
 1

Realistic Large-Scale Online Network Simulation
Xin Liu and Andrew A. Chien

Department of Computer Science and Engineering
and Center for Networked Systems
University of California, San Diego

{xinliu, achien}@cs.ucsd.edu

Abstract
Large-scale network simulation is an important technique for
studying the dynamic behavior of networks, network protocols,
and emerging classes of distributed application (e.g. Grid,
peer-to-peer, etc.) Large-scale and realism are two critical
requirements for network simulations of Grid application
studies. Our work here extends previous efforts in three key
ways. First, we study networks 100x larger than in our
previous studies (20,000 routers). Second, at this scale, we
study realistic network struct ures (100 AS’s, BGP4 and
OSPF routing) versus flat OSPF routing. Finally, we
describe and evaluate a new profile-based load-balancing
approach called hierarchical profile-based load balance.
Our extensive large-scale experiments with profile-based load
balance (PROF) on flat-routed (OSPF) networks show that
PROF outperforms several other techniques based on
topology and static application information. However, these
results and those for multi-AS networks motivate our
invention of a new hierarchical technique (HPROF) which
clusters network nodes to achieve a desired minimum link
latency (MLL), a key determinant of simulation parallelism,
then applies the graph partitioner. HPROF explicitly
controls the tradeoff between simulation efficiency and
available parallelism, producing robust and superior
performance for large-scale networks, including both single-
AS and multi-AS networks. HPROF can improve load
imbalance by 40%, and reduce the simulation time by about
50% in our 20,000 router simulations executed on 128-node
clusters. The parallel efficiency achieved by these
simulations is over 40%, providing substantial capabilities for
simulating large networks. In summary, these advances
demonstrate that realistic large-scale network simulation for
networks of 20,000 routers (comparable to a large Tier-1 ISP
network like AT&T) can be accomplished with our system.

1. Introduction
Historically, network simulations/emulations have been used
extensively to explore the behavior of network protocols[1-3].
Because of the difficulty of modeling application behavior in
detail, most of these simulations use simple application
models to exercise the protocols and networks. However,
with the advent of large numbers of applications which tightly
couple the use of compute, storage, and network, techniques
to study these resources together are emerging. In particular,

0-7695-2153-3/04 $20.00 (c)2004 IEEE

large-scale network simulation is an important technique for
studying the dynamic behavior of networks, network
protocols, and emerging classes of distributed applications,
including Peer-to-Peer [4] and Grid applications [5] – where
the network is an important contributor to application
performance, applications generate large amounts of network
traffic, and overall application performance is critical. A
wide variety of simulation systems have been built to model
network behavior based on discrete event simulation[6-9].

The MaSSF, a network simulation tool [10] is a key
component of the MicroGrid system[11] built by our group at
UCSD to study the dynamic behavior of Grid applications.
The MicroGrid enables the execution of complete Grid or
distributed applications. There are two key requirements for a
network simulator targeted for large-scale study of such
applications and resource infrastructures.
 The first requirement is that it must scale to Internet-scale
network. As in many other network simulation projects, the
MaSSF utilizes cluster systems to achieve scalable
performance. By harnessing scalable compute resources, the
MaSSF system and user applications together are themselves
an interesting distributed application, and load balance of
network simulation itself is one key problem for scalability. In
our previous work[10], we formulated the load balance
problem as a graph partitioning problem and applied classical
graph partition algorithms [12-15] to solve it. Three
approaches exploiting topology only, topology and
application placement, and profile-based were presented and
evaluated for moderate-sized networks. The results showed
that exploiting static topology and application placement
information improves load balance, but a profile-based
approach further improves the load balance achieved. In this
paper, we improve on all of these with a new hierarchical
approach and evaluate all of them on much larger networks
(100x).
 The second requirement for large-scale network simulation
is that it must simulate in detail the structure of realistic
networks. Our previous published work on MaSSF [10]
addresses simulation accuracy (validation) in this paper we
will address the issue of realistic network topology and
routing selection. While much research explores realistic
Internet-like topology generators and background traffic, few
efforts explore realistic network routing with most large-scale
simulations pursuing only shortest-path routing (OSPF). It is
well-known that in large, multi-AS networks, routing amongst
different AS domains is controlled by BGP and policy routing,
therefore connectivity does not equal reachability. A realistic

 2

Internet network simulation must support BGP routing among
Autonomous Systems (AS) and must have reasonable BGP
routing policy configuration. In MaSSF, we support the
detailed BGP4 routing protocol, and here address the
remaining problem of how to generate a reasonable BGP
routing policy for large networks.

In this paper, we demonstrate techniques that enable realistic
large-scale online network simulation. These techniques
together make a realistic large-scale simulation study of the
networks and coupled application performance possible. The
more specific contributions of this paper include:

• evaluating our previous load-balancing techniques (TOP,

PROF) for online simulation using networks 100 times
larger (20,000 routers),

• study of more realistic network routing structures (100
AS’s, BGP4 and OSPF routing) versus flat OSPF routing,

• describing and evaluating a new load-balancing approach
called hierarchical profile-based load balance (HPROF),

• developing a set of heuristics for automatic realistic BGP
routing configuration as an improvement to Internet-like
topology generation,

• evaluating a range of load balancing techniques (TOP,
HTOP, PROF, HPROF) in simulations of both single-AS
and multi-AS networks, which demonstrate HPROF can
improve load imbalance by 40%, and reduce simulation
time by 50% in 20,000-router simulations executed on
128-node clusters, and

• demonstrate that realistic large-scale network simulation
for networks of 20,000 routers (comparable to a large
Tier-1 ISP network like AT&T) can be accomplished
with our MaSSF system

The remainder of the paper is organized as follows. Section 2
provides background on MicroGrid/MaSSF and Internet
hierarchy. Section 3 describes the load balance approaches for
scalability challenges, summarizing existing partition
algorithms and presenting our hierarchical partition approach
for larger scale networks. Experiments in Section 4
demonstrate the scalability of our partition approaches on
single-AS networks. In Section 5, we first introduce a set of
heuristic rules for automatic BGP routing configuration, then
provide evaluation results for our load balance approaches
against Internet-like multi-AS networks with realistic BGP
routing. The results are discussed, along with related work in
Section 6, and finally Section 7 summarizes our work and
points out some future directions for research.

2. Background

2.1 MicroGrid and MaSSF
We have designed and implemented a tool called the
MicroGrid [11, 16] which enables accurate and
comprehensive study of the dynamic interaction of
applications, middleware, resources, and networks. The
MicroGrid creates a virtual grid environment by accurately

modeling networks, resources, and information services to
enable users, grid researchers, or grid operators to study
arbitrary collections of resources and networks. In addition,
the MicroGrid virtualizes transparently, allowing the direct
study of complex applications or middleware whose internal
dynamics are difficult to model accurately. That is, real
application software and middleware can be used unchanged
and executed on arbitrary virtual grid structures. In short, the
MicroGrid provides a virtual grid infrastructure that enables
scientific and systematic experimentation with dynamic
resource management techniques and adaptive applications by
supporting controllable, repeatable, and observable
experiments. Because the rate of execution of all components
of the system (applications, network, etc.) can be controlled, a
wide range of relative performance and system combinations
can be modeled using MicroGrid.

Simulation Engine

Network Modeling

Virtual Grid

I/O
Thread
Pool

Input Queue

Output Queue

Agent Nodes

Grid Application
Wrap Socket

Virtual/Real IP
Mapping Server

Live Traffic

SSF API

Figure 1. The MaSSF Scalable Network Simulation System

The key component of MicroGrid is the online network
simulator MaSSF. MaSSF (pronounced “massive”) is a
scalable packet-level network simulator that supports direct
execution of unmodified applications. MaSSF consists of four
parts.

• Simulation Engine: MaSSF uses a distributed simulation

engine based on DaSSF[17]. It utilizes MPI-connected
cluster systems to achieve scalable performance. A soft
real-time scheduler is used to emulate virtual computer
resources, allocating CPU proportionately. This scheduler
can also be used to run in a scaled-down (slowdown)
mode when the simulated system is too large to run in
real time on the available hardware. With the global
coordination of the MicroGrid, this feature provides
tremendous flexibility to simulate a wide range of
networks and resources accurately.

• Network Modeling: MaSSF provides the necessary

protocol modules for detailed network modeling, such as
IP, TCP/UDP, OSPF, and BGP4. We have built basic
implementations of these protocols which maintain their
behavior characteristics. We also use a network
configuration interfaces similar to a popular Java network
simulator implementation, SSFNet[18], for user
convenience.

• Online Simulation Capability: To support simulation of

traffic from live applications, we employ an Agent which

 3

accepts and dispatches live traffic from application
wrapper to the network simulation. Traffic is also sent
back to the application through the Agent module.

• Live Traffic Interception: Application processes use a

wrapper library called WrapSocket to intercept live
network streams at the socket level. The WrapSocket
then talks with the Agent module to redirect traffic into
the network simulator and vice versa. WrapSocket can be
either statically or dynamically linked to application
processes and requires no application modification.

These components and their relationship are illustrated in
Figure 1. For more details of MaSSF, the interested reader is
referred to [11].

2.2 Background on Internet Hierarchy
We summarize some background information on Internet
routing[19].

Autonomous System(AS): The Internet consists of more than
10,000 ASes, and the relationship between ASes is decided by
commercial agreements. Two basic relationships are Provider-
and-Customer and Peer-and-Peer. A pair of ASes that one
offers Internet connectivity and delivers traffic to the other is
said to have a provider-and-Customer relationship; a pair of
ASes that provides connectivity and delivers traffic between
their respective customers is said to have a Peer-and-Peer
relationship.
Internet Topology Hierarchy: According to [20], ASes can
be classified into 5 categories: Customers, Small Regional
ISPs, Outer Cores, Transit Cores, and Dense Cores. The
Customers count for about 90% of total ASes, and Dense
Cores only count for 2%. The Dense Cores are roughly equal
to Tier-1 ISP, and they have almost full connection between
each other.
Policy-based Routing : BGP4 is widely used inter-AS routing,
which exchanges reachability information between ASes in
the form of route announcement. Each route announcement
contains some attributes, such as AS Path, Multi-Exit-
Discriminator (MED), and Next Hop. The most important
attribute, AS Path, is a list of AS numbers to a network. Other
attributes are used to define routing policies. The key feature
of BGP protocol is policy routing, which allows each AS to
choose its own policy in accepting routes, selecting the best
route, and announcing routes to its neighbors.

3. Hierarchical Load Balance for Large-Scale
Network Simulation

3.1 Scalability Challenge in Network Simulation
To achieve scalable performance, MaSSF uses a distributed
simulation engine running on a cluster. Given a virtual
network topology and a set of cluster nodes, MaSSF partitions
the virtual network into multiple blocks, assigns the blocks to
cluster nodes, and simulates in parallel, as shown in Figure 2.
Every cluster node runs a discrete event simulation engine and

exchanges events with other cluster nodes. To maintain
accurate simulation, cluster nodes must synchronize
periodically.

Figure 2. Mapping routers to physical resources

For large simulations, the network mapping is too complex to
be done manually. But in such simulations, good load balance
is critical to achieving good parallel efficiency. Load balance
for network simulations is known to be difficult because the
network traffic workload on each physical node varies greatly,
depending both on the virtual mapping and network traffic in
that subset of virtual network (Figure 3). However, beyond
achieving good load balance, we need to consider two more
optimization goals to achieve good network simulation
performance. First, we want to maximize the Minimal Link
Latency (MLL) across partitions. Maximizing MLL reduces
the frequency of synchronization among simulation engines,
increasing concurrency, a critical element of scalability for
large scale simulations. This is an attribute of our MaSSF
system and all other network simulators based on
conservative discrete event simulation engines. Second, we
want to minimize the communication of events between
simulation engine nodes. Transferring a simulation event
across physical nodes is expensive both in terms of
computation overhead and communication latency. Also, the
physical network of the simulation engine nodes is often a
performance bottleneck for the whole simulation. Hence, it is
important to minimize this communication.

Figure 3. Load Variation over the Lifetime of Simulation

Scalable
Cluster System

Router

Host

Router

Router

 4

3.2 Modeling Load Balance as a Graph Partitioning
Problem

A network mapping problem can be naturally modeled as a
graph partitioning problem and solved with the classical graph
partitioning algorithms.

Given a weighted graph G with constraint and optimization
objectives, a typical graph partitioner can partition G and
achieve balanced total weights and minimized edge-cut across
partitions. The challenge here is how to apply the graph
partitioning algorithm to solve the mapping problem by
defining the suitable input graph G, constraint conditions, and
optimization objectives for the graph partitioning algorithm.
As shown in Figure 4, the mapping process first takes the
network structure and traffic information as input, creates a
graph G, and builds objectives and constraints. Then it applies
the partitioning algorithm to get a partitioned network. The
partitioned network defines the mapping of simulated network
nodes to physical resources (subject to additional arbitrary
choices of placement amongst symmetric physical resources).

Figure 4. Process of Network Mapping

3.3 Existing Load Balance Approaches
In our previous work, we explored approaches based on a
range of static and dynamic network information, namely,
Topology-Based approach (TOP) and Profile-Based approach
(PROF)[10]. This information was used to estimate the traffic
load in virtual network. Key ideas of these approaches are
summarized as:
• TOP: uses static information for partition, such as the

virtual network topology, link bandwidth, and latency.
Each virtual node is weighted with the total bandwidth in
and out of it. The optimization objective is to maximize
the MLL between simulation engine nodes. This
maximizes decoupling, supporting efficient parallel
simulation.

• PROF: uses traffic profiling to obtain traffic-level
information automatically from simulation experiments.
The profiles are used to estimate future network use and

determine the weights used. Because they are more
accurate, this improves the network mapping. Typically
profiling involves an initial simulation experiment using
a naive initial partition and traffic monitoring. The
simulation yields detailed traffic information, and
improves subsequent network partitions.

3.4 Hierarchical Load Balance Approach

3.4.1 The Small Achieved MLL Problem
When we apply the TOP and PROF approaches to larger
networks (e.g. 10,000 routers running on 100 nodes), neither
of them gets satisfactory results. Checking the partition output
manually reveals that the common reason for poor
performance is that the achieved Minimal Link Latency (MLL)
across partitions is too small when compared to the
synchronization cost. This produces an overall simulation
efficiency that is quite low. For example, for one network of
10,000 routers, the achieved MLL was only 0.1ms; far less
than the synchronization cost of ~0.58ms for 100 simulation
engine nodes (see Figure 5). In such a situation, the majority
of the time will be spent doing synchronization – even perfect
load balance would only moderate efficiency. This situation
is quite different from the 1ms MLL for a 160 router network
and 0.9ms synchronization cost for 8 simulation engine nodes
in our previous experiments[10].

Synchronization Cost of TeraGrid Cluster

0
100
200
300
400
500
600
700
800
900

2 6 16 48 80 11
2

Node Number

D
el

ay
(m

ic
ro

se
co

nd
)

Figure 5. Synchronization Cost of the TeraGrid NCSA
Cluster: the time used by the simulation engine nodes for
global synchronization, which need to be executed every
MLL time.

3.4.2 The Reason
The example above exposes a major problem with the
existing load balance approaches. In TOP and PROF
mappings, the link latency is converted to edge weight of the
graph G, and smaller link latency leads to a larger edge
weight. When the graph partitioner archives minimal edge-cut
across partitions , it is less likely to partition across the link
with small link latency, since it corresponds to a large edge
weight. However, the optimization goal is the not the MLL,
but the minimum edge-cut (the sum of all edge weights that
cross partitions). When we have a large graph, the partitioner

Network
Structure

Partitioned
Network

Traffic
Information

Graph
Partitioning
Algorithms

G

Constraints
Objectives

Graph
Preparation

 5

becomes less sensitive to the MLL, since even the large edge
weight from a link with MLL may only be a small part of the
final edge-cut.

We may tune the converting algorithm to make the edge
weight of small link latency so large that it is unlikely to
across partitions, but this highly depends on the network
topology, the simulation engine node number, and the
physical synchronization cost.

3.4.3 The Solution
To address the issue of small achieved MLL, we design a new
hierarchical partition algorithm. To avoid partitions across
edges with small link latencies, we remove edges with latency
smaller than a threshold, LL, from the input graph (by
merging nodes) to the partitioner and add them back to the
partitioned output. In this way, we can guarantee the worst-
case of MLL. However, this produces a new problem — how
to choose the latency threshold, LL. If the threshold is too
large, it will damage load balance, but if it is too small it will
achieve a smaller MLL than possible. Instead of guessing the
threshold, our approach is to simply try all reasonable
thresholds, create a partition for each, evaluate these partitions,
and then pick up the best partition. This is feasible because
we can do the partition fast, even for large networks, and we
can evaluate different partition outputs without running the
simulation. The pseudo code for hierarchical partitioning is:

Input: graph G, partition N, and synchronization cost C
Output: the best partition P of graph G

Hierarchical Partition:

Set the initial Threshold of MLL (Tmll)
Loop through all reasonable Tmll:
 Get the dumped graph Gd(Tmll)

Partition the Gd(Tmll) using an existing partitioner,
and get P(Tmll)

 Evaluate the partition result Pd(Tmll)
Pickup the best partition Pd(Tmll)
Get the best partition P of original G

This algorithm requires the graph, G, the partition number, N,
and the synchronization cost of the simulation engine nodes,
C. Figure 5 shows the synchronization cost of the TeraGrid
SDSC cluster, which is used for all simulations in this paper.
We use the synchronization cost to set the initial threshold of
MLL (Tmll) based on knowledge of the desired number of
simulation engines. We require a Tmll to be larger than the
synchronization cost, otherwise all time will be spent on
synchronization, giving poor efficiency. Given the Tmll, the
original graph G is reduced to a dumped graph Gd by
collapsing nodes with link latency less then Tmll into a single
node. Then any existing partition can be applied to the
dumped graph Gd and get the partitioner output. By increasing
the Tmll step by step (0.1ms in our experiments), we can get a
sequence of partitions, and the remaining question is how to
select amongst them.

To evaluate the candidate partitions, we use an efficiency
metric Efficiency (E), which consists of two factors, Es and Ec.
The first factor (Es) represents the efficiency decided by the
achieved MLL and is calculated:
 Es = (MLL – CN)/MLL,
where CN is the synchronization cost of N simulation engine
nodes. The latter (Ec) represents the result of computational
load balance and is calculated by:

Ec = Caverage/Cmax,
where Caverage is the estimated average load (simulation event
rate) on all nodes, and Cmax is the max load of all nodes. The
final efficiency E is Es * Ec, where larger values of E
correspond to better partitions. Maximizing Es and Ec
separately does not work because they represent the tradeoff
between simulation efficiency and available parallelism.
Larger Es means better simulation efficiency, but it also
means less parallelism available, since smaller MLL leads to a
more coarse-grained partition graph.

In summary, our hierarchical partitioning approach balances
the parallelism and decoupling concerns in generating a good
network partition. To do so, it generates and evaluates many
possible partitions which is possible because we can create
graph partitions and evaluate graph partitions quickly. The
METIS graph partitioner[21] used in MaSSF can partition a
graph with 10,000 vertexes in about 10 seconds. Thus it is
fast enough to enable us to consider thousands of possible Tmll.

4. Simulation of Large Single-AS Network
To demonstrate the scalability of MaSSF and to study the
performance of these partitioning and mapping approaches,
we apply them to a range of network topologies and
background traffic conditions. First we consider the
simulation of a large flat network, which corresponds to a
large single AS network and uses the OSPF protocol for
routing (shortest path routing).

4.1 Evaluation Metrics
The first metric is the application simulation time T, which is
the time taken to simulate an application in a specific network
simulation. As faster simulation is the ultimate goal of our
scalability studies, it is the most important metric.

To get deeper insight into the efficacy of our partition and
load balance techniques, we also use three other metrics:
achieved MLL, load imbalance, and parallel efficiency.
 The second metric achieved MLL shows the effect of the
hierarchical load balance approaches in increasing parallelism
and is reported directly by the partitioner.
 For the third metric load imbalance, we define the load of a
simulation engine node as the event rate of the simulation
kernel (essentially one per network packet). Using these
counters, we calculate the overall load imbalance across all
the physical nodes in the actual simulation. Assuming the
simulation kernel event rates are k1, k2, … , kn, for n nodes
used by the simulation engine, the load imbalance is
normalized by the standard deviation of {k}.

 6

 The last metric is the parallel efficiency, PE(N, L) for a
problem of size L on N nodes is defined in the usual way[22]

by
),(*

)(
),(

NLTN
LTseq

LNPE = ,

where T(L, N) is the runtime of the parallel algorithm, and
Tseq(L) is the runtime of the best sequential algorithm.
Tseq(L) cannot be measured directly since the network is too
large to be simulated on a single machine, thus, we
approximate the Tseq(L) by

chNodentRateOnEaMaximalEve
NumberTotalEvent

LTseq =)(.

4.2 Experimental Setup: Topologies, Traffic load, and
Simulation Engines

We generate network topologies for our experiments with an
adapted BRITE tool [23], a degree-based Internet topology
generator following the Power-Law[24]. The flat network
topology includes 20,000 routers and 10,000 hosts, which are
spread over a geographic area of 5000milex5000mile (roughly
the size of North American continent). This router count is
comparable to the size of a large Tier-1 ISP, such as the
AT&T network [25].

For background traffic, there are 8,000 clients continuously
sending HTTP file requests to 2,000 servers. The average
time gap between two successive requests of a client is 5
seconds and average file size is 50KB. Foreground traffic is
created live from real Grid applications, including
ScaLapack[26] and GridNPB3.0[27]. GridNPB3.0 is a set of
grid benchmarks in a workflow style composition in data flow
graphs encapsulating an instance of a slightly modified NPB
task in each graph node, which communicates with other
nodes by sending/receiving initialization data. GridNPB
includes a range of computation types and problem sizes, and
in our experiments we use the combination of Helical Chain
(HC), Visualization Pipeline (VP), Mixed Bag (MB)
applications, all run at class S size. These programs run for
about 30 minutes on our platform.

The experiments use the TeraGrid Itanium-2 cluster for
simulation engine nodes. The cluster nodes are dual 1.3GHz
Itanium-2 processors with 2Gigabytes of memory, linked with
Myrinet 2000 using MPICH-GM. We use 90 nodes as the
simulation engines, and 7 nodes for application execution.

4.3 Results
Application workloads are executed on the single-AS network
with moderate background traffic, and we study the
performance of four mapping approaches: topology-based
mapping (TOP), profile-based mapping (PROF), hierarchical
topology-based mapping (HTOP), and hierarchical profile-
based mapping (HPROF). The TOP and PROF partitioners
achieve such small MLL that their performance is extremely
poor and the simulations cannot be completed in a reasonable

time limit. So we adjusted the link latency to edge weight
converting algorithm for the large scale network simulation,
so partitions are less likely to across edges with small link
latency. It is not a general solution and has to be done
according different topologies manually. The results are
labeled as TOP2 and PROF2.

Application Simulation Time
The application simulation time of both applications is shown
in Figure 6. For ScaLapack, the use of PROF2 mapping
reduces overall simulation time of TOP mapping by 14%, and
the use of the hierarchical mapping (HPROF) further reduces
the simulation time up to 40%.

Simulation Time on Single-AS

0

50

100

150

200

ScaLapack GridNPBS
im

u
la

ti
o

n
 T

im
e

(s
ec

)

HPROF PROF2 HTOP TOP2

Figure 6. Simulation Time on the Single-AS Network

Achieved MLL
The achieved MLL is shown in Figure 7, and we can see both
TOP2 and PROF2 still have much smaller MLL (about 0.6ms)
comparing to HTOP and HPROF. It is clear that the
hierarchical approaches can significantly increase the MLL,
producing enough parallelism for large-scale simulation.
These MLL values show that there is enough parallelism
achievable for networks of ~20,000 routers in 5000M by
5000M area using 90 simulation nodes. These simulations
will provide good efficiency with slowdown of 8 times.

Achieved MLL on Single-AS

0
0.5

1
1.5

2
2.5

3
3.5

ScaLapack GridNPB

M
L

L
(m

s)

HPROF PROF2 HTOP

TOP2 PROF TOP

Figure 7. Achieved MLL on the Single-AS Network

 7

Despite the fact that it produces the largest MLL (3ms),
HTOP does not work very well compared to HPROF. The
inaccurate load prediction in HTOP produces a much larger
load imbalance which hurts performance.

Load Imbalance
The measured load imbalance for both applications is shown
in Figures 8. The figure reports the normalized load
imbalance across the physical simulation engine nodes for
each combination of mapping approach and network topology.
Each mapping approach produces significantly different
results. Compared to TOP2, PROF2 improves load imbalance
by about 7%. The HPROF mapping also improves the load
imbalance by 11% over HTOP. It is clear that the use of
detailed traffic information from a previous simulation
execution provides a critical advantage in achieving effective
network partitions.

It is also shown that the HPROF mapping produces better
load balance than TOP2 and PROF2. This improvement is
surprising because the hierarchical approaches use a simpler
graph with coarse-grained node weights. So they should have
less chance to achieve better load balance. We believe the
explanation is that the underlying graph partitioner METIS
does a better job for smaller graphs, since reduced graphs
have many fewer vertexes.

Load Imbalance on Single-AS

0

0.2

0.4

0.6

0.8

ScaLapack GridNPB

L
o

ad
 Im

b
al

an
ce

HPROF PROF2 HTOP TOP2

Figure 8. Load Imbalance on the Single-AS Network

Parallel Efficiency
The parallel efficiency of both applications is shown in Figure
9. While the overall efficiency of network simulation at this
scale does not reach 100%, these values are excellent for
parallel discrete event simulations on irregular loads. The
HPROF for ScaLapack achieves about 40% parallel efficiency,
a dramatic 64% improvement over TOP2. These levels of
parallel efficiency enable effective large-scale network
simulations.

Parallel Efficiency on Single-AS

0

0.1

0.2

0.3

0.4

0.5

ScaLapack GridNPB

P
ar

al
le

l E
ff

ic
ie

n
cy

HPROF PROF2 HTOP TOP2

Figure 9. Parallel Efficiency on Single-AS Network

5. Simulation of Large Multi-AS Network
In Section 4 we demonstrate that the MaSSF and HPROF, a
hierarchical profile-based partitioning algorithm, can produce
scalable simulations for large single-AS networks. However,
the Internet is not a flat network with shortest path routing.
Instead, it is organized as a collection of ASes with traffic
shaped by BGP policy routing. In such networks, connectivity
does not mean reachability and the real dynamics are quite
different from single-AS network. Such networks present
greater challenges to achieving load balance because the
traffic load is less coupled to network topologies. Despite its
importance, to our knowledge multi-AS networks have never
been simulated in large-scale because of the complexity
involved.

5.1 Realistic BGP Routing Configuration
While there is much research on Internet-like topology
generation [28-30], these studies focus on physical
connectivity and pay little attention to routing configuration
(particularly BGP). There are two major reasons for this
situation. First of all, prior to our MaSSF simulator, no
existing network simulator supports large scale simulation
with detailed BGP routing. Simulators either have no support
for BGP routing (DaSSFNet[31], ModelNet[9]), or they are
limited by scalability to such a degree that BGP policy routing
is less relevant (NS2[32], SSFNet[18, 33]). Second, real
Internet BGP routing configurations are not publicly available,
since the routing policy are closely tied to commercial
contract terms that are considered highly confidential by ISPs.
Fortunately, recent research has explored inferring AS
relationships and BGP routing policy from publicly available
information, such as BGP routing tables. Several of these
efforts have made significant progress [34], making it
possible for us to automatically generate realistic BGP routing
policies into our network generator.

5.1.1 BGP Routing Policies
To generate realistic BGP routing, let us first check how the
Internet routing is setup. One of the key features of BGP

 8

protocol is policy, which allows each AS to choose its own
policy in accepting routes, selecting the best route, and
announcing routes to its neighbors. Two kinds of routing
policies are as follows: Import Policy and Export Policy.

Import Routing Policy: When receiving a route
announcement from its neighbor, a router applies its import
policies to the route, which include denying, or permitting a
route, and assigning a local preference to indicate how
favorable the route is. Local preference is used to
differentiate routes received from different neighbors, since a
BGP router may receive routes to the same destination from
different neighbors and it must choose the best route to be
used in its local routing table. BGP incorporates a sequential
decision process to pickup the best route from a set of
candidates to a given prefix. For example, the highest local
preference, the shortest AS path, the lowest origin type, and
the smallest MED for routes with the same next hop AS.
There is a long list of criteria to set the preferential order of
routes, and the first and the most important rule is the local
preference. In practice, network administrators usually use
local preference to enforce their import routing policies.
According to [34], there are two general rules:
• Route Preference between Provider, Customers, and

Peers: Network operators usually assign different local
preferences to route learned from provider, customers,
and peers. Customer routes have the highest local
preference, and peer routes have higher local preference
than providers.

• Consistency of Local Preference with Next Hop ASes:
Operators may set local preference configuration based
on prefix level or next hop AS level. Since it is easier to
maintain the provider, customers, and peers preference
based on next hop AS level, most ISPs use this approach
in practice.

Export Routing Policy: BGP routers use export policies to
decide which routes to be propagated to their neighbors. The
policies usually are directly transformed from ASes
relationships.
• Exporting to a Provider: An AS can export its local

routes and routes of its customers, but can not export
routes learned from its peers or providers

• Exporting to a Peer: An AS can export its local routes
and routes of its customers, but can not export routes
learned from its peers or other providers

• Exporting to a Customer: An AS should export all
routes it knows to its customers

These basic export policy rules are the direct requirement of
commercial agreements. For example, the first rule guarantees
that a provider will not use its customer network to transit
traffic, and the last rule guarantees that the customer can get
full Internet access through its provider.

5.1.2 Using Heuristic Rules for Automatic Routing
Configuration

Following the heuristic rules above, we automatically
configure Internet-like network topologies with realistic
routing configuration, and expect to get similar routing
pattern of real Internet. The procedure of network topology
generation and automatic routing configuration are shown in
the following:

1) Generate AS level topology following the Power Law
2) Classify ASes according connection degrees.

a. Core: ASes with connection degrees of top 2
b. Stub: ASes with connection degree of 1 or 2
c. Regional ISP: all the other ASes

3) Decide AS relationships
a. Provider-and-Customer:

i. Core -- Stub,
ii. Regional ISP – Stub,

iii. Core – Regional ISP
b. Peer-and-Peer: between all ASes in the same level

4) Setup Import Routing Policy
a. Accept all incoming routes
b. Set Local Preference according to Next Hop AS,

which prefer routes from Customer, over routes from
Peer, and over routes from Provider

5) Setup Export Routing Policy
a. To Provider: Export local and Customer routes
b. To Peer: Export local and Customer routes
c. To Customer: Export all routes

6) Create topology for every Stub AS
a. Follow the Power Law
b. Use OSPF routing inside the AS
c. Use default routing to hosts outside local AS
d. Pickup default/backup routers for multi-homed ASes

This is just a high level abstract of our implementation in the
maBrite1 topology generator, which is based on BRITE tool.
To create a real functional topology, there are more details
need to be addressed. For example, at Step 3, we must
guarantee that every non-Core AS has a path including
Provider-and-Customer links to a Core AS so that this AS has
full connection to the whole network. Furthermore, we should
also guarantee that the Core ASes form a clique as observed
for the Dense Cores, and additional links between Core ASes
are added when necessary.

After the AS relationships are defined, the routing policy
setup is straightforward. The only problem is how these
policies can be expressed in the simulator input Domain
Model Language (DML) file. For a detailed discussion of this,
the interested reader is referred to the MicroGrid user manual.

The last thing we want to emphasize is the default routing
embodied in Step 6. It is very important to use default routing

1 The maBrite package is available at http://www-
csag.ucsd.edu/projects/grid/microgrid.html

 9

in Stub ASes so the huge external BGP routes need not be
injected into the OSPF routing tables. This approach can
reduce the overhead of Stub AS routers greatly and is widely
used in real world practice.

5.2 Hierarchical Network Simulation Results
These experiments evaluate both flat and hierarchical load
balance approaches for large-scale multi-AS networks with
Internet-like routing configurations.

5.2.1 Experiments Setup
The network topology is created by our maBrite topology
generator with BGP routing configuration as described above.
It includes 100 ASes, each containing 200 routers. In addition,
10,000 hosts are randomly attached to Stub ASes for
background traffic generation and live traffic agent. All these
routers and hosts are spread to a geographic area of
5000milex5000mile.

We use the same background traffic and the same application,
ScaLapack and GridNPB, in the experiments as described in
Section 4. We also use the same TeraGrid Itanium-2 cluster,
90 nodes as the simulation engines, and 7 nodes for
application execution.

5.2.2 Results
Application workloads are executed on the multi-AS network
with moderate background traffic, and we evaluate the
performance of four mapping approaches: TOP, PROF,
HTOP, and HPROF. Again, both TOP2 and PROF2
mappings are tuned for the large scale network simulation.

Application Simulation Time
The simulation time of both applications is shown in Figure
10. For ScaLapack, the use of PROF2 mapping reduces
overall simulation time of TOP2 mapping by 21%, and the
use of the hierarchical mapping (HPROF) further reduces the
simulation time up to 41%. The GridNPB has less
improvement, since it has less communication compared to
ScaLapack.

Simulation Time on Multi-AS

0
20
40
60
80

100
120
140
160

ScaLapack GridNPBS
im

u
la

ti
o

n
 T

im
e

(s
ec

)

HPROF PROF2 HTOP TOP2

Figure 10. Simulation Time on the Multi-AS Network

Achieved Minimal Link Latency
The achieved MLL is shown in Figure 11. Like on the Single-
AS network, the original TOP and PROF produce small
MLL’s and our data reflects the resulting poor simulation
efficiency. The hierarchical approaches achieve much larger
MLL’s, in some cases ten times larger. MLL’s of this size
support good simulation efficiency.

Achieved MLL on Multi-AS

0

0.5

1

1.5

ScaLapack GridNPB

M
L

L
(m

s)

HPROF PROF2 HTOP

TOP2 PROF TOP

Figure 11. Achieved MLL on the Multi-AS Network

Load Imbalance
The measured load imbalance for ScaLapack and GridNPB is
shown in Figure 12. The figure reports the normalized load
imbalance across the physical simulation engine nodes for
each combination of mapping approach and network topology.
Each mapping approach produces significantly different
results. Compared to the TOP2 mapping, the PROF2 mapping
improves the load imbalance by about 15%. The HPROF
mapping improves the load imbalance over HTOP by 31%.

As we anticipated, the load imbalance for this multi-AS
network is much larger than the single-AS network due to the
use of BGP routing, and it makes the improvement from
profile-based techniques significant compared to that of the
single-AS network in Section 4.3.

Load Imbalance on Multi-AS

0

0.2

0.4

0.6

0.8

1

ScaLapack GridNPB

L
o

ad
 Im

b
al

an
ce

HPROF PROF2 HTOP TOP2

Figure 12. Load Imbalance on the Multi-AS Network

 10

Parallel Efficiency
The parallel efficiency of the simulation of both applications
is shown in Figure 13. While the overall efficiency of network
simulation does not approach 100%, HPROF for ScaLapack
can achieve about 40% parallel efficiency, about a 64%
improvement from TOP2. This level of parallel efficiency
enables simulation of large-scale Multi-AS networks.

Parallel Efficiency on Multi-AS

0

0.1

0.2

0.3

0.4

0.5

ScaLapack GridNPB

P
ar

al
le

l E
ff

ic
ie

n
cy

HPROF PROF2 HTOP TOP2

Figure 13. Parallel Efficiency on Multi-AS

In summary, these experiments show that our hierarchical
load balance approaches still work well for large multi-AS
networks with realistic BGP routing configuration.

6. Discussion and Related Work
Several recent research efforts are most related to the
MicroGrid/MaSSF, including Albatross[35], Emulab[8], and
ModelNet[9]. While these systems also support execution of
real application over a modeled network, there are significant
differences between these efforts and the MicroGrid. The
network modeling in these systems either use approximation
models[36] or have limited scalability[32]. These
approximations reduce the simulation accuracy (compared to
MicroGrid’s global synchronized packet-level simulation) to
achieve faster execution. For example, Emulab uses a set of
real routers, switches and configurable software routers to
emulate wide area network. This approach has the advantage
of speed of emulation, but provides little in the way of
detailed control of speed and modeling to the experiment
designer. The largest automatically-configured Emulab
experiment[21] we are aware of has 520 virtual nodes
(routers) mapped to 44 PCs. The ModelNet project at Duke
University (and now also at UCSD) is a software emulator.
Their approach to scalability simplifies both network
topology (a network of pipes) and routing (assuming a simple
routing protocol based on shortest path) and then maps the
resulting network of queues onto a set of emulation cores.
This summarized network is an approximation to actual
detailed network behavior. Further, there is no
synchronization between these cores, so the number of cores
can be used without affecting accuracy is unknown. In

contrast, MaSSF uses full-scale detailed packet simulation
based on a distributed discrete-event simulation (PDES)
engine. The largest emulation on ModelNet we know has
1120 virtual nodes (routers) on 4 cores. While there have been
many efforts which use PDES for network simulation[37], we
know of no other modeling efforts that achieve detailed online
network simulation of the documented scale.

Load balance is known to be an important problem for the
scalability of distributed network simulations or emulations,
however there are only a few efforts in network
simulation/emulation community to solve this problem. Many
projects use either manual partitioning or simple graph
partitioning based on network topology. The DaSSF simulator
uses the METIS graph partitioning package and link latencies
for load balance. It does not use link capacities or any further
detailed traffic information. ModelNet[38] uses the greedy k-
cluster algorithm: for k nodes in the core set, randomly selects
k nodes in the virtual topology and greedily selects links from
the current connected component in a round-robin fashion.
They also use an approach similar to our PLACE mapping,
but it is focused on minimizing Network traffic between cores.
Emulab's assign maps virtual topologies which include
endpoint resources as well as network structures onto a
heterogeneous combination of routers, switches, and
computers. Critical issues are time to compute mapping,
physical resources used, and sufficient link capacity. Thus,
assign chooses specific endpoint and network resources to
optimize their quantity subject to the constraints. Load
balance is not a direct focus.

Realistic topologies are of considerable importance to
network and Grid application studies. There are mainly two
types of topology generators in use, hierarchical and degree-
based. Hierarchical generator like Tiers and Transit-Stub are
more close to the logical structure of the Internet. The degree-
based generators like Inet[29], BRITE[28], and PLRG[39]
generate graph that follow the Power-Law and are more close
to the physical connectivity of real Internet, but have less
clear hierarchical structure. The latest GridG[40] generator
tries to combine both approaches by enhancing a hierarchical
graph to following Power-Law. The goal is quite similar to
our approach to topology, but we achieve it by setting up
hierarchical relationship out of a graph created from the
Power-Law. However, all previous efforts focus on physical
connectivity generation, and none of them provide realistic
routing configurations based on BGP4 policy-based inter-
domain routing. Exploiting recent research which infers AS
relationship and BGP routing policy from publicly available
information such as BGP routing tables [34, 41] our maBrite
generator automatically builds realistic BGP routing policy in
topology generator. To the best of our knowledge, we are the
first to provide this kind of topology generator. These
heuristic rules can also be used to enhance other topology
generators.

 11

7. Summary and Future Work
Large-scale and realism are two critical requirements for
network simulation for Grid application studies. In this paper,
we first study networks 100x larger than in our previous
studies (20,000 routers). Then, at this scale, we study realistic
network structures (100 AS’s, BGP4 and OSPF routing)
versus flat OSPF routing. Finally, we describe and evaluate a
new profile-based load-balancing approach called hierarchical
profile-based load balance (HPROF). These load balance
approaches are evaluated against large-scale networks,
including both single-AS network and multi-AS network. The
best of these, HPROF, can improve the load imbalance by
40% and reduces the simulation time by about 50%. This
provides a great chance for scalable network simulation. We
also provide an Internet-like topology generation with
realistic BGP routing configuration. Combining with our
packet-level hop-by-hop network simulator and detailed
BGP4 protocol support, we demonstrate that we can provide
realistic large-scale network simulation for networks
including about 20,000 routers.

Our automatic BGP configuration is based on a set of
heuristics used in by many network administrators. While we
believe our method captures the major components of realistic
BGP configuration and routing, a natural next step is to
validate it directly. One such approach would be to use the
AS level topology of the real Internet [25] and feed it into our
BGP configuration procedure, allowing direct comparison of
routing in the Internet and our generated configuration. Two
types of studies will be valuable for the validation. The first is
to compare the static status of BGP routing, such as the
similarity of route ent ries in BGP routing table. The second is
to compare the dynamic behavior of BGP. For example, there
is a Beacon project [42] which automatically
announces/withdraws a prefix at a given time every day. And
we can observe what real BGP does to beacon activities from
a public observation point. Both of these studies can be
simulated in MaSSF.

Due to physical resource limitation, we only use a 128-node
cluster in our experiments. However, it is clear that there is
still more parallelism in the large-scale network simulation. In
future work, we will use MicroGrid to study larger networks
and application, specifically using a 256-node Itanium-2
Linux cluster to simulate a network with 100,000 network
entities, which can be taken as a significant fraction of the real
Internet with hundreds of ASes. Under this scale of a network,
we expect to experience much larger load balance challenge
and we have to develop a traffic-based load balance solution
for better scalability. While we selected the GridNPB
benchmarks for our experiments, our evaluation could be
improved by studies with better benchmarks suites or larger
real grid applications. In the future, we will also use
MicroGrid to study larger scale real Grid applications,
including resources scheduling and overlay network behaviors.

8. Acknowledgement
Supported in part by the National Science Foundation under
awards NSF EIA-99-75020 Grads and NSF Cooperative
Agreement ANI-0225642 (OptIPuter), NSF CCR-0331645
(VGrADS), NSF ACI-0305390, and NSF Research
Infrastructure Grant EIA-0303622. Support from Hewlett-
Packard, BigBangwidth, Microsoft, and Intel is also gratefully
acknowledged.

The authors also acknowledge the contributions of Anil Kapur,
Huaxia Xia, and Alex Olugbile to the system infrastructure
which made this work possible.

9. References
1. Tao Ye, Shivkumar Kalyanaraman, David Harrison,

Biplab Sikdar, Bin Mo, Hema Tahilramani Kaur, Ken
Vastold, and Boleslaw Szymanski, Network Management
and Control Using Collaborative On-line Simulation. Proc.
IEEE International Conference on Communications,, June
2001.

2. D. Katabi, M. Handley, and C. Rohrs. Internet congestion
control for future high bandwidth-delay product
environments. in Proc. ACM SIGCOMM. 2002. Pittsburgh,
PA.

3. Christina Parsa and J.J. Garcia-Luna-Aceves. Improving
TCP Congestion Control over Internets with
Heterogeneous Transmission Media. in Proceedings of the
7th IEEE International Conference on Network Protocols
(ICNP). 1999.

4. Andy Oram, Peer-to-Peer: Harnessing the Power of
Disruptive Technologies. March 2001: O'Reilly.

5. Ian Foster and Carl Kesselman, The Grid: Blueprint for a
New Computing Infrastructure. 1999: Morgan Kaufmann.

6. L. Ni P. Zheng. EMPOWER: A Network Emulator for
Wireline and Wireless Networks. in IEEE InfoCom 2003.
2003. San Francisco.

7. Russell Bradford Rob Simmonds, and Brian Unger.
Applying parallel discrete event simulation to network
emulation. in 14th Workshop on Parallel and Distributed
Simulation (PADS 2000). May 28-31, 2000. Bologna, Italy.

8. Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci,
Shashi Guruprasad, Mac Newbold, Mike Hibler, Chad
Barb, and Abhijeet Joglekar. An Integrated Experimental
Environment for Distributed Systems and Networks. in
Proceedings of 5th Symposium on Operating Systems
Design and Implementation (OSDI). 2002.

9. Amin Vahdat, Ken Yocum, Kevin Walsh, Priya
Mahadevan, Dejan Kostic, Jeff Chase, and David Becker.
Scalability and Accuracy in a Large-Scale Network
Emulator. in Proceedings of 5th Symposium on Operating
Systems Design and Implementation (OSDI). December
2002.

10. Xin Liu and Andrew Chien. Traffic-based Load Balance
for Scalable Network Emulation. in SuperComputing 2003.
Noverber 2003. Phoenix, Arizona: the Proceedings of the
ACM Conference on High Performance Computing and
Networking.

 12

11. Xin Liu, Huaxia Xia, and Andrew Chien, Validating and
Scaling the MicroGrid: A Scientific Instrument for Grid
Dynamics. Journal of Grid Computing, 2003.

12. C. Walshaw, M. Cross, S. Johnson, and M. Everett.
JOSTLE: Partitioning of Unstructured Meshes for
Massively Parallel Machines. in Parallel CFD'94. 1994.
Tyoto, Japan.

13. F. Pellegrini and J. Roman. SCOTCH: a software package
for static mapping by dual recursive bipartitioning of
process and architecture graphs. in High-performance
Computing and Networking, Proc. HPCN'96. 1996.
Springer, Berlin.

14. Preis R. and Diekmann R, PARTY - A Software Library for
Graph Partitioning. Advances in Computational
Mechanics with Parallel and Distributed Processing, 1997:
p. 63-71.

15. B. Hendrickson, Graph Partitioning Models for Parallel
Computing. Parallel Computing Journal, 2000. 26(12): p.
1519--1534.

16. H. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, K.
Taura, and A. Chien. The MicroGrid: a Scientific Tool for
Modeling Computational Grids. in IEEE Supercomputing
(SC 2000). 2000. Dallas, USA.

17. Jason Liu and David M. Nicol. Learning Not to Share. in
Proceedings of the 15th Workshop on Parallel and
Distributed Simulation (PADS 2001). 2001. Lake
Arrowhead, CA.

18. James Cowie, Hongbo Liu, Jason Liu, David Nicol, and
Andy Ogielski. Towards Realistic Million-Node Internet
Simulations. in Proceedings of the 1999 International
Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA'99). June 28 - July
1, 1999. Las Vegas, Nevada.

19. Sam Halabi, Internet Routing Architectures Second
Edition. 2001: Cisco Press.

20. Lakshminarayanan Subramanian, Sharad Agarwal,
Jennifer Rexford, and Randy H. Katz. Characterizing the
Internet Hierarchy from Multiple Vantage Points. in IEEE
Infocom. 2002.

21. Shashi Guruprasad, Leigh Stoller, Mike Hibler, and Jay
Lepreau. Scaling Network Emulation with Multiplexed
Virtual Resources. in SIGCOMM 2003 Poster Abstract.
2003.

22. V. Kumar, A. Grama, A. Gupta, and G. Karypis,
Introduction to Parallel Computing - Design and Analysis
of Algorithms. 1994: The Benjamin/Cummings Publishing
Company.

23. Anukool Lakhina Alberto Medina, Ibrahim Matta, and
John Byers. BRITE: An Approach to Universal Topology
Generation. in In Proceedings of the International
Workshop on Modeling, Analysis and Simulation of
Computer and Telecommunications Systems- MASCOTS
'01. 2001. Cincinnati, Ohio.

24. Michalis Faloutsos, Petros Faloutsos, and Christos
Faloutsos. On Power-Law Relationships of the Internet
Topology. in SIGCOMM. 1999.

25. Neil Spring, Ratul Mahajan, and David Wetherall.
Measuring ISP Topologies with Rocketfuel. in ACM
SIGCOMM. 2002.

26. A.Petitet, S.Blackford, J.Dongarra, B.Ellis, G.Fagg,
K.Roche, and S.Vadhiyar. Numerical Libraries and the
Grid: The GrADS Experiment with ScaLAPACK. in
International Journal of High Performance Computing
Applications. 2001.

27. Rob F Van Der Wijngaart and Michael Frumkin, NAS
Grid Benchmarks Version 1.0 . 2002, NASA Ames
Research Center.NAS-02-005

28. Alberto Medina, Anukool Lakhina, Ibrahim Matta, and
John Byers. BRITE: An Approach to Universal Topology
Generation. in In Proceedings of the International
Workshop on Modeling, Analysis and Simulation of
Computer and Telecommunications Systems- MASCOTS
'01. 2001. Cincinnati, Ohio.

29. J. Winick and S. Jamin, Inet-3.0: Internet topology
generator. 2002, University of Michigan Ann Arbor.CSE-
TR-456-02

30. K.L. Calvert, M.B. Doar, and E.W. Zegura, Modeling
Internet Topology. IEEE Communications Magazine, June
1997. 36(6): p. 160-168.

31. DaSSFNet
Homepage.http://www.cs.dartmouth.edu/~ghyan/dassfnet/
overview.htm

32. Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd,
John Heidemann, Ahmed Helmy, Polly Huang, Steven
McCanne, Kannan Varadhan, Ya Xu, and Haobo Yu,
Advances in Network Simulation. IEEE Computer, May,
2000. 33(5): p. 59-67.

33. SSFNet Webpage.http://www.ssfnet.org
34. F. Wang and L. Gao. Inferring and Characterizing

Internet Routing Policies. in ACM SIGCOMM Internet
Measurement Conference. 2003.

35. T. Kielmann, H. Bal, J. Maassen, R. van Nieuwpoort, L.
Eyraud, R. Hofman, and K. Verstoep, Environments for
High-Performance Grid Computing: the Albatross Project.
Future Generation Computer Systems, 2002. 18(8).

36. L. Rizzo. Dummynet and Forward Error Correction. in
Proc. of the 1998 USENIX Anuual Technical Conf. June
1998. New Orleans, LA: USENIX Association.

37. Rob Simmonds, Russell Bradford, and Brian Unger.
Applying parallel discrete event simulation to network
emulation. in 14th Workshop on Parallel and Distributed
Simulation (PADS 2000). May 28-31, 2000. Bologna, Italy.

38. Ken Yocum, Ethan Eade, Julius Degesys, David Becker,
Jeff Chase, and Amin Vahdat. Toward Scaling Network
Emulation using Topology Partitioning. in Proceedings of
the International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems
(MASCOTS). 2003.

39. W. Aiello, F. Chung, and L. Lu. A random graph model
for massive graphs. in ACM Symposium on Theory of
Computing. 2000.

40. Dong Lu and Peter A. Dinda. Synthesizing Realistic
Computational Grids. in SuperComputig 2003. November
2003. Phoenix, Arizona.

 13

41. L. Gao, On Inferring Automonous System Relationships in
the Internet. IEEE/ACM Transactions on Networking,
2000.

42. Z. Morley Mao, Randy Bushy, Timothy G. Griffinz, and
Matthew Roughan. BGP Beacons. in IMC'03. October
2003. Miami Beach, Florida.

