

Application-level Resource Provisioning on the Grid

Gurmeet Singh, Carl Kesselman, Ewa Deelman

Information Sciences Institute, USC
{gurmeet, carl, deelman}@isi.edu

Abstract
In this paper, we present algorithms for Grid

resource provisioning that employ agreement-based
resource management. These algorithms allow user-
level resource allocation and scheduling of
applications that are structured as a precedence-
constrained set of tasks. We present a provisioning
model where the resource availability in the Grid can
be enumerated as a set of slots. A slot is defined as a
number of processors available from a certain start
time for a certain duration at a certain cost. Using a
cost model that combines the cost of resource
allocation and the expected application runtime, we
evaluate the performance of the Min-Min and of the
Genetic algorithm (GA)-based heuristics for a range of
synthetic applications. We show that the GA paired
with a list scheduling algorithm can obtain
significantly better solutions than the Min-Min
heuristic alone.

1. Introduction
Due to the autonomous and shared nature of Grid

resources, the quality of service available to the user is
often best effort in nature. The resource owners are
interested in maximizing the utilization or the
throughput of their resource while the users are mostly
interested in optimizing their application performance.
Due to this best effort quality of service, optimizing
application performance on Grids has traditionally
relied on either queue wait time predictions [1] in case
of space shared systems or load predictions [2] in case
of time shared systems. However, the resulting
performance is only as good as the quality of the
prediction. While there can be many metrics to judge
the performance of the application, in this paper, we
use the expected runtime as the performance metric for
the application. In our study we consider workflow-
based applications [3], which consist of multiple tasks
with dependencies defined between them. We optimize
the runtime of the workflows by provisioning
resources ahead of the execution.

We use the term resource provisioning to imply
creating a contract between the user and the resource
owner specifying that a certain resource would be

made available to the user for a certain timeframe.
Resource provisioning for applications has several
advantages over best effort execution. First and most
importantly, it allows the user or workflow manager
[4] to control the scheduling and execution of the
application on the provisioned resources. This in turn
enables the estimation of the application performance
prior to its execution. Second, it allows the user or
workflow manager to explore the space of resources to
be provisioned and optimize for performance without
worrying about external factors such as the workload
of the resource or the policies of the resource provider.
Third, it enables the adaptation of the application
based on the provisioned resources in order to achieve
a certain level of performance. Fourth, it allows the
execution of applications that require co-allocation of
resources or have other constraints on the resource
requirements. Last, due to the deterministic nature of
the resource availability resulting from the contractual
provisioning process, mechanisms for adapting to the
otherwise dynamic nature of the Grid are not essential.

However, there are likely to be costs associated
with resource provisioning that justify provisioning
from resource owners perspective. These costs might
include an element that represents the charge for the
normal usage of the resource (e.g. number of service
units per processor second), but it might also include
an additional element that would account for factors
such as the loss of utilization for the resource provider
or the increased queue wait time of best effort jobs [5,
6] due to the provisioned resources. The problem we
explore in this paper is to identify from the user’s
perspective a set of resources to be provisioned in
order to optimize a parameterized cost metric that
includes the cost of provisioned resources and the
application runtime (also referred to as makespan in
this paper).

The resource availability in this paper is modeled
as a set of resource slots. A slot represents the
availability of a certain number of processors starting
at a certain time for a certain duration at a certain cost
from a certain resource. While the model can be easily
extended to other resource types such as network and
storage resources, in this paper we focus our attention
to compute resources. The set of available slots at any

time can be determined by querying the Grid resources.
Alternatively, the resources can publish this slot
information periodically in Grid information services.
This resource model is a significant departure from
earlier work on application scheduling on the Grid
which either considered a resource to be available in its
entirety or not at all [7-9] or assumed some form of
centralized control [10]. We think that given the large-
scale, shared, and autonomous nature of the Grid
resources, modeling the resources availability in
discrete units that can be provisioned by the user is a
more appropriate approach.

Much work has recently focused on using
agreement-based resource management [11, 12] in
order to meet the challenges of heterogeneous and
autonomous resources. Using this model, the resource
consumer or a broker enters into a contractual
agreement with the resource provider about the
availability of certain resources for a certain timeframe
at a certain cost. There is ongoing work in the Grid
Resource Allocation and Agreement Protocol Working
Group (GRAAP-WG) [13] of the Global Grid Forum
on formalizing the mechanisms and protocols for
creating resource agreements. The ability to provision
resources in the form of advance reservations [14] is
already present in most resource management systems
such as Maui [15], PBSPro [16], LSF [17] etc. Current
middleware tools such as Condor Glidein [18] allow
the user to execute an application schedule on the
provisioned resources without any support from the
resource provider. What is required is a mechanism
that allows the user to discover the set of provisionable
resources and a policy for pricing these resources. In
the future, it is anticipated that resource provisioning
would be the rule rather than the exception [11].

The rest of the paper is structured as follows.
Section 2 describes the resource provisioning model
that describes the Grid resource availability in the form
of a set of slots and formulates the resource
provisioning problem. Section 3 describes a retrofitted
Min-Min heuristic and a genetic algorithm based
heuristic for creating a resource plan for the application
that optimizes a parameterized cost metric. The
performance of these heuristics for a given resource
availability on a number of artificially generated
applications is evaluated in Section 4. The results are
discussed in Section 5. Related work is presented in
Section 6 followed by conclusions in Section 7.

2. Resource Provisioning Model
The Grid is comprised of R autonomous compute

resources or sites. Each site r is a cluster of Nr
homogeneous processors. Each site r can be queried
for the possible start times and the associated cost for

provisioning n processors for d duration. The query
and the response are represented as:

Er(n,d) = {<s1,n, d, c1,f1,r>, ….,
<si,n,d,ci,fi,r>….} …(1)

Note that this is no different than assuming the
ability to query the possible start times of a task or a
resource reservation requiring n processors for d
duration from site r. Each tuple <si, n, d, ci, fi, r> in the
response set represents the availability of n processors
for d duration starting at time si with a multiplicative
cost of ci and a fixed cost of fi from the site r. Each
tuple is called a slot. The total cost of using the slot is
defined as (n*d*ci + fi).

The multiplicative cost is used to specify the usage
charge that is related to the amount of resource
provisioned. For example, it might represent service
units per processor second or dollars per processor
second. This multiplicative cost might also depend on
the start time similar to the existence of express queues
on some Grid sites that have a faster response time but
charge a higher number of service units per processor
second.

The fixed cost might be used to represent the lost
resource utilization or the increased response time [5]
due to the fragmentation of resources resulting from
allowing fixed resource reservations. It might also be
used to discourage users from provisioning too many
slots and instead provision resources in bigger chunks
resulting in less bookkeeping for the resource provider.
While a single cost factor per slot would have also
served the purpose, having two separate cost factors
provides better semantic description of the model.

The set of all the slots available from the site r,
denoted by Er(.), can be constructed as

r siteat allowed duration maxrDwhere
r rNn Dd

rr dnEE

=

≤≤ ≤≤

=)2......(),((.)
1 1
∪ ∪

However, it would overload the Grid site if every
user queried for every possible value of n and d. It
would be much more efficient if a single query can
return the set of available slots on the site. Thus, we
assume that each site r can be queried for the set of
slots available on the site.

Er(.) = {<s1,n1, d1, c1,f1,r>,……,
<si,ni,di,ci,fi,r>….} …(3)

We also assume that the sites only return the set of
non-overlapping slots i.e. no two slots represent the
same underlying resource and each slot can be
provisioned independent of any other slot.

Alternatively, this set Er(.) can also be published using
a Grid information service such as MDS [19].

A global set of resource slots: Â, is the set of all the
resource slots available in the Grid. It can be
constructed by querying each site (equation(3)) as
shown below

....(4)(.)
1
∪

�

Rr
rEA

≤≤

=

The application model in this paper is a workflow
consisting of compute and data transfer tasks with
precedence constraints between them. The data transfer
tasks are used to transfer data between the compute
tasks when they are scheduled on different sites. We
assume the processing capacity (processor speed) and
the network latency between all the sites to be
homogeneous and contention for network resources is
ignored. Provisioning of network resources is not
considered in these studies though it would be
straightforward to include it in the set of provisionable
resources. The runtime of each compute task on each
of the Grid sites is known and as a result of the
previous assumptions, the run time of a data transfer
task is also known. The makespan is defined as the
maximum completion time of any task in the
application.

We define the resource provisioning problem as the
problem of finding a subset â of Â (or in other words,
an element of the power set of Â, P(Â)) and a schedule
ŝ of the application over â such that the following
objective function is minimized.

ψα

ψ

αα

<≤≤
∞

=

+=

−+

∑
>∈<

∈

0,10
,

ˆ),ˆ(*
{)ˆ(

)**()ˆ(,

)5.......()ˆ().1()ˆ(.min

ˆ..

)ˆ(ˆ

otherwise
completeissifsmakespan

sSC

fcdnaACwhere

sSCaAC

a
iiii

APa

This objective function is also called the total cost
in the rest of this paper. This cost metric tries to
minimize the cost of the provisioned resources while
optimizing the application performance. Any subset â
of Â is called a resource plan. The term AC(â) in the
objective function is called the allocation cost of the
resource plan â and denotes the total cost of all the
slots included in â. The term SC(ŝ) is called the
scheduling cost and is used to measure the application
performance. Examples of such measures can be the
makespan, the reliability or the lateness of the
application past a given deadline.

While, in general the scheduling cost can be used to
represent any performance measure that is a function
of the application schedule, in this paper, we assume
the makespan as the scheduling cost (Ψ = 1). The term
Ψ indicates the importance of the makespan in cost
terms (service units per second or dollars per second).
It is specified by the user and ensures that the units in
equation(5) are consistent. Depending on the
scheduling policy used and the resource plan â under
consideration, it may not be possible to schedule the
entire application over â, if for example, â contains too
few slots. In this case, the scheduling cost is
considered infinite. Thus, the cost metric tries to find
resource plans that can schedule the entire application.

 The term α allows the user to specify the relative
importance of the allocation cost and the scheduling
cost. This model can also specify a budget and/or a
deadline for the application by introducing appropriate
constraints. Given the optimization problem described
in equation(5), the number of possible subset of Â is
2|Â| and thus it is not possible to exhaustively examine
all subsets in order to find the optimal one. In the next
section, we present two heuristics that attempt to find
the optimal subset â of Â and a feasible schedule ŝ of
the application on â in order to minimize the total cost.

3. Algorithms for resource provisioning
While we would like to find the schedule ŝ, that

minimizes the makespan of the application over the
resource plan â, finding such an optimal schedule is a
NP-Hard problem [8]. In the case of the Min-Min
heuristic, the resource plan â and the schedule ŝ are
created together. In the case of the GA heuristic, the
GA is used to create the resource plan â, while a list
scheduling algorithm is used to create the schedule ŝ.
Min-Min heuristic

The Min-Min heuristic (Figure 1) maintains a set of
allocated slots and a partial schedule of the application.
At each iteration, it chooses to schedule a ready task (a
task whose parents have already been scheduled) on a
slot that leads to the minimum increase in the total cost.
This heuristic creates the resource plan â and the
schedule ŝ incrementally. The total cost of scheduling a
ready task on a slot in step 7 of the algorithm can be
computed as shown in Figure 2. This heuristic is an
extension of the Min-Min algorithm used for workflow
scheduling in [8, 9]. However, there are a few
differences. First, it works to minimize the total cost
instead of only the makespan. Second, it operates on
the set of ready tasks instead of the set of tasks at a
particular depth in the workflow.

Due to the two min operations in step 9 and 11 of
the heuristic, it is called the Min-Min heuristic. Note

that the heuristic will prefer to schedule tasks on the
already allocated slots since it would lead to a lower
allocation cost at each step. The heuristics does a local
optimization for each task. It may not be possible to
schedule a task on a slot if there isn’t sufficient overlap
between the runtime of the slot and the possible
runtime of the task based on the completion times of
the parent tasks. In addition, due to the non
backtracking nature of the heuristic, it might not be
able to schedule the whole application on the given set
of slots Â, if at any stage; there is no slot in Â that can
schedule any task in the current set of ready tasks
irrespective of the cost. If it happens, the heuristic
stops at that point and returns an incomplete schedule.

Figure 1. The Min-Min heuristic

Figure 2. Computing the total cost in step 7 of

the Min-Min heuristic.
The time complexity of the Min-Min algorithm is

O(|V|2.|Â|.nA) where |V| is the number of tasks in the
application, |Â| is the cardinality of Â and nA is the
maximum number of processors in any slot in Â.

Genetic Algorithm (GA)
 In the genetic algorithm (called GA in the rest of

this paper), we create an initial population of certain
number of randomly generated unique subsets of Â.
For each individual in the population, a schedule of the
application is created on the slots in the individual
using the list scheduling algorithm in Figure 3.

Figure 3. A list scheduling algorithm.

The time complexity of the scheduling algorithm is
O(|V|.|Â|.nA) where |V| is the number of tasks in the
application, |Â| is the cardinality of Â and nA is the
maximum number of processors in any slot in Â. It is
possible that this algorithm might not schedule any
task on a slot in an individual in the population. The
total cost of the individual is computed only based on
the slots that have at least one task scheduled on them.
Such a slot is called a scheduled slot. The total cost of
the individual is computing using equation(5) with the
allocation cost determined by the scheduled slots and
the scheduling cost by the makespan of the schedule.
We do not prune the unscheduled slots from the
individual since they might become useful later as a
result of the crossover operations.

The GA goes through a number of iterations.
During an iteration, each individual is mated with
another individual and creates two offsprings. This is
called a crossover. The first offspring inherits slots that
exists only either in the first parent or the second
(similar to the XOR binary operation). The second
offspring inherits slots that are either present in both
the parents or in neither of them (similar to the XNOR
operation). This doubles the population size. The
selection of the crossover operators was motivated by
the observation that they lead to a greater number of
unique individuals in the population. However, there
still might be duplicates in the population as a result of
the crossover. After removing the duplicates, we
compute the total cost of each new member of the
population and reduce the population to the previous
size by retaining the least total cost individuals in the
population. The algorithm stops after certain number of
iterations and the solution selected is the individual
with the least total cost in the current population.

1. Initialize the set of allocated slot AS as
empty.
2. While the complete application is not
scheduled
3. Let VS = the set of scheduled tasks
4. Let VR = the set of un scheduled ready

tasks
5. For each v Є VR
6. For each slot a Є Â
7. Let Tv

a = total cost if v is
scheduled on a

8. End-for
9. Let Tv

x be the min cost over all slots
for v.

10. End-for
11. Let Ty

x be the min over all v for VR.
12. Schedule task y on slot x. Add x to AS if

it does not belong to AS. Remove y from
VR and add to VS.

13. Update VR by adding any child task of y
that might have become ready now.

14. End-While
15. Return AS and the application schedule on

AS.

Let AS’ = AS U a.
Schedule the task v on the slot a on a processor
that will lead to its minimum completion time.

VS’ = VS U v
Total cost of scheduling v on slot a =

α.AC(AS’) + (1-α).SC(schedule of VS’)

1. Create a topologically ordered list of tasks
in the application where parent tasks precede
the child tasks.
2. While list not empty
3. Remove the first task from the list and

schedule it on a slot that leads to the
minimum finish time of the task.

4. End-While

4. Evaluation
We evaluate the performance of the Min-Min and

the GA heuristic by comparing the total cost of the
solution produced by each of them on a given set of
global slots, Â and a given application. While we use a
number of synthetically generated applications, the
global set of slots, Â remains the same (we change the
granularity of slots, but it still represents the same
resource ensemble). We have implemented a
parametric task graph generator that can generate
applications with a given total number of tasks and a
given depth. The number of tasks at each depth is
determined randomly so that the total number of tasks
equals the required number. Each compute task has
two predecessors and the runtime of the task is
uniformly distributed with an average of 100 seconds.
The runtime of the data transfer tasks is also uniformly
distributed with an average of 100/CCR (computation
to communication ratio). All the compute tasks in the
application are serial (uniprocessor) tasks.

The set of global slots, Â is created by simulating a
Grid composed of 4 sites where each is a cluster of 10,
20, 30 and 40 processors respectively. The background
traffic on the sites is created using a Poisson
distribution. The load generator creates tasks with an
exponentially distributed runtime (mean 500 seconds)
and an exponentially distributed interarrival time
(mean 333 seconds). The number of processors
required per task in the background load is randomly
distributed between 1 and the maximum available on
the site. The sites implement a First Come First Serve
(FCFS) policy. At any time the sites can be queried for
the set of free slots (Er(.)). Upon receiving the query,
the site scheduler computes the schedule of the
currently running and the queued tasks (using FCFS)
and advertises the free slots in the schedule that is the
difference between the scheduled and the total area as
shown in Figure 4. Due to this the slot runtimes are
also exponentially distributed with a mean of 500
second. This ensures that the tasks in the application
with average runtime of 100 seconds can easily fit
within the slots.

Figure 4. Site schedule and free slots.

We query the sites for free slots when the
application is submitted and create the global set of
slots, Â. The total number of slots in Â is 214. Thus it

is not possible to do an exhaustive search to find the
optimal subset. Initially all the slots have a
multiplicative cost ci of 1 and a fixed cost fi of 0
implying that the allocation cost is based only on the
area of the slot irrespective of the start time of the slot.

-10

0

10

20

30

40

50

60

70

%
 r

ed
uc

tio
n

in
 to

ta
l c

os
t

100 200 300 400 500
number of tasks in the application

α = 0
α = 0.2
α = 0.4
α = 0.6
α = 0.8
α = 1.0

Figure 5. percent reduction in total cost using

the GA heuristic over the Min-Min heuristic.
In the first experiment, we compare the total cost of

the resource plan â created by the Min-Min and the GA
heuristic. The size of the population size in GA is 50
and the number of iterations is fixed at 20. We create 5
applications containing 100, 200, 300, 400, and 500
tasks respectively and the depth is set of square root of
n where n is the number of tasks in the application.
Figure 5 shows the percent reduction in total cost of
GA over the Min-Min heuristic for these applications
when the value of α is varied from 0 to 1 in increments
of 0.1. GA in general achieves a 25-30% reduction in
the total cost over using the Min-Min heuristic. In 30%
of instances, Min-Min could not complete the schedule
(denoted by missing bars) as discussed in Section 3.

-30

-20

-10

0

10

20

30

40

50

60

%
 re

du
ct

io
n

in
 to

ta
l c

os
t

100 200 300 400 500

number of tasks in application

α = 0
α = 0.2
α = 0.4
α = 0.6
α = 0.8

Figure 6. Slots with ci differential.

In the next experiment (Figure 6), the
multiplicative cost factor ci is randomly generated
between 0 and 2 for all the slots in the global set Â.
This represents a more realistic situation where the
resource cost is expected to vary based on the desired
start time (e.g. day time costs more than night time)

Site Schedule

Scheduled Area Free Slots

and the current workload. While the GA still
outperforms Min-Min in most of the cases, the
difference is less pronounced and in some cases, the
Min-Min performs better. The reason is that while the
Min-Min does an explicit optimization involving the
allocation cost, the GA depends on the randomly
generated population and the crossover operators to do
the allocation cost optimization (the list scheduling
only tries to minimize the makespan).

-20

-10

0

10

20

30

40

50

60

%
 re

du
ct

io
n

in
 to

ta
l c

os
t

100 200 300 400 500

number of tasks in application

α = 0
α = 0.2
α = 0.4
α = 0.6
α = 0.8

Figure 7. GA with modified list scheduling and

differential ci.
In light of the above observations, we repeated the

same experiment after modifying the list scheduling
algorithm to operate with the total cost as the
minimization metric instead of the finish time in step 3
of the algorithm. Comparing the results in Figure 7
with the previous results in Figure 6 shows that using
the modified list scheduling algorithm with the GA
improves its performance significantly. In this case, the
GA performs better because the modified list
scheduling also does optimization of the allocation cost
along with the makespan.

In the next experiment, we change the slot
granularity i.e. each rectangular piece of free area as
shown in Figure 4 is broken down into multiple slots
with one processor each (ci = 1). At this finer
granularity the global set of slots, Â, contains 2981
slots for representing the same resource ensemble.

-40

-30

-20

-10

0

10

20

%
 re

du
ct

io
n

in
 to

ta
l c

os
t

100 200 300 400 500

number of tasks in application

α = 0
α = 0.2
α = 0.4
α = 0.6
α = 0.8
α = 1.0

Figure 8. Slots at a finer granularity.

GA is paired with the unmodified list scheduling
heuristic in order to make the results comparable to
Figure 5. Figure 8 shows that with the slots being at a
finer granularity, the percent reduction in total cost
with GA decrease to about 5-10% on average and the
Min-Min is able to find a complete solution in a large
percentage of instances. One of the reasons for the bad
performance of Min-Min in Figure 5 was that due to
the higher allocation costs associated with the coarser
slots, the Min-Min tended to pick up smaller slots at
the expense of a higher makespan or an incomplete
schedule.

The better performance of the GA heuristic comes
at the expense of a longer runtime. While the Min-Min
heuristic on average took less than half the time taken
by GA for the coarse granularity experiments, it was an
order of magnitude faster than GA for the fine
granularity ones. However, this longer time to find a
better solution would be more than offset by the
reduction in total cost due to the GA heuristic. In
addition, GA can also be used for deadline and budget
constrained optimization by rejecting solutions where
the makespan exceeds the deadline or the total cost
exceeds the given budget.

We also experimented with changing the
population size and the number of iterations of the GA
heuristic. The population size seems to have a greater
impact on the performance of the heuristic than the
number of iterations for the crossover operators that we
have used in these experiments.

5. Discussion
While we have ignored contention for networking

resources while developing the application schedule on
the provisioned resources, it does not take away from
the generality of the results since we can treat the data
transfer similarly to a compute task for which the
networking resources can be provisioned. The
application tasks in this case can be classified as either
compute or transfer, which require different types of
resources. Provisioning interfaces for network
resources in the form of protocols such as RSVP [20]
are already in existence and widely used to provide
guaranteed quality of service to multimedia-type of
applications.

The slots in the experiments were created using a
simple mechanism i.e. create a FCFS schedule and take
the difference between the scheduled area and the total
availability. This was done to reduce the computational
complexity of the experiments. A Grid site in practice
might use a more complicated mechanism to create this
set of slots. However, the presented heuristics are not
affected by how the slots are created. Also the

computational complexity of the algorithms depends
on the number of available slots irrespective of the
number of resources in the Grid.

While, we conducted experiments using a single set
of slots representing a resource ensemble with various
granularities, in practice, the set of slots available on
the Grid sites would change over time (even while the
slot selection is being done) due to factors such as the
early or late completion of running or queued tasks,
changing workload and other factors. In our future
work, we plan to study algorithms that can do
reprovisioning of resources in the face of changing
resource availability for optimizing the total cost and
dealing with failures. However, it would require a
more sophisticated resource model that includes the
cost for changing or terminating a provisioning
agreement.

6. Related Work
While there has been considerable work in

application-level scheduling on Grids [8, 9], there has
been little work on resource provisioning for
applications. In these works, provisioning is done
implicitly for each task as a by-product of scheduling
and the cost of allocation is never considered. In
application scheduling on time-shared systems [2]
there is no explicit provisioning operation. There has
also been some work on deadline and budget
constrained scheduling of applications on Grids [21].
However, the application model is a bag of tasks and
the Grid resources are represented in terms of a
processing capacity that is available immediately at a
certain cost. Our resource model is richer in that each
Grid site can provide resources in discrete quantities
having a spatial and temporal dimension with
associated costs. Recently, agreement-based resource
management [11] has been suggested for meeting the
challenges of heterogeneous and autonomous resources
in the Grid. However, the focus has been on
developing the protocols and the framework that allow
the users to specify their requirements and create
agreements. While these are essential first steps, we
need algorithms that can determine the set of resources
to be provisioned for an application using this resource
management framework.

Resource provisioning is conceptually similar to
overlay metacomputing [22] that creates a user-level
aggregation of distributed computing systems. This
aggregation is also sometimes called as a Virtual
resource [23] or a Virtual Grid [24]. A user-level
metacomputer is created in [22] by submitting
placeholders to the various resource queues. A
placeholder can be considered similar to a resource slot
with an uncertain start time. However, the focus of that

work is on maximizing the throughput of a user-level
queue of jobs rather than optimizing the performance
of an application. A system for executing a workflow
on such a group of placeholders is described in [25].
However, the emphasis is on the mechanisms for
specifying and executing workflows. Furthermore, it
tries to obtain a minimal schedule of the workflow on
the set of placeholders but how the resource
requirement (e.g. number of processors and duration)
of the placeholders is determined is not clear.

In [23], the user requests a set of resources to be
co-allocated. The resource management system queries
the availability of the Grid resources and gets a set of
time slots that is similar to our approach. The
combination of all possible slots is created in order to
find the best one. As we have mentioned in Section 2,
this might not be a feasible approach if the number of
slots is large. In [24], the authors use relational
database technology to find a set of resources that
satisfy the user constraints and are available right away.
Instead of assuming that each Grid resource or site is
either available immediately for the user or not, we
assume that the availability of a Grid resource can be
discretized in the form of a set of resource slots. This
provides a richer resource model. In both [23] and [24],
the user provides a high level resource requirement
whereas in our case the input from the user is an
application specification. In our work, we also solve
the application scheduling problem.

7. Conclusion and Future Directions
In this paper, we described and proposed solutions

to the resource provisioning problem for applications
structured as precedence-constrained set of tasks. We
described a model for resource provisioning and
compared the performance of two algorithms that can
operate in this model. The results show that a genetic
algorithm paired with a simple list scheduling
algorithm can obtain significantly better solutions than
the Min-Min heuristic. While the problem in this paper
has been studied in the context of a Grid, the problem
of provisioning resources to meet an anticipated
demand is more general and is seen in areas such as
Material Requirements Planning (MRP) [26] in
operations research.

In the introduction, we claimed that resource
provisioning is likely to result in better performance
than the best effort approach due to the deterministic
nature of provisioned resources and user based
application scheduling. In the future, we intend to
substantiate this claim with a thorough study
comparing the application performance with and
without resource provisioning. We also plan to study

provisioning policies for resource providers that allow
both provisioned and best effort quality of service.

8. Acknowledgements
This work is supported by NSF under Cooperative

Agreement number CCR-0331645 (VGrADS).

9. References
1. Downey, A.B., Using Queue Time Predictions for

Processor Allocation in Proceedings of the Job
Scheduling Strategies for Parallel Processing 1997
Springer-Verlag. p. 35-57

2. Berman, F., et al., Adaptive computing on the Grid
using AppLeS. Parallel and Distributed Systems, IEEE
Transactions on, 2003. 14(4): p. 369-382.

3. Deelman, E., et al., Mapping Abstract Complex
Workflows onto Grid Environments. Journal of Grid
Computing, 2003. 1(1): p. 25-39.

4. Deelman, E., et al., Pegasus: A framework for mapping
complex scientific workflows onto distributed systems.
Scientific Programming, 2005. 13(3): p. 219-237.

5. Cao, J. and F. Zimmermann. Queue scheduling and
advance reservations with COSY. in Parallel and
Distributed Processing Symposium, 2004. Proceedings.
18th International. 2004.

6. Smith, W., I. Foster, and V. Taylor. Scheduling with
advanced reservations. in Parallel and Distributed
Processing Symposium, 2000. IPDPS 2000.
Proceedings. 14th International. 2000.

7. Huang, R., H. Casanova, and A.A. Chien. Using Virtual
Grids to Simplify Application Scheduling. in Parallel
and Distributed Processing Symposium, 2006. IPDPS
2006. 20th International. 2006.

8. Mandal, A., et al. Scheduling Strategies for Mapping
Application Workflows onto the Grid. in The 14th IEEE
International Symposium on High Performance
Distributed Computing (HPDC-14). 2005.

9. Jim Blythe, S.J., Ewa Deelman, Yolanda Gil, Karan
Vahi, Anirban Mandal, Ken Kennedy. Task Scheduling
Strategies for Workflow-based Applications in Grids. in
IEEE International Symposium on Cluster Computing
and the Grid. 2005. Cardiff, UK.

10. Wieczorek, M., R. Prodan, and T. Fahringer, Scheduling
of scientific workflows in the ASKALON grid
environment SIGMOD Rec. , 2005 34 (3): p. 56-62

11. Czajkowski, K., I. Foster, and C. Kesselman,
Agreement-based resource management. Proceedings of
the IEEE, 2005. 93(3): p. 631-643.

12. Andreozzi, S., et al. Agreement-Based Workload and
Resource Management. in e-Science and Grid
Computing, 2005. First International Conference on.
2005.

13. The Grid Resource Allocation and Agreement Protocol
Working Group, in
https://forge.gridforum.org/projects/graap-wg.

14. MacLaren, J., Advance Reservations: State of the Art, in
Working Draft, Global Grid Forum at http://www.fz-
juelich.de/zam/RD/coop/ggf/graap/sched-graap-
2.0.html. 2003.

15. Maui Cluster Scheduler,
http://www.clusterresources.com/pages/products/maui-
cluster-scheduler.php.

16. PBSPro, http://www.pbspro.com.
17. Zhou, S., et al., Utopia: a load sharing facility for large,

heterogeneous distributed computer systems Softw.
Pract. Exper. , 1993 23 (12): p. 1305-1336

18. Condor_Glidein, http://www.cs.wisc.edu/condor/glidein.
19. Czajkowski, K., et al. Grid Information Services for

Distributed Resource Sharing. in 10th IEEE
International Symposium on High Performance
Distributed Computing. 2001: IEEE Press.

20. Zhang, L., et al., RSVP: a new resource ReSerVation
Protocol. Network, IEEE, 1993. 7(5): p. 8-18.

21. Rajkumar Buyya, M.M., David Abramson, Srikumar
Venugopal,, Scheduling parameter sweep applications
on global Grids: a deadline and budget constrained
cost-time optimization algorithm. Software: Practice and
Experience, 2005. 35(5): p. 491-512.

22. Pinchak, C., P. Lu, and M. Goldenberg, Practical
Heterogeneous Placeholder Scheduling in Overlay
Metacomputers: Early Experiences, in Job Scheduling
Strategies for Parallel Processing, D.G.F.a.L.R.a.U.
Schwiegelshohn, Editor. 2002, Springer Verlag. p. 205--
228.

23. Roblitz, T. and A. Reinefeld. Co-reservation with the
concept of virtual resources. in Cluster Computing and
the Grid, 2005. CCGrid 2005. IEEE International
Symposium on. 2005.

24. Kee, Y.-S., et al. Efficient resource description and high
quality selection for virtual grids. in Cluster Computing
and the Grid, 2005. CCGrid 2005. IEEE International
Symposium on. 2005.

25. Goldenberg, M., P. Lu, and J. Schaeffer, {TrellisDAG}:
{A} System for Structured {DAG} Scheduling, in Job
Scheduling Strategies for Parallel Processing,
D.G.F.a.L.R.a.U. Schwiegelshohn, Editor. 2003,
Springer Verlag. p. 21--43.

26. Orlicky, J., Material Requirements Planning. 1975,
New York: McGraw-Hill.

