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Abstract

Few methods use molecular dynamics simulations based
on atomically detailed force fields to study the protein-
ligand docking process because they are considered too
time demanding despite their accuracy. In this paper
we present a docking algorithm based on molecular dy-
namics simulations which has a highly flexible compu-
tational granularity. We compare the accuracy and the
time required with well-known, commonly used dock-
ing methods like AutoDock, DOCK, FlexX, ICM, and
GOLD. We show that our algorithm is accurate, fast
and, because of its flexibility, applicable even to loosely
coupled distributed systems like desktop grids for dock-
ing.
Keywords: Force field based methods, docking accu-
racy, desktop grid computing.

1 Introduction

A vast number of the essential roles that proteins play
require small molecules to bind to specific spots in the
protein structure. For instance, the small molecules can
act as switches to turn on or off a protein function, or
are the substrates for the particular chemical reaction
that a protein enzyme catalyzes. Obtaining the atomic
level details of the protein-ligand interactions is a valu-
able tool in the development of novel pharmaceuticals.
Conventional experimental techniques for obtaining de-
tailed structural information about protein-ligand com-

plexes are time and resource intensive. As a result, much
research effort has been focused on computational meth-
ods for the prediction of this difficult-to-obtain structural
information. In general, this process is called docking.

Current docking algorithms typically use a fast, simpli-
fied scoring function to direct the conformational search
and select the best structures. However, recent work has
demonstrated that there are significant inaccuracies as-
sociated with these algorithms [1]. Furthermore, there
are indications that inaccuracies can be reduced by us-
ing algorithms that use more sophisticated physics. For
example, CDOCKER, a docking algorithm based on
molecular dynamics (MD) and a conventional molecular
mechanics force field, indeed provides better accuracy
than other methods. However, it is still among the more
compute-intensive methods. Our aim is to adapt the
CDOCKER method to improve its performance with-
out sacrificing the accuracy. In particular, we would like
to take advantage of advances in computer technologies
and the establishment of new distributed architectures,
such as desktop grids.

Desktop grids provide a viable and inexpensive solu-
tion to the hitherto uncompetitive computational cost
and time for the force field methods. New algorithms
with finer computational granularity need to be devel-
oped, especially algorithms more suitable for the highly
volatile nodes of desktop grids. In this paper we present
an algorithm for the docking process based on MD simu-
lations as in [2], but characterized by a higher flexibility
that makes it adaptable to any computing platform, even
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to very challenging desktop grids.
Docking many ligands to the same protein followed by
scoring them for their relative strength of interaction has
been proposed as a procedure to identify candidates for
drug development. Screening large databases of com-
pounds in this manner can potentially provide an alter-
native to conventional high-throughput screening, but it
is not cost-effective unless the docking algorithm is fast
and accurate.
Most of the well-known, commonly used docking meth-
ods that are not based on MD were compared and an-
alyzed in detail in [3]. We validate the accuracy of
our algorithm by applying the tests defined in [3] to
our method, and compare to the published results for
the following other methods: AutoDock [4], DOCK [5],
FlexX [6], ICM [7], and GOLD [8]. We show that our
algorithm is indeed more accurate than all other meth-
ods except ICM. We reach a docking success rate of
over 70%, confirming the accuracy reported in [2]. The
time required for running a complete docking attempt is
longer but comparable with the time of the other meth-
ods. The fine computational granularity of our algorithm
is trivially parallel and each simulation attempt is de-
composable into independent sub-jobs. This flexibility
makes our accurate docking simulations fast when there
are many independent compute nodes, and thus, appli-
cable to a wide range of platforms from traditional su-
percomputers to loosely coupled distributed systems like
desktop grids.
In Section 2 we present our docking protocol as well
as some well-known and commonly used docking algo-
rithms that we will compare with our method. In Sec-
tion 3 we define the metrics of accuracy and time that
we use to validate our method while in Section 4 we
compare our method with the other docking algorithms
based on those metrics. Finally, in Section 5, we dis-
cuss the applicability of our docking protocol to desktop
grids, and future work coming out of this research.

2 The MD-based Docking Algorithm

2.1 The CHARMM Scientific Computation
Code

We use CHARMM to perform MD simulations
and investigate the protein-ligand docking process.
CHARMM is a program for simulating biologically rel-
evant macromolecules (proteins, DNA, RNA) and com-
plexes thereof [9]. It allows the investigation of the
structure and dynamics of large molecules in solvent or
crystals. CHARMM can be used to calculate free energy
differences upon mutations or ligand binding [10]. One
of the most common applications of CHARMM is MD,

in which the Newtonian equations of motion are dis-
cretized and solved numerically by an integration pro-
cedure such as the Verlet algorithm. The force on the
atoms is the negative gradient of the CHARMM poten-
tial energy function [11].

2.2 Modeling Protein-Ligand Interactions

Advances in energy calculation techniques make it vi-
able to use a grid-based representation of the protein-
ligand potential interactions to calculate our scoring
function. A grid potential allows us to represent a rigid
protein binding site as a potential field magnitude at
each grid point. Protein interactions with the ligand
in the binding site are interpolated from the interaction
strength of the grid points near each atom of the ligand,
rather than from computing the interactions of all ligand
atoms with all protein atoms individually, resulting in
orders of magnitude fewer floating-point computations
than in the traditional molecular mechanics method.
In a preliminary phase of the docking simulations, we
calculate three dimensional grid maps for each of the 20
potential atom types composing the ligands under inves-
tigation. Each grid map consists of a three dimensional
lattice of regularly spaced points surrounding and cen-
tered on the active site of a protein. Each point within the
grid map stores the potential energy of a ’probe’ atom
due to its interaction with the macromolecule. For ex-
ample, in a carbon grid map, the value associated with
a grid point represents the potential energy of a carbon
atom at that location due to its interactions with all atoms
of the protein receptor. We have chosen a grid spacing
of 1Å based on previous work that showed no signifi-
cant differences in docking accuracy for grid spacings
between 0.25 Å and 1 Å [2].
To facilitate the penetration of small ligands into the pro-
tein sites and allow larger configurational changes, van
der Waals (vdW) and electrostatic potentials with soft
core repulsions [12] were utilized instead of the tradi-
tional potentials. A soft core repulsion reduces the po-
tential barrier at vanishing interatomic distances to a fi-
nite limit. In this case, ligands can pass between confor-
mational minima with a relatively small potential barrier
that would normally be infinite and impassible with an
unmodified potential.

2.3 MD Docking Protocol

As in most of the existing methods, we model the
protein-ligand complex as composed of a rigid protein
structure and a flexible ligand. A flexible ligand has
three translational degrees of freedom, three rotational
degrees of freedom and one dihedral rotation for each
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rotable bond. The docking search is computed over a
6+n dimensional space where n is the number of rotable
bonds in the ligand. Figure 1 shows the MD-based algo-
rithm used for our docking simulations. One loop con-
stitutes a docking trial. Given a protein and a ligand
to dock into its binding site (a so-called protein-ligand
complex), a docking attempt consists of a sequence of m
independent trials. For each trial, a random configura-
tion for the ligand is generated by running 1000 steps
of MD at the constant temperature of 1000K in vac-
uum, starting from a reasonable structure with random
initial velocities on each ligand atom. We have ana-
lyzed the distribution of torsional angles generated by
this method, and found that they indeed vary randomly
over the physically reasonable range for each rotable
bond. We are confident that our initial configurations
randomly sample the available configurational space of
the ligand.
Starting from the new ligand configuration, a set of
10 different orientations are randomly generated and
docked into the receptor, that is, moved into the cen-
ter of the grid. Once the randomized ligand has been
docked into the active protein site, we run a MD simu-
lation consisting of a heating phase from 300K to 700K,
followed by a cooling phase back to 300K. Finally, we
refine the simulation result by running a short energy
minimization. In the end, we use the energy of binding
as the scoring function to rank the docked ligands and
return the lowest energy structure as the solution to the
docking trial. Twenty trials were run for each complex
to ascertain the optimal number of trials that should con-
stitute an attempt at docking.

2.4 The Other Docking Methods

Common search techniques for predicting binding
affinities and geometries are based on genetic algo-
rithms, chemistry, geometry of atoms, Monte Carlo or
MD. Selection of best docked structures is performed
using scoring functions belonging to three different cat-
egories: explicit force field scoring functions (as in
our case), empirical scoring functions, or knowledge-
based scoring functions. AutoDock, DOCK, FlexX,
ICM and GOLD are well-known, commonly used pro-
grams which use a variety of search methods and scoring
functions to address the study of protein-ligand docking.
AutoDock [4] uses the Lamarckian genetic algorithm
(LGA) by alternating local search with selection and
crossover. The ligands are ranked using an energy-
based scoring function and, to speedup the score cal-
culation, a grid-based protein-ligand interaction is used.
GOLD [8], like AutoDock, deploys a genetic algorithm
and uses a scoring function which is the sum of energy
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Figure 1. Our MD-based protein-ligand docking
algorithm.

terms, some of which reflect the short-range vdW in-
teraction between protein and ligand as well as the lig-
and internal energy. The search in DOCK [5] is driven
by the geometry of the ligand in the active site. Dif-
ferent scoring functions can be employed: (1) geomet-
ric alignment and shape constraints, (2) the electrostatic
potential of the protein-ligand complex using the pro-
gram DELPHI, or (3) the energy of the protein-ligand
complex under the AMBER force field. FlexX [6] is
also driven by the geometry of the ligand in the active
site like DOCK. In FlexX, the scoring uses a variation
of the Böhm scoring function with terms for several
kinds of interactions and penalty functions for the devi-
ations from ideal interaction geometries. ICM [7] uses
a Monte Carlo minimization on the internal coordinates
to find the global minimum of the scoring function. The
scoring function used to rank placements of ligands rel-
ative to one another takes into account the force field
energy of the ligand and the protein-ligand interaction
energy.

3 Metrics

3.1 Accuracy

The accuracy of any given docking attempt is measured
by the root-mean-square-deviation (RMSD) of all non-
hydrogen ligand atoms between the lowest-energy struc-
ture from the docking attempt and the ligand’s position
in the crystal structure. For many of the ligands studied
here, a dihedral rotation can result in a ligand conforma-
tion that is geometrically and chemically indistinguish-
able, but with a different RMSD relative to the experi-
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Protein Protein-Ligand Complex PDB Entry

Trypsin 3ptb(3), 1tng(2), 1tnj(3), 1tnk(4), 1tni(5), 1tpp(7), 1pph(11)
Cytochrome P450cam 1phf(1), 1phg(5), 2cpp(3)
Neuraminidase 1nsc(12), 1nsd(11), 1nnb(11)
Carboxypeptidase 1cbx(5), 3cpa(8), 6cpa(16)
L-Arabinose 1abe(4), 1abf(5), 5abp(6)
e-Thrombin 1etr(15), 1ets(13), 1ett(11)
Thermolysin 3tmn(10), 5tln(14), 6tmn(20)
Penicillopepsin 1apt(30), 1apu(29)
Intestinal FABP 2ifb(15)
Carbonic Anhydrase II 1cil(6), 1okl(5), 1cnx(13)

Table 1. Data set of the 31 protein-ligand complexes used for our experiments.The number of rotable
bonds for each ligand is reported beside the complex name.

mentally determined structure. That is, the RMSD be-
tween a docking attempt and the crystal structure using
a one-to-one mapping of atoms may or may not accu-
rately measure the quality of the docking attempt. Con-
sequently, we have exhaustively calculated the RMSD
of all degenerate conformers related by the rotation of
all symmetry-conferring dihedral angles. The lowest
RMSD obtained from this search is guaranteed to be the
correct RMSD for the structure.

Reference [3] provides an additional measure describing
the frequencies where high-quality docking solutions are
found. For many docking attempts, the docking accu-
racy (DA) can be defined as follows:

DA = fRMSD≤2 +0.5( fRMSD≤3 − fRMSD≤2) (1)

where fRMSD≤a is the fraction of docking attempts that
produce structures with an RMSD relative to the experi-
mental structure of a Angstroms.

3.2 Computational Time

In order to compare the performance of our docking al-
gorithm with the other methods and study its applicabil-
ity to different compute platforms, we look at the CPU
time required for completing a docking attempt on a sin-
gle node. In the case of the docking methods reported
in [3], the length of a docking attempt was controlled
by the default or recommended parameter settings of the
specific docking algorithm. For our MD-based method,
we consider the time to complete a set of docking trials
and report CPU time for sets of 1, 10 and 20 trials.

4 Simulation Results

4.1 Testbed Characterization

All the docking simulations for the methods presented in
Section 2.4 were performed on an SGI R10000 equipped
with a single 195 MHz IP2 processor and 128MB mem-
ory. We use the same machine for the measurement and
comparison of the time required for completing a sin-
gle attempt. For the investigation of the accuracy and,
in particular, for the investigation of the optimal number
of trials per attempts to reach an acceptable DA, we run
our several simulations on a cluster of 64 dual-processor
nodes at the San Diego Supercomputer Center (SDSC)
at UCSD equipped with 930MHz Pentium III proces-
sors.

4.2 Characterization of our Docking Simula-
tions

We run our docking simulations on a data set of 31
protein-ligand complexes, all of the complexes used
in [3] that are present in the Ligand Protein DataBase
(LPDB) [13]. The criteria for choosing the protein-
ligand complexes in [3] are that the proteins under inves-
tigation have at least two entries with different ligands
in the PDB (with the exception of the Intestinal FABP),
and that no protein-ligand covalent bonds are present.
Table 1 shows the list of the ten proteins and their lig-
ands. The ligands have different structures and numbers
of rotable bonds, ranging from 1 to 30. The number of
ligand rotable bonds is reported next to each complex in
the table. We consider four different cases each with a
different number of MD steps for the heating and cool-
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ing phases. Table 2 shows the four cases and the associ-
ated number of 1 fsec MD steps. Figure 2 shows the DA
of our MD-based method with different number of trials
per attempt and different lengths for the MD simulation
(each case is reported in Table 2). In the figure we label
each attempt with Ti where i is the number of indepen-
dent trials per protein-ligand docking attempt (i ranges
from one to twenty). By looking at the data reported in
Figure 2, we conclude that we need about 10 trials per
attempt to reach a docking accuracy of 70%.

Case Heating Phase Cooling Phase
# MD steps # MD steps

Case A - 1K2.5K 1000 2500
Case B - 2K5K 2000 5000
Case C - 4K10K 4000 10000
Case D - 8K20K 8000 20000

Table 2. The four different MD simulations, each
with a different number of MD steps for the heat-
ing and cooling phases.
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Figure 2. Docking Accuracy (DA) for different
number of trials per docking attempt and with
different number of MD steps per simulation.

Figure 3 shows the average time in seconds per trial and
with different number of MD steps per simulation as re-
ported in Table 2. As expected, the increase of num-

ber of MD steps during the heating and cooling phases
causes an almost linear increase of the simulation time.
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Figure 3. Average time in seconds per trial and
with different number of MD steps per simula-
tion.

We have run several experiments with 10 and 20 trials
and have confirmed that the results shown in Figure 2
and Figure 3 are repeatable (data not shown). For our
comparison in the rest of the paper we use Case B as a
reference case for which we run 2000 MD steps during
the heating phase, and 5000 MD steps during the cool-
ing phase. Each MD step consists of 1 fsec time step.
The DA, RMSD and time values for the other methods
reported in Section 2.4 and used in our comparisons in
the rest of this paper are from the previous work of our
group [3].

4.3 Comparison of the Docking Accuracy (DA)

Figure 4 compares the DA of the well-known methods
with the DA of our MD-based method for Case B in
which each MD simulation consists of 2000 heating MD
steps and 5000 cooling MD steps. By looking at the
data reported in Figure 4, we observe that our method
provides better DA than all the other methods, except
ICM. ICM employs an algorithm which improves con-
vergence by using an analytical gradient minimizer and
running multiple Monte Carlo minimizations from sev-
eral starting configurations. We plan to make a more
detailed study of MD and Monte Carlo simulations for
the docking process in the near future.
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Protein-ligand Complex # rotable bonds AutoDock DOCK FlexX ICM GOLD T10 T20

3ptb 3 0.80 0.59 1.11 0.49 1.09 0.56 0.54
1tng 2 0.62 0.86 1.08 0.71 1.89 0.70 0.69
1tnj 3 1.21 1.56 1.73 2.17 1.90 1.42 1.50
1tnk 4 1.69 1.87 1.70 2.53 3.08 1.16 1.14
1tni 5 2.61 5.26 2.73 3.40 4.93 2.22 2.22
1tpp 7 1.80 3.25 1.95 1.71 2.33 2.43 2.53
1pph 11 5.14 3.91 3.27 1.44 4.23 4.00 0.53
1phf 1 2.09 2.39 4.68 1.23 4.42 1.20 1.20
1phg 5 3.52 5.57 4.87 0.46 4.20 1.07 1.08
2cpp 3 3.40 2.48 0.44 2.53 3.49 3.26 3.27
1nsc 12 1.40 4.86 6.00 1.80 1.02 1.47 1.40
1nsd 11 1.20 4.51 1.56 1.04 0.96 1.85 1.85
1nnb 11 0.92 4.51 0.92 1.09 0.84 1.67 3.97
1cbx 5 1.33 3.13 1.32 0.82 1.87 0.62 0.62
3cpa 8 2.22 6.48 1.51 0.77 1.87 2.22 2.22
6cpa 16 8.30 8.30 9.83 1.60 4.96 4.00 4.00
1abe 4 0.16 1.87 0.55 0.36 0.18 0.56 0.56
1abf 5 0.48 3.25 0.76 0.61 0.50 0.68 0.70
5abp 6 0.48 3.89 4.68 0.88 0.59 0.48 0.51
1etr 15 4.61 6.66 7.26 0.87 5.99 1.09 1.09
1ets 13 5.06 3.93 2.11 6.22 2.39 1.97 1.97
1ett 11 8.12 1.33 6.24 0.99 1.30 0.82 0.82
3tmn 10 4.51 7.09 5.30 1.36 3.96 3.65 3.65
5tln 14 5.34 1.39 6.33 1.42 1.60 1.21 1.21
6tmn 20 8.72 7.78 4.51 2.60 8.54 2.21 2.21
1apt 30 1.89 8.06 5.95 0.88 8.82 5.72 4.79
1apu 29 9.10 7.58 8.43 2.02 10.70 1.32 1.32
2ifb 15 3.09 1.43 8.94 1.04 2.61 2.09 5.19
1cil 6 5.81 2.78 3.52 2.00 6.04 1.86 1.86
1okl 5 8.54 5.65 4.22 3.03 3.55 2.84 2.84
1cnx 13 10.9 7.35 6.83 2.09 6.32 6.20 6.20

Table 3. Comparison of best RMSD for different docking methods. The best RMSD is the RMSD of
the predicted ligand from the Xray structure. For each protein-ligand complex, the best RMSD found
is reported in bold.

4.4 Comparison of RMSD for the Different
Docking Methods

The RMSD’s reported in Figure 3 are the root mean
square deviations of the heavy atoms of the predicted
ligands from the corresponding ligands in their pub-
lished complex crystal structures. For our MD-based
docking, we present results of attempts with different
numbers of trials: T 10 with 10 trials per attempt and
T 20 with 20 trials per attempt. In general, we observe
that for both T 10 and T 20, we get, on the average, lower

RMSD than the other methods.

4.5 Comparison of Simulation Time for the
Different Docking Methods

The main question we want to address in Table 4 is
whether the high level of accuracy is also supported by
competitive execution time when compared with the ex-
ecution times of the other docking methods. Table 4
shows the average CPU time to complete a protein-
ligand docking for the ten proteins in Table 1 and for
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Protein AutoDock DOCK FlexX ICM GOLD T1 T10 T20

Trypsin 391 51 26 65 165 81 805 1610
Cytochrome P450cam 291 29 82 40 273 84 846 1693
Neuraminidase 620 98 72 99 269 111 1110 2220
Carboxypeptidase 624 88 92 147 437 115 1156 2313
L-Arabinose 353 37 31 39 288 76 766 1533
e-Thrombin 1174 421 83 336 676 203 2036 4073
Thermolysin 789 170 65 238 500 148 1483 2966
Penicillopepsin 1122 412 77 645 840 276 2760 5520
Intestinal FABP 560 138 29 234 489 145 1450 2900
Carbonic Anhydrase II 519 55 88 92 388 107 1070 2140

Table 4. Comparison of average time simulations for different proteins and different docking meth-
ods.
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Figure 4. Comparison of docking accuracy (DA).
The docking accuracy is the weighted sum of
the fraction of docked attempts with acceptable
accuracy (lower or equal to 2Å and 3Å).

the different methods under investigation. For our MD-
based docking method, we consider the average time of
a single trial as well as the time for an attempt of 10 and
20 trials. Again we consider the Case B in Table 2 as
a reference case. We observe that an attempt of 10 tri-
als is completed in less than one hour even for complex
protein-ligand docking with a large number of rotable
degrees of freedom. In addition, each trial of each at-
tempt is independent, and therefore, the 10 trials can run
at the same time on different processors in parallel. If
enough processors are available, the time for completing
a protein-ligand docking becomes the time for a single
trial, making our algorithm highly competitive with the
other methods.

5 Computational Platforms for our MD-
based Docking

MD simulations are time-consuming but are also accu-
rate general techniques for the study of protein-ligand
docking. The time needed by MD-based algorithms
to screen large sets of ligands (of the order of 10,000
molecules) makes this approach prohibitive even on ex-
pensive supercomputers. On non-dedicated systems,
even the docking of a single protein-ligand complex
might result in a time-to-solution on the order of hours
due to computing resource contentions. The motivation
to port existing applications to more cost-effective dis-
tributed systems like desktop grids is not strong for such
applications unless more time-effective algorithms are
designed and implemented.

The need for new algorithms that are more flexible and
suitable for desktop grids, but still accurate, is the moti-
vation behind our search for the docking algorithm pre-
sented in this paper. Docking attempts of our MD-based
algorithm consist of sequences of independent trials. We
have observed and measured that attempts for even com-
plex ligands with a large number of rotable bonds are
characterized by short simulation times, much shorter
than 1 hour. By decomposing each attempt into sets of
independent trials, we can further increase the compu-
tational granularity of the algorithm. Using available
desktop PC’s simultaneously to process each trial, pro-
portionally decreases the time to solution. Long compu-
tation tasks, which are more probable to be interrupted
by annoyed desktop users, should also be avoided. Our
result shows that we can ensure the time to solution to be
equal to the time for a single trial when a large number of
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desktop PCs is available. An acceptable accuracy can be
ensured by sending out more trials than are needed for
the desired accuracy, and using the first trials to com-
plete.
Therefore, we conclude that our docking algorithm is
well-suited for Intranet desktop grid platforms (e.g., En-
tropia DCGrid [14], Infuzion [15]) and on the Internet
(e.g., XtremWeb [16], BOINC [17]). The combination
of our algorithm with such platforms, which might al-
low us to perform fast and accurate screening of very
large ligand databases, is currently under our develop-
ment and investigation.

6 Conclusion

In this paper we present a MD and detailed force field
protein-ligand docking algorithm based on a grid repre-
sentation of the protein-ligand interactions and soft-core
potential. We prove that our docking method provides
better docking accuracy than most of the other well-
known and commonly used docking techniques, dis-
playing a successful docking rate of 70%.
Based on our time comparisons, we claim that the com-
putational time is no longer a justified reason to avoid
using detailed force field based docking techniques.
Even for complex ligands, the completion time for a
protein-ligand docking attempt of 10 trials is modest
(less than one hour on a 930MHz processor for ligands
with large numbers of rotable bonds). Desktop grid plat-
forms are well-suited for our accurate, fine-grained par-
allel algorithm for which each docking trial is short and
independent.
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