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Abstract 
In this paper, we present algorithms for Grid 

resource provisioning that employ agreement-based 
resource management. These algorithms allow user-
level resource allocation and scheduling of 
applications that are structured as a precedence-
constrained set of tasks. We present a provisioning 
model where the resource availability in the Grid can 
be enumerated as a set of slots. A slot is defined as a 
number of processors available from a certain start 
time for a certain duration at a certain cost. Using a 
cost model that combines the cost of resource 
allocation and the expected application runtime, we 
evaluate the performance of the Min-Min and of the 
Genetic algorithm (GA)-based heuristics for a range of 
synthetic applications. We show that the GA paired 
with a list scheduling algorithm can obtain 
significantly better solutions than the Min-Min 
heuristic alone. 

1. Introduction 
Due to the autonomous and shared nature of Grid 

resources, the quality of service available to the user is 
often best effort in nature. The resource owners are 
interested in maximizing the utilization or the 
throughput of their resource while the users are mostly 
interested in optimizing their application performance. 
Due to this best effort quality of service, optimizing 
application performance on Grids has traditionally 
relied on either queue wait time predictions [1] in case 
of space shared systems or load predictions [2] in case 
of time shared systems. However, the resulting 
performance is only as good as the quality of the 
prediction. While there can be many metrics to judge 
the performance of the application, in this paper, we 
use the expected runtime as the performance metric for 
the application. In our study we consider workflow-
based applications [3], which consist of multiple tasks 
with dependencies defined between them. We optimize 
the runtime of the workflows by provisioning 
resources ahead of the execution.   

We use the term resource provisioning to imply 
creating a contract between the user and the resource 
owner specifying that a certain resource would be 

made available to the user for a certain timeframe. 
Resource provisioning for applications has several 
advantages over best effort execution. First and most 
importantly, it allows the user or workflow manager 
[4] to control the scheduling and execution of the 
application on the provisioned resources. This in turn 
enables the estimation of the application performance 
prior to its execution. Second, it allows the user or 
workflow manager to explore the space of resources to 
be provisioned and optimize for performance without 
worrying about external factors such as the workload 
of the resource or the policies of the resource provider. 
Third, it enables the  adaptation of the application 
based on the provisioned resources in order to achieve 
a certain level of performance. Fourth, it allows the 
execution of applications that require co-allocation of 
resources or have other constraints on the resource 
requirements. Last, due to the deterministic nature of 
the resource availability resulting from the contractual 
provisioning process, mechanisms for adapting to the 
otherwise dynamic nature of the Grid are not essential.  

However, there are likely to be costs associated 
with resource provisioning that justify provisioning 
from resource owners perspective. These costs might 
include an element that represents the charge for the 
normal usage of the resource (e.g. number of service 
units per processor second), but it might also include 
an additional element that would account for factors 
such as the loss of utilization for the resource provider 
or the increased queue wait time of best effort jobs [5, 
6] due to the provisioned resources. The problem we 
explore in this paper is to identify from the user’s 
perspective a set of resources to be provisioned in 
order to optimize a parameterized cost metric that 
includes the cost of provisioned resources and the 
application runtime (also referred to as makespan in 
this paper).  

The resource availability in this paper is modeled 
as a set of resource slots. A slot represents the 
availability of a certain number of processors starting 
at a certain time for a certain duration at a certain cost 
from a certain resource. While the model can be easily 
extended to other resource types such as network and 
storage resources, in this paper we focus our attention 
to compute resources. The set of available slots at any 



time can be determined by querying the Grid resources. 
Alternatively, the resources can publish this slot 
information periodically in Grid information services. 
This resource model is a significant departure from 
earlier work on application scheduling on the Grid 
which either considered a resource to be available in its 
entirety or not at all [7-9] or assumed some form of 
centralized control [10].  We think that given the large-
scale, shared, and autonomous nature of the Grid 
resources, modeling the resources availability in 
discrete units that can be provisioned by the user is a 
more appropriate approach.  

Much work has recently focused on using 
agreement-based resource management [11, 12] in 
order to meet the challenges of heterogeneous and 
autonomous resources. Using this model, the resource 
consumer or a broker enters into a contractual 
agreement with the resource provider about the 
availability of certain resources for a certain timeframe 
at a certain cost. There is ongoing work in the Grid 
Resource Allocation and Agreement Protocol Working 
Group (GRAAP-WG) [13] of the Global Grid Forum 
on formalizing the mechanisms and protocols for 
creating resource agreements. The ability to provision 
resources in the form of advance reservations [14] is 
already present in most resource management systems 
such as Maui [15], PBSPro [16], LSF [17] etc. Current 
middleware tools such as Condor Glidein [18] allow 
the user to execute an application schedule on the 
provisioned resources without any support from the 
resource provider. What is required is a mechanism 
that allows the user to discover the set of provisionable 
resources and a policy for pricing these resources. In 
the future, it is anticipated that resource provisioning 
would be the rule rather than the exception [11]. 

The rest of the paper is structured as follows. 
Section 2 describes the resource provisioning model 
that describes the Grid resource availability in the form 
of a set of slots and formulates the resource 
provisioning problem. Section 3 describes a retrofitted 
Min-Min heuristic and a genetic algorithm based 
heuristic for creating a resource plan for the application 
that optimizes a parameterized cost metric. The 
performance of these heuristics for a given resource 
availability on a number of artificially generated 
applications is evaluated in Section 4. The results are 
discussed in Section 5. Related work is presented in 
Section 6 followed by conclusions in Section 7. 

2. Resource Provisioning Model 
The Grid is comprised of R autonomous compute 

resources or sites. Each site r is a cluster of Nr 
homogeneous processors. Each site r can be queried 
for the possible start times and the associated cost for 

provisioning n processors for d duration. The query 
and the response are represented as: 

Er(n,d) = {<s1,n, d, c1,f1,r>, …., 
<si,n,d,ci,fi,r>….}      …(1) 

Note that this is no different than assuming the 
ability to query the possible start times of a task or a 
resource reservation requiring n processors for d 
duration from site r. Each tuple <si, n, d, ci, fi, r> in the 
response set represents the availability of n processors 
for d duration starting at time si with a multiplicative 
cost of ci and a fixed cost of fi from the site r. Each 
tuple is called a slot. The total cost of using the slot is 
defined as (n*d*ci + fi). 

The multiplicative cost is used to specify the usage 
charge that is related to the amount of resource 
provisioned. For example, it might represent service 
units per processor second or dollars per processor 
second. This multiplicative cost might also depend on 
the start time similar to the existence of express queues 
on some Grid sites that have a faster response time but 
charge a higher number of service units per processor 
second.   

The fixed cost might be used to represent the lost 
resource utilization or the increased response time [5] 
due to the fragmentation of resources resulting from 
allowing fixed resource reservations. It might also be 
used to discourage users from provisioning too many 
slots and instead provision resources in bigger chunks 
resulting in less bookkeeping for the resource provider. 
While a single cost factor per slot would have also 
served the purpose, having two separate cost factors 
provides better semantic description of the model. 

The set of all the slots available from the site r, 
denoted by Er(.), can be constructed as  
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However, it would overload the Grid site if every 
user queried for every possible value of n and d. It 
would be much more efficient if a single query can 
return the set of available slots on the site. Thus, we 
assume that each site r can be queried for the set of 
slots available on the site. 

Er(.) = {<s1,n1, d1, c1,f1,r>,……,     
<si,ni,di,ci,fi,r>….}      …(3) 

We  also assume that the sites only return the set of 
non-overlapping slots i.e. no two slots represent the 
same underlying resource and each slot can be 
provisioned independent of any other slot.  



Alternatively, this set Er(.) can also be published using 
a Grid information service such as MDS [19]. 

A global set of resource slots: Â, is the set of all the 
resource slots available in the Grid. It can be 
constructed by querying each site (equation(3)) as 
shown below  
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The application model in this paper is a workflow 
consisting of compute and data transfer tasks with 
precedence constraints between them. The data transfer 
tasks are used to transfer data between the compute 
tasks when they are scheduled on different sites. We 
assume the processing capacity (processor speed) and 
the network latency between all the sites to be 
homogeneous and contention for network resources is 
ignored. Provisioning of network resources is not 
considered in these studies though it would be 
straightforward to include it in the set of provisionable 
resources. The runtime of each compute task on each 
of the Grid sites is known and as a result of the 
previous assumptions, the run time of a data transfer 
task is also known. The makespan is defined as the 
maximum completion time of any task in the 
application.  

We define the resource provisioning problem as the 
problem of finding a subset â of Â (or in other words, 
an element of the power set of Â, P(Â)) and a schedule 
ŝ of the application over â such that the following 
objective function is minimized.  
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This objective function is also called the total cost 
in the rest of this paper. This cost metric tries to 
minimize the cost of the provisioned resources while 
optimizing the application performance. Any subset â 
of Â is called a resource plan. The term AC(â) in the 
objective function is called the allocation cost of the 
resource plan â and denotes the total cost of all the 
slots included in â. The term SC(ŝ) is called the 
scheduling cost and is used to measure the application 
performance. Examples of such measures can be the 
makespan, the reliability or the lateness of the 
application past a given deadline.  

While, in general the scheduling cost can be used to 
represent any performance measure that is a function 
of the application schedule, in this paper, we assume 
the makespan as the scheduling cost (Ψ = 1). The term 
Ψ indicates the importance of the makespan in cost 
terms (service units per second or dollars per second). 
It is specified by the user and ensures that the units in 
equation(5) are consistent. Depending on the 
scheduling policy used and the resource plan â under 
consideration, it may not be possible to schedule the 
entire application over â, if for example, â contains too 
few slots. In this case, the scheduling cost is 
considered infinite. Thus, the cost metric tries to find 
resource plans that can schedule the entire application. 

 The term α allows the user to specify the relative 
importance of the allocation cost and the scheduling 
cost. This model can also specify a budget and/or a 
deadline for the application by introducing appropriate 
constraints. Given the optimization problem described 
in equation(5), the number of possible subset of Â is 
2|Â| and thus it is not possible to exhaustively examine 
all subsets in order to find the optimal one. In the next 
section, we present two heuristics that attempt to find 
the optimal subset â of Â and a feasible schedule ŝ of 
the application on â in order to minimize the total cost.  

3. Algorithms for resource provisioning 
While we would like to find the schedule ŝ, that 

minimizes the makespan of the application over the 
resource plan â, finding such an optimal schedule is a 
NP-Hard problem [8]. In the case of the Min-Min 
heuristic, the resource plan â and the schedule ŝ are 
created together. In the case of the GA heuristic, the 
GA is used to create the resource plan â, while a list 
scheduling algorithm is used to create the schedule ŝ.  
Min-Min heuristic 

The Min-Min heuristic (Figure 1) maintains a set of 
allocated slots and a partial schedule of the application. 
At each iteration, it chooses to schedule a ready task (a 
task whose parents have already been scheduled) on a 
slot that leads to the minimum increase in the total cost. 
This heuristic creates the resource plan â and the 
schedule ŝ incrementally. The total cost of scheduling a 
ready task on a slot in step 7 of the algorithm can be 
computed as shown in Figure 2. This heuristic is an 
extension of the Min-Min algorithm used for workflow 
scheduling in [8, 9]. However, there are a few 
differences. First, it works to minimize the total cost 
instead of only the makespan. Second, it operates on 
the set of ready tasks instead of the set of tasks at a 
particular depth in the workflow. 

Due to the two min operations in step 9 and 11 of 
the heuristic, it is called the Min-Min heuristic. Note 



that the heuristic will prefer to schedule tasks on the 
already allocated slots since it would lead to a lower 
allocation cost at each step. The heuristics does a local 
optimization for each task. It may not be possible to 
schedule a task on a slot if there isn’t sufficient overlap 
between the runtime of the slot and the possible 
runtime of the task based on the completion times of 
the parent tasks. In addition, due to the non 
backtracking nature of the heuristic, it might not be 
able to schedule the whole application on the given set 
of slots Â, if at any stage; there is no slot in Â that can 
schedule any task in the current set of ready tasks 
irrespective of the cost. If it happens, the heuristic 
stops at that point and returns an incomplete schedule. 

Figure 1. The Min-Min heuristic 

 
Figure 2. Computing the total cost in step 7 of 

the Min-Min heuristic. 
The time complexity of the Min-Min algorithm is 

O(|V|2.|Â|.nA) where |V| is the number of tasks in the 
application, |Â| is the cardinality of Â and nA is the 
maximum number of processors in any slot in Â. 

Genetic Algorithm (GA) 
 In the genetic algorithm (called GA in the rest of 

this paper), we create an initial population of certain 
number of randomly generated unique subsets of Â. 
For each individual in the population, a schedule of the 
application is created on the slots in the individual 
using the list scheduling algorithm in Figure 3.  

 
Figure 3. A list scheduling algorithm. 

The time complexity of the scheduling algorithm is 
O(|V|.|Â|.nA) where |V| is the number of tasks in the 
application, |Â| is the cardinality of Â and nA is the 
maximum number of processors in any slot in Â. It is 
possible that this algorithm might not schedule any 
task on a slot in an individual in the population. The 
total cost of the individual is computed only based on 
the slots that have at least one task scheduled on them. 
Such a slot is called a scheduled slot. The total cost of 
the individual is computing using equation(5) with the 
allocation cost determined by the scheduled slots and 
the scheduling cost by the makespan of the schedule. 
We do not prune the unscheduled slots from the 
individual since they might become useful later as a 
result of the crossover operations.  

The GA goes through a number of iterations. 
During an iteration, each individual is mated with 
another individual and creates two offsprings. This is 
called a crossover. The first offspring inherits slots that 
exists only either in the first parent or the second 
(similar to the XOR binary operation). The second 
offspring inherits slots that are either present in both 
the parents or in neither of them (similar to the XNOR 
operation). This doubles the population size. The 
selection of the crossover operators was motivated by 
the observation that they lead to a greater number of 
unique individuals in the population. However, there 
still might be duplicates in the population as a result of 
the crossover. After removing the duplicates, we 
compute the total cost of each new member of the 
population and reduce the population to the previous 
size by retaining the least total cost individuals in the 
population. The algorithm stops after certain number of 
iterations and the solution selected is the individual 
with the least total cost in the current population.  

1. Initialize the set of allocated slot AS as 
empty. 
2. While the complete application is not 
scheduled 
3.       Let VS = the set of scheduled tasks 
4.    Let VR = the set of un scheduled ready 

tasks 
5.       For each v Є VR 
6. For each slot a Є Â 
7. Let Tv

a = total cost if v is 
scheduled on a 

8. End-for 
9. Let Tv

x be the min cost over all slots 
for v. 

10.     End-for 
11.     Let Ty

x be the min over all v for VR. 
12.     Schedule task y on slot x. Add x to AS if 

it does not belong to AS. Remove y from 
VR and add to VS. 

13. Update VR by adding any child task of y 
that might have become ready now.  

14.  End-While 
15.  Return AS and the application schedule on 

AS.  

Let AS’ = AS U a.  
Schedule the task v on the slot a on a processor 
that will lead to its minimum completion time. 

VS’ = VS U v 
Total cost of scheduling v on slot a =  

α.AC(AS’) + (1-α).SC(schedule of VS’) 

1.  Create a topologically ordered list of tasks 
in the application where parent tasks precede 
the child tasks.  
2.  While list not empty 
3.        Remove the first task from the list and 

schedule it on a slot that leads to the 
minimum finish time of the task.  

4.  End-While



4. Evaluation 
We evaluate the performance of the Min-Min and 

the GA heuristic by comparing the total cost of the 
solution produced by each of them on a given set of 
global slots, Â and a given application. While we use a 
number of synthetically generated applications, the 
global set of slots, Â  remains the same (we change the 
granularity of slots, but it still represents the same 
resource ensemble). We have implemented a 
parametric task graph generator that can generate 
applications with a given total number of tasks and a 
given depth. The number of tasks at each depth is 
determined randomly so that the total number of tasks 
equals the required number. Each compute task has 
two predecessors and the runtime of the task is 
uniformly distributed with an average of 100 seconds. 
The runtime of the data transfer tasks is also uniformly 
distributed with an average of 100/CCR (computation 
to communication ratio). All the compute tasks in the 
application are serial (uniprocessor)  tasks.  

The set of global slots, Â is created by simulating a 
Grid composed of 4 sites where each is a cluster of 10, 
20, 30 and 40 processors respectively. The background 
traffic on the sites is created using a Poisson 
distribution. The load generator creates tasks with an 
exponentially distributed runtime (mean 500 seconds) 
and an exponentially distributed interarrival time 
(mean 333 seconds). The number of processors 
required per task in the background load is randomly 
distributed between 1 and the maximum available on 
the site. The sites implement a First Come First Serve 
(FCFS) policy. At any time the sites can be queried for 
the set of free slots (Er(.)). Upon receiving the query, 
the site scheduler computes the schedule of the 
currently running and the queued tasks (using FCFS) 
and advertises the free slots in the schedule that is the 
difference between the scheduled and the total area as 
shown in Figure 4.  Due to this the slot runtimes are 
also exponentially distributed with a mean of 500 
second. This ensures that the tasks in the application 
with average runtime of 100 seconds can easily fit 
within the slots. 

 
Figure 4. Site schedule and free slots. 

We query the sites for free slots when the 
application is submitted and create the global set of 
slots, Â. The total number of slots in Â is 214. Thus it 

is not possible to do an exhaustive search to find the 
optimal subset. Initially all the slots have a 
multiplicative cost ci of 1 and a fixed cost fi of 0 
implying that the allocation cost is based only on the 
area of the slot irrespective of the start time of the slot. 
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Figure 5. percent reduction in total cost using 

the GA heuristic over the Min-Min heuristic. 
In the first experiment, we compare the total cost of 

the resource plan â created by the Min-Min and the GA 
heuristic. The size of the population size in GA is 50 
and the number of iterations is fixed at 20. We create 5 
applications containing 100, 200, 300, 400, and 500 
tasks respectively and the depth is set of square root of 
n where n is the number of tasks in the application.  
Figure 5 shows the percent reduction in total cost of 
GA over the Min-Min heuristic for these applications 
when the value of α is varied from 0 to 1 in increments 
of 0.1. GA in general achieves a 25-30% reduction in 
the total cost over using the Min-Min heuristic. In 30% 
of instances, Min-Min could not complete the schedule 
(denoted by missing bars) as discussed in Section 3. 

-30

-20

-10

0

10

20

30

40

50

60

%
 re

du
ct

io
n 

in
 to

ta
l c

os
t

100 200 300 400 500

number of tasks in application

α = 0
α = 0.2
α = 0.4
α = 0.6
α = 0.8

 
Figure 6. Slots with ci differential. 

In the next experiment (Figure 6), the 
multiplicative cost factor ci is randomly generated 
between 0 and 2 for all the slots in the global set Â. 
This represents a more realistic situation where the 
resource cost is expected to vary based on the desired 
start time (e.g. day time costs more than night time) 

Site Schedule 

Scheduled Area Free Slots 



and the current workload. While the GA still 
outperforms Min-Min in most of the cases, the 
difference is less pronounced and in some cases, the 
Min-Min performs better. The reason is that while the 
Min-Min does an explicit optimization involving the 
allocation cost, the GA depends on the randomly 
generated population and the crossover operators to do 
the allocation cost optimization (the list scheduling 
only tries to minimize the makespan).  
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Figure 7. GA with modified list scheduling and 

differential ci. 
In light of the above observations, we repeated the 

same experiment after modifying the list scheduling 
algorithm to operate with the total cost as the 
minimization metric instead of the finish time in step 3 
of the algorithm. Comparing the results in Figure 7 
with the previous results in Figure 6 shows that using 
the modified list scheduling algorithm with the GA 
improves its performance significantly. In this case, the 
GA performs better because the modified list 
scheduling also does optimization of the allocation cost 
along with the makespan.  

In the next experiment, we change the slot 
granularity i.e. each rectangular piece of free area as 
shown in Figure 4 is broken down into multiple slots 
with one processor each (ci = 1). At this finer 
granularity the global set of slots, Â, contains 2981 
slots for representing the same resource ensemble.  
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Figure 8. Slots at a finer granularity. 

GA is paired with the unmodified list scheduling 
heuristic in order to make the results comparable to 
Figure 5. Figure 8 shows that with the slots being at a 
finer granularity, the percent reduction in total cost 
with GA decrease to about 5-10% on average and the 
Min-Min is able to find a complete solution in a large 
percentage of instances. One of the reasons for the bad 
performance of Min-Min in Figure 5 was that due to 
the higher allocation costs associated with the coarser 
slots, the Min-Min tended to pick up smaller slots at 
the expense of a higher makespan or an incomplete 
schedule. 

The better performance of the GA heuristic comes 
at the expense of a longer runtime. While the Min-Min 
heuristic on average took less than half the time taken 
by GA for the coarse granularity experiments, it was an 
order of magnitude faster than GA for the fine 
granularity ones. However, this longer time to find a 
better solution would be more than offset by the 
reduction in total cost due to the GA heuristic. In 
addition, GA can also be used for deadline and budget 
constrained optimization by rejecting solutions where 
the makespan exceeds the deadline or the total cost 
exceeds the given budget. 

We also experimented with changing the 
population size and the number of iterations of the GA 
heuristic. The population size seems to have a greater 
impact on the performance of the heuristic than the 
number of iterations for the crossover operators that we 
have used in these experiments. 

5. Discussion 
While we have ignored contention for networking 

resources while developing the application schedule on 
the provisioned resources, it does not take away from 
the generality of the results since we can treat the data 
transfer similarly to a compute task for which the 
networking resources can be provisioned. The 
application tasks in this case can be classified as either 
compute or transfer, which require different types of 
resources. Provisioning interfaces for network 
resources in the form of protocols such as RSVP [20] 
are already in existence and widely used to provide 
guaranteed quality of service to multimedia-type of 
applications.  

The slots in the experiments were created using a 
simple mechanism i.e. create a FCFS schedule and take 
the difference between the scheduled area and the total 
availability. This was done to reduce the computational 
complexity of the experiments. A Grid site in practice 
might use a more complicated mechanism to create this 
set of slots. However, the presented heuristics are not 
affected by how the slots are created.  Also the 



computational complexity of the algorithms depends 
on the number of available slots irrespective of the 
number of resources in the Grid. 

While, we conducted experiments using a single set 
of slots representing a resource ensemble with various 
granularities, in practice, the set of slots available on 
the Grid sites would change over time (even while the 
slot selection is being done) due to factors such as the 
early or late completion of running or queued tasks, 
changing workload and other factors. In our future 
work, we plan to study algorithms that can do 
reprovisioning of resources in the face of changing 
resource availability for optimizing the total cost and 
dealing with failures. However, it would require a 
more sophisticated resource model that includes the 
cost for changing or terminating a provisioning 
agreement.   

6. Related Work 
While there has been considerable work in 

application-level scheduling on Grids [8, 9], there has 
been little work on resource provisioning for 
applications. In these works, provisioning is done 
implicitly for each task as a by-product of scheduling 
and the cost of allocation is never considered. In 
application scheduling on time-shared systems [2] 
there is no explicit provisioning operation. There has 
also been some work on deadline and budget 
constrained scheduling of applications on Grids [21]. 
However, the application model is a bag of tasks and 
the Grid resources are represented in terms of a 
processing capacity that is available immediately at a 
certain cost. Our resource model is richer in that each 
Grid site can provide resources in discrete quantities 
having a spatial and temporal dimension with 
associated costs. Recently, agreement-based resource 
management [11] has been suggested for meeting the 
challenges of heterogeneous and autonomous resources 
in the Grid. However, the focus has been on 
developing the protocols and the framework that allow 
the users to specify their requirements and create 
agreements. While these are essential first steps, we 
need algorithms that can determine the set of resources 
to be provisioned for an application using this resource 
management framework.  

Resource provisioning is conceptually similar to 
overlay metacomputing [22] that creates a user-level 
aggregation of distributed computing systems. This 
aggregation is also sometimes called as a Virtual 
resource [23] or a Virtual Grid [24]. A user-level 
metacomputer is created in [22] by submitting 
placeholders to the various resource queues. A 
placeholder can be considered similar to a resource slot 
with an uncertain start time. However, the focus of that 

work is on maximizing the throughput of a user-level 
queue of jobs rather than optimizing the performance 
of an application. A system for executing a workflow 
on such a group of placeholders is described in [25]. 
However, the emphasis is on the mechanisms for 
specifying and executing workflows. Furthermore, it 
tries to obtain a minimal schedule of the workflow on 
the set of placeholders but how the resource 
requirement (e.g. number of processors and duration) 
of the placeholders is determined is not clear.  

In [23], the user requests a set of resources to be 
co-allocated. The resource management system queries 
the availability of the Grid resources and gets a set of 
time slots that is similar to our approach. The 
combination of all possible slots is created in order to 
find the best one. As we have mentioned in Section 2, 
this might not be a feasible approach if the number of 
slots is large. In [24], the authors use relational 
database technology to find a set of resources that 
satisfy the user constraints and are available right away.  
Instead of assuming that each Grid resource or site is 
either available immediately for the user or not, we 
assume that the availability of a Grid resource can be 
discretized in the form of a set of resource slots. This 
provides a richer resource model. In both [23] and [24], 
the user provides a high level resource requirement 
whereas in our case the input from the user is an 
application specification. In our work, we also solve 
the application scheduling problem. 

7. Conclusion and Future Directions 
In this paper, we described and proposed solutions 

to the resource provisioning problem for applications 
structured as precedence-constrained set of tasks. We 
described a model for resource provisioning and 
compared the performance of two algorithms that can 
operate in this model. The results show that a genetic 
algorithm paired with a simple list scheduling 
algorithm can obtain significantly better solutions than 
the Min-Min heuristic. While the problem in this paper 
has been studied in the context of a Grid, the problem 
of provisioning resources to meet an anticipated 
demand is more general and is seen in areas such as 
Material Requirements Planning (MRP) [26] in 
operations research.  

In the introduction, we claimed that resource 
provisioning is likely to result in better performance 
than the best effort approach due to the deterministic 
nature of provisioned resources and user based 
application scheduling. In the future, we intend to 
substantiate this claim with a thorough study 
comparing the application performance with and 
without resource provisioning. We also plan to study 



provisioning policies for resource providers that allow 
both provisioned and best effort quality of service. 
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