
Scalable Grid Application Scheduling via Decoupled
Resource Selection and Scheduling

Yang Zhang∗, Anirban Mandal∗, Henri Casanova‡,
Andrew A. Chien†, Yang-Suk Kee†, Ken Kennedy∗, Charles Koelbel∗

∗Computer Science Department
Rice University

{yzhang8,anirban,ken,chk}@cs.rice.edu
†Dept. of Computer Science and Engineering

University of California at San Diego
{achien,yski}@ucsd.edu

‡Information and Computer Sciences Department
University of Hawai‘i at Manoa

{henric}@hawaii.edu

Abstract—Over the past years grid infrastructures
have been deployed at larger and larger scales, with
envisioned deployments incorporating tens of thou-
sands of resources. Therefore, application scheduling
algorithms can become unscalable (albeit polynomial)
and thus unusable in large-scale environments. One
reason for unscalability is that these algorithms per-
form implicit resource selection. One can achieve bet-
ter scalability by performing explicit resource selec-
tion independently from scheduling in a “decoupled”
approach. Furthermore, we hypothesize that one can
achieve similar or even better performance as with the
non-decoupled approach, which we call the “one step”
approach, by selecting resources judiciously. Leveraging
the Virtual Grid abstraction, we demonstrate that the
decoupled approach is indeed both scalable and effec-
tive in large-scale and highly heterogeneous resource
environments.

I. Introduction

Grids [11], [12] are attractive platforms for deploying
parallel and distributed applications at large scale and/or
high performance. One key issue for achieving these goals
is that of application scheduling, that is the decision
process by which application components are allocated
to available resources to optimize some metric of perfor-
mance. Scheduling parallel and distributed applications is
a well-known difficult problem [13] and many scheduling
heuristics have been proposed in the literature (see [17]
and [5] for surveys of scheduling heuristics for applica-
tions with and without task dependencies). Scheduling
applications onto grid platforms poses new challenges and
has been studied for many relevant application classes [6],
[21], [9]. One distinguishing feature of grid platforms is the
large number of individual resources, with current systems
containing thousands of resources and future systems in-
corporating tens or hundreds of thousands. This volume of
resources raises scalability issues (e.g. resource discovery,
resource monitoring). In this paper we specifically address
the scalability of the scheduling algorithm itself: how can

one compute an application schedule in a short amount
of time while considering a large number of potential
resources?

We observe that although the resource environment
may contain large numbers of resources, all taken into
consideration when computing a schedule, typically only a
small subset of these resources is used for running the ap-
plication. In essence, most scheduling heuristics typically
perform implicit resource selection: the set of resources
used by the application emerges from the computation
of the schedule. In this paper we improve the scalability
of the scheduling process by performing explicit resource
selection: in contrast to the traditional one-step approach,
which considers all available resources when scheduling, we
use a decoupled approach, which selects the resources for
consideration first and then schedules the application on
these resources.

We use the Virtual Grid (VG) abstraction, which we
described in previous work [16]. A VG provides a high-
level, hierarchical abstraction of the resource collection
that is needed and used by an application. A user creates a
VG specification, written in the Virtual Grid Description
Language (vgDL), and passes it to the Virtual Grid Ex-
ecution System (vgES). The vgES performs fast resource
selection in grid environments with hundreds of thousands
of resources, returning a set of selected physical resources
on which one can schedule the application. The set of
selected resources is typically many orders of magnitude
smaller than the whole universe of resources, and the
running time of a scheduling algorithm over this smaller
subset of resources is also orders of magnitude shorter.

While decoupling resource selection from scheduling in
large-scale systems as described above clearly improves
scalability, a key question is: what is the impact of de-
coupled resource selection and scheduling on the quality
of the resulting schedule? In this paper we study decou-
pled resource selection and scheduling in the context of



workflow applications in large-scale highly heterogeneous
grid environments and make three contributions:

1) We demonstrate how the VG abstraction can be
leveraged to decouple resource selection and applica-
tion scheduling in a generic way (i.e., our approach
is in principle applicable to any scheduling algorithm
and any grid application).

2) One key issue in our decoupled approach is that of
choosing an appropriate resource selection method-
ology. We discuss and provide a quantitative evalu-
ation of several factors that affect the construction
of an appropriate VG specification.

3) Using simulations of representative workflow ap-
plications on representative grid environments, we
quantify the trade-off between scalability and sched-
ule quality for our decoupled approach, demonstrat-
ing that it achieves schedule quality comparable to
that achieved by one step approaches, at dramati-
cally higher scalability.

This paper is organized as follows. In Section II we
present our decoupled resource selection and scheduling
approach for large-scale Grid environments. Section III
discusses our resource selection strategy, by introducing
the Virtual Grid concept, the specific scheduling and se-
lection methodologies used and the application context in
which we evaluate it. Experimental evaluation and results
are presented in Section IV. Section V discusses related
work, and Section VI concludes the paper with a summary
of contributions and perspectives on future work.

II. Decoupled Scheduling Approach

The process of scheduling a parallel application on a
distributed platform can be described as follows. Given
an application that consists of m “tasks” (e.g., computa-
tions, I/O operations), and a platform that consists of
n “resources” (e.g., CPUs, disks, networks), compute a
mapping of tasks to time and to resources (i.e., task i starts
executing at time t on resource j). This mapping is called a
schedule, and the“scheduling problem”consists in comput-
ing a schedule that optimizes some metric, such as overall
application execution time (or makespan). The scheduling
problem has been studied in many contexts (with task
dependencies [17], with independent tasks [5], etc.), is
known to be NP-complete in most of its instances [13],
and many polynomial-time scheduling heuristics have been
proposed.

When there are many heterogeneous resources and/or
when the application has fewer concurrent tasks than there
are resources, many resources are unused. In our experi-
ence, this is usually the case when scheduling scientific
applications onto large-scale grid platforms. In fact, most
applications use only a very small fraction of all available
resources. In such cases, we say that the heuristics per-
form implicit resource selection. Results presented in this
paper show that, on platforms that incorporate this many

resources, the time to run even a linear-time heuristic can
be prohibitive, making application scheduling unscalable.

A solution to address this scalability problem consists in
decoupling resource selection from application scheduling.
In the first phase, one performs explicit resource selection.
In the second phase, one performs scheduling within the
selected resources rather than on the whole resource uni-
verse. The key point here is that a decoupled approach
makes it possible to compute schedules faster, by several
orders of magnitude, making application scheduling scal-
able to large-scale platforms. In fact, this decoupling may
make it possible to run expensive scheduling algorithms
on the explicitly selected resources.

We claim that using a system such as vgES (see Sec-
tion III-A) to perform explicit resource selection makes
it possible to achieve schedules that are comparable in
quality to the ones obtained when letting the scheduling
algorithms perform implicit resource selection over the
whole resource universe, at dramatically higher scalability.
Although our decoupled approach is generic, in this paper
we discuss and evaluate it in the context of a particular
class of applications, as seen in Section III-D.

III. Decoupled Application Scheduling in Grid
Environments

A. Virtual Grid and Resource Selection
A fundamental challenge for grid applications is to de-

scribe and obtain appropriate resources to enable efficient,
high performance execution. This is challenging from many
standpoints, including the definition of an appropriate ab-
straction to describe resource needs, the difficulty of find-
ing appropriate resources quickly in an environment with
many thousands of resources, and interacting with diverse,
autonomous resource managers that implement their own
resource management and access policies. As noted in
the introduction, the VGrADS project [16] approaches
this by allowing the user to specify its resource needs
using a high-level language, vgDL [8], which our execution
system, vgES [16], uses to find and allocate appropriate
resources for the application, returning a VG abstraction,
which is really an active entity (i.e., runtime object). By
contrast with traditional low-level resource description and
selection systems [3], [2] that focus on individual, quantita-
tive resource characteristics, the VG provides a high-level,
hierarchical abstraction of the resource collection that is
needed by an application. The application can then use
the VG to find specific information about the allocated
physical resources, to deploy application components, and
to modify or evolve the resource collection.

We refer the reader to [16], [8] for details regarding
the vgES system and we only describe here features of
vgDL that are relevant for this work. The vgDL language
uses high-level resource abstractions that correspond to
what grid application programmers typically use to or-
ganize their applications portably across many different
resource environments. The vgDL was designed based on



a detailed study of half a dozen real-world applications.
These studies showed that in order to design for perfor-
mance (and to manage complexity) portably, application
developers typically use three simple resource abstractions
to aggregate individual resources. Consequently, vgDL
contains three resource aggregates, distinguished based
on homogeneity and network connectivity: (i) LooseBag
— a collection of heterogeneous resources with no good
connectivity guaranteed; (ii) TightBag — a collection
of heterogeneous resources with good connectivity; (iii)
Cluster — adding homogeneity, a well-connected set of
resources with identical (or nearly so) attributes. Each
aggregate specifies a range for its size (i.e., number of
resources). The user can specify constraints on attributes
of individual resources within the aggregate (e.g., clock
rate, processor architecture, memory, etc.), or constraints
on aggregate attributes (e.g., total aggregate memory,
total aggregate disk space). Aggregates can be nested (e.g.,
a LooseBag of Clusters) to arbitrary depth. With these re-
source aggregate abstractions, an application can structure
the specification of its resource environment in a top-down
fashion and decorate components with constraints when
desired. In addition to constraints, applications can also
express resource preference by using a scalar rank function:
a user-defined expression of basic arithmetic operators,
resource attribute and resource aggregate attribute values
that define a scalar value that represents the quality of
that resource set for the application’s request.

The Virtual Grid Execution System (vgES) uses effi-
cient search techniques based on resource classification
in a relational database. Table indices and other more
sophisticated database optimization techniques make the
search highly scalable in environments with large number
of resources. For instance, Figure 1 shows that it takes no
more than 5 seconds for the vgES system to process one
million resources for various queries on a Pentium4 3.2
Ghz processor. The different lines in the figure represent
different types of query with L, T, C meaning LooseBag,
TightBag and Cluster respectively and the number denot-
ing the size of the requested VG. We will see in Section IV
that the ability to perform such resource selection in a few
seconds is key for improving the scalability of application
scheduling on large-scale platforms.

Given that (i) vgDL makes it possible to specify high-
level, qualitative resource requirements and that (ii) vgES
can perform fast resource selection in large-scale resource
environments, the VGrADS project provides an ideal foun-
dation for decoupling resource selection from application
scheduling.

B. Scheduling Algorithms

While our decoupling approach is applicable to any
scheduling algorithm, we chose to apply it to a specific
workflow-scheduling algorithm to evaluate our approach.

In this paper, we use a simple greedy workflow schedul-
ing scheme, which works as follows. Until all tasks in the

Fig. 1. Time to complete vgDL queries with vgES.

workflow are scheduled, the algorithm finds the current set
of ready tasks. Then is calculates the rank values for each
of these available tasks on each available resource. The
rank values reflect the expected performance of the tasks
on the resources, with lower being better. Rank values take
into account the expected cost of computation and data
movement. Once the rank values are obtained, for each
available task to schedule, the algorithm assigns it to the
resource for which the task has the minimum estimated
completion time (ECT), which is a function of the rank
and the current state and availability of the resources.
The computational complexity of our greedy scheduling
scheme is O(vp) in which v denotes the number of jobs
and p denotes the number of resources.

We have also experimented with various heuristics [5]
which have computational complexity of O(v2p). We do
not report those results here because the algorithms are
less scalable, and because for the DAGs in Section III-
D they produce nearly identical schedules to the greedy
method. However, in future work we plan to conduct
experiments with more complex applications for which the
benefit of more complex schedulers may be greater.

C. Selection Methodology

Now that we have picked a scheduling algorithm, we
must decide on a resource selection strategy. Resource
selection must be done according to the application’s needs
and we consider three classes for three different types of
such needs:

1) Class 1: A set of resources that have high computing
power but not necessarily good network connection
between them, as needed by a computation intensive
applications.

2) Class 2: A set of resources that are connected
with high bandwidth and low latency but are not
necessarily have high computing power, as needed
by a communication intensive application.

3) Class 3: A set of resources that have relatively bal-
anced computing power and connectivity, as needed
by a balanced application that is neither compute-
nor communication-intensive.



It is relatively straightforward to generate selection
criteria for class 1: simply select the fastest resources.
However, we need the help of vgDL specifications and of
the vgES system to select the resources that meet the
requirement of class 2 and 3. The key concept here is the
TightBag. Recall from Section III-A. that a TightBag is a
collection of heterogeneous nodes with good connectivity.
It matches the requirement of class 2 perfectly. For class
3 we will use vgDL to specify a hierarchy of aggregates.
The idea is to aggregate several TightBags into a single
LooseBag so that we can get both high computation power
and high connectivity.

The above classes provide bases for performing resource
selection following three broad characterizations of an
application’s resource needs. In our experiments we quan-
tify the needs of particular applications using a popular
and simple metric: the application’s Communication to
Computation Ratio (CCR). We experiment with applica-
tions spanning a spectrum of CCR values, with higher
values implying that the application is communication-
intensive and lower values implying that the application
is computation-intensive. For each such application we
perform resource selection according to the three above
classes. We expect that class 1 will be best for applications
with low CCRs, and that class 2 will be best for applica-
tions with high CCRs. We will verify that the CCR value
of the application provides good guidance for selecting the
appropriate resource selection method.

The final key element for resource selection is the
specification of a bound on the number of required re-
sources. One could ask for as many (potential) resources
as there are resources in the whole universe of resources.
This will not lead to any scalability improvement over a
traditional application scheduling approach that performs
implicit resource selection. Instead, as a simple heuristic,
we request as many resources as the maximum width
of the DAG representing the application’s workflow. The
intuition behind this choice is that this is the maximum
number of resources that can be used by the application
at a given time. Any additional resource may stay idle for
the entire application execution.

D. Case-Study: Workflow Applications

We explore our approach of decoupled resource selection
and scheduling in the context of two real applications,
EMAN [19] and Montage [24]. These applications fall
into the general class of workflow applications. We choose
workflow applications for our representative scenarios be-
cause they are amongst the most popular grid applications
today.

A workflow application consists of a collection of inter-
acting components that need to be executed in a certain
partial order for successful execution of the application.
The components have specific control and data depen-
dences between them. Hence, the application can be rep-
resented as a Directed Acyclic Graph (DAG), where each

node in the DAG represents an application component and
the edges denote control/data dependencies. We describe
our two target applications below.

Fig. 2. EMAN Refinement Workflow

1) EMAN: EMAN [Electron Micrograph Analysis] is a
bio-imaging application developed at the Baylor College
of Medicine. It primarily deals with 3D reconstruction of
single particles from electron micrographs. Human exper-
tise is needed to construct a preliminary 3D model from
the ’noisy’ electron micrographs. The refinement from
a preliminary 3D model to the final 3D model is fully
automated and is the most computationally intensive step
that benefits from harnessing the power of the grid. The
EMAN refinement can be represented by the workflow
depicted in Figure 2. It is essentially a linear workflow
with some sequential and parallel stages. The important
and time-consuming steps are the large parameter sweep
steps like ”classesbymra”. We use different versions of the
EMAN refinement workflow DAG for the experiments.

Fig. 3. A Small Montage Workflow

2) Montage: Montage is a data-intensive astronomy
application to create custom image mosaics of the sky
on demand. It consists of four steps: (i) Re-projection of
input images to a common spatial scale; (ii) Modeling of



background radiation in images to achieve common flux
scales and background levels; (iii) Rectification of images
to a common flux scale and background level; and (iv) Co-
addition of re-projected, background-corrected images into
a final mosaic. Figure 3 shows the structure of a small
Montage workflow. The workflow consists of some highly
parallel sections that can benefit from execution over
multiple grid sites. This application being data-intensive,
potentially large files are transferred on the edges of the
workflow. We use different versions of this workflow for
our experiments.

IV. Experimental Evaluation

A. Methodology
1) Simulation Environment: In order to perform re-

peatable experiments in a large-scale resource environment
we resort to simulation. Our simulated environment con-
sists of three key components: the resource model, the
network model, and the application model.

Our resource model is based on a tool that generates
populations of representative compute clusters [15]. This
tool uses empirical statistical models of cluster character-
istics (e.g., number of processors, processor architecture,
processor clock rate) obtained from a survey of 114 real-
world clusters. Using this tool we generated a resource pool
that contains over 36,000 hosts, which we call the resource
universe.

Our network model is as follows. Conforming to the
results in [18], we generated end-to-end latencies between
compute clusters according to a truncated normal distri-
bution. We set the mean of this distribution to 100ms,
conforming to the results in [22], and we bounded the
latencies from 1 to 200ms. For the network bandwidths,
we set the connection within a cluster as 1000Mb/s and
all the inter connection between clusters range from 10Mb
to 100Mb/s. These numbers are primarily based on results
listed in [27], [10]. Furthermore, we ensured that the higher
the latency the lower the bandwidth.

Our application model comes directly from the real-
world applications described in Section III-D. For each ap-
plication we generate DAGs that follow the same structure
as those of the applications, but we vary their CCR and
their widths. When simulating application execution, the
execution times of the tasks on resources come from the
DAG node weights and the performance models described
in [20], and the data transfer times come from the DAG
edge weights and the latencies and bandwidth in our
network model.

Since this is a simulated environment, we must make
some assumptions that may not hold for real resources.
We assume that we have an accurate performance model
for tasks for both scheduling and computing the simulated
makespan. (In fact, we have such models for EMAN and
Montage.) We argue that since both the one-step and the
decoupled scheduler use the same performance model, this
does not bias the comparison. We assume that the network

performance is stable and predictable. This assumption
eliminates the random error that may be introduced by
the network fluctuation. We have found it to be the case
for our experiments with EMAN, although longer-running
applications would see more variation. We assume that the
resource is available immediately, and will remain available
for the duration of the application. We assume that we
already obtained all the resource information before the
start of the experiment. Once again, we believe that these
assumptions do not bias our comparison between the two
scheduling approaches.

We plan future experiments to relax these assumptions
for more in-depth study of scheduling methods. In par-
ticular, performance variation of the tasks or networks
may require new scheduling algorithms, but those can be
applied to either the one-step or decoupled approach. Dy-
namic resource availability requires dynamic rescheduling
(as we studied in the GrADS project [3]) or reselection of
resources. In either case, vgDL and vgES will support such
updates for the decoupled approach.

2) Experimental Setup: We first generate forty EMAN
and Montage DAGs with five different CCRs and eight
different widths. We use the greedy scheduling algorithm
described in Section III-B to schedule these DAGs on
the simulated resources. For each DAG, we first run
the scheduling algorithm on the whole resource universe,
which we refer to as the one-step approach, and record the
running time of the scheduler. We then run the schedul-
ing algorithm on smaller subsets of resources explicitly
selected using the methodologies in Section III-C. The
running time for this decoupled approach is measured as
the sum of the time for selection and time to compute
the schedule. In both cases we record the (simulated)
makespan of the application. To run our experiments, we
used the Rice Terascale Cluster which is composed of Intel
900 MHz Itanium2 machines [26].

In order to determine how resource selection affects
scheduler performance, we selected 10%, 7%, 3%, 1% and
0.3% of the “best” resources, corresponding to the resource
selection methods for class 1 in Section III-C. We will
later refer these as the simple selection approach. We
also performed selections based on vgDL specifications. To
satisfy the requirements of class 2, we generated the vgDL
description shown in Figure 4, requesting one TightBag of
OPTERON and ITANIUM nodes. The“[1:n]”means there
are at most “n” nodes in the TightBag; we substituted
the maximum DAG width for n. We will later refer to
this selection methodology as the one TightBag approach.
Similarly, we generated the vgDL description shown in
Figure 5 for class 3. We will later refer to this selection
methodology as the LooseBag approach. Finally we refer
to the implicit resource selection approach used by the
one-step approach as the Universe approach.



Fig. 4. vgDL for class 2 type of resource abstraction

Fig. 5. vgDL for class 3 type of resource abstraction

B. Results

Figures 6 and 7 show the average scheduler running time
of the one-step and decoupled approaches for EMAN and
Montage. From the graphs we can see that, even including
selection time, the scheduler’s total running time is linear
in the number of resources considered. Even in this case,
the time used in the decoupled approaches is only a small
fraction of the time used in the one-step approach, since
the number of selected resources is much lower than the
full grid. This confirms our hypothesis of better scalability
of the decoupled approach.

Fig. 6. Average Scheduling+Selection Time for EMAN DAGs

Fig. 7. Average Scheduling+Selection Time for Montage DAGs

Figures 8, 9, and 10 show the combined makespan
(yellow) and scheduling (blue) time for a range of sim-
ulations. In all charts, the total turnaround time for the
application is the overall height of the bar. For the“Simple
Selection”, “One Tightbag”, and “LooseBag” bars, we used
the scheduling time for the case in Figures 6 and 7 that
selects the least resources more than the maximum width
of the DAG. For example, for a test DAG of width 518,
the Simple bar uses the “1012 Best” scheduling time, the
TightBag bar uses “One TightBag”, and the LooseBag bar
uses “Three TightBags”. All results are averages over a
collection of EMAN and Montage DAGs.

Figure 8 shows results for computation-intensive DAGs
belonging to class 1. We observe that all the decoupled
approaches have much better turnaround time compared
to the one-step approach. Among decoupled approaches,
the one TightBag approach performs the worst since it
does not provide enough computing power. The simple
selection approach performs the best with makespan only
2% worse than the one-step approach. This confirms our
hypothesis that simple selection is very suitable for these
applications.

Fig. 8. Average MakeSpan and Scheduling Time for DAGs with
CCR=0.1

Fig. 9. Average MakeSpan and Scheduling Time for DAGs with
CCR=10

Figure 9 shows results for communication-intensive



DAGs belonging to class 2. We observe that all decoupled
approaches have lower turnaround time than the one-
step approach. The one TightBag approach has the best
performance and outperforms the one-step approach by
almost 66%. The main reason for this result is that all
selected resources are closely connected, which avoids
greedily choosing nodes with poor connectivity. A better
scheduling heuristic for the Universe case might reduce
its makespan, but at the cost of even higher scheduling
time. This confirms our hypothesis that pre-selecting a
TightBag is appropriate and efficient for scheduling this
class of applications.

Fig. 10. Average MakeSpan and Scheduling Time for DAGs
with CCR=0.5,1,2

Figure 10 shows results for DAGs with relatively
balanced communication and computation requirements,
such as those in class 3. In all cases, the decoupled
approaches have lower turnaround times than the one-step
approach due to their lower scheduling times, with gains
of up to 50%. Also as we expected, the Simple approach
performs better as the CCR gets below one (i.e. more
computation-intensive code) and the TightBag approach
performs better as the CCR gets above one. Unexpectedly
however, the LooseBag approach does not show a clear
advantage. Here are two possible reasons

1) The simple selection may implicitly select nodes that
are close since fast nodes are more likely found in a
few clusters than scattered around the grid.

2) The bandwidth between the TightBags within the
LooseBag we choose may happen to be very low.

We will investigate this further in the future. If reason 1 is
true, we can further simplify our VGDL requests, while if
reason 2 is the case, we may have to devise more complex
queries.

In summary, our experiments confirm our hypothe-
sized advantages for decoupled scheduling over the one-
step approach. They also confirm our hypotheses of best
scheduling methods for computation and communication-

intensive applications. However, they do not match our
expectations for balanced applications.

V. Related Work

This work is closely related to our previous work on
scheduling Directed Acyclic Graphs onto heterogeneous
platforms under VGrADS [16] project. Current grid work-
flow management systems use simple approaches such as
first-come-first-served with matchmaking as in Condor
DAGMan [21], the Data Grid resource broker [28] and
the GridLab resource broker [1], or random allocations or
round robin as in Pegasus [25].

Mandal et al.[20] presents a novel approach to schedule
the nodes in a DAG level by level. The algorithm relies on a
performance model to assign a rank to each node-resource
pair and then uses a combination of three heuristics to
schedule the nodes in the same level onto those resources.
Blythe et al.[4] improves the algorithm by introducing
randomness as the authors have observed that a better
local (i.e., within a level) makespan may not always lead to
a better DAG makespan. The algorithm repeatedly com-
putes a new mapping between nodes and resources at each
level to find a better overall makespan. Evaluation results
show that this approach works well for communication-
intensive DAGs but not as well for computation-intensive
ones. A key limitation of this approach however is that it is
not scalable to large numbers of resources as task-resource
mappings are re-computed repeatedly.

VI. Conclusion

In this work, we have presented a decoupled mechanism
that leverages the concept of a Virtual Grid to schedule
workflow applications onto large-scale grid environments.
Our approach improves scalability when compared to
traditional scheduling approaches as schedules can be
computed dramatically faster. Furthermore, our experi-
mental results show that our approach does not increase
the makespan significantly in practice. Therefore, our
approach dramatically improves application turnaround
time.

In future, we will conduct experiments for a wider range
of DAGs including randomly generated ones. We will
also apply and evaluate our decoupled approach to more
scheduling algorithms, such as HEFT [14] and DLS [23].
Finally, we plan to conduct experiments on real resources
including our own VGrADS testbed and the TeraGrid [7].

At a more fundamental level, this work can be extended
in several directions. For instance, at the moment the
granularity of our resource abstraction category is rel-
atively coarse and we assume that we can always find
enough resources to match our resource selection criteria.
This may not be the case in practice and we need to
refine our resource selection criteria when we cannot find
enough resources (e.g., ask for fewer resources, ask for
slower resources, ask for resources with poorer connectiv-
ity). Also, the CCR is calculated using average network



bandwidth, which may not work when networks are highly
heterogeneous.

Acknowledgments

This material is based on work supported by the Na-
tional Science Foundation under Cooperative Agreement
No. CCR-0331645 (the VGrADS Project). This work was
supported in part by the Rice Terascale Cluster funded by
NSF under Grant EIA-0216467, Intel and HP.

References

[1] G. Allen, D. Angulo, T. Goodale, T. Kielmann, A. Merzky,
J. Nabrzysky, J. Pukacki, M. Russell, T. Radke, E. Seidel,
J. Shalf, and I. Taylor. GridLab: Enabling Applications on
the Grid. In GRID ’02: Proceedings of the Third International
Workshop on Grid Computing, pages 39–45, London, UK, 2002.
Springer-Verlag.

[2] G. Avellino, S. Barale, S. Beco, B. Cantalupo, D. Colling,
F. Giacomini, A. Gianelle, A. Guarise, A. Krenek, D. Kouril, and
A. Maraschini et al. The EU DataGrid Workload Management
System: towards the second major release. 2003.

[3] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster,
D. Gannon, L. Johnsson, K. Kennedy, C. Kesselman, J. Mellor-
Crumme, D. Reed, L. Torczon, and R. Wolski. The GrADS
Project: Software Support for High-Level Grid Application De-
velopment. Int. J. High Perform. Comput. Appl., 15(4):327–344,
2001.

[4] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal,
and K. Kennedy. Task Scheduling Strategies for Workflow-based
Applications in Grids. In IEEE International Symposium on
Cluster Computing and the Grid (CCGrid 2005). IEEE Press,
2005.

[5] T. Braun, H. Siegel, and N. Beck. A Comparison of Eleven
Static Heuristics for Mapping a Class of Independent Tasks
onto Heterogeneous Distributed Computing Systems. Journal
of Parallel and Distributed Computing, 61:810–837, 2001.

[6] J. Cao, S. A. Jarvis, S. Saini, and G. R. Nudd. GridFlow:
Workflow Management for Grid Computing. In CCGRID ’03:
Proceedings of the 3st International Symposium on Cluster
Computing and the Grid, page 198, Washington, DC, USA,
2003. IEEE Computer Society.

[7] Charlie Catlett and et al. http://www.teragrid.org/about,
2002.

[8] A. Chien, H. Casanova, Y.-S. Kee, and R. Huang. The Virtual
Grid Description Language: vgDL. . Technical Report CS2005-
0817, University of California, San Diego, Department of Com-
puter Computer Science and Engineering, Aug 2005.

[9] H. Dail, H. Casanova, and F. Berman. A decoupled scheduling
approach for the GrADS program development environment.
In Supercomputing ’02: Proceedings of the 2002 ACM/IEEE
conference on Supercomputing, pages 1–14, Los Alamitos, CA,
USA, 2002. IEEE Computer Society Press.

[10] A. Denis, O. Aumage, R. Hofman, K. Verstoep, T. Kielmann,
and H. E. Bal. Wide-Area Communication for Grids: An
Integrated Solution to Connectivity, Performance and Security
Problems. In HPDC ’04: Proceedings of the 13th IEEE Interna-
tional Symposium on High Performance Distributed Computing
(HPDC’04), pages 97–106, Washington, DC, USA, 2004. IEEE
Computer Society.

[11] I. Foster and C. Kesselman. The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kauffmann Publishers, Inc.,
1999.

[12] I. Foster and C. Kesselman. The Grid2. Morgan Kauffmann
Publishers, Inc., 2003.

[13] M. Garey and D. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. 1979.

[14] H.Topcuoglu, S. Hariri, and M.-Y. Wu. Performance-effective
and low-complexity task scheduling for heterogeneous comput-
ing. IEEE Transactions on Parallel and Distributed Systems,
2(13):260–274, 2002.

[15] Y.-S. Kee, H. Casanova, and A. A. Chien. Realistic Modeling
and Svnthesis of Resources for Computational Grids. In SC ’04:
Proceedings of the 2004 ACM/IEEE conference on Supercom-
puting, page 54, Washington, DC, USA, 2004. IEEE Computer
Society.

[16] Y.-S. Kee, D. Logothetis, R. Huang, H. Casanova, and A. Chien.
Efficient Resource Description and High Quality Selection for
Virtual Grids. In Proceedings of the 5th IEEE Symposium on
Cluster Computing and the Grid (CCGrid’05), Cardiff, U.K.,
May 2005.

[17] Y. Kwok and I. Ahmad. Benchmarking and Comparison of the
Task Graph Scheduling Algorithms . Journal of Parallel and
Distributed Computing, 59(3):381–422, 1999.

[18] C. Lee and J. Stepanek. On future Global Grid communication
Performance. Heterogeneous Computing Workshop, 2001.

[19] S. Ludtke, P. Baldwin, and W. Chiu. EMAN: Semiautomated
software for high resolution single-particle reconstructions. J.
Struct. Biol, (128):82–97, 1999.

[20] A. Mandal, K. Kennedy, C. Koelbel, G. Marin, J. Mellor-
Crummey, B. Liu, and L. Johnsson. Scheduling Strategies
for Mapping Application Workflows onto the Grid. In 14-th
IEEE Symposium on High Performance Distributed Computing
(HPDC14), pages 125–134, 2005.

[21] Dagman MetaScheduler. http://www.cs.wisc.edu/condor/
dagman.

[22] Robert Morris and et al. http://pdos.csail.mit.edu/p2psim/
kingdata, 2004.

[23] G. C. Sih and E. A. Lee. A Compile-Time Scheduling Heuristic
for Interconnection-Constrained Heterogeneous Processor Ar-
chitectures. IEEE Trans. Parallel Distrib. Syst., 4(2):175–187,
1993.

[24] G. Singh, E. Deelman, and G. Bruce Berriman et al. Montage: a
Grid Enabled Image Mosaic Service for the National Virtual Ob-
servatory. Astronomical Data Analysis Software and Systems,
(13), 2003.

[25] G. Singh, E. Deelman, G. Mehta, K. Vahi, M.-H. Su, G. B.
Berriman, J. Good, J. C. Jacob, D. S. Katz, A. Lazzarini,
K. Blackburn, and S. Koranda. The Pegasus portal: web based
grid computing. In SAC ’05: Proceedings of the 2005 ACM
symposium on Applied computing, pages 680–686, New York,
NY, USA, 2005. ACM Press.

[26] Rice University. http://cohesion.rice.edu/centersandinst/
citi/research.cfm?doc_id=5949.

[27] L. Yang, J. M. Schopf, and I.Foster. Improving Parallel Data
Transfer Times Using Predicted Variances in Shared Networks.
In IEEE International Symposium on Cluster Computing and
the Grid (CCGrid 2005). IEEE Press, 2005.

[28] Y. Zhao, M. Wilde, I. Foster, J. Voeckler, T. Jordan, E. Quigg,
and J. Dobson. Grid middleware services for virtual data
discovery, composition, and integration. In Proceedings of the
2nd workshop on Middleware for grid computing, pages 57–62,
New York, NY, USA, 2004. ACM Press.

http://www.teragrid.org/about
http://www.cs.wisc.edu/condor/dagman
http://www.cs.wisc.edu/condor/dagman
http://pdos.csail.mit.edu/p2psim/kingdata
http://pdos.csail.mit.edu/p2psim/kingdata
http://cohesion.rice.edu/centersandinst/citi/research.cfm?doc_id=5949
http://cohesion.rice.edu/centersandinst/citi/research.cfm?doc_id=5949

	I Introduction
	II Decoupled Scheduling Approach
	III Decoupled Application Scheduling in Grid Environments
	III-A Virtual Grid and Resource Selection
	III-B Scheduling Algorithms
	III-C Selection Methodology
	III-D Case-Study: Workflow Applications
	III-D.1 EMAN
	III-D.2 Montage


	IV Experimental Evaluation
	IV-A Methodology
	IV-A.1 Simulation Environment
	IV-A.2 Experimental Setup

	IV-B Results

	V Related Work
	VI Conclusion
	References

