planner then implements a four stage planning process for the LEAD workflow

sets with the deadline and accuracy constraint. For the implementation we used an emulation

framework (Appendix A) that mimics the LEAD cyberinfrastructure components. We describe

the problem description for the workflow planning and the pipeline policies in Sections 10.5.2

and 10.5.3.

10.5.2 Problem Description

We consider a workflow set W = {W1, W2, ..., Wn} where workflow Wi is a description of a

DAG that specifies the ordering of task execution. The resources are available on sites Rtotal =

R1...Rw where Rw is a higher priced resource and must be used sparingly.

For each task Taskk its execution on resource Rj is given by [n, T ] where n is the number of

processors required for the task and T denotes execution time of the application. WorkflowWi has

higher priority than workflowsWj where j > i. The workflow set is specified to have the following

constraint: workflowsM whereM ≤ N must complete by a deadlineD.



10. Workflow sets 212

10.5.3 Pipeline Policies

We detail our pipeline policies in greater detail in this section:

Resource Procurement. Each resource site Rj is queried for a certain number of processors from

now till the deadline. The workflow orchestration has two goals: to meet the specified deadline and

schedule the maximum number of workflows in the given time such as to increase the probability

of at least theminimum requiredworkflows complete. Thus we pick an aggressive resource request

policy querying all sites for the maximum duration. When vgES returns a set of slots, we use the

width and total computational units required as a coarse grained criteria to determine if sufficient

resources are available. If the planner determines insufficient resources are available, it relaxes the

minimum success probabilities required of the slots and queries the system again.

Minimal Scheduling. The goal of this stage of the pipeline is to schedule the first M out of N

workflows inW over the set of resources other thanRw (Amazon EC2 in our implementation). The

probabilistic DAG scheduler (Section 9.4.1) is used for scheduling each DAG. If M DAGs can’t be

scheduled, the planner exits with an error.

Trade-off. In the trade-off stage we compare scheduling additional workflows with increasing

the fault-tolerance of one or more tasks of the scheduled M workflows. We compare the success

probability of M out of Nworkflows completing as the criteria for picking the schedule at this stage.

Probabilities of tasks completing are computed using the failure probability of the resources and

the probabilities of its parent tasks. We maintain a queue of tasks from the scheduledMworkflows

that are sorted by their probability of completion. We compare:

• a schedule where a task Ti in Tm is replicated one or more times on available resources where

Ti has the least success probability ∈ TM (The replication query is made to the VGrADS fault

tolerance component to see if the success probability of an individual task can be increased.),
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and

• a schedule from scheduling additional workflow Wi using the probabilistic DAG scheduler

(Section 9.4.1).

The schedule that yields the higher success probability is selected and this step is repeated till no

additional workflows can be scheduled or all tasks in the originalM workflows have been checked

to see if fault tolerance can be applied.

Additional Scheduling. If any workflows in W have not been scheduled in the earlier step, an

attempt is made to schedule those. If any tasks in T have not been checked for fault tolerance in the

earlier step, an attempt is made to replicate those tasks to increase its success probability. Finally,

each of the tasks in the workflow is checked to see if using Amazon EC2 has an effect on the success

probability. Costs on Amazon EC2 are bounded by the number of processors (16 in our setup) and

the deadline.

10.5.4 Evaluation

In this section, we study the performance and behavior of our integrated system. Specifically

we study the a) event timeline, b) comparison of resource acquisition times from batch and cloud

resources, c) parameters of the workflow orchestration schedule.

Experiment Setup. Our setup consists of a mix of batch and cloud resources as shown in Table 10.1.

The testbed consists of a virtual machine (bottlenose) where our entire software stack is hosted.

The software consists of an Apache ODE workflow engine, the workflow planner service, the vgES

code base and associated databases. The distributed infrastructure consists of local batch queue

systems run at RENCI/Univ. of North Carolina - Chapel Hill (kittyhawk), Univ. of California- Santa

Barbara(mayhem), NCSA TeraGrid (mercury), Eucalyptus based cloud resources at Univ of Houston
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Machine Software configuration Processors
Used

Mode

Mercury/NCSA Globus, NWS sensor, PBS 32 Advanced
reservation

KittyHawk/RENCI Globus, NWS sensor, PBS 32 Advanced
reservation

Mayhem/UCSB Globus, NWS sensor, PBS 8 Batch queue

EC2 Web service interface 16 Cloud
UHEuca Eucalyptus, NWS 16 Cloud
UCSBEuca Eucalyptus, NWS 6 Cloud
UTKEuca Eucalyptus, NWS 6 Cloud

tg-nws.cs.ucsb.edu NWS memory and name server 1 NWS

bottlenose/UCSB MySQL database for vgES and
Apache ODE, vgES, Workflow-
Planner service, Application
Service emulation, Apache
ODE workflow engine

1 Launch of
software

RENCI Euca Eucalyptus, MySQL database
for vgES and Apache ODE,
vgES, WorkflowPlanner ser-
vice, Application Service emu-
lation, Apache ODE workflow
engine

1 Launch of
software

Table 10.1: Demonstration Testbed for LEAD-VGrADS. Setup configuration of grid and cloud re-
sources in our testbed.
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(uheuca), Univ of Tennesse - Knoxville(utkeuca)), Univ of California - Santa Barbara(ucsbeuca) and

Amazon EC2(ec2). For these set of experiments advanced reservations were procured on mercury

and kittyhawk clusters. In addition, each of the cloud sites was set up with a Linux image with the

application binaries and data sets. In these experiments, we submit eight LEAD workflows which

are ready to run in five minutes from start of the experiment. The data set we use for the LEAD

workflow set is a small regional weather forecast and takes about 1.5 hrs to complete. The first few

steps of the workflow take a few minutes on single processors and the weather forecasting model

(WRF) takes over an hour and fifteen minutes on 16 processors. The constraint on the workflow set

is that at least one workflow must complete by a deadline of 2 hours.

Event timeline Figures 10.8 and 10.9 show the snapshot of an experiment timeline. Figure 10.8

shows the timeline of the planning phase of the orchestration. Each line on the graph represents the

duration of a particular event where the ends of the line signify the start and end time of the event.

In the first step, the planner queries the VGES which takes about 49 seconds. Once a set of slots are

determined to be sufficient, the binding process starts on all the sites in parallel. While the binding

is in progress, the planner queries bandwidth across all pairs of sites and launches the phased

workflow planning. The four phases takes about 7 seconds and complete well before the resource

procurement is complete. The resource procurement duration varies by site, but resources are ready

within 20 minutes. Once the resources are ready, the workflows begin execution (Figure 10.9). In

this snapshot the workflow1 failed and hence finished fairly early. All other workflows complete

by the deadline of 2 hours as expected. These figures demonstrate the effectiveness of our approach

in scheduling workflow sets across distributed resource sites.

These experiments are repeatable and while there is some runtime variation, the figures are

representative of the successful runs. It must be noted that the resources in our testbed have high

success probabilities (e.g., through advanced reservations) and hence have a fairly high probability
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of meeting the deadline. The effectiveness of the approach for meeting deadlines depends on the

probability of the resource set that is available to the user. Additional optimizations in the timings

are possible (e.g.,decreased levels of logging) when applied to production environments.
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Figure 10.8: Planning Timeline. The graph shows the timeline of the planning phase in the system.
The orchestration system queries the virtual grid execution system. Once prerequisite amount of
resources are obtained, the vgES system is directed to start the binding process. Simultaneously,
bandwidth between the sites is queried and the multi-phase pipeline process is launched. The end
of the bind process signifies that the resources are ready to execute jobs.
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Figure 10.9: Execution Timeline. The graph shows the timeline of execution of the workflows in the
system. In this run, workflow1 failed and hence completed earlier. All other workflows completed
by its deadline.

We compare the start and end times of workflow execution with that predicted by the schedule

(Figure 10.10). We see that the start and end times in the scheduler are different on the order of 13

to 22 minutes. The slots returned by VGES do not consider the overheads associated with resource

procurement and setup. From vgES’s perspective the slots are assigned to the user at the time the

resources were requested. The application-level planning in today’s systems has no estimates on
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the overheads. A simple workaround might be to assume a maximum overhead to the start time

of the slots. But long term, there is a need for better prediction and estimation mechanisms for

resource setup. Additionally, tools are required to support dynamic and staggered execution to

maximize slot utilization.

 0

 5

 10

 15

 20

 25

2 3 4 5 6

S
ch

ed
ul

e 
sl

ip
 (

in
 M

in
s)

Workflows

startTime
endTime

Figure 10.10: Comparison of Proposed and Actual Schedule. The graph shows a comparison of
workflow start and end times with the generated schedule. The difference in start time is due to
lack of tools for predicting resource binding and setup.

Resource Binding Figure 10.11 shows the average time required for binding each of the sites over

nine to thirteen runs. The variation in the number of data points comes from failures at sites in

some runs. The error bars show the minimum and the maximum values seen in the experiment set.

The batch systems (kittyhawk, mayhem and mercury) take lesser time to setup than the cloud sites.

The cloud sites based on Eucalyptus (uheuca, ucsbeuca, utkeuca) has more overhead than setting up

the batch systems since the virtual machines need to be booted with the image. The cloud sites -

uheuca and ec2 take longer since they boot 16 nodes. There is some variation in the bind time at

Amazon EC2, kittyhawk and mercury that is the result of runtime characteristics such as the load

on the machine. In this graph, we see that the overheads from cloud computing are slightly higher

than from batch systems. However the overhead on all sites is less than 25 minutes, which is not

significant for long running workflows. The batch queue wait times are minimized in these set of

experiments since we have advanced reservations on the sites.
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Figure 10.11: Resource Binding. The graphs shows the time at each site for resource binding or
procurement. The average values are shown as bars and the high and low values are shown with
error bars.

Scheduling Parameters In this set of experiments we query the virtual grid execution system for

scheduling different sized workflow sets and evaluate the schedule that is generated by the orches-

tration component.

Figure 10.12 shows the number of workflows scheduled at different deadlines and sizes of the

workflow set where at least five workflows (i.e., M = 5) must complete. When the workflow set

has five workflows (i.e., N = 5), there are sufficient resources to schedule five workflows at any

deadline. However when there are more workflows at a deadline of two hours only five workflows

are scheduled. As the deadline is extended, resources are available for longer durations enabling

scheduling of additional workflows such as for N = 13 all workflows can be scheduled for a

deadline of five and six hours. Thus as the deadline increases, more workflows can be scheduled

since more resource time is available, as expected.

Figure 10.13 shows the number of workflows that are scheduled by the planner with varying

deadlines and for different values of M, i.e., number of workflows that must minimally complete

out of ten workflows in a workflow set. A value of zero for the number of workflows scheduled

indicates the planning failed to find a schedule that meets the accuracy constraint and hence zero

workflows were scheduled to run. At a deadline of two hours, when five workflows were required,
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Figure 10.12: Schedule for Different Workflow Set Size. Number of workflows scheduled with
deadline and different number of workflows in the set. This graph shows the case for when five
workflows, i.e.,M = 5

the planner was able to meet the minimum criteria. WhenM > 5 the workflow planner is unable to

find a schedule that meets minimum criteria at a deadline of two hours. Similarly, at a deadline of

three hours and when ten workflows are required, the planner is unable to find a schedule. Thus, if

a user requires that more workflows must complete within a deadline, an acceptable schedule may

not be found.

Figures 10.14, 10.15 and 10.16 shows the effect on the schedule with varying values of M for

a set of workflows with nine members. Figure 10.14 shows the effective success probability of

the schedule generated at different deadlines. The final effective success probability of the sched-

ule meeting the deadline and accuracy constraints is close to 1 at low values of M. However as

the number of workflows that are required to complete increases the success probability drops.

Figure 10.15 shows the corresponding workflows that are scheduled at different values of M and
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Figure 10.13: Schedule for Different User Requirements. Number of workflows scheduled with
deadline and different quantity of workflows required. The graph shows the case for a total of ten
workflows in the set.

deadline. We see that in the case of deadline of two hours only five workflows are scheduled. In

all other cases, all nine workflows are scheduled. Figure 10.16 shows the replicas scheduled with

varying M and at different deadlines. We see that as the deadline is extended for the same number

of workflows, the number of replicas increases. Similarly as the number of workflows required

increases. For the replication, each task is expected to meet a minimum success probability and as

the number of workflows required increases, the effective success probability decreases requiring

more replications.

Finally, in Figure 10.17, we compare the effects of each phase of our pipeline scheduling. Our

resource set has high success probability values associated with them. We compare the effective

success probability of the schedule at different stages for a workflow set with five workflows to

be scheduled for a deadline of two hours. We see that each of the phases increase the effective

success probability. Also in the case where a large number of workflows are required, the effective
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success probability is lower in the initial phases and is substantially improved by using Amazon

EC2 resources in the schedule.
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Figure 10.17: Effect on Success Probability from the Pipeline Scheduling. In this graph we see the
success probability at the end of each of the phases for a workflow set with five workflows and a
deadline of two hours
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10.5.5 Summary

This case study enables us to study (a) the trade-offs between replicating certain tasks in the

workflow and scheduling additional workflows, (b) the implications of using Amazon EC2 as a

overflow resource for scientific workflows. However this case study is simplistic because often

users will have budgets in terms of service units of dollars that they would like to spend for an

experiment. In addition, a post-scheduling task-based fault tolerance strategy has certain problems.

For example, a task could have been replicated if it was considered as part of the DAG scheduling

strategy. It is possible that after scheduling M workflows the task cannot be replicated since that

space is occupied by task from another workflow. In the next use case we consider an orchestration

pipeline that overcomes these issues.

10.6 Deadline and Budget Sensitive Workflow Orchestration

We present a multi-phase workflow planning approach that is used to schedule a set of work-

flows with time and cost considerations using the performability approach discussed in Chapter 7.

We state the formal problem description in Section 10.6.1. We present details on the implementa-

tion of the multi-phase planning strategy in Section 10.6.2 and present evaluation results in Sec-

tion 10.6.3.

10.6.1 Problem Description

We consider a workflow set W = {W1, W2, ..., Wn} where workflow Wi is a description of a

DAG that specifies the ordering of task execution. The workflows have access to resourcesRtotal =

{R1, ..., Rw}. In addition for each task Taskk its execution on resourceRj is given by [n, T1, T2..., T5]
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where n is the number of processors required for the task and T1, T2..., T5 denotes execution time

of the application in High, Good, Medium, Low, Poor reliability states.

Workflow Wi in the set has higher priority than workflows Wj where j > i. The workflow

set is specified to have the following constraint: workflows M whereM ≤ N must complete by a

deadlineD within a total budget of B.

The budgetB is specified across all the set of resource sitesR = R1...Rw such that the budget for

Resource Rj is Bj and B = B1 +B2 + ....+Bw. Each resource site Rj has failure-rate λj , repair-rate

µj and has cost-rates c0...c4 in the degraded states.

10.6.2 Pipeline Policies

We apply a multi-phase planning approach to schedule workflows and fault-tolerance to in-

crease the probability of a workflow-set meeting its constraints. The multi-phase approach trades

performance and fault tolerance to meet the M out of N workflow accuracy and the deadline con-

straints on the given resources. We outline here the policies at different stages of the planning

strategy:

Resource procurement. The first stage of the workflow planning is to procure resources for the

workflows. Each resource siteRj is queried for a certain number of processors for the time duration

from now till the deadline for a given budget Bj . Our workflow orchestration has two goals: to

meet the specified deadline and schedule the maximum number of workflows in the given time

such as to increase the probability of at least the minimum required workflows complete. Thus

we pick an aggressive resource request policy querying all sites for the maximum duration. We

use the budget at each site, Bj , and the maximum width of resources required at the site w and

try to procure the best resource we can for the given duration between now and the deadline. We
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also assume that a maximum duration of the resource is required i.e., resources are required for the

entire duration from now till the deadline. Thus,

TotalBudget(Bj) = (costrate) ∗ w ∗ D (10.1)

Thus cost-rate that we can afford at a given site is given by Bj

w∗D
.

The workflow planner uses the monitoring status of each of the sites and procure the resources

where the cost-rate ≤ Bj

w∗D
. Thus we acquire a set of resources where each resource j is described

by [D, w, statej ] whereD gives the duration and w is the number of resources allocated and statej

describes the current reliability state of the machine. Other appropriate policies for resource acqui-

sition can be applied to trade-off system state with cost.

Minimal scheduling. In the next stage, an attempt is made to schedule the first M out of N work-

flows. For each of first M out of N workflows inW the deadline-sensitive Hybrid DAG scheduler

(Section 9.4.3) is invoked. At this stage no fault-tolerance policies are applied. If M DAGs can’t be

scheduled, the planner exits with an error.

Trade-off. Next, the goal is to determine if the resources should be used to schedule additional

workflows or use the resources for increasing the fault-tolerance for each of the M workflows. We

compare the success probability of M out of N workflows completing as the criteria for picking the

scheduling at this stage. Probabilities of tasks completing are computed using the failure proba-

bility of the resources in the complete fail state (Chapter 7:equation 7.1) and the probabilities of its

parent tasks. The following two strategies are compared:

• a schedule where a workflow Wi ∈ WM has fault-tolerance enabled where Wi has the least

success probability ∈ WM using the DAG scheduler from Chapter 9:Section 9.4.3,



10. Workflow sets 226

• a schedule from mapping an additional workflowWiwithout fault tolerance,

The schedule that yields the higher success probability is selected and this step is repeated till

no additional workflows can be scheduled or all of the original M workflows have been checked

to see if fault tolerance can be applied.

Additional Scheduling. If any workflow in W has not been scheduled in the earlier step, an at-

tempt is made to schedule them. Finally, the fault tolerance strategy is applied to one or more

workflows that are scheduled without fault tolerance to increase the probability of meeting the

constraints.

10.6.3 Evaluation

In this section, we evaluate the parameters of our multi-phase deadline-driven workflow plan-

ning strategy over the lifetime of the LANL system. We study the impact of the following factors

on the scheduling (a) failure-to-repair ratios (b) deadlines (c) user budgets. The results shown are

for scheduling minimally three out of ten workflows.

Figure 10.18 (b) shows the number of workflows scheduled by the multi-phase workflow plan-

ning approach. When the deadline is two hours, only the minimal number of workflows get sched-

uled. At a deadline of three hours, in the beginning and end of the system lifetime where failure

rates are high, only five workflows are scheduled but otherwise six workflows are scheduled. We

observe that the number of workflows scheduled increases with the deadline and is sometimes

affected by system properties. For example, when deadline is six hours we see that the number

of workflows scheduled drops at system lifetime of about 175 hours and 500 hours, but we see a

corresponding increase in number of replicas and checkpoints (Figures 10.18(b) and (c)).

Figures 10.19(a),(b) and (c) show the number of workflows scheduled, number of tasks that are
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Figure 10.18: Performability Workflow Set Scheduling Over System Lifetime. Number of (a) work-
flows (b) checkpoints (c) replicas scheduled over the production use of systems lifetime at LANL.
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Figure 10.19: Performability Workflow Set Scheduling with Varying Deadline. Number of a) work-
flows b) tasks checkpointed c) tasks replicated (d) effective success probability with variation in
deadline.
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Figure 10.20: Effect of Budget on Resource Availability Level. Resource state variation with budget
(a) shows four cost rate functions we consider for the resource state (b) shows the variation of
resource stability level with budget.
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checkpointed and replicated as deadline is varied. We see that as the deadline interval increases the

system is able to schedule more workflows and guarantee higher level of fault-tolerance by check-

pointing and replicating tasks since resources are available for a longer duration. The behavior is

mostly similar across different points of system lifetime. Figure 10.19(d) shows the variation of the

effective success probability achieved with our planning approach. At shorter deadlines, we see

that the probabilities are lower especially in a system’s early life (e.g., system lifetime of 10 hrs and

500 hrs) when failure-rates are high.

Finally, we study the resource state variation with allocated budget. Figure 10.20(a) shows the

four costFunctions we consider for this analysis. For example, costFunction1 has a linear increase

in cost with the different resource states. For each of the cost functions, we vary a sites’s budget

at a deadline of two hours and study the state of the resource that can be afforded. As expected,

as the budget is increased the resource state improves (Figure 10.20(b)). The linear cost function

(costFunction1) shows the slowest improvement in resource state with budget since the cost rates

are not significantly different between each state.

Our evaluation demonstrates the importance of using performability as a basis of workflow

scheduling and planning to achieve a certain level of QoS in degradable systems. The experiments

demonstrates the effect of varying various parameters to achieve user constraints such as deadline

and requiring minimally M out of N workflows under budget considerations.

10.6.4 Summary

Our workflow planning strategy accounts for performance, reliability and associated costs. This

multi-phase planning strategy (a) guarantees at least minimum number of required workflows are

scheduled, (b) applies fault tolerance strategies and/or (c) schedules additional workflows such

that it meets a deadline and a budget constraint. The resource acquisition has a complexity of O(n)
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and the DAG scheduler has a worst case complexity of O(n2). Thus, the workflow orchestration

approach has worst case complexity of O(n2). Next, we evaluate the parameters in the workflow

set planning strategy.

10.7 Summary

In this chapter, we demonstrated various orchestration strategies for workflow sets to balance

cost, performance and reliability of the scheduled workflows. A coordinated effort across the re-

source and workflow layer, enables an orchestration approach that can increase the success proba-

bility of meeting user constraints even in the presence of resource variability. The different param-

eters (e.g., deadline, cost) determine the exact schedule. The multi-phase workflow orchestration

approach provides a strong foundation for next-generation workflow planning and scheduling in

grid and cloud environments.
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Conclusions and Future Work

Recent advances in computing, i.e., emergence of virtualization technologies, web-services and

multi-core processors, have accelerated advances in grid computing and spearheaded cloud com-

puting business models. These changes in turn necessitate the need to closely examine the software

stack that runs atop these systems and services provided by distributed data centers to provide pre-

dictable Quality of Service to scientific and business applications.

We developed WORDS that abstracts differences between specific resource models and pro-

vides a clear separation of concerns between application and resource layers in providing QoS to

end user. In the context of this architecture, we investigate the capabilities required in grid and

cloud resource control mechanisms to provide predictable performability guarantees. We also ex-

plore the application-level algorithms for deadline-sensitive workflow orchestration that can bal-

ance cost, performance, reliability. Specifically, we validate our hypothesis and answer the follow-

ing research questions (Chapter 5):

1. Is a common abstraction possible that captures the different properties of grid and cloud

systems and yet enables higher level systems to be shielded from specific system implemen-

tations?

231
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A: Yes. We present a common resource abstraction across different resource control mech-

anisms. We demonstrate how effective workflow orchestration can be built on top of that

abstraction while being shielded from specific system properties. The abstraction is based

on the lowest common denominator of the system properties, yet is also flexible enough to

accommodate advanced system properties such as resizable dynamic resource containers.

2. What information is required in next-generation data-center interfaces to improve support

for dynamic adaptive workflows?

A:Next-generation data center/resource interfaces need to reflect information regarding QoS

parameters including performance, failures and cost that users or tools acting on behalf of

users can use to trade-off various system parameters.

3. Can users be allowed to express dynamic user and resource constraints?

A:Yes. Application interfaces need to balance simplicity of usewith giving users more control

that facilitate intelligent and autonomic scheduling decisions.

4. Is it possible to provide predictable quality of service atop systems that do not provide explicit

resource control?

A: Yes. We show that a probabilistic QoS model allows us to provide predictable quality of

service atop systems such as batch systems that do not provide explicit resource control.

5. How can workflows account for variability in performance, and reliability that are inherent

to distributed large-scale systems?

A: By using performability analysis based on Markov Reward Models, we show how work-

flows can account for variability in performance and reliability and represent associated costs

allowing workflows to do appropriate trade-offs.
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6. How can workflow sets be scheduled to meet multiple constraints such as deadline and accu-

racy? How can higher-level tools determine appropriate fault tolerance strategies with cost

and other constraints?

A: We show that by using an orchestration pipeline and a probabilistic QoS model we can

quantify the trade-offs between different constraints enabling a richer schedule that accounts

for the system properties and user constraints.

Next we outline the specific contributions of this work and future directions that are motivated

from the results in this work.

11.1 Resource Layer

We explore the interfaces andmechanisms required at the resource layer in next-generation data

centers supporting grid and cloud systems.

Resource Abstraction. WORDS lays the foundation for next generation dynamic adaptive dis-

tributed environments. The resource abstraction in WORDS enables resource providers to provide

specific bounds on QoS and facilitates higher-level applications to interact with and compare QoS

capabilities of different resource systems without needing to know specific policies or implemen-

tation details. This abstraction provides the necessary framework for dynamic resource contracts

that are required as cloud computing business models become mainstream.

Probabilistic QoS model. The cloud computing paradigm provides a clear separation between

resource, service providers and consumers. This makes predictable resource control with appro-

priate QoS abstractions critical in today’s distributed environments. We explore and demonstrate

probabilistic bounds on resource procurement and failure characteristics as a feasible approach
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to providing QoS service to end-user applications. The probabilistic QoS model accounts for un-

certainty in procurement and quantifies availability characteristics in highly variable distributed

systems. As cloud computing systems develop, it is important to explore QoS contracts between

different level providers (e.g., IaaS - Infrastructure as a service providers, SaaS - Software as a ser-

vice providers) in cloud environments that capture the resource behavior, business models and

consumer requirements. To meet this goal, it will be necessary to explore the set of services that

need to be hosted inside and outside cloud systems to facilitate end-user resource interactions for

workload and data management, monitoring and adaptation for QoS and cost.

Performance, reliability and cost-based contracts With large scale deployments of resources at

cloud computing centers, service providers need to handle degraded services at the compute, stor-

age and network levels to manage availability variations in hardware and software. We propose

and evaluate aMarkov RewardModel for performability analysis i.e., measuring the effect of avail-

ability variations on performance and cost [141]. More recently energy efficiency or “green com-

puting” has become central to design of data centers. Long term, we need policies and cost-models

that enable higher-level applications to trade-off system parameters such as energy usage. The pro-

posed performability model can be further expanded to build dynamic resource contracts between

resource providers and consumers enabling criteria such as energy usage and failure characteristics

to become part of the mainstream business model.

Container-provisioning. Cloud computing models have spearheaded the use of customized vir-

tual environments. In this thesis, we illustrate the dynamic assignment of shared pools of comput-

ing resources to hosted grid environments. Our implementation shows how to extend grid man-

agement services to use a dynamic leasing service to acquire computational resources and integrate

them into a grid environment in response to changing demand. Each site controls a dynamic as-

signment of its local cluster resources to the locally hosted grid points of presence. Our approach
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addresses resource control at the container level, independently of the software that runs within the

container. Further investigation is required for policy choices required for resource provisioning at

the data center.

11.2 Application Layer

We develop the interaction of high-level application tools (e.g., workflow tools) with next-

generation data centers and interfaces required at the user-level for easy access to cloud computing

systems.

Constraint Specifications. We propose a user-level constraint space that allows users to specify

higher-level constraints such as budget, priorities, etc. on their work units to guide orchestrations

decisions. It is important to further explore constraint specifications at the user-level that allow end

users to specify performance, availability, cost, security and other QoS expectations. These need to

be mapped to appropriate policies at the resource level.

Programming models. Different programming models and tools have evolved in the grid and

cloud computing space. Higher-level workflow tools have various internal representations for

dependencies between different tasks. The Web Services Business Process Execution Language

(WS-BPEL) [202] is one such executable language for specifying interactions between web service

workflow components. On the other hand tools such as Apache Hadoop [7] and Dryad [84] have

evolved to handle execution in parallel clustered systems. Scientific applications are often com-

posed through Message Passing Interfaces, Master-Worker, Divide and Conquer or Single Pro-

gram Multiple Data programming paradigms. There is a disconnect between these programming

models at different levels requiring specific tools for specific applications. For example, workflow

tools today see only task dependencies, whereas resource planning in Hadoop develop execution
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plans based on resource availability and other concurrent workloads. The execution framework in

WORDS includes a prototype execution system that managed runtime execution dependencies in

addition to the task dependency managed by an Apache ODE [8] workflow engine. It is necessary

to further explore the interaction between application and cloud-level execution tools to manage

execution based on user constraints and resource availability characteristics.

Dynamic Scheduling. We explore multi-phase workflow orchestration approaches that balance

performance, reliability and cost trade-offs for deadline-sensitive workflows that have accuracy

and timeliness constraints. The workloads that were considered were scientific workflows from

diverse domains including bioinformatics and biomedicine, weather and ocean modeling. Dy-

namic scheduling techniques need further exploration for scientific workloads that require timely

coordination of streaming data from instruments, computational resources and access to large-scale

storage systems and periodic human intervention to resolve uncertainties during runtime that were

identified as requirements in our workflow survey. Dynamic scheduling is also critical for main-

stream business workloads such as mobile applications that process large data sets on distributed

cloud resources.

Adaptation. Uncertainty is a key element of distributed system. Preplanning techniques need

to be accompanied by real-time adaptation. An adaptation infrastructure needs to be supported

with monitoring infrastructure to detect performance and reliability fluctuations and policies at

different levels. For example,the adaptation infrastructure can receivemillions of adaptation events

sometimes requiring conflicting actions requiring an arbitration policy. The WORDS architecture

provides the infrastructure to further explore adaptation requirements in next-generation grid and

cloud systems.
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Workflow Emulator

In the last few years, workflows and workflow tools have become an integral part of cyberin-

frastructure. These workflow systems often interact with other middleware including planners,

schedulers, web services, provenance systems and resource-level services. The complex require-

ments of this software stack drives the research in computer science to investigate and apply in-

novative techniques and mechanisms to manage these environments. The complexity and cost of

these systems often makes it hard to experiment and test new computer science mechanisms dur-

ing actual workflow execution. Often there is also a need to replay a workflow execution to inspect

and generate the data events associated with workflow execution. We used a simple service based

workflow emulation model that serves as a benchmark platform to experiment with mechanisms

and policies in a controlled environment.

Figure A.1 shows the workflow emulation architecture. It consists of an existing workflow

engines that works coordinates an emulation service to recreate the workflow execution flow. The

workflow engine in our particular implementation is Apache ODE [8], a BPEL based workflow

engine that invokes the emulation service in place of the application service that is invoked during

real execution for each step in the workflow or directed acyclic graph(DAG). The emulation service

follows a state based execution flow that captures different stages of task execution including data

transfer, computation, post-processing, etc.

The specific information such as task execution time and data transfers are retrieved from a local

237
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Figure A.1: Workflow Emulation Architecture. The figure shows the interaction of the different
components in the emulation environment.

database for each workflow during execution. The emulation service may also interact with exter-

nal systems like a grid emulator that emulates application running on different resource provider

sites [139]. For purposes of this research, the service emulation interacts with a workflow planner

service.

The workflow emulation architecture is a minimalistic framework that can be configured with

external event handlers to register the execution activities that is of interest for a particular case

study. In addition to this research it is being used to generate a provenance database for work-

flows [51].

A.1 Application Service Handler Interface

The application service emulation execution flow is captured with the state diagram shown in

Figure A.2. The service is configurable to allow event handlers to be associated with each state for

a particular workflow or task execution. Each state may be associated with multiple event handlers

(e.g. for provenance generation and scheduling) that are specified before execution. The states are

described below.
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T y p i c a l s e q u e n t i a l f l o wE x a m p l e a l t e r n a t i v e sR e p e t i t i v e s t a t e s
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Figure A.2: Application Service Emulation Execution Flow. The figure shows the different states
supported by the emulation execution flow for each task in the workflow. Some states may be
skipped or repeated for different scenarios.

Task Started. This marks the start of an activity or task. The handlers for this state may invoke a

workflow planning component to get resource information and then retrieve the task information

(e.g. execution time, data sizes) based on the resource information. In addition handlers may

publish events to signify the task was invoked.

Input Data Transfer Started and Input Data Transfer Completed. These states are used to capture

the data transfers that may be required for the particular task at hand. These steps will be repeated

for each data product that may be required by the computation. These steps can also be skipped for

special circumstances - e.g. if there are no input data transfers that are required or the input data

transfer completed state may not be relevant in the case of streaming input data.

Pre-computation. In this state typically pre-computation steps are invoked. For example, input

data products may be registered with a meta-data catalog or specific resource based information

for the computation may be retrieved



A. Workflow Emulator 240

Computation. In this state the emulation of the computation stage will be emulated. This could

be a NOP (no operation) for the application execution time or an external grid emulator can be

invoked.

Post computation. This represents the post-computation activities that can include data product

registration.

Output Data Transfer Started and Output Data Transfer Completed. These states are used to

capture the data transfers that are required for the output data generated by the emulated task.

These steps will be repeated for each data product that is required by the computation. These steps

can also be skipped if data transfers are not required for this task.

Task Complete. This is the final state in a normal execution flow and the result of the task is sent

back to the workflow engine which then uses that to invoke the next task in the DAG.

A.2 Orchestration Handler

The application service handler interface is customizable. The orchestration handler in the em-

ulator handles the following to demonstrate and evaluate components of this research:

• For every task in the workflow it queries the workflow planner to determine the resources

the task must run on. There cab be replicas for the tasks and the resource mapping for each

of them is returned.

• It interacts with the expanded execution manager interface and triggers job submission with

a description of the job. This is repeated for each replica.

• It queries the execution manager for job status and wait till the job succeeds or fails.
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This emulation architecture is used in concert with other system components as a demonstra-

tion of the orchestration mechanisms over the Virtual Grid Execution System (vgES) (described in

Chapter 10).



B

LEAD Portal Resource Usage Analysis

The deployed LEAD system consists of a portal 1 that allows users to interact with meteorolog-

ical workflows that run across a distributed testbed. The portal provides access to pre-composed

workflows that can be configured with specific data. The workflow types supported consist of

the weather forecasting and data mining workflows. The portal also provides other tools for vi-

sualization, to create and configure application services, and manage data products. The LEAD

meta-data sub-system collects and manages workflow data of the user’s experiments. We present

here a higher-level analysis of the data to highlight the types of workflows supported in the system

and the performance and reliability characteristics experienced by these workflows.

The data presented here is from user experiments run between October 2007 and March 2009.

Our system allows users to delete their experiments and the meta-data for the experiments is

purged from the system. Thus, more experiments were run than what is detailed here. The ex-

periments also consist of developer run workflows that were used to test the system components.

Other studies by other project members capture the problems and solutions that were put in place

for handling failures associated with job submission [114] and file transfer [171] that were encoun-

tered and rectified in the infrastructure.

1https://portal.leadproject.org
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B.1 System Details

The LEAD portal supports three primary type of workflows - datamining, andNAM-initialized

andADAS-initializedweather forecastingworkflows (described in Chapter 2: Section 2.2). Another

workflow type that has been deployed in the portal and primarily used for testing is a simple Echo

workflow.

The different execution components of the LEAD system publish notifications to a notification

bus. The LEAD meta-data system subscribes to the notifications and manages the data in backend

databases.

The LEAD infrastructure consists of a diverse set of geographically distributed resources. The

LEAD production services including the portal, application services are hosted on the tyr cluster.

The TeraGrid resources provide back-end computational infrastructure for job execution. Table B.1

shows the configuration of these machines. The TeraGrid systems are all batch queue resources

and applications incur wait time on these resources. During workshops and significant events,

administrators of the LEAD system procure out-of-band advanced reservations on these systems

to reduce wait times.

B.2 Overview

We parse the execution metadata to determine the type of the workflow. The parser detects

three primary types of workflows - NAM, ADAS and MINING workflows. The NAM and ADAS

workflows differ in just one task and sometimes hard to classify themwhen there aremissing notifi-

cation messages or the workflow has failed. In addition some workflows havemissing notifications

and can’t be classified and are tabulated as UNCLASSIFIED.
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Machine Usage Specifications

tyr LEAD services 16 nodes, Dual AMD 2.0GHZ Opteron, 16GB
memory per node, Redhat Enterprise Linux

anl computation (Argonne Ter-
aGrid)

62 nodes, Dual Intel Itanium 2 processors,
4GB memory per node, Redhat Enterprise
Linux

bigred computation (IU TeraGrid) 768 nodes, Dual-core 2.5GHz PowerPC
970MP, 8GB memory per node, Suse Enter-
prise Linux

mercury computation (NCSA Tera-
Grid)

887 IBM nodes: 256 nodes with dual 1.3 GHz
Intel Itanium 2 processors (half with 4 GB of
memory per node, and the rest with 12 GB of
memory per node), 631 nodes with dual 1.5
GHz Intel Itanium 2 processors (4 GB ofmem-
ory per node), SuSE Linux

tungsten computation (NCSA Tera-
Grid - decommissioned)

1280 nodes with dual Dell PowerEdge 1750
server, 3GB memory per node, Redhat Linux
(decommissioned in 2008)

Table B.1: LEAD Production Testbed. Machine specifications of systems used by LEAD.

Type Total Success Recovered Failed

NAM 1483 386 141 956
ADAS 1237 301 148 787
MINING 337 267 8 46
ECHO 68 8 0 60
NAM or ADAS 473 4 0 469
UNCLASSIFIED 574 4 0 570

Total 4172 971 297 2904

Table B.2: LEAD Production Workflow Completion States. The table shows the classification of
workflows that are in different termination states - success, failed or recovered.
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A workflow can be in one of three final states in our system. The workflow can complete suc-

cessfully without encountering failures or can fail during execution. In addition the LEAD system

has built in fault tolerance strategies such as task replication [87] and retries that were deployed in

the system during the time frame of this data collection. We classify a workflow that has duplicate

tasks as RECOVERED. A duplicate task will occur if the task failed or data transfer failed or the

system timed out due to large queue wait times and was resubmitted to a different resource.

Table B.2 shows the classification of the workflows by type and the number of workflows in

each of the final states. The majority of the workflows (76%) were identified as NAM or ADAS

workflows, of which 11% of the workflows could not be distinguished.

In the weather forecasting workflows only 35%(NAM) and 36% (ADAS) workflows completed

successfully with or without recovery. In contrast 81% of the MINING workflows completed suc-

cessfully out of which only 2% had to be recovered. The higher rates of success for the MINING

workflow are probably due their shorter running duration and hence less likely to encounter fail-

ures.

About 14% of the workflows could not be classified into correct workflow types. The successful

workflows in this class hadmissing notification messages that prevented them from being classified

automatically. The largest number of errors (85%) in the workflows are immediately afterworkflow

initialization. The remaining errors are from computational task or data transfer failures.

Figure B.1 shows the turnaround time distribution for the data mining and meteorological

workflows. The total turnaround time of workflows can vary due to a number of reasons includ-

ing user inputs, data transfer times, execution time and batch queue wait times. The data mining

workflow takes on the order of few minutes to a couple of hours though the largest number of

workflows finish within 40 minutes. The weather forecasting workflows vary from a few minutes

to a number of hours.
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Figure B.1: LEADWorkflows Performance Variation.

B.3 Data Mining Workflow

The data mining workflow (Chapter 2, Section 2.2) has three primary tasks in the workflow for

a) storm detection, b) removing attributes and c) spatial clustering. We study the distribution of the

execution time of these tasks.

The storm detection algorithm algorithm takes in the order of two to three minutes for the

majority of the runs on all three machines(Figure B.2). However we see some variation on all

machines and the maximum variation is seen on tungsten.

The remove attibutes and spatial clustering tasks, in most cases, takes between one and three

minutes on all machines (Figures B.3 and B.4). The remove attributes is fastest on tungsten where

60% of the entries complete within one minute. The perturbation in execution time is minimal for

both these tasks.

B.4 Weather Forecasting Workflow

The weather forecasting workflows consists of six tasks. These are a) Terrain Preprocessor b)

WRF Static c) Nam Initial interpolators d) NAM Lateral or ADAS interpolators e) ARPS2WRF f)
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Figure B.2: Storm Detection. The distribution of execution times for the storm detection algorithm
code on bigred, mercury and tungsten.
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Figure B.3: Remove attributes. The distribution of execution times for the remove attributes code
on bigred, mercury and tungsten.
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Figure B.4: Spatial Clustering. Execution times on bigred, mercury and tungsten.
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Figure B.5: Terrain Preprocessor. Execution times (a) anl (b) bigred (c) mercury (d) tungsten.

WRF. In this section, we discuss the execution times observed for these tasks.

Terrain Preprocessor. The Terrain Preprocessor task takes order of a few seconds to fewminutes on

all the machines. The perturbation is infrequently outside the five minute range(Figurefig:terrain)

and primarily see on mercury.

WRF Static.WRF Static typically takes order of two to three minutes for execution. The application

experiences some perturbation on mercury but rarely outside the 20 minute range (Figure B.6).

Interpolators. There are three types of interpolator tasks in the LEAD workflows. NAM Initial

(Figure B.7) has a typical execution time of two to three minutes and has minimal variation outside

the 20 minute mark. NAM Lateral and ADAS exhibit similar behavior (Figures B.8 and B.9).

ARPS2WRF. This application takes between two to fives minutes typically to execute on all ma-

chines. The application experiences more fluctuations on mercury and tungsten where less than



B. LEAD Portal Resource Usage Analysis 250

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100  120

P
er

ce
nt

ag
e 

of
 o

bs
er

va
tio

ns

Task turn around time (mins)

(a) anl

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100  120

P
er

ce
nt

ag
e 

of
 o

bs
er

va
tio

ns

Task turn around time (mins)

(b) bigred

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100  120

P
er

ce
nt

ag
e 

of
 o

bs
er

va
tio

ns

Task turn around time (mins)

(c) mercury

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100  120

P
er

ce
nt

ag
e 

of
 o

bs
er

va
tio

ns

Task turn around time (mins)

(d) tungsten

Figure B.6: Wrfstatic.Execution times (a) anl (b) bigred (c) mercury (d) tungsten.
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Figure B.7: Nam Initial Execution times (a) anl (b) bigred (c) mercury (d) tungsten.
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Figure B.8: Nam Lateral Execution times (a) anl (b) bigred (c) mercury (d) tungsten.
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Figure B.9: ADAS Execution times (a) anl (b) bigred (c) mercury (d) tungsten.
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Figure B.10: ARPS2WRF Execution times (a) anl (b) bigred (c) mercury (d) tungsten.

50% of the entries fall within the same minute range.

WRF.WRFwhich is a MPI application takes order of fewminutes to a few hours based on the input

data size. Here we see that there is a huge variation in the execution time and less than 30% of the

entries fall in the same range.

B.5 Summary

The data from the LEAD system shows that workflows experience failures and performance

fluctuation during execution. While the perturbation in execution time for individual applications

is in the order of a few minutes and considered minimal, these can severely impact the workflow

turnaround time.
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Figure B.11: WRF Execution times (a) anl (b) bigred (c) mercury (d) tungsten.
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