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Abstract

We present an improved version of GridSAT, a distributed and
complete satisfiability solver. The solver is used to solve a set
of “hard” and previously unsolved set of satisfiability prob-
lems.

We enhance the GridSAT solver, which is based on the se-
quential solver Chaff, in two main ways. First the improved
GridSAT solver uses immediate integration of shared clauses
to achieve better solver performance. Second GridSAT’s
scheduler is enhanced to reduce communication overhead.
Using a set of experiments, we show that GridSAT is ca-
pable of using simultaneously a wide variety of resources
which range from shared desktop machines to supercomput-
ers. GridSAT’s scheduler was able to manage this diverse and
dynamic resource pool for up to a month during some exper-
iments to solve previously unsolved problems from the SAT
2002 [43] and the SAT 2003 [46] competitions. We present
the improvements we made and the new results obtained us-
ing GridSAT.

Keywords: Parallel, Distributed, Scheduling, Satisfiability,
Computational Grid.

1 Introduction

Grid computing [25] is an emerging field in computer sci-
ence which main focus is the aggregation of geographically
distributed and federated computational resources. The ag-
gregated resources can be used by Grid applications to solve
problems in science and engineering [33, 3, 40] which require
large computing power. Solving such challenging problems
and enabling new scientific results is an integral part of the
grid computing vision.

One such challenging problem is propositional satisfiability.
This problem involves finding a set of binary assignments
which satisfies a set of constraints. The problem of solv-
ing satisfiability instances is important from both theoretical
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and practical perspectives. Satisfiability is theoretically sig-
nificant because it was the first problem to be proven NP-
complete [14]. Therefore, an algorithm for solving general
instances of satisfiability is very likely to be compute in-
tensive because it may take exponential time. An efficient
method for solving satisfiability can also be used to solve
other theoretical problems because these problems [24, 35]
can be transformed to satisfiability instances. In practice,
many engineering disciplines require the solution of domain
specific instances of satisfiability. Such disciplines include
scheduling [8], model checking [4], security [2], Artificial
Intelligence [28] and software verification [26]. Satisfiabil-
ity is especially important in the area of Electronic Design
Automation (EDA). EDA encompasses a variety of prob-
lems such as circuit design [49], Field-Programmable Gate
Arrays (FPGA) detailed routing [37], combinational equiva-
lence checking [29, 39] and, automatic test and pattern gener-
ation [31].

There has been extensive research effort geared towards
the development of gradually more efficient satisfiability
solvers [36, 21, 23, 7]. These solvers use different techniques
to navigate the entire search space. Modern solvers use opti-
mizations which permit discarding parts of the search space
during execution.

However, most modern solvers [36, 21, 23, 7] are sequential
and are focused on improving existing algorithms and related
heuristics. Fewer parallel solvers such as [12, 27, 50, 18]
exist, and even fewer of the parallel solvers use an optimiza-
tion termed learning. Learning (discussed in detail in Sec-
tion 2.2) improves solver speed by adding propositions that
the algorithm deduces to an internal database that is global to
the solver. These additional “learned” propositions improve
the efficiency of SAT solvers substantially, but they make the
problem of parallelizing and/or distributing a learning solver
daunting. As a result the best known solvers (in terms of
speed and solution power) have until recently been sequential.
Effective sharing of the proposition database by all processors
working on a SAT instance is an important goal for a parallel
SAT solver which uses learning.

These sequential solvers are characterized by heavy use of
compute power (CPU) as well as the memory of the host
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machine. When the host’s memory is exhausted the solver’s
progress becomes very slow. This happens when the problem
is perceived as being “hard” by a solver. In the rest of this
paper, we use the term “hard” or “complex” to refer to prob-
lems which use a long time to solve. We also use the term
“easy” to describe those problems which are solved quickly
by the solver under consideration. A SAT problem may be
perceived differently by two SAT solvers. For example while
a solver may find a problem hard and take a long time to solve
a given problem. Another solver may find the same problem
easy and is able to solve the problem quickly. However, there
are SAT problems which are considered hard by all existing
SAT solvers. Satisfiability instances, even those generated in
practice, can be arbitrarily complex and difficult to solve by
existing solvers. Actually, some of these problems including
the ones we consider in this paper are left unsolved. Previ-
ous implementations of parallel solvers show that better per-
formance is obtained when a large pool of computational re-
sources is used. The aggregate CPU power and memory of
the hosts make it possible to navigate the search space faster.

It is still an open research question to decide when using
more resources increases the solver’s performance. But re-
search in parallel solvers, shows that using more resources
can be (but not always is) a performance booster. Thus a
Computational Grid populated by a a large pool of resources
offers potential improvements in solver speed. These speed
improvements can also enable a parallel SAT solver to solve
previously unsolved problems which would have otherwise
taken prohibitively longer durations to solve using a sequen-
tial solver.

Our previous work with GridSAT [12] shows that by dynami-
cally acquiring resources as predicted by the GridSAT sched-
uler will benefit the solution to a particular SAT instance. In
fact, GridSAT outperforms the best-known solver on all prob-
lems that this leading solver can complete. At the same time,
GridSAT uniquely has been able to solve several previously
unsolved problems using non-dedicated, wide-area Grid re-
sources. Thus, by using Grid resources effectively, GridSAT
constitutes a speed improvement over the fastest-known tech-
nique and has achieved new scientific results that have not
previously been possible. In this work, we describe new re-
sults we have obtained with GridSAT. By combining differ-
ent batch-controlled super-computers with interactive work-
stations and user desktop machines, we have applied GridSAT
to hard SAT problems — ones that are not only unsolved but
previous attempts to solve using other solvers have failed.

The resources in a computational grid may be of two dif-
ferent types: time-shared or batch controlled. In the case
of time-shared resources the application will compete with
other user applications running simultaneously on the host
machine. However, since these resources are always avail-
able the application can continue to make progress. Other
resources which are controlled by a batch scheduler, will
participate intermittently in the application through some of
their nodes. But these systems will provide significant com-

pute power depending on the size of the application’s request.
This pattern of combining different types of resources is dif-
ferent from most existing implementations of parallel SAT
solvers [27, 50]. In fact, there are many legacy applications in
high performance computing which are limited to just using
a particular resource at a time.

In order to enable a grid implementation of a SAT solver to
use many resources simultaneously, we need to address two
types of challenges. First the solver’s algorithm needs to be
modified so that it can run in parallel while ensuring that the
parallel components cooperate to improve over-all efficiency.
The second challenge is developing a framework capable of
running the parallel solver in a very volatile computational
environment.

We have developed GridSAT, a distributed satisfiability solver
capable of running on a Computational Grid. GridSAT imple-
ments a parallel algorithm for solving satisfiability problems
based on Chaff [36]. GridSAT allows resources to commu-
nicate in order to improve the solver’s efficiency. The paral-
lel implementation of GridSAT has been shown in previous
experiments [12, 11] to achieve better performance than its
sequential counterpart. GridSAT was also capable of solving
problems which were previously unsolved.

In this paper, we will discuss further improvements we made
to the GridSAT system. These improvements have made it
possible to solve previously unsolved satisfiability problems
from the field of FPGA [37] routing as well as artificially gen-
erated instances.

The paper is organized as follows. Section 2 introduces the
basic SAT solver algorithm and some of the more advanced
techniques used in modern solvers. In section 3 we present
GridSAT’s parallel version of the algorithm and the improve-
ments added over previous implementations. We present ex-
perimental setup and results in section 4. Finally, we discuss
related work in section 5 and conclude in section 6.

2 GridSAT Solver

A satisfiability problem is expressed as a boolean formula
over a set of variables. Most solvers operate on formulas
expressed in Conjunctive Normal Form (CNF). A CNF is a
conjunction (logical AND) of clauses. A clause is an injunc-
tion (logical OR) of literals. A literal is either an instance of a
variable (V) or its complement(~V"). A problem is called sat-
isfiable if there exists a set of variable assignments that makes
the formula evaluate to true. If such an assignment does not
exist the the problem is declared unsatisfiable. The CNF has
two important properties: any boolean formula can be alge-
braically converted to CNF, and for the original formula to be
satisfiable all constituent clauses must be satisfiable.

GridSAT is based on Chaff [36], a sequential SAT solver. In
Chaff, as well as other solvers, the performance of the al-
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gorithm is enhanced by using techniques for adding new de-
duced clauses. In this section we explain the basic algorithm
and how new clauses are generated.

2.1 The Basic Algorithm

The basis of Chaff and many modern SAT solvers is the
Davis-Putnam-Logeman-Loveland (DPLL) [17] algorithm.
Figure 1 shows a simplified flow chart describing the algo-
rithm. This algorithm and its derivatives belong to the family
of “complete” solvers that are guaranteed to find an instance
of satisfiability if the problem is satisfiable, or to terminate
once a sufficient set of all possible variable assignments have
been examined proving that the problem is unsatisfiable. Vari-
ables can be assigned the values true or false but they are all
marked as unknown initially. The algorithm uses heuristics to
assign values to variables speculatively, but in an order that is
likely to yield a truth assignment quickly if one exists. The
speculative assignment of values to variables is called a deci-
sion. Because decisions are speculative (and may be undone)
and because decisions have deductive implications, they are
maintained as a stack. Each decision has a unique level in the
decision stack with the first level in the decision stack contain-
ing variable assignments necessary for the problem instance
to be satisfiable. For example, variables in clauses composed
of a single literal will be added to this level. Other variables
will be deduced to have a specific value and will be added to
the first level as the algorithm progresses.

After each new decision, the algorithm searches for unit
clauses. A unit clause is a clause with only one literal (i.e. a
variable or its complement), without a determined truth value
(unknown) and having the remaining literals all set to false.
In a unit clause, the last remaining literal must have the value
true for the clause to be true. When the algorithm encounters
a unit clause, it sets the previously unknown literal to true.
When a literal is set to true because of a unit clause, this is
called an implication. The corresponding variable is assigned
the value that makes the literal true and is pushed onto the
current decision level. Even though an implication is a di-
rect result of the previous assignment, it is also predicated on
some of the previous variable assignments.

In DPLL a variable assignment (i.e. a variable is assigned
a truth value) occurs when a decision is made or a variable
is implied. Boolean Constant Propagation (BCP) is the pro-
cedure where the algorithm inspects the clause database in
search of unit clauses, after each variable assignment. We use
the term database in the rest of this paper to refer to the set
of clauses used by the solver. Actually we can think of the
solver as performing only a very specific query but very of-
ten. The query is executed after every decision or implication.
The query matches all clauses which contain a specific literal.
However since efficiency is of utmost importance, all clauses
with a particular literal occurrence are indexed using a list of
pointers. BCP is the most costly operation and accounts for
up to 90% of the runtime [36].

When a decision is made, resulting implications are added to

the current decision level. More implications might be added
in a cascade because of earlier implications. This process con-
tinues until no more implications are found or contradicting
assignments to the same variable are detected. In the case
when there are no more implications and if not all clauses are
satisfied, a new decision is made as shown in figure 1. When
a new decision is made an additional decision level is added
to the decision stack. In the other case where a contradiction
happens,the algorithm has encountered a conflict. A conflict
occurs when the implied variable was previously assigned the
opposite value. When a conflict happens the algorithm re-
solves the contradiction when possible before proceeding. In
order to remedy a conflict, a simple approach is to flip the
value of the previous decision and then try again. In case
when a decision has been tried both ways, the first previous
decision which can be flipped is tried. If the algorithm can-
not find a previous decision which was not tried both ways
then the problem is found to be unsatisfiable. This method
is slow and may require trying all 2/ combinations of vari-
able assignments when the problem is unsatisfiable, where N
is the number of variables. More sophisticated conflict anal-
ysis techniques are presented in the next section. The con-
flict analysis procedure points to a level in the decision stack
to which the algorithm can back-jump. Non-chronological
back-jumping [65] occurs if the algorithm jumps by more
than one decision level. After back-tracking the algorithm
continues by making a new decisions or deducing new impli-
cations.

Eventually the algorithm terminates under one of two possi-
ble conditions. If the problem is satisfiable, a set of variable
assignments which result in all clauses evaluating to true is
found. This termination condition occurs when all clauses are
satisfied because of the current set of variable to assignments.
Note that not all variables need to be assigned a truth value
for this to happen. The problem is deemed unsatisfiable if
the algorithm backtracks completely to the first decision level
and there is a conflict due to deduced variable assignments at
this level. Since the variable assignments at this level are nec-
essary for the problem to be satisfiable then this is a conflict
that the algorithm cannot resolve. Therefore, the algorithm
concludes that the formula is unsatisfiable.

2.2 Conflict Analysis and Learning

A more sophisticated and effective method to do conflict anal-
ysis is Learning. Learning [47, 30, 48] is the augmentation of
the initial formula with additional implicate clauses. These
new clauses indicate search spaces which were found to have
no solution because they result in conflicts. The presence of
these clauses restricts the search space and prevents the solver
from retrying those parts of the search tree. Learned clauses
represent redundant information because they can be deduced
from the initial set of clauses. Thus learned clauses can be
discarded without effecting the satisfiability of the solution.

In DPLL with learning new implicate clauses are deduced due
to a conflict. Conflict analysis is based on implication graphs.
An implication graph is a DAG which expresses the implica-
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Figure 1: Flow chart for the DPLL algorithm

tion relationships of variable assignments. The vertices of the
implication graph represent assigned variables. The incident
edges on a vertex originate from those variables that triggered
the implication of the represented variable assignment. The
implication graph is not maintained explicitly in memory. In-
stead each implied variable points to the clause that caused its
implication. That is, the clause that has previously become a
unit clause and caused this variable to be implied (i.e. assume
some truth value). This clause is called the antecedent of this
variable. Note that decision variables have no antecedents be-
cause they are not implied. In practice decision variables are
given afictitious antecedent clause. Initial and learned clauses
are given indexes greater than 1, thus we use clause 0 (which
does not exist) as antecedent for decision variables.

A learned clause is obtained by partitioning the implication
graph into two sides. One partition called the reason and con-
tains all the decision variables. The other partition which con-
tains the conflict is called the conflict side. Different learning
schemes are generated from different partitioning methods.
However not all cuts generate clauses which lead to a more
efficient algorithm. A cut must be selected in order to make
learning effective [65] in improving the algorithm’s perfor-
mance.

The purpose of the new clause is to prevent, in the future,
the set of simultaneous assignments which led to the current
conflict. The new learned clause is obtained by using the
complement of the variables on the reason side with edges
intersecting the cut. In addition the conflict clauses cause
the solver to perform a non-chronological backtrack. After
backtracking, the new decision level is the highest decision
level among all the decision levels of the variables in the new
learned clause. Chaff [36] uses a method called FirstUIP. This
method is based on finding a dominant node to the conflict
nodes defined as a node where all paths from the current de-
cision to the conflict pass through. The variable correspond-
ing to the selected dominant node is the only variable added
to the learned clause which is not a decision variable. Since

there might be many such nodes, the FirstUIP method uses
the node closest to the conflict. In this case the cut is made
such that all implications between the dominant node and the
conflict site are on the conflict side. For a more detailed ex-
planation of the algorithm please refer to [12, 11, 36, 48].

During execution, the algorithm learns a huger number of
clauses. These clauses consume a lot of memory and may
overwhelm the capacity of the host. All learned clauses rep-
resent redundant information and may be deleted. However, if
a learned clause is an antecedent it cannot be removed since it
is essential to the coherence of the algorithm. Clauses which
are not antecedents can be removed without affecting the cor-
rectness of the solver. Chaff implements heuristics to select
which learned clauses are deleted depending on their size and
other properties. Deleting some of the learned clauses period-
ically alleviates memory use and allows the addition of new
learned clauses which are currently more relevant.

3 GridSAT: SAT Solver for the Grid

The initial GridSAT implementation was used to prove the
feasibility and efficiency of a parallel and distributed solver. It
was shown in [12, 11] that GridSAT is faster and even solves
some previously unsolved problems. Since satisfiability prob-
lems can be arbitrarily complex, there are a set of problems
which we were not able to solve. In this section we present
GridSAT’s main features and point-out the improvements that
were introduced to increase its efficiency.

GridSAT’s distributed solver addresses three significant chal-
lenges. First, GridSAT parallelizes the search algorithm that
is navigating the space of possible truth assignments. Second,
certain learned clauses from the various solvers are distributed
and shared across Grid resources. Finally, the GridSAT ap-
plication components are dynamically scheduled so that they
may take advantage of the best possible resources at the time
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and they can be used profitably by the algorithm.

SAT problems vary in terms of their resource requirements.
The two main resources which affect solver performance are
CPU speed and memory size. CPU speed evidently makes
execution faster. Available memory, however, is used to store
learned clauses. The role of these clauses is to restrict the
search space. But since even problems from practical appli-
cation have enormous search spaces, a fast CPU with little
memory will result in extremely slow progress. The mem-
ory size is therefore crucial for good solver performance. In
case where the memory is exhausted by storing antecedents,
the solver’s progress is inhibited significantly. Using a given
memory size and CPU speed, a satisfiability problem could be
perceived by a particular solver as being easy or hard. Some
problems are considered easy because they can be solved us-
ing one CPU in a short time span. Other problems however
are hard because they require many CPUs and a long time pe-
riod. A parallel SAT solver which dynamically adjusts to the
problem’s requirements, can achieve better performance and
more efficiently use the available resource.

To apply a parallel search technique to SAT, we split the prob-
lem at hand into subproblems (having decision stacks with
different truth assignments), each of which is independently
investigated for satisfiability. Subproblems, themselves, may
be split in the same way, forming a recursive tree, each node
of which is assigned to a logically distinct processor. A sub-
problem represents part of the search space. Clause sharing
is facilitated by identifying the important clauses relevant to
each side of a split, and by eliminating clauses from the clause
database pertaining to each side.

The goal of GridSAT is to keep the execution as sequential
as possible and to use parallelism only when it is needed.
Because problem difficulty is unpredictable and parallelism
overhead could be high, GridSAT attempts to add resources
(machines with sizable memory) only when the current re-
source set (which starts with one machine) becomes over-
loaded.

3.1 Parallelizing SAT

GridSAT acquires new resources when existing sub-problems
are split into two sub-problems covering disjoint, but comple-
mentary, parts of the original search space. For GridSAT the
split process modifies the current problem and spawns a new
one as shown in Figure 2. The left part of figure 2 shows the
old decision stack of process A before splitting. This process
(also called client in GridSAT parlance) was assigned a sub-
problem and is now splitting its search space with client B.
The right part of figure 2 shows the modified problem stack
for client A and the newly created problem stack for client B
after splitting. The first decision variable in the second deci-
sion level of Client A’s original stack is the pivotal point in
the split. Clients A and B assume two different values for this
variable. Since this variable is given a specific value in both
clients, then it becomes part of the first decision level in both
cases. For client A, all implications which were previously

in the second decision level are now also part of the first de-
cision level of the modified decision stack. Therefore, Client
A’s new decision stack is created by making all variables on
the second decision level of the assignment stack part of the
first decision level. The newly generated problem stack for
client B consists of a set of variable assignments and a set
of clauses. The variable assignments include all assignments
from the first decision level and the complement of the first
assignment in the second decision level of Client A’s original
stack. Thus insuring the splitting of the search space.

After splitting, each process maintains its own separate clause
database. In order to alleviate memory usage, inconsequen-
tial clauses are removed. A clause is removed from a client’s
database when it evaluates to true because of the assignments
made at the first level of its decision stack as a result of the
split. Actually, inconsequential clauses are removed after ev-
ery time the first decision level is augmented.

A notable risk in parallelizing a SAT solver comes from the
possibility of excess overhead introduced by parallel execu-
tion. In particular, because the duration of execution time that
will be spent to solve a subproblem cannot be predicted easily
beforehand, it is possible for subproblems to be investigated
in such a short amount of time that the overhead associated
with spawning them cannot be amortized. As a result a solver
spends more time communicating the necessary subproblem
descriptions, thinning the database, and collecting the results
than it does actually investigating assignment values. Even
though the solver is advancing, the execution time may be
slower than if it were executed sequentially. This problem is
occasionally referred to as the “ping-pong” effect [27].

In the following sections we will detail newly introduced
modifications to the splitting procedure and clause sharing to
help improve the overall solver performance. These improve-
ments include several aspects:

e A new method for using shared clauses
e Adaptive clause sharing

e Reduction of communication overhead during problem
transfer

3.2 Sharing and Distributing the Clause Database

Each GridSAT process is assigned a part of the search space
disjoint from the search space of all other processes. This
is insured by giving each process a unique top decision level
in the stack. This level may be augmented but is never re-
duced. Because of the uniqueness of the stack, solvers will
tend to make different decisions which in turn results in vary-
ing implications. Therefore, the learned clauses, which are
dependent on the decision stack, as well as previous learned
clauses, will most probably differ for various processes. Thus
when these learned clauses produced by one client are shared
with other clients they help prune parts of their search space
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Figure 2: Example of stack transformation when a problem is split into two clients

which they have not yet investigated. The overall effect is
improved solver performance.

Allowing clause sharing, however, limits the kind of simpli-
fications that can be made. For example, variables (and their
complements) which have known truth assignments (i.e. in
the first decision level) can be removed since they will not in-
fluence future decisions made by the solver. Removing such
variables can be accomplished by deleting the occurrence of
all literals with known values from all clauses. This deletion
results in shorter clauses and more efficient use of the mem-
ory. However, variables of known values in one process might
still be unknown in another process. Thus in order for a clause
to be still valid when shared with another process it must
contain complete variable information. Therefore simplifi-
cations such as removing known variables are not possible
when clauses are shared because they make learned clauses
only valid in the context of the current solver.

When new learned clauses are received from other clients,
they are merged with the local clause database. Next we
present and analyze the old and new methods GridSAT uses
for sharing learned clauses. We explain the characteristics
of each method and give the motivation for using the new
method.

3.2.1 The OIld Method for Sharing Clauses: In pre-
vious versions of GridSAT we limited the newly obtained
clauses to only being merged into the clause database after
the algorithm has backtracked to the first decision level. In
this case merging the new clause does not involve any stack
manipulation because the stack in this case contains one level
and no speculative decisions. The only variables to take into
consideration are in the first level of the stack. The truth val-
ues of these variables will not be altered by subsequent deci-
sion.

Under the conditions outlined previously, merging a received
clause is straight forward. The literals of the received clause
are examined for their truth values which can be either true,
false or unknown. For a given clause there are four possibili-
ties:

e If the clause contains at least one true literal, then the
entire clause is true. Since the decision stack contains
no speculative decisions, then variable corresponding
to the true literal could only come from the first deci-
sion level. Since this variable will always be true, then
the clause will always be satisfied. Therefore the clause
is of no value to the solver since it does not help restrict
the search space and is discarded. In the rest of the
cases we assume that no literal is true.

e If the clause has only one unknown literal, an the re-
maining literals are false then an implication is gener-
ated. The newly implied variable assignment, is there-
fore predicated only on variables on the first decision
level. Thus the implied variable is added to the first
level of the decision stack. The clause under consider-
ation is marked as the antecedent for the newly implied
variable.

e |fthe clause has more than one unknown literal then the
clause can be used to restrict the search space. In this
case the clause is added to the set of learned clauses and
the decision stack is not altered.

o If the clause has all literals set to false then this clause
is not satisfied by the existing variable assignments and
a conflict exists. Since the decision stack contains no
speculative decisions, then all the variables in the new
clause must be in the first decision level. Therefore we
have a conflict because of variable assignments which
should be correct if the subproblem were satisfiable.
Thus the subproblem is unsatisfiable.

The clauses are processed in batches where no BCP is per-
formed until all clauses in the same batch are inspected. Dur-
ing the batch processing, some clauses may be added to the
database while new implications are saved to a temporary
queue. If there is no conflict after all new clauses are pro-
cessed, the solver continues by retrieving the queued implica-
tions one at a time, adding them to the first decision level and
performing BCP as described earlier. If a clause in the batch
causes a conflict then the solver terminates immediately.
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3.2.2 The New Method for Sharing Clauses: We
made a very important observation while running different ex-
periments especially with problems that were hard and took
a very long time without making progress. We realized that
when the problem was hard, all processes were not able to
use the clauses received from other processes because none
of them were able to achieve enough progress which will per-
mit them to backtrack to the first level of the decision stack.
Therefore all the shared clauses were being saved by local
solvers wasting valuable memory space but were never used.
Thus sharing clauses did not have the desired effect of helping
to prune the search space of the local solver. Instead perfor-
mance was degraded because of wasted memory space. The
solution we implemented allows immediate integration of re-
ceived clauses into the solver’s clause database. The imple-
mentation of this solution is more complex compared with
the algorithm above because the decision stack may contain
multiple levels of speculative decisions.

The algorithm for merging clauses starts by inspecting the
newly obtained clause. The algorithm determines how many
literals in the clause have values true, false or unknown. Also
the algorithm determines for clauses with a single literal be-
ing true, the decision level true_lit_dl of such a literal. For
the given clause it determines the maximum decision level
(false_lit_max_dl) amongst the decision levels of the literals
set to false. After determining these value there are only five
possible outcomes:

o If the clause is satisfied because of a variable assign-
ment at the first decision level, then this clause is use-
less for the local solver and is discarded. This case is
similar to the first case in the old merging algorithm.

o If the clause has only one unknown literal and no true
literals, then the clause results in an implication. Actu-
ally if the clause was available when the solver was still
generating implications for false_lit-max_dl decision
level, then this clause would have become a unit clause
and generated an implication. Because generating im-
plications as early as possible is very important for di-
recting the search, we allow the solver to backtrack in
order to make use of this implication. In this case, the
solver backtracks to decision level false_lit_-max_dl and
the clause is inserted to the clause database. After the
solver backtracks to false_lit_max_dl decision level, the
same previous speculative decision at this level is put
in temporary queue.

e If the clause has only one true literal and no un-
known literals, then if false_lit_-max_dl is smaller than
true_lit_dl then this is indeed an implication. This
restriction is necessary because there might be cases
where the clause has only one true variable but it does
not represent an implication. In such cases the true
variable was set at a level while some of the remain-
ing literals were unknown but are now set to false. The
solver proceeds by backtracking to false_lit_max_dl and

queuing an implication in the same way as the previous
case.

e |f the clause has all its literals set to false, then the
clause has resulted in a conflict. In fact if this clause
was available when decision level false_lit_max_dl was
still being populated by implications then this clause
would have caused a conflict at this level. This con-
flict would have helped direct the search, if detected.
Thus the solver backtracks to make use of this con-
flict. However, if the conflict is at the first decision
level then this situation is the same as the fourth case
in the previous merging algorithm mentioned above.
Therefore the sub-problem is unsatisfiable. If the con-
flict is at a higher level then the solver backtracks to
false_lit_max_dl. Also previous decision at this level is
saved in a temporary queue in the same way as the pre-
vious two cases.

o If none of the above cases apply then the clause is added
immediately to the clause database without altering the
decision stack.

For performance considerations which will be mentioned
later, the new method merges clauses in batches as well.
When a new clause is merged, the decision stack is modified
and a backtrack is performed in three of the five cases pre-
sented above. In addition, every backtrack reduces the stack
depth unless of course the top level is reached. When the
stack depth is reduced the implication queue is cleared be-
fore any new implications are added. Also the decision level
from which the solver will start is also cleared so that the
solver can reconstruct the resulting implications while taking
the new clauses into consideration. When the solver back-
track to the first level in the decision stack, the new merging
method becomes the same as the simpler previous method.

The effect of backtracking to a higher level in the decision
stack helps the solver investigate a more relevant part of the
search space due to the newly found implication or conflict.
The merging of shared clauses from other solvers restricts the
search space and prevents the solver from wastefully revisit-
ing some parts of the search space. Merging new clauses has
an effect similar to randomization. Randomization is a pro-
cess where the decision stack is cleared after a timeout period
and then starts at another random location in the search space.
The hope is that the restart will lead to a better location in the
search space which will help solve the problem faster. Ran-
domization is used by most solvers and has been shown to
improve solver performance. By merging new clauses, more
relevant search spaces are chosen based on new implications
and conflicts and not by random chance.

As described in [50], the exact effect of sharing clauses is not
yet known. In addition, when a large number of clients are
sharing even a small number of clauses the total communica-
tion overhead becomes significant. Shared clauses could be
streaming into the solver at sometimes high rates, especially
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if the number of processes used is high. Therefore merging
the clauses immediately will cause frequent preemption of the
solver. When the solver is preempted it stops until the re-
ceived clauses are merged. In order to decrease the rate of
solver preemption, the solver is parametrized to allow clause
merging only after a fixed number of iterations. This results
in the clauses being merged in batches in a similar fashion to
the old algorithm.

There is a chance that some of the newly merged clauses
which are added to the clause database can be duplicates of
other previously existing clauses. Only clauses which do not
result in implications or conflicts can be duplicates. Duplicate
clauses will waste valuable memory space. Checking each
new clause received by a solver to insure that it is not a dupli-
cate before adding it to the database is computationally expen-
sive. It requires scanning the entire database and comparing
the new clause with every clause in the database. However,
since GridSAT broadcasts clauses immediately after they are
learned then all solvers are aware of the new clause quickly.
Once a solver has a copy of the clause in its database it will
not re-learn it. Therefore there is a slim chance that dupli-
cate clauses will become an overwhelming problem. In fu-
ture work, we will instrument GridSAT to find out how much
duplication really occurs for a given set of problems.

3.2.3 Dynamically Adjusting Size of Shared Clauses:
GridSAT clients only share “short” clauses in order to mini-
mize communication cost. Short clauses are expected to have
a higher impact on pruning the search space and are more
probable to generate implications. In fact the pruning effect
of a clause is inversely proportional to its size (i.e. number
of its literals). Previous GridSAT implementations take the
maximum length of shared clauses as a static parameter.

Using a static value for determining the maximal size of
shared clauses, may lead to one of two possible bad scenarios.
First, if the value is too small the processes will not generate
clauses smaller than the suggested value and no clause sharing
will happen. In the second scenario, the used maximal clause
size is low and causes a huge number of clauses to be shared.
As a result, an influx of learned clauses may overwhelm the
solvers with unnecessary communication and computational
overhead. In addition, it is hard to determine a priory what
the maximal clause size should be for a given SAT instance.
In order to avoid both of these scenarios, the maximal clause
size can be varied during the application execution using a
given problem instance.

In the current implementation of GridSAT, the maximal size
of shared clauses is determined dynamically. We set the abso-
lute minimum for the maximal size to two. The maximal size
of learned clauses is adjusted depending on a user supplied
maximum rate of communication overhead due to clause shar-
ing. The user can supply a maximal rate for shared clauses
or use the default (set to 3). A process monitors the rate of
shared clauses and calculates it periodically every five min-
utes. When this process notices that the maximal rate was

exceeded, it broadcasts immediately an incremental decrease
of the maximal clause size. This step insures that communica-
tion overhead resulting from shared clauses will only exceed
its maximum for a short period of time. If the rate is below
the maximal rate, then the monitoring process waits for half
an hour before increasing the maximal rate and broadcasting
the new value to the rest of the solvers. This allows the com-
munication overhead to remain under its maximum value for
a long time period. The user can also set an absolute maximal
size for shared clauses.

3.3 GridSAT Architecture and Resource Scheduling
GridSAT is implemented as a special form of the master/client
model where individual clients communicate directly and
share clauses. The master consists of four main compo-
nents. These are the resource manager, the client manager, the
scheduler and the checkpoint server. A general architecture of
the master process is shown is figure 3. External components
with which the master interacts are shown in clouds.

The resource manager loads resource information from one
or more Grid information systems such as Globus MDS [15]
and the NWS [62, 51, 63]. The scheduler as shown in fig-
ure 3 is responsible for coordinating the interactions between
all the components. In addition it handles interactions with
external resources and monitors them to detect failures. The
resource manager is aware of the different types of resources.
For shared resources only one GridSAT process per host is
launched. For batch systems, the resource manager launches
one job at the start of the execution. Additional, jobs could
be manually submitted and GridSAT will use their resources
when they become available. Actually the client manager will
accept any additional clients launched from newly available
resources or previously submitted batch jobs. It is the role of
the client manager to maintain the list of active clients and
monitor their progress.

The GridSAT scheduler is the focal point and is responsible
for coordinating the rest of the components. It is also respon-
sible for launching the clients. The scheduler uses a progres-
sive scheme for acquiring resources and adding them to the
resource pool. Also resources which are no longer performing
a task on behalf of GridSAT are released immediately when
possible. The reason for this approach is the variability and
unpredictability of resource usage for a particular SAT prob-
lem. Some problems are solved easily using a single host
after a short time period. Other problems, however, might be
harder and require a large number of hosts and a longer time
period. By starting with a small resource pool and expanding
the set of used resources, GridSAT achieves two goals. First,
a small number of resources will be used to solve the easy
problems which results in a smaller communication overhead
and therefore shorter time to solve the problem. Second, Grid-
SAT can adapt resource usage to how difficult the problem is
perceived. If at a particular stage the problem is perceived
difficult the size of the resource pool used will grow. At an-
other stage, the same problem might be perceived to be easy
and a smaller resource set will be used, and excess resources
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will be released.

A typical execution will start by launching the master. The
master will examine the problem to find any obvious variable
assignments and remove any inconsequential clauses. Some
problems might be solved at this stage because of an easily
detectable conflict. After this stage, the master requests the
resource list available from deployed Grid services such as the
MDS [15] and NWS [62] or simply a configuration file. The
scheduler immediately submits any batch jobs to their respec-
tive queues. When a remote client starts running it contacts
the client manager and registers with it. The scheduler ranks
the set of available clients based on their processing power
and available memory as provided by the NWS [62, 51].
Static values for these resource parameters can be used when
GridSAT is configured without NWS or the globus MDS.

The GridSAT scheduler uses the first available client to im-
mediately start solving the problem. Each client records the
time it took to receive the problem data. Clients also monitor
their memory usage. The decision for splitting a problem is
made locally by the client and not by a centralized scheduler.
A client notifies the master that it wants to split its assigned
subproblem with another client when its memory usage ex-
ceeds a certain limit or after running for a specific period of
time. This time period is determined as two times the dura-
tion of the communication period the client used to obtain the
problem data. Using this method, the scheduler allows for
computation time to offset the communication overhead. The
clients, therefore, do not spend most of their time splitting
instead of doing useful computation.

The splitting process is performed by the cooperation of three
components: the master, the splitting client and an idle client.
The idle client is a process which was not previously assigned
a sub-problem to investigate. Figure 4 shows the steps taken
during the splitting process. Client A which has presumably
been running using a sub-problem, has detected that it needs
to split its problem. Client A, then notifies the master using

message (1). Upon receiving this message the master selects
the highest ranked client and includes it in message (2) which
it sends to client A. Using the information in message (2)
client A determines which of its peers it will split the prob-
lem with. Client A then proceeds to communicate directly
with client B by sending it message (3). In previous Grid-
SAT implementations, message (3) is very large and varies
in size from 10KB to 500MBytes. By using direct peer-to-
peer communication the overall communication overhead is
reduced. When the splitting is successfully completed, both
clients alert the master using messages (4) and (5). In Mes-
sage (4), client A sends new stacks for both clients A and B.
Each stack is used as a checkpoint for its respective client.
Check-pointing is discussed further in the next section. The
scheduler can detect and recover from client failures during
this procedure.

Message (3) above allows the transfer of a newly created sub-
problem to the idle client. This message is the largest message
and contains three different parts:

e The assignment stack: It is the smallest part and is in
the order of the number of variables.

e The set of original problem clauses: This could be as
large as the initial problem file

e The database of learned clause: It is the largest compo-
nent and is 100s of MBytes in size.

3.3.1 Reducing Communication Overhead: In this
version of GridSAT we have added two modifications to re-
duce the communication overhead of the solver. First, prob-
lem files are copied only once where several hosts share a
common file system. Therefore split messages to the same
set of hosts will be smaller since it will not include the sec-
ond part mentioned earlier. The second modification makes it
possible for the new client to proceed with its computations
immediately after it receives the assignment stack and load
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the problem file from the shared file system. Since learned
clauses contain redundant information, then they are not re-
quired to start solving the new sub-problem. Therefore they
are sent in a separate message. This message takes a long
time to transfer, and the new clauses will be merged as they
are received using the algorithm mentioned above. Using this
methods the new client will not have to idly wait for the entire
message to arrive before starting solving the newly assigned
sub-problem. The old client still waits because the size of the
clause database is very large and there is not sufficient mem-
ory to hold a separate copy. The old client waits and does not
proceed until the clause database destined for the new client is
transferred. Transferring these clauses to the new client is es-
sential to the efficiency of the solver. Eliminating this transfer
would slow the solver significantly.

Finally the GridSAT solver terminates when all sub-problems
have been solved or one the clients finds a satisfying assign-
ment. In the latter case the client which finds the satisfying
assignment sends its stack to the master. The master verifies
that the set of truth assignments it received does indeed satisfy
all clauses in the initial problem. Most solvers in the literature
are evaluated based on the time the first satisfiable instance is
found. But there are cases [26] where knowing all satisfi-
able instances is helpful. GridSAT can also enumerate all the
instances where a problem is satisfiable. In all cases, when
the master determines that the problem is solved, it sends a
message to all clients requesting them to terminate.

3.4 Check-pointing System

The current version of GridSAT uses check-pointing to re-
cover from failures. GridSAT can use two types of check-
points:

e Light checkpoints: This method requires little storage
space and communication overhead. Only the top level
of the assignment is recorded for each client. In this
case checkpoints for a client will be updated only when
more variables are added to the first decision level.

e Heavy checkpoints: In addition to the light checkpoint
data, we save all newly learned clauses. It is also possi-
ble to save the top levels of the decision stack in order to
reconstruct the exact decision levels after restart. This
type of checkpoints can be saved at regular time inter-
vals in addition to the instances when the top level is
augmented.

The master stores and updates the checkpoints as they are
received from the clients. The checkpoints can be stored
either on a local file system or in a distributed fashion us-
ing IBP [38]. Clients are assigned new sub-problems either
through splitting or from saved checkpoints. Sometimes the
number of checkpoints exceeds the number of active clients.
This happens when a large number of previously active clients
terminate leaving behind their checkpoints. In this case the
scheduler keeps a list of checkpoints and assigns them to

newly created clients or those that have just finished solv-
ing their own sub-problem. Idle client are assigned problems
through splitting only when all checkpoints are assigned to
active clients. A user could potentially stop executing a prob-
lem at some moment in time to start another problem for ex-
ample. The user can then resume solving the same problem
using the saved set of checkpoints.

3.5 Problem Migration

GridSAT processes communicate as peers during problem
splitting. Even after the implementation of the optimiza-
tion presented above which reduce communication overhead,
peer-to-peer messages are still the largest. Therefore, more
efficient problem splitting help improve the overall solver’s
efficiency. More efficient problem splitting could be accom-
plished when clients belong to a pool of well connected re-
sources. Such pools of resources are usually presented when
new batch jobs reach the head of their waiting queue and start
running. GridSAT migrates problems from dispersed nodes
to processes which are part of a batch job.

The scheduler identifies batch processes in a static fashion us-
ing their host names. Instead of creating a new sub-problems
through splitting with a remote node, the scheduler requests
the remote node to migrate to the batch process. Using migra-
tion allows future splitting to happen between peers belong-
ing to the same batch jobs. This leads to reduction in overall
communication overhead. In future versions of GridSAT, de-
termining when migration happens will be achieved through
a more dynamic approach.

3.6 Efficient Use of Batch Jobs

Batch schedulers are usually used to control Supercomputing
facilities [9, 53] and collections of grid resources such as Con-
dor [13, 52]. Users in these environments are given a budget
(i.e. a quota of CPU-hours) to use. Since this is valuable time,
it is important from the user’s perspective to use it effectively.
The scheduler bills the user and deducts from his budget the
total time the nodes in the batch job are assigned to his job.
The user is billed for the time used and not the time he ini-
tially requested. Thus if a job terminates early the user is only
billed for the time during which his job actually ran. From a
user’s perspective, the goal is to minimize the cumulative idle
time for all nodes during a batch job execution.

In traditional parallel applications, which mostly use
MPI [19], the number of processes spawned is sufficient to
insure that all nodes have a slice of the work assigned to them
during the entire duration of the execution. All nodes start
and stop execution simultaneously. This scenario leads to an
efficient use of the batch jobs. GridSAT is not a traditional
parallel application. In the case of GridSAT, the number of
jobs (i.e. sub-problems) varies during execution. Actually,
when a new large batch job becomes available the number of
workers might be much larger than the number of available
sub-problems. The goal of GridSAT is to make good use of
the newly available and valuable processing power. It is possi-
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Figure 4: Communication scenario of splitting the subproblem assigned to client A with client B

ble to immediately split a sufficient number of sub-problems.
This will lead to more efficient use of batch jobs but may af-
fect negatively the solver’s performance. If GridSAT, how-
ever, waits till enough problems split to populate all the batch
nodes, it may lead to an inefficient use of super-computing
nodes.

In GridSAT, initial batch job requests are large with a high
number of nodes and long duration. This leads to a long wait-
ing period in the scheduler’s batch queue. Thus if a job is
not solved after this long waiting period than it most proba-
bly is a hard problem. Thus batch jobs are only used when
the problem is hard. When a batch job starts execution, Grid-
SAT uses problem migration to achieve more efficient use of
batch nodes. Remote GridSAT nodes, which are numerous,
will migrate immediately to occupy batch nodes. After, mi-
gration takes place and since networks are fast within super-
computing nodes, splitting happens at higher rates especially
after the above mentioned reductions in communication over-
head. Actually the number of active nodes (i.e. those with
sub-problems) will increase exponentially. This happens be-
cause the number of new sub-problems is increased in pro-
portion to the number of existing active solvers. Therefore,
problem migration leads to a more efficient use of batch jobs.

4 Experimental Apparatus and Results

Since GridSAT is a true grid application we ran a set of ex-
periments to show that GridSAT can run for extended peri-
ods of time robustly using a wide variety of resources and
also solve previously unsolved hard satisfiability instances.
In these experiment we simultaneously use computational re-
sources which belong to collections of individual machines,
small size research clusters and supercomputing scale clus-
ters. The computational resources we used are composed
from four main sources:

e VGrADS [59] testbed with additional machines from
the University of California, Santa Barbara (UCSB)

e Blue Horizon [9] located at the San Diego Supercom-

puter Center (SDSC)

e TeraGrid [58] site at the San Diego Super Computing
Center (SDSC)

e TeraGrid [57] site at the National Center for Supercom-
puting Applications (NCSA)

e Data Star [16] supercomputer at SDSC

The TeraGrid [53] project is a national scale project which
is aimed at building the worlds largest distributed in-
frastructure for open scientific research. It includes five
sites at SDSC [58],NCSA [57], Argonne National Labora-
tory [54], Pittsburgh Super Computing center [56] and Cal-
tech CACR [55]. Additional sites and resources are planned
at Oak Ridge National Lab (ORNL); Purdue University, In-
diana; Indiana University, Bloomington; and the Texas Ad-
vanced Computing Center (TACC) at The University of Texas
at Austin.

The Virtual Grid Application Development Software
(GrADS) project [59], a continuation of GrADS [5, 22] is
a comprehensive research effort studying Grid programming
tools and application development. GrADS includes a set of
programming tools for managing grid applications using per-
formance models. Scheduling applications in GrADS uses
compiler pre-processing of the programs and introduced in-
strumentation combined with NWS data. The tools GrADS
uses are included in a software package termed GrADSoft. To
facilitate experimental application research and testing, the
project maintains a nationally distributed grid of resources for
use as a production testbed. The baseline Grid infrastructure
is provided by Globus and the NWS, upon which is layered
a set of programming abstractions. In this work we extend
GridDSAT to use all resources that do not currently bene-
fit from these sophisticated Grid programming tools. Grid-
SAT components (i.e. master and client) use the Every-
Ware [60, 61] messaging system for communication.

During our experiments, none of the resources we used were
dedicated to our use. The VGrADS testbed, the UCSB ma-
chines, and the supercomputing resources were all in contin-
uous use by various researchers and application scientists at
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the time of the experiment. As such, other applications shared
the computational resources with our application. Itis, in fact,
difficult to determine the degree of sharing that might have
occurred across all of the available machines. Sometimes we
were requested to temporarily vacate some specific resources
because some users wanted to run experiments without in-
terference from other applications. We consider this to be
a realistic scenario for Computational Grid computing, but
it makes repeatable timings of similar problems (particularly
those we ran for long periods) difficult. In particular, in batch
controlled system such as Blue Horizon, Data Star and the
TeraGrid, a user presents a request for a number of nodes
and a maximum duration. After waiting in the job queue,
the user’s job runs with exclusive access to the nodes dur-
ing execution, but the queue wait time incurred before execu-
tion begins is highly variable. However, the effect of resource
contention is almost assuredly a performance-retarding one.
Thus, if it were possible to dedicate all of the VGrADS re-
sources to GridSAT, we believe that the results would be bet-
ter. As they are, they represent what is currently possible us-
ing non-dedicated Grids in a real-world compute setting.

In previous experiments [12] we showed how GridSAT can
simultaneously use small clusters and a collection of lab ma-
chines in conjunction with high end supercomputers such as
Blue Horizon. The experiments used a single job request on
the Blue Horizon with a maximum timeout of 12 hours.

The set of experiments we present in this paper use a more
diverse set of resources for longer periods of time (up to a
month in duration) and multiple job requests. We chose a
set of challenge problems from both SAT2002 conference
[41] and SAT2003 benchmarks [44]. These benchmarks are
used to judge and compare the performance of automatic SAT
solvers at the SAT2002 [43] and SAT2003 [46] conferences.
All the problems in the benchmarks are shuffled to insure
that submitted benchmarks are not biased in favor or against
any solver. These benchmarks are used to rate all compet-
ing solvers. They include industrial and hand-made or ran-
domly generated problem instances that can be roughly di-
vided into two categories: solvable and challenging [42, 45].
The solvable category contains problem instances that some
SAT solvers have solved correctly. They are used for com-
paring the speed of competing solvers. Alternatively, the
challenging problem suite contains problem instances that
have yet to be solved by an automatic method or which have
only been solved by one or two automatic methods, but are
nonetheless interesting to the SAT community. Some of these
problems have known solutions that are known through an-
alytical methods (i.e. the problem has a known solution by
construction), but several of these problems are open ques-
tions in the field of satisfiability research. We only chose
problems which are hard so that we can demonstrate the abil-
ity of the GridSAT system to solve such challenging prob-
lems. These problems were deemed hard by all participating
solvers.

We investigate seven previously unsolved problems divided
as follows:

e 3instances from the SAT 2003 benchmark category,

e 4 instances from the SAT 2002 benchmark category, all
of which we have not been able to solve using previous
versions of GridSAT.

This group of problems represent a variety of fields where
problems are reduced to instances of satisfiability and solvers
are used to determine the solutions. The problems contain a
pair of problems in FPGA routing and model checking. These
two disciplines benefit heavily from efficient SAT solvers.
The remaining problems are of theoretical nature.

In this set of experiments, the resource pool included 40
machines from the VGrADS testbed and an additional ma-
chine (that we could completely instrument) as a master node.
The machines were distributed among three sites: three clus-
ters (separated by campus networking) at the University of
TN, Knoxville (UTK), five desktop machines at the Univer-
sity of San Diego (UCSD) and ten machines from the MAY-
HEM [34] lab at the University of California, Santa Bar-
bara. An additional node, designated the master node, was
at UCSB. The machines had varying hardware and software
configurations.

In these experiments we set the absolute minimum size of
shared clauses to two and absolute maximum to 15. This
range allows for sharing clauses which would help prune
the search space without significant communication overhead.
Unlike previous experiments there was no timeout value set
for the maximum execution time. Every problem was run
using different job description for the batch systems. Jobs
on the different batch queues were manually relaunched at
random intervals. Job re-submission could have been auto-
mated but we wanted more control over rationing our lim-
ited compute budgets to specific experiments based on their
perceived progress. Experiments where GridSAT was mak-
ing progress were allotted bigger jobs with longer durations
and more nodes. The progress of the solver was judged by
inspecting how often the checkpoints were updated. We can
also inspect the internal state of a particular solver using some
of the tools we developed. The VGrADS nodes were used
during the entire duration of each experiment unless the hosts
experienced failures.

4.1 Results

The experimental results are summarized in Table 1. The
first column contains the problem file name. The second col-
umn indicates the field from which this problem instance in
obtained. The third column contains the solution to the in-
stance: satisfiable(SAT), unsatisfiable(UNSAT), or unknown.
We have marked those problem instances which were previ-
ously open satisfiability problems with an asterisk (*). If a
problem was originally unknown and was later solved by a
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solver, then we still keep it marked with an asterisk for com-
pleteness. The fourth column represents the total wall-clock
time that the problem was tried. Finally, the fifth and last col-
umn represents the solution obtained by GridSAT which is
represented by SAT, UNSAT or (-) if we terminated the ex-
periment before GridSAT found an answer. In such cases,
experiments could be continued using the saved checkpoints.

Table 1 shows that GridSAT was able to solve three problems
all of which were not previously solved. Two of the prob-
lems were found unsatisfiable and they are both from the field
of FPGA routing. The first problem k2fix-gr-rcs-w8.cnf was
solved using the VGrADS testbed only. Batch jobs which
were submitted for this experiment were still waiting in the
queue. Thus when the problem got solved before they got to
the head of the queue the batch jobs were canceled. On the
other hand the second problem k2fix-gr-rcs-w9.cnf took much
longer to solve, it took more than two weeks. We expect that
some Grid applications will require running for such extended
periods of time. Table 2 gives a more detailed description
of the resource used during this experiment. For each job a
number of GridSAT solver components were launched as in-
dicated in the last column of table 2. The number of processes
per node is determined so that each process gets a minimum
of 1/2 GByte or 1GByte of memory. In table 3 a break down
of the CPU-hours used on each resource are tabulated. Note
that the VGrADS testbed machines were able to deliver a siz-
able amount of compute power because they were available
in a shared mode for the duration of the experiment.

The last problem cntl0.cnf was also solved using the
VGrADS testbed only under similar circumstances to k2fix-
gr-rcs-w8.cnf. We previously tried solving this problem in
[12] using the same testbed for four days in addition to Blue
Horizon for 12 hours but were not successful. We believe
the improvements made to the solver and especially the new
clause sharing method have helped achieve this result.

In order to illustrate further GridSAT’s success in using all
the above variety of resources mentioned earlier we present
a section of a run using instance hanoi6.cnf. This problem
is a SAT representation of the Hanoi Towers problem using
six disks. A six day snapshot from a 23 day run is shown in
figure 5. The figure shows several jobs from Blue Horizon,
Data Star and TeraGrid sites participating in the execution.
Note that the processor count is represented in logarithmic
scale. This figure shows that GridSAT was able to make use
of the available resource when some of their nodes became
available and then continued to run after the nodes were taken
away to serve other users. GridSAT processes continue to run
on the batch controlled resources until the scheduler decides
to terminate them. This abrupt termination has no effect on
the application which deals with these events as (scheduled)
resource failures. In figure 6 we show the total number of
processes used by GridSAT during the same period. GridSAT
was able to manage up to 350 processes running on different
resources as show in this figure.

The satisfiability solver performs mostly integer, branching
and load/store operations. The number of floating point oper-
ations is very low (less than .1 FLOPS). Floating point opera-
tions are only used to handle time related events. We present
in figure 7 an estimate of the total number of instructions per
second during the same six day period. Since instrument-
ing GridSAT can cause significant slow down, we conducted
some benchmarking on some machines at UTK to determine
the average efficiency of the solver. Since the solver code
is mostly sequential, we assume that at the maximum only
one instruction per cycle can be finished by the processor.
The determined efficiency is 70%. We estimated that other
hardware and OS combinations will exhibit equal efficiencies.
The number of operations provided by a resource is estimated
to be the product of its peak performance and the estimated
efficiency. The total number of instructions in figure 7 is
the sum of operations of all active resources. We notice that
the VGrADS testbed is able to deliver about 20 Billion in-
structions per second(IPS). In the middle of the graph, there
is a batch job from Blue Horizon which failed suddenly while
joining the GridSAT execution. This might have happened
because the Blue Horizon machine became unavailable for
scheduled maintenance. The total number of IPS was multi-
plied by more than five times when some batch jobs became
active. It reached up to 110 Billion IPS.

Another measure of performance, is how much of the batch
job maximum computational power is actually used by Grid-
SAT processes. Most other parallel jobs run on all the pro-
cesses from start to finish with little overhead. In this case,
batch jobs are efficiently used. In the of case GridSAT, how-
ever, there are two main sources of inefficiency. First, some
jobs might wait ideally at the start. Batch jobs usually include
a large number of processes. Some of these processes have
to wait until a sufficient number of splits occur to generate
new sub-problems for all the newly created solvers. Second,
some batch processes may contain idle solvers for a period
of time after they solve the previously assigned sub-problem.
The solver in this case, waits until it is assigned a new sub-
problem by the master. For the first job in figure 5, which
is a large 100-node job, the efficiency is 98.9%. Thus Grid-
SAT was able to use batch jobs efficiently. The main reason
is that batch jobs usually wait in the batch queue for a long
time before executing. Thus by the time the job is executed,
GridSAT was unable to solve the problem because it is hard.
This means that batch jobs are only used when the problem
is in deed hard. It is possible that for certain problems, the
efficiency of batch jobs might be low. In this case, future ver-
sions of GridSAT might monitor the batch job efficiency to
determine whether and when a job is to be terminated.

During our experiments, the Blue Horizon super-computer
was being decommissioned. GridSAT was able to continue
running experiments on the set of available resources through
this transition. The scheduler would try to submit jobs but
it would notice that the Blue Horizon resource was not re-
sponding. The failure of this single (but important) resource
which did not affect the already running experiments shows
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| File name | Description | SAT/UNSAT/* | Time | GridSAT Result |

3bitadd-31.cnf theoretical UNSAT 8 days -
k2fix-gr-rcs-w8.cnf | FPGA Routing * 83261 sec ( 23 hours) | UNSAT
k2fix-gr-rcs-w9.cnf | FPGA Routing * 14 days and 8 hours UNSAT
cnt10.cnf Theoretical SAT 13134 sec ( 4hours) SAT

combl.cnf Model Checking | * 11 days -

f2clk50.cnf Model Checking | * 9 days -

hanoi6.cnf Theoretical SAT 23 days -

any other solver.

(*): problem solution initially unknown

| Computational resource | Job count | Job duration(hours) | Number of nodes | processes/node |
Blue Horizon 2 10 100 3
Blue Horizon 1 12 100 3
DataStar 2 10 8 11
TeraGrid @ SDSC 1 10 40 2
TeraGrid @ SDSC 1 12 40 2
TeraGrid @ SDSC 3 10 4 2
TeraGrid @ SDSC 4 5 4 2
TeraGrid @ NCSA 3 10 4 2
TeraGrid @ NCSA 4 5 4 2

in addition to 40 machines from VGrADS testbed for 14 days 7 hours and 44 minutes

Table 2: Batch jobs used to solve the k2fix-gr-rcs-w9.cnf instance from SAT 2003 benchmark

| Computational resource |

node-hours | CPUs/node | CPU-hours

Blue Horizon 3200 8 25600
Data Star 160 11 1760
TeraGrid @ SDSC 1080 2 2160
TeraGrid @ NCSA 200 2 400
GrADS testbed(*) 13750 1 13750

(*) machines were shared with other users

Table 3: CPU-hours per resource used to solve the k2fix-gr-rcs-w9.cnf instance from SAT 2003 benchmark

Table 1: GridSAT results using VGrADS testbed, Blue Horizon, Data Star and TeraGrid. All these problems were not previously solved by

p. 14



1000 +

Numer of processes

—o— GrADS testebed nodes
—&—SDSC TeraGrid nodes
—+—NCSA TeraGrid nodes
—— BlueHorizon nodes

—— DataStar nodes

" ----*-'.'. =

12:00:00 AM

12:00:00 AM

12:00:00 AM 12:00:00 AM
Time

12:00:00 AM

12:00:00 AM 12:00:00 AM

Figure 5: A six day snapshot representing GridSAT processor count usage from the different resources in logarithmic scale.
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Figure 7: Estimation of Integer Operations per second usage for all resources during the same six day snapshot shown in figure 5.

the robustness of GridSAT.

5 Related Work:

This paper covers both parallel SAT solvers and master-client
applications in a grid environment. We discuss related work
in both of these areas.

There are several parallel solvers in the literature.
PSATO [64] is based on the sequential solver PSATO.
PSATO is concentrated on solving 3-SAT and open quasi-
group problems. An other solver is Parallel SATZ [27]
which is the parallel implementation of SATZ [32]. Unlike
GridSAT, both solvers only use a set of workstations con-
nected by a fast local area network. This setup results in low
communication overhead. PSATO and Parallel Satz do not
include clause exchange. PaSAT [50] implements a different
algorithm for clause sharing. In addition, PaSAT uses a
global lemma(clause) store whereas GridSAT shares clauses
globally as soon as they are generated. GridSAT is designed
to attack easy as well as hard problems which take extended
periods of time.

A different approach is presented by NAGSAT [18]. Instead
of search space partitioning, NAGSAT uses nagging to enable
asynchronous parallel searching. Nagging uses a master node
which proceeds as a complete sequential solver. The clients
or naggers request a search subtree and apply a problem trans-
formation function. The master incorporates any valuable in-

formation returned by the clients. The solver is only applied
to a set of randomly generated 3-SAT instances.

A parallel scheme based on a multiprocessor implementation
is presented in [66]. The configurable processor core was
augmented with new instructions to enhance performance.
Data parallelism is used to speed-up execution of common
functions in the DPLL algorithm. Unlike GridSAT, this ap-
proach relies on specific hardware.

In the area of Grid Computing there has been a great deal
of research into the scheduling of master-worker applica-
tions [6, 10, 1, 20]. NetSolve [10] is dedicated to providing
support for access to scientific libraries remotely. Nimrod-
G [1] is targeted to the exploration of range of parameters
for scientific applications. These master-client systems use
a predefined number of clients with an established set of re-
sources. This is not the case for GridSAT where the num-
ber of clients changes depending on the problem and uses any
clients available. Inaddition, GridSAT is not a simple master-
worker application. GridSAT clients cooperate and commu-
nicate as peers in order to exchange problems and newly de-
rived clauses. Most of the above systems use a centralized
scheduler. GridSAT uses a combination of a central sched-
uler and local client decisions to assign and split existing jobs.
The satisfiability problem is different from most existing ap-
plications because it does not have a predictable runtime or
resource needs. GridSAT runs for extended periods of time
using a variety of resources.

p. 16



6 Conclusion

This paper presents a new version of GridSAT which imple-
ments a parallel, distributed and complete satisfiability solver.
In order to solve harder problems, new improvements to both
the algorithm and architecture of GridSAT were introduced.
GridSAT is capable of merging newly received shared clauses
immediately to the clause database to improve the solver’s ef-
ficiency. Also communication overhead is reduced by selec-
tively sending important information first and avoiding redun-
dancy when possible.

The experiments we presented show GridSAT’s ability to
manage and use a diverse set of dynamic computational Grid
resources. The experiments lasted for weeks as a testament to
the robustness of the application. During these experiments
new previously unsolved problems from practical and theo-
retical fields were solved.
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