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Abstract

Improvements in networking and middleware technol-
ogy are enabling large-scale grids that aggregate resources
over wide-area networks to support applications at un-
precedented levels of scale and performance. Unfortu-
nately, existing middleware and tools can not in general in-
form a user as to the suitability of a given grid topology for
a specific grid application. Instead, users generally develop
ad hoc performance models for mapping their applications
to resource and network topologies. Because application
behavior alone is complex, and resource and network be-
havior further complicate the picture, users are typically
reduced to nearly blind experimentation to discover how to
deploy their application in the new grid environment. Only
after the fact can a user discovers if the match was a good
one. Further, even after finding a desirable configuration,
there is no basis on which to determine if a much better
configuration exists.

We present a richer methodology for evaluating grid
software and diverse grid environments based on the Mi-
croGrid grid emulator. With the MicroGrid, users, grid
researchers, or grid operators can define and emulate ar-
bitrary collections of resources and networks. This allows
study of an existing grid testbed under controlled conditions
or even to study the efficacy of higher performance envi-
ronments than are available today. Further, the MicroGrid
supports direct execution of grid applications unchanged.
These application can be written with MPI, C, C++, Perl,
and/or Python and use the Globus middleware. This en-
ables detailed and accurate study of application behavior.

0This material is based upon work supported by the National Science
Foundation under Grant #9975020 and #0103759.

This paper presents: (1) the first validation of the Micro-
Grid for studying whole-program performance of MPI Grid
applications and (2) a demonstration of the MicroGrid as
a tool for predicting the performance of applications on a
range of grid resources and novel network topologies.

1 Introduction

Rapid improvements in the performance of wide-area
networks and the pervasiveness of commodity resources
provide us grid computing infrastructures with tremendous
potential [4]. This potential has been widely realized and
many grid middleware projects such as Globus [18], Con-
dor [31], and NetSolve [1] have been pursued to provide
uniform, secure and efficient access to remote resources.
Unfortunately, there are few tools that assist a user in pre-
dicting if their application will obtain suitable performance
on a particular platform. Instead, with little information on
predicted performance, users must invest significant time to
obtain accounts on the new grid, adapt their application to
new middleware, debug their grid executions, and finally
run experiments to determine the best deployment of their
application on the new grid. At last the user knows if the
blind date was a good one: did the application run effi-
ciently on the grid? If not, it is time to set up a new blind
date and start over. Two major problems with this approach
are that it is both labor and resource intensive, and does
not provide any assurance of the quality of results. As re-
source environments and application performance structure
continues to increase in complexity, it is likely the distance
between achieved results and optimal will increase further.

The goal of the MicroGrid project is to develop and im-



plement emulation tools that provide a vehicle for the con-
venient scientific study of grid topologies and application
performance issues. The MicroGrid provides a virtual grid
infrastructure that enables scientific experimentation with
dynamic resource management techniques and adaptive ap-
plications by supporting controlled, repeatable experiments.
The MicroGrid complements experimentation with actual
grid testbeds because the MicroGrid can be used to explore
a wide variety of grid resource configurations and scenarios
(such as catastrophic failure), which may not be possible
to exhibit in the actual resources. Further if application or
middleware behavior is difficult to model accurately, the use
of direct application execution enables accurate modeling.
The Microgrid provides reduced setup effort for simulation
and increases the observability of application behavior.

Previous papers have provided a broad overview of an
early version of the MicroGrid [29], and studied approaches
for load-balancing the workload of network emulation to
enable scalable MicroGrid emulation [22]. This paper pro-
vides the following contributions.

� An extension of MicroGrid Toolkit features including
added support for emulation of grid components writ-
ten in C, C++, Python, and Perl.

� The first validation of the efficacy of the MicroGrid
emulation approach for whole-program MPI applica-
tions. The paper presents experiments comparing the
measured application behavior of five grid applications
in real-world testbed environments against their behav-
ior as measured in emulation. Note that our goal is
not perfect prediction, but rather to provide users with
some expectation of application performance in new
topologies.

� The first demonstration of the MicroGrid as a tool for
predicting the behavior of whole-program MPI appli-
cations on grid environments without the need for real-
world access to those environments. These experi-
ments explore topologies in existence today such as the
TeraGrid [30] and high-performance network topolo-
gies that do not yet exist.

The remainder of the paper is organized as follows. Sec-
tion 2 gives some background on the MicroGrid and Sec-
tion 3 describes the five MPI applications we deployed in
the real-world and the MicroGrid. Next, Section 4 presents
experiments validating the MicroGrid and applying it to
novel grid topologies. Section 5 provides an overview of
related work and Section 6 concludes the paper and high-
lights future directions.

Figure 1. Architecture of the MicroGrid Emu-
lation Toolkit.

2 MicroGrid Architecture

In this section we provide background on the Micro-
Grid but refer the reader to [29, 22] for complete details.
The basic functionality of the MicroGrid allows grid exper-
imenters to execute their applications in a virtual grid envi-
ronment. The virtual environment runs on actual physical
resources, providing the application with virtual grid infor-
mation services and virtual resources. Note that the Mi-
croGrid can exploit either homogeneous or heterogeneous
physical resources (see Figure 1). The MicroGrid has to
virtualize two different grid resources, network resources
and compute resources, which is achieved by the Micro-
Grid network emulator (MaSSF) and CPU controller, re-
spectively. We describe both of these components below.
Note that the MicroGrid ensures coherent virtual executions
by coordinating the simulation speed of the different virtual
resources.

2.1 MaSSF: Scalable Network Simulation

MaSSF (pronounced “massive”) is a scalable packet-
level network emulator that supports direct execution of un-
modified applications. MaSSF consists of four parts.

� Simulation Engine: MaSSF uses a distributed simu-
lation engine based on DaSSF [9, 21]. It utilizes MPI-
connected cluster systems to achieve scalable perfor-
mance. We also implement a real-time scheduler in
order to enable best-effort emulation. This scheduler
can also run in a scaled-down mode when the emu-
lated system is too large to be emulated in real time
on available hardware. With the global coordination
of the MicroGrid, this feature provides extreme flexi-
bility to emulate a wide range of networks accurately.

� Network Modeling: MaSSF provides necessary pro-
tocol modules for detailed network modelling, such as
IP, TCP/UDP, OSPF, and BGP4. We have strived to
simplify these protocols and maintain their behavior

2



characteristics at the same time. We also use a net-
work configuration interface similar to a popular Java
implementation, SSFNET [9], for user convenience.

� Emulation Capability: To support simulation of traf-
fic from live applications, we implement an Agent
module to accept and dispatch live traffic from applica-
tions to the network modeling module. Traffic will also
be sent back to application through the Agent Module.

� Live traffic interception: Application processes use
a module called WrapSocket to intercept live network
streams at the socket level. The WrapSocket then talks
with the Agent module to redirect traffic into the net-
work emulator and vice versa. WrapSocket can be ei-
ther statically or dynamically linked to application pro-
cesses and requires no application modification.

2.2 The MicroGrid CPU controller

The CPU controller virtualizes the CPU resources and
processes of the physical machines by sending SIGSTOP
and SIGCONT signals to physical processes. The controller
consists of three parts:

� Live Process Interception: Whenever a process or a
thread is created or is destroyed, the CPU controller
detects the event via intercepted main() or exit()
function calls and updates its internal process table.

� CPU Usage Monitoring: Every 20ms, the controller
reads the /proc file system to check the CPU usage
of all the processes in its process table.

� Process Scheduling: The controller calculates the
CPU usage of each virtual host (in a sliding window).
If the amount of effective cycles exceeds the speed of
the virtual hosts, the controller sends a SIGSTOP sig-
nal to all processes of the virtual host; otherwise, the
controller wakes up the processes and let them pro-
ceed. Same as MaSSF, the CPU controller also sup-
ports scaled-down mode to emulate virtual machines
which are faster than avaliable physical resources.

This architecture allows emulation of large numbers of
machines (100’s to thousands) on a small number of ma-
chines. Further, heterogeneous performance from slow to
fast machines can be modeled accurately.

3 Applications

In this section we describe five classic grid applications
used for research and development in the GrADS project [5,
15]. We will use these applications for MicroGrid validation
experiments in the following section.

All five applications are SPMD MPI applications and
have been previously tested on the GrADS testbed in var-
ious real-world experiments. These applications were in-
tegrated into the GrADS framework and tested in vari-
ous experiments as part of the following efforts: ScaLA-
PACK [25], Jacobi [11], Game of Life [11], Fish [28], and
FASTA [13], which was integrated by Asim YarKhan.

ScaLAPACK [6] is a popular software package for par-
allel linear algebra, including the solution of linear systems
based on LU and QR factorizations. We use the ScaLA-
PACK right-looking LU factorization code based on 1-D
block cyclic data distribution. The application is imple-
mented in Fortran with a C wrapper. The data-dependent
and iteration-dependent computation and communication
requirements of ScaLAPACK provides an important test for
the MicroGrid emulation. In our experiments we used a ma-
trix size of 6000�6000.

FASTA [24]. The search for similarity between pro-
tein or nucleic acid sequences is an important and com-
mon operation in bio-informatics. Sequence databases have
grown immensely and continue to grow at a very fast rate;
due to the magnitude of the problems, sequence compari-
son approaches must be optimized. FASTA is a sequence
alignment technique that uses heuristics to provide faster
search times than more exact approaches, which are based
on dynamic programming techniques. Given the size of
the databases, it is often undesirable to transport and repli-
cate all databases at all compute sites in a distributed grid.
We use an implementation of FASTA that uses remote, dis-
tributed databases that are partially replicated on some of
the grid nodes. FASTA is structured as a master-worker
and is implemented in C. For MicroGrid validation pur-
poses, an important aspect of FASTA is that each processor
is assigned a different database (or portion of a database) so
the MicroGrid must properly handle input files and provide
proper ordering of data assignments onto processors. In our
experiments the sizes of the databases are 8.5MB, 1.7MB
and 0.8MB respectively. The query sequence is 44KB.

The Jacobi method [3] is a simple linear system solver.
A portion of the unknown vector x is assigned to each pro-
cessor. During each iteration, every processor computes
new results for its portion of x and then broadcasts its up-
dated portion of x to every other processor. Jacobi is a
memory-intensive application with a communication phase
involving lots of small messages. In our experiments we
used a matrix size of 9600�9600.

The Fish application models the behavior and interac-
tions of fish and is indicative of many particle physics ap-
plications. The application calculates Van der Waals forces
between particles in a two-dimensional field. Each com-
puting process is responsible for a number of particles that
move about the field. The amount of computation depends
on the location and proximity of particles, so Fish exhibits a
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dynamic amount of work per processor. In our experiments
we used 6,000 particles.

Conway’s Game of Life [14] is a well-known binary cel-
lular automaton. A two-dimensional mesh of pixels is used
to represent an environment of cells. In each iteration ev-
ery cell is updated with a 9-point stencil and then proces-
sors send data from their edges (ghost cells) to their neigh-
bors in the mesh. Game of Life has significant memory
requirements compared to its computation and communi-
cation needs. In our experiments we used a matrix size of
9600�9600.

3.1 Summary

This group of applications provides an interesting test
suite for the MicroGrid emulation toolkit as it provides
broad coverage of a number of application characteristics
of interest.

� Predominantly floating point (ScaLAPACK, Jacobi,
and Fish) vs. predominantly integer (Game of Life and
FASTA)

� Fortran (ScaLAPACK) vs. C (the others)

� Varying, complicated sharing communication phases
(ScaLAPACK) vs. regular, straightforward exchange
of vector(s) all-to-all (Jacobi, Fish) vs. neighbor-
to-neighbor communications only (Game of Life) vs.
master-worker send-receive (FASTA)

� Full range of communication to computation balance
from highly synchronized, large number of messages
(ScaLAPACK) to small number of master-worker
send-receive pairs (FASTA).

4 Experiments

In this section we describe experiments we performed
using the MicroGrid and the five grid applications described
in the previous section. In the first set of experiments,
we test how accurately the MicroGrid emulates applica-
tion execution behavior. For these experiments, we com-
pare real-world executions of grid applications against Mi-
croGrid emulations of the same environments. In the sec-
ond set of experiments, we emulate a number of new, high-
performance grid architectures and test the performance of
our applications on these emulated architectures. These
tests demonstrate how the MicroGrid can be used to eval-
uate applications and architectures that are not available in
the real-world (or where controlled experiments are not pos-
sible).

4.1 MicroGrid validation

In our first set of experiments, we compare grid applica-
tion behavior for real-world application executions against
the behavior observed in the MicroGrid emulation. Specif-
ically, we selected a multi-site grid and single-site cluster
from the GrADS project testbed and ran the five grid appli-
cations on these two testbeds. Next, we built a MicroGrid
resource model of the grid and cluster including the speed,
architecture, and number of compute nodes and the TCP/IP
configuration, latency and bandwidth of the links. Then, we
executed the same applications on the MicroGrid emulation.

4.1.1 Real-world testbed configuration

A more detailed view of our testbed choices may be use-
ful in considering which aspects of the MicroGrid emula-
tion have been exercised by the validation. The GrADS
project has developed a testbed called the MacroGrid, used
for, among other things, development and testing of new
grid technologies. The MacroGrid currently includes over
100 machines (see Figure 2), of which the following 10 ma-
chines were used in our studies.

� UCSD cluster: three 2100+ XP Athlon AMD (1.73
GHz) with 512 MB RAM each. These systems run
Debian Linux 3.0 and are connected by Fast Ethernet.

� UIUC cluster: three 450 MHz PII machines with
256MB memory connected via TCP/IP over 1Gbps
Myrinet LAN. These systems run RedHat Linux 7.2.

� UTK cluster: four PIII 550 MHz machines with
512MB memory, running RedHat Linux 7.2, and con-
nected with Fast Ethernet.

The three sites are connected by the Internet2 network
with 2.4Gbps backbone links. During our experiments, we
observed NWS latency and bandwidth values over a period
of 12 hours and obtained ranges as shown in Figure 2. For
local area networks the NWS measured bandwidth via 64
KB messages; for wide area networks the NWS used 1 MB
messages.

For our experiments, we label our test cases GrADS
Grid, including 3 machines from each of the 3 sites listed
above, and a GrADS Cluster, including just the 4 machines
from the UTK cluster. We selected a relatively small subset
of the GrADS testbed for experimentation for two reasons:
we needed consistent access to the testbed machines (quite
difficult for larger testbed subsets), and we needed applica-
tion executions that could be emulated in a timely manner
on the MicroGrid (emulation speed is partly dependent on
the size of the testbed).
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Figure 2. GrADS testbed with network links annotated with bandwidth and latency values collected
with the NWS.

4.1.2 MicroGrid emulation configuration

Several steps are necessary to build an emulation environ-
ment in the MicroGrid. The first steps involve configur-
ing the emulation environment for a particular testbed. We
only had to perform this step once each for the GrADS Grid
and GrADS Cluster; the emulation environments could then
be used for each of the five applications with only a small
change to processor speed assumptions, as explained in the
next paragraph.

First, the set of machines to be included in the emulation
has to be defined in a configuration file and each machine
should be annotated with its processor speed and memory
capacity. We wanted to emulate a variety of AMD and
IA32 processors, while the MicroGrid compute platform
contained only one type of IA32 processors. To obtain
a mapping between processors, we selected basic integer
and floating point serial benchmarks from the NAS Parallel
Benchmark Suite [10] and then ran them on each architec-
ture in the GrADS Grid and Cluster and on the MicroGrid
compute platform processors. We then classified each of
our grid applications as predominantly integer or floating
point and used the respective benchmark results to provide
an appropriate machine speed mapping in the MicroGrid
emulation.

Next, the network connecting the nodes must be defined
and virtualized on top of an existing network. The Mi-
croGrid virtual network topology is defined by latency and
TCP sender window size. Based on NWS data collected
from the GrADS testbed, we assume all the machines have

64KB TCP window size and we assume the following laten-
cies between hosts: 31ms between UCSD and UIUC hosts;
30ms between UCSD and UTK hosts; and 11 ms between
UIUC and UTK hosts.

At the time of our experiments the MicroGrid did not
support injection of load traces; thus, for these initial ex-
periments we sought relatively unloaded processors in the
real-world and then modeled the environment as unloaded
in the MicroGrid. Of course we were not able to obtain such
control for the networks, leading to one source of error for
our validation experiments.

To prepare MPI applications for execution on the Mi-
croGrid, the application does not need to be modified; the
application is simply linked with MicroGrid libraries. A
small configuration file must also be written to assist the
MicroGrid in finding all necessary files during the emula-
tion launch process. Note that the application and applica-
tion configuration files can refer directly to real-world ma-
chine names or IP addresses; the MicroGrid virtualization
process translates these names into appropriate physical ad-
dresses on the compute platform.

4.1.3 Results

The results of our validation experiments are shown in Fig-
ure 3 for the GrADS cluster and in Figure 4 for the GrADS
Grid. We did six repetitions of each application emulation;
when we report emulated results we report an average of the
six runs and error bounds based on standard deviation. Re-
peatable runs were much harder to obtain in the real-world
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GrADS Cluster GrADS Grid
ScaLAPACK 36.8% 34.2%
Jacobi 28.1% 23.6%
Fish 26.7% -15.1%
Game of Life 16.8% -0.4%
FASTA 15.6% 59.0%
Average 24.8% 26.5%

Table 1. Summary of MicroGrid prediction er-
rors.

tests and we only obtained between one and three repeti-
tions of each experiment. We do not have sufficient real-
world runs to calculate a meaningful average and standard
deviation; instead, for the real-world results we selected the
minimum measured time (minimum because we sought un-
loaded conditions).

Table 1 summarizes the percentage difference between
the real-world execution time and that predicted by the Mi-
croGrid emulation. Overall, the MicroGrid provides a rea-
sonable estimate of predicted performance, especially given
the fluctuating loads and other uncertainties of execution in
the real-world that can not be captured in emulation. It is
encouraging that the MicroGrid properly ranks the perfor-
mance of all of the applications in the cluster environment
and of Jacobi, Fish, and Game of Life in the grid environ-
ment. In other words, those results could inform a user as to
which applications will run fastest in these environments.

The results are disappointing for ScaLAPACK in both
environments and for FASTA in the grid environment.
ScaLAPACK involves many small messages and compli-
cated communicated patterns; we plan to run further tests
to determine why these patterns are difficult to emulate ac-
curately. FASTA is the only application involving signif-
icant I/O (for reading databases) and also involves load-
imbalance among processors. These factors do not explain
however why the emulation would be reasonably accurate
for the cluster case and not the grid case. We plan to inves-
tigate these issues for the final version of this paper.

Another interesting point is that because we did not em-
ulate competing load in the MicroGrid we expected the Mi-
croGrid to consistently under-predict execution times. In
fact, the reverse is true. This leads us to believe that the
MicroGrid emulation may introduce some overheads into
the application execution that are not properly accounted
for currently. We plan to run some experiments to better
understand and account for the overheads associated with
the emulation process.

In general, although we plan to improve the MicroGrid
validation, we feel that these initial results are promising.
As users do not currently have any advance information of

the application performance they can expect on new topolo-
gies, information at this level of accuracy is already useful.

4.2 High-performance grid architectures

In this set of experiments, we demonstrate the applica-
tion of the MicroGrid for testing the performance of appli-
cations on grid architectures that are not available for real-
world experimentation. This application of the MicroGrid
could prove useful for a variety of reasons: the grid could
exist but be unavailable to the user currently, it could be im-
possible to perform repeatable, controlled experiments, or
the topology could even be an imagined grid architecture in-
cluding higher performance components than are currently
available.

In these experiments, we emulate faster and richer re-
sources than the GrADS Grid and Cluster used in the pre-
vious section. We investigate a wide range of types and
performance for networks, CPUs and storage. The imme-
diate goal of these experiments is to discover whether these
grid architectures are well suited to the five applications de-
scribed in Section 3. Note that since we do not have access
to real-world versions of these topologies we cannot directly
validate these performance predictions. We refer to the ex-
periments in the previous section as initial evidence that the
MicroGrid provides reasonable performance predictions for
these five applications.

4.2.1 Testbeds

The TeraGrid is a large-scale grid project that com-
bines large supercomputer style resources from across the
US [30]. The initial TeraGrid design, planned for operation
in 2003, includes five large-scale Linux clusters at ANL,
Caltech, NCSA, PSC, and SDSC. At the time of our exper-
iments, the TeraGrid was not yet available as a production
grid. We therefore emulate the TeraGrid to provide advance
results.

In our experiments, we use two machines from each
of the five clusters, which are connected by long wide
area links (5-30ms) and multiple switch/routers and 10Gbps
links. For the local resources, we make the following per-
formance assumptions: each node has 3GHz CPU, 1GB
memory and 1Gbps network interface, the TCP window
size is 1MB. These numbers do not match the current Ter-
aGrid specification exactly as we configured our emulation
based on projected hardware specifications before the actual
platform was put in place.

The Optiputer project seeks to exploit high bandwidth
DWDM optical networks to support data-intensive scien-
tific research and collaboration. The communication links
are dedicated lambdas with guaranteed high bandwidth and
low latency. They may run TCP or new protocols under
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Figure 3. Comparison of application execution times on the GrADS Cluster and as measured in a
MicroGrid emulation of the GrADS Cluster.
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Figure 4. Comparison of application execution times on the GrADS Grid and as measured in a
MicroGrid emulation of the GrADS Grid.

development. We approximate the future Optiputer envi-
ronment using the following network configuration.

Three sites are connected through 80Gbps switched op-
tical backbone network; each site consists of four machines
with 3GHz CPU and 2GB memory, each of them connects
to the optical core router in 4Gbps. Two configurations vary
the latency between the sites. Optiputer1 has 5ms and Op-
tiputer2 has 60ms. To simulate the dedicated optical con-
nections, we assume that all the nodes use infinite TCP send
windows.

The Optiputer3 models a combined Optiputer and
Internet-2 grid environment. Two sites are connected
through 80Gbps optical backbone network with high band-
width and moderate (10ms) latency; each site consists of
four machines with 3GHz CPUs and 2GB memory. Each
machine connects to the optical core router in 4Gbps. A
third site is from another backbone network with 2.4Gbps
bandwidth and 40ms latency to the first two sites. This site
has four machines, also with 3GHz CPU and 2GB memory,
but with a 1Gbps switch and 128KB TCP window.

4.2.2 Results

Figure 5 shows the execution times measured when we ran
our applications on the novel architectures described above.
While these quantitative results are in themselves interest-
ing to grid users, we can make the following two observa-
tions:

� Different applications run well on different architec-
tures and the MicroGrid makes it possible for users to
predict which architecture will be best for their appli-
cations. There is no single architecture that is best for
all applications.

� The different between the Optiputer1 and Optiputer2
results make it possible to directly evaluate the impact
of network latencies on the application executions (in
this case an increase in latency by a factor 12). For
instance, this shows that while ScaLAPACK is highly
impacted by network latencies, Game of Life is not.

� For the ScaLAPACK application, the communication
time dominates the overall running time. This is be-
cause the application has a large number of small com-
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Figure 5. Forecasts of application behavior in new, high-performance grid architectures based on
MicroGrid emulations. The right-hand y-axis scale corresponds to the ScaLAPACK application only
while the left-hand y-axis scale corresponds to the other four applications.

munications, which makes network latency the main
performance factor. Furthermore, we use a relativeley
small problem size (6000�6000), so that the fast CPUs
in the high performance testbed should not provide
much benefit for the application. This is confirmed
in the emulation results for ScaLAPACK showin both
in Figure 4 (for the GrADS testbed) and in Figure 5
for the four novel architectures. Indeed, the emula-
tion results show that the application execution time is
roughly proportional to the network latencies, with the
optiputer2 configuration being the worst with 60 ms
latencies.

5 Related Work

Three methods have been used to perform grid experi-
ments: live networks, simulation, and emulation.

Live networks use some specific set of real-world re-
sources for experiments, which of course provides a real-
istic grid environment for experimentation. However, this
method has two main limitations: (i) it is usually difficult
to run experiments for a wide range of platform scenarios
or for platforms that do not exist yet; and (ii) it is often im-
possible to predict and control the environment with shared
networks and computers, which precludes reproducible ex-
periments.

Another method of choice is simulation. A number of
software tools provide general-purpose discrete-event simu-
lation capabilities by which one can implement a model [27,

32, 23, 12, 16, 17]. Some tools are specifically targeted to
the domain of grid application scheduling and provide con-
venient high-level abstractions [8, 20]. While these simula-
tion tools make it possible to evaluate scheduling algorithms
in an abstract sense, they often cannot simulate what would
truly happen on a real system (e.g., software and I/O over-
heads, realistic network congestion).

Several lower-level simulation models provide more ac-
curate network environment, like NS [7], GloMoSim [2],
and DummyNet [26]. However, these tools only capture
part of what is relevant to grid applications, i.e. the network
resources.

An alternative to simulation is emulation, which is vir-
tualizing simulated resources on real resources. Emula-
tion tools enable coupling with live application programs
and provide a more realistic environment than simulation.
Besides the MicroGrid, the Albatross project [19], Em-
ulab [34] and Modelnet [33] all attempt to run live ap-
plication using a network simulator/emulator. However,
their network emulator cannot support sophisticated net-
work protocols, such as different routing protocols; they all
use real-time emulation and cannot control the emulation
speed freely. In contrast, the MicroGrid network emula-
tor implements the full stack of OSPF and BGP4 routing
protocols and has better accuracy; the MicroGrid CPU con-
troller enables emulation of virtual computers with arbitrary
speeds.
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6 Conclusion

The increasing acceptance of grid computing in both
scientific and commercial communities presents significant
challenges for understanding the performance of applica-
tions and resources. No more are the associations simple
and static, and dynamic resource sharing and application
adaptation add new variables to the situation.

We have described a new tool, the MicroGrid, and both
its validation and a demonstration of the new methodology
it enables for studying performance questions involving grid
applications, middleware, and network and edge resources.
These capabilities represent a wide range of new opportuni-
ties for understanding grids.
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