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Abstract 

Users and developers of grid applications have 
access to increasing numbers of resources.  While more 
resources generally mean higher capabilities for an 
application, they also raise the issue of application 
scheduling scalability. First, even polynomial time 
scheduling heuristics may take a prohibitively long time 
to compute a schedule. Second, and perhaps more 
critical, it may not be possible to gather all the resource 
information needed by a scheduling algorithm in a 
scalable manner.  Our application focus is scientific 
workflows, which can be represented as Directed Acyclic 
Graphs (DAGs). Our claim is that, in future resource-rich 
environments, simple scheduling algorithms may be 
sufficient to achieve good workflow performances. We 
introduce a scalable scheduling approach that uses a 
resource abstraction called a virtual grid (VG). Our 
simulations of a range of typical DAG structures and 
resources demonstrate that a simple greedy scheduling 
heuristic combined with the virtual grid abstraction is as 
effective and more scalable than more complex heuristic 
DAG scheduling algorithms on large-scale platforms.  

 
 

1. Introduction 

Efficiently scheduling the tasks of a parallel 
application on the resources of a distributed computing 
platform is critical for achieving high performance. The 
scheduling problem has been studied for a variety of 
models and assumptions and has proved to be NP-
complete in most cases [1]. Consequently, researchers 
have developed many heuristics that exhibit polynomial 
time complexity and attempt to approach the optimal 
schedule. A popular application model for which 
scheduling heuristics have been developed is the “task 
graph” model, by which an application is represented as a 

weighted Directed Acyclic Graph (DAG). Nodes in the 
DAG represent computational tasks, and edges represent 
data communication among tasks. Node weights represent 
computational costs, and edge weights represent amounts 
of data to transfer between tasks. A survey of “DAG 
scheduling algorithms” is available in [2].  

The DAG application model is particularly relevant 
for scientific workflows [3]. The last few years have seen 
active development and deployment of many such 
workflows in various domains [4-6] and these workflows 
require considerable amounts of computing power. 
Therefore, it is natural to explore the possibility of 
executing them on large-scale computing platforms such 
as grids [7]. And indeed, several efforts are underway to 
provide software frameworks for “grid workflows” [8].  
These efforts typically focus on workflow instantiation 
and deployment issues and they leave the question of 
efficient scheduling mostly unaddressed.  

In this paper we ask the question: “Are sophisticated 
DAG scheduling algorithms required to schedule 
workflows on grid platforms?”  Our claim is that, in many 
relevant cases, simpler scheduling approaches are viable 
alternatives and can be preferable in practice as they are 
as effective, more robust, more scalable, and simpler to 
implement.  

To “replace” the work done by sophisticated 
scheduling algorithms, we employ a resource abstraction 
called the Virtual Grid (VG) [9, 10]. With this 
abstraction, we demonstrate in simulation that a naïve 
greedy scheduling algorithm, which does not account for 
resource information nor for application information 
beyond task dependencies, can be as effective as a 
popular DAG scheduling algorithm for scheduling a 
workflow on large-scale grid platforms.  

The rest of this paper is organized as follows. In 
Section 2 we define the problem, identify challenges, and 
highlight the limitations of current solutions. Section 3 
details our approach based on the VG abstraction. Section 
4 presents our experimental methodology, and Section 5 

 



presents our results. Section 6 discusses our results and 
highlights future directions. 

2. Scheduling Applications in Large-Scale 
Environment 

Users of scientific applications, and in particular of 
scientific workflows, are increasingly faced with 
situations in which they have to select appropriate 
compute resources among a large number of potential 
resources distributed over the wide-area. This is due to 
two factors. First, with dropping hardware prices for 
commodity computers, with several cluster vendors, and 
with the availability of open-source cluster management 
tools [11], it is increasingly affordable and 
straightforward to purchase/deploy powerful Linux 
clusters. Second, the development of the grid middleware 
infrastructure [12] makes it straightforward for users to 
access a wide collection of resources uniformly and 
securely. Additionally, with projects [13] exploring 
optical networks and providing high bandwidth among 
many clusters, there is a trend towards resource-rich 
environments with good network connectivity in which 
users can access many clusters in many institutions 
concurrently. Workflow applications can benefit from 
such environments because they are often loosely coupled 
and can utilize resources at multiple sites concurrently 
and efficiently. 

With more resources to choose from, the question of 
effective scheduling becomes critical. In this paper we 
define application performance as application turn-around 
time, which includes the time to compute a schedule 
(encompassing selection of resources and selection of 
task-resource mappings) and the time to execute the 
schedule (also called makespan).   

2.1. Challenges 

With the explosion in the number of computing 
resources, the major challenge for scheduling workflows 
is scalability of the scheduling algorithm itself. Although 
of polynomial complexity, DAG scheduling heuristics 
may become impractical when considering large numbers 
of individual resources. More importantly perhaps, 
existing heuristics require information about individual 
resources and about their distances from each other over 
the network. Collecting and processing reasonably up-to-
date such information may itself not be scalable.  There is 
therefore a trade-off between the time spent computing a 
schedule (perhaps prohibitively high for a sophisticated 
heuristics, but low for a simple one) and the time spent 
executing it (arguably low for a sophisticated heuristic, 
but probably high for a simple one). 

2.2. Current Approaches and Limitations 

As seen in [2], DAG scheduling heuristics that 
calculate and account for the ``critical path’’ of the DAG 
are often the most effective. The critical path is essentially 
the longest path in the DAG (in terms of node and edge 
weights), and is thus a lower bound on the overall 
makespan. These heuristics attempt to lower this lower 
bound in the hope of lowering the makespan.   

In practice however, for the purpose of scheduling 
grid workflows, these heuristics are not used. For 
instance, the Pegasus grid workflow framework [14, 15] 
implements only the simplistic random, round-robin, or 
min-min [16] heuristics for scheduling workflows of the 
Montage astronomy application [17, 18]. 

There are several reasons for the lack of acceptance 
of more sophisticated scheduling algorithms. First, these 
algorithms are more complicated to implement. Second, 
they often require more information about the application 
and/or the resources, which may be difficult to obtain 
scalably. Third, there has been no clear demonstration 
that they would improve application turn-around time in 
practice (i.e., achieve a good trade-off between the time to 
compute a schedule and the time to execute it).  

An open question is then “Should sophisticated 
scheduling algorithms be used for workflows in grid 
environment?” While scheduling is a common topic of 
discussion in the grid workflow community there is not 
consensus on the answer to this question. In this paper we 
show that although the use of sophisticated algorithms 
may be worthwhile, simplistic algorithms can achieve 
comparable or even better application turn-around time in 
many relevant cases, provided that an adequate resource 
abstraction is used for resource pre-selection 

3. Scheduling Using Virtual Grids 

One simple way in which to improve the scalability 
of a scheduling algorithm is to constrain its operation to a 
pre-selected set of resources. Scheduling algorithms 
typically perform implicit resource selection: they 
consider a large number of potential resources and 
compute a schedule that utilizes only a fraction of these 
resources in the end. On resource-rich grid platforms for 
workflow applications this fraction is typically minute. If 
instead one pre-selects a “good” subset of the potential 
resources and then run the scheduling algorithm, one 
should be able to obtain schedules with comparable 
makespans in significantly less time. Perhaps more 
importantly, if the pre-selection is reasonable, it is 
possible that very simple scheduling algorithms could 
achieve similar makespans as more sophisticated 
algorithms. The sophisticated algorithms should improve 
the makespan, but at the expense of longer time to 
compute the schedule and may require a wealth of 

 



information regarding resources and/or applications.  The 
question is whether one can “get by” with simpler 
algorithms in practice.   

3.1. Virtual Grids 

A Virtual Grid (VG) provides a high-level, 
hierarchical abstraction of the resource collection that is 
needed and used by an application. This abstraction 
provides a clean separation of concerns between grid 
applications and the complexity of the grid infrastructure: 
the application specifies its resource needs using a high-
level language, vgDL, and the Virtual Grid Execution 
System (vgES) finds and allocates appropriate resources. 

This abstraction is implemented as part of the 
VGrADS project [19]. We discuss here only the concepts 
and features that are relevant to the following sections. 
More information on the vgDL language and the vgES 
system can be found in [9] and [10]. 

The salient point of vgDL is the capability for 
applications to specify hierarchical resource aggregates 
and qualitative notions of network proximity between 
these aggregates. vgDL contains three resource 
aggregates, distinguished by homogeneity and network 
connectivity: (i) LooseBag: a collection of heterogeneous 
nodes with possibly poor connectivity; (ii) TightBag: a 
collection of heterogeneous nodes with good 
connectivity; and (iii) Cluster: a set of well-connected  
nodes with identical (or nearly so) individual resource 
attributes. The notion of “good” is defined in term of a 
network latency threshold. The implicit assumption is a 
positive correlation between low latency and high 
bandwidth.  For instance, in vgDL, an application can 
request a Cluster of 32 Opteron processors with clock rate 
higher than 2Ghz and more than 1GB of RAM that is 
“close” to a TightBag of 32 to 128 processors that have 
clock rates higher than 1Ghz. The tenet of the VGrADS 
project is that such simple and qualitative specifications 
fit the need of most applications in practice. Such requests 
are sent to the vgES system. 

The vgES system constantly gathers and indexes 
information about available resources in an off-line 
manner using grid information services [20, 21].  It then 
uses relational database technology and efficient 
algorithms to select resources that match the requirements 
expressed in a vgDL query (see [10] for an evaluation). 
Note that this system operates at a higher level than grid 
middleware such as Globus [12] and leverages such 
middleware to acquire grid resources. 

3.2. Scheduling with VGs 

Our scheduling approach consists of pre-selecting 
resources by obtaining a VG corresponding to a simple 
vgDL description, and then scheduling the application 

within the resources in the VG. In essence, whereas 
complex scheduling algorithms explicitly (and sometimes 
by brute force) search for a good schedule by examining 
trade-offs between computation and communication 
explicitly, the vgES, when processing a vgDL requests, 
immediately bypasses undesirable branches of the search. 
There is no magic here: vgES does a lot of the necessary 
work to prune the search space. The point is that it does it 
very efficiently and scalably.  Furthermore, vgES does 
this once for the entire workflow – not for each task.  
Thus, we anticipate that this reduced resource search 
space (and reduced work) and a simple greedy heuristic 
can in fact achieve comparable or perhaps better turn-
around times for many relevant applications in practice. 

4. Experimental Approach 

Our goal is to investigate whether using the VG 
abstraction can indeed simplify the scheduling of 
workflow applications on large-scale platforms. We 
perform the following experiments.  We use DAGs from 
a real-world grid workflow applications, Montage [17], as 
well as randomly generated DAGs to better understand 
the impact of DAG characteristics on our results.  We 
consider a computing platform generated by a tool [22] 
that instantiates synthetic large-scale computing 
environments that are representative of current 
technology.  

Using simulation we execute two different 
scheduling algorithms: a naïve greedy algorithm (which 
we call “simple”) and a standard DAG scheduling 
algorithm (which we call “complex”).  We execute these 
algorithms in three modes: (i) on the whole “resource 
universe” without pre-selection of resources; (ii) only on 
some pre-selected “top” fraction of the resources sorted 
by clock rate; and (iii) only on pre-selected resources that 
have been obtained as part of a VG. We obtain the VG by 
querying our vgES prototype, which has stored resource 
information corresponding to our synthetic computing 
environment. Therefore, we conduct 6 different types of 
experiments, as summarized in Table 1. We provide 
details on all the above in the following sections. 

Table 1: Scheduling schemes in Grid 
environments 

Scheduling 
Algorithm 

Resources 

Complex Universe 
Complex Top Hosts 
Complex VG 
Simple Universe 
Simple Top Hosts 
Simple VG 

 



4.1. The Montage Application 

Montage is an astronomy application that creates a 
mosaic image of a portion of the sky on demand. Figure 1 
shows the structure of a small Montage workflow. All 
tasks on level k have a parent task on level k-1. The top-
level tasks (level 1) are not dependent on any other tasks. 

For our experiments, we consider a 4469-task 
Montage workflow used to create a five square degree 
mosaic of the sky centered at M16. Table 2 shows the 
average runtimes of Montage tasks on a 1.5Ghz host as 
reported in [23]. We are interested in seeing how 
communication might affect scheduling. Therefore, for 
each Montage workflow, we vary the communication-to-
computation ratio (CCR). We test ratios of 0.1, 0.5, 1.0, 
2.0, and 10.0. A ratio of 1 implies equal amount of 
computation and communication. For each task, we 
calculate the size of its output file based on the 
computational cost, the CCR, and the maximum 
bandwidth in the network, which in our case is 10Gbps. 
For example, for a CCR of 1, we derive the appropriate 
file size such that the communication cost would also be 
8.2 seconds. In this case, the files size would be 152MB, 
as it would take 8.2 seconds to transfer this on the fastest 
link in our synthetic platform. 

 
Figure 1: A small Montage workflow 

Table 2: Runtime and number of tasks at various 
levels of the Montage workflow 

Level Task name Number 
of Tasks 

Runtime (in 
seconds) 

1 mProject 892 8.2 
2 mDiffFit 2633 2 
3 mConcatFit 1 68 
4 mBgModel 1 56 
5 mBackground 892 1 
6 mImgtbl 25 6 
7 mAdd 25 40 

4.2. Random DAGs 

We also generate a collection of random DAGs 
following the method outlined in [2]. For each random 
graph, we vary its size, its mean computation cost (using 
a 1.5Ghz host as the reference), its communication-to-
computation ratio (CCR), its parallelism, its density, its 
regularity, and its mean task computational cost. The 
parallelism parameter determines the width of the DAG; 
density characterizes the number of edges; regularity 
determines the regularity of the number of tasks at each 
level. Table 3 summarizes the different parameters and 
their corresponding values for the random DAGs we 
generate. See [2] for more details. 

Table 3: DAG parameters and corresponding 
values for random DAG generation 

DAG 
Parameter 

Values Default 
Value 

DAG size (tasks) 44, 447, 4469, 8938 4469 
CCR 0.1,0.2,1,2,10 1 
Parallelism 0.1,0.2,0.5,0.8,1 0.5 
Density 0.1,0.2,0.5,0.8,1 0.5 
Regularity 0.1,0.2,0.5,0.8,1 0.5 
Mean comp cost 1,5,40,100 40 

4.3. Scheduling Algorithms 

Among all the DAG scheduling algorithms surveyed 
and evaluated in [2] we choose the popular MCP 
(Modified Critical Path) algorithm [24], as it is 
competitive according the results in [2]. MCP is our 
“complex” scheduling algorithm. The pseudo code for 
MCP is shown in Figure 2. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CP = length of the longest path (in terms of node weights  
         and edge weights)  from the root node to the end  
         node, including both these nodes 
For each non-root node Ni in the DAG 
    BLi =  length of the longest path (in terms of node             
               weights and edge weights) from node Ni to the  
               end node, including both these nodes 
    ALAPi = CP – BLi
End For  
For each node Ni
    Li = list of the ALAP values of node Ni and all its  
           descendents, in ascending order 
End For 
Sort all Li lists in lexicographical order and  
Re-Order the nodes according to this order 
For each node Ni  
    Schedule Ni on the host that would complete its 
    execution soonest 
End For 
Figure 2: Modified Critical Path (MCP) Algorithm 



 
 
 
 
 
 

 

Figure 3: Simple Greedy Algorithm 

For our “simple” scheduling algorithm we use a 
greedy scheduling algorithm that assigns each task to a 
random available host as soon as the task’s dependencies 
have cleared.  The corresponding pseudo code is shown in 
Figure 3. 

We expect that running a more complex scheduling 
algorithm such as MCP on the resource universe would 
produce the best makespan by taking into consideration 
all the resources. We hope that appropriate resource pre-
selection would allow a simple scheduling algorithm to 
achieve better trade-off between the time to compute a 
schedule and the time to execute the schedule, thereby 
leading to better turn-around time. 

4.4. Resources 

We are interested in scheduling applications in large-
scale environments. Since we do not have immediate 
access to hundreds of clusters for running our 
experiments, we use simulation of a synthetic resource 
pool. We use the synthetic resource generator described in 
[22] that bases its models on the characteristics of 650 
real-world clusters (ones registered with the Rocks project 
[25]).  We generate 1000 clusters for a total of 33,667 
hosts. While having access to 1,000 different clusters may 
seem far-fetched today, current trends indicate that this 
may be typical within 5 years. 

When scheduling and simulating the execution of 
workflows we ignore the architectures of the hosts and 
use only clock rates to determine task runtimes. We scale 
the reference task runtimes on a 1.5GHz host to account 
for lower or higher clock rates.  

A survey of three topology generators [26-28] 
showed that none had convincing models for latencies, 
bandwidths, or contention. We opted for the following 
simple model. We use a Gaussian distribution for the 
latencies between clusters. The Gaussian distribution has 
mean of 100ms and standard deviation of 100ms. We 
opted for classifying the bandwidths in our synthetic 
resource pool into 10Gbps for intra-cluster connections 
and connections with latency lower than 0.5ms (e.g., 
within a building), 1Gbps for latencies lower than 1ms 
(e.g., within a campus), 622Mbps (OC12 link) for 
latencies lower than 40ms, and 155Mbps (OC3 link) for 
latencies greater than 40ms. 

To run our experiments, we used an Intel Xeon 
2.4GHz machine, on which all scheduled computations 
and VG instantiations were performed. 

We have assumed that vgES has negotiated with the 
local resource managers such that the application has sole 
access to the resources in the VG for the duration of its 
execution; thus we do not consider resource contention. 
For network contention, we did not find any other 
convincing models, so we are using the Gaussian 
distribution outlined above. We have assumed no wide 
variance in network workloads for the duration of the 
application. Studying the effects of possible jitter in file 
transfer times is outside the scope of this paper, but these 
effects should impact all our scheduling methods equally 
anyway. 

While there are still some tasks to schedule 
    For each node Ni whose predecessors, if any,   
                 have already been scheduled 
        Schedule Ni on the host that would start its execution       
                 soonest 
    End For 
End While 

Virtual Grids. In general, one can expect that using an 
unlimited number of the fastest machines in a cluster will 
lead to the lowest application makespans. Unfortunately, 
the number of nodes in a cluster is limited. In fact, the 
fastest clusters might not always be the biggest clusters. 
Furthermore, it may be best to use multiple clusters 
provided they are not too “far” from each other.  

The above is exactly the sort of trade-offs that make 
scheduling difficult. The VG abstraction allows users the 
luxury of asking for a TightBag (that is sets of 
heterogeneous hosts that are “close”), with a parameter to 
determine what “close” means. The vgES will identify 
such a TightBag quickly, even in large-scale 
environments [10]. Our approach focuses on finding an 
appropriate TightBag for a given DAG. The size of the 
TightBag (in number of hosts) should be proportional to 
the widest portion of the DAG to allow maximum 
parallelism. For instance, for the Montage workflow 
described in Table 2, we can write the vgDL specification 
shown in Figure 4, which asks for a TightBag containing 
between 500 and 2633 hosts, where hosts have clock rates 
higher than 3Ghz. We choose 2633 as the upper bound on 
the number of hosts in the VG as this represents the 
widest portion of the Montage DAG. The [rank = Nodes] 
statement just means that a larger TightBag is preferable. 
(See [10] for all details regarding vgDL.) When the 
resource platform does not contain the number of 
resources we want (2633) for a TightBag, we can specify 
the willingness to accept fewer resources.  

In our synthetic resource environment such a request 
returns a VG containing 924 hosts. If a sufficiently large 
TightBag cannot be found however, then more complex 
VG structures may be required. This is an interesting 
question and a possible answer is to use a LooseBag of 
TightBags (with as few TightBags as possible so that a 
sufficient number of nodes are acquired). In this case, 
sophisticated scheduling algorithms would indeed be 
necessary, especially for  applications that tend to be data-
intensive and for which scheduling of data transfers 

 



between TightBags must be judiciously chosen. Other 
efforts [29] in the VGrADS project are exploring the use 
of such resource structures and of non-greedy scheduling 
algorithms to achieve high  performance. We argue that, 
although this may not be true today, when and if resource 
environments become abundant with good networking 
connectivity among many subsets of the available 
clusters, then for many relevant applications (but not all), 
the vgES would acquire reasonably sized TightBags on 
behalf of the user with high probability. 

 
 
 
 

 

Figure 4: vgDL used for the Montage workflow 
Top Hosts (Fastest). To show that using a VG is better 
than just picking the fastest hosts in the resource universe, 
we experiment with a subset of the resource universe that 
consists of the fastest 2633 hosts. We run our scheduling 
algorithms on this subset of the hosts. 

5. Results 

The main result from our experiments is that, 
regardless of DAG size, using the VG approach with a 
simple scheduling algorithm is preferable. We discuss 
below specific results for Montage and random DAGs. 
We compute a lower bound on application makespan by 
assuming that all tasks run on hosts as fast as the fastest 
available host and that all data transfers take place on 
network links as fast as the fastest network link available. 

5.1. Montage 

Figure 5 and Figure 6 show results for the Montage 
workflow using the MCP and the greedy algorithm. 
Results include the time to compute the schedule, the 
application makespan resulting from the schedule, the 
time to obtain a VG when applicable, and the total 
application turn-around time including all of the above.  

The results in Figure 5 are for the actual Montage 
communication costs. The intermediate files generated by 
different stages ranged from 300 bytes to 4 megabytes, so 
communication costs were relatively low. The conclusion 
from these results is that running the greedy algorithm on 
a VG achieves the best application turn-around time 
overall (within 8% of the ideal lower bound), if not the 
best makespan. The best makespan is achieved when 
running MCP on the whole resource universe, but this 
makespan comes with a prohibitive scheduling cost.  
Running on Top Hosts (fastest) gives good performance 
(if not best) because communication costs are low. 
Interestingly, running the greedy algorithm on the whole 

resource universe still outperforms running MCP on the 
whole universe in spite of poor makespan since the time 
to compute the MCP schedule is so high. 
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VG = TightBagOf(nodes) [500:2633]  
[rank = Nodes] { 
    nodes =   [ (Clock>=3000) ] 
} 
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Figure 6: Running Montage workflow with equal 
communication and computation costs 

Figure 6 shows similar results for a CCR value of 1, 
which is balanced communication and computation cost. 
Here, it is not enough to simply schedule tasks on the 
fastest machines as communication costs matter, and the 
benefits of using a VG are plain. Surprisingly, running the 
greedy algorithm on a VG produces a better makespan 
than running MCP on the resource universe. This is 
because MCP is just a heuristic with no guarantees. It 
makes greedy decisions based on the relations between 
tasks and the critical path, disregarding possibly harmful 
effects due to task dependencies. More sophisticated 
scheduling algorithms may or may not lead to better 
makespans in our experimental setting.  At any rate, using 
a simple greedy scheduling algorithm is as effective once 
resources have been pre-selected. 

Varying CCR. Figure 7 shows the ratio of Montage 
makespans as compared to running MCP on the universe, 
for increasing CCRs.  One striking result is that when the 
CCR is increased, either algorithm running on the VG can 
construct schedule with much shorter makespans than the 
schedule MCP can construct on the whole resource 
universe.

 



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.1 0.5 1 2 10

Communication-to-Computation Ratio

R
at

io
 o

f A
pp

lic
at

io
n 

M
ak

es
pa

n

M CP Uni ver se

M CP T op Hosts

M CP VG

Gr eedy VG

Figure 7: Ratio of Montage makespan compared 
to running MCP on universe while varying CCR 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0.1 0.5 1 2 10

Communication-to-Computation Ratio

R
at

io
 o

f A
pp

lic
at

io
n 

T
ur

n-
A

ro
un

d 
T

im
e

MCP Universe
MCP Top Hosts
MCP VG
Greedy Universe
Greedy Top Hosts
Greedy VG

Figure 8: Ratio of Montage makespan compared 
to running MCP on universe while varying CCR 

For most CCRs, when using the VG, no differences 
exist between using the greedy algorithm and MCP. Only 
when the CCR is very high do we notice a slight 
improvement in performance when MCP is used.  The 
makespan for the greedy algorithm running on either the 
top hosts or the universe were 6 to 23 times longer than 
the MCP on universe makespan. We contend that this is 
not the case for many workflow applications. 

We show Figure 8 to highlight the definite advantage 
of using the VG. When taking the scheduling time into 
consideration, using either algorithm running on the VG 
achieves application turn-around time less than 30% of 
the turn-around time needed to run MCP on the universe. 

5.2. Random DAGs 

We generate random DAGs according to the 
characteristics in Table 3. When varying a single 
parameter all other parameters take the default values 
shown in the table. In some cases the application turn-

around time for running the greedy algorithm on the 
resource universe were so large that we left them out of 
the figures. Each data point is averaged over 10 random 
DAGs. The coefficients of variation for these samples 
were all within 3%, except for the case of running MCP 
on the universe, which ranged from 1% to 73%.  

Varying DAG Sizes. As we vary the DAG sizes, we 
needed to vary the corresponding vgDLs to create 
different VGs for each DAG size (that is larger VGs for 
larger DAG widths).  Expectedly, scheduling time for 
running MCP increases as the DAG sizes increased. 
However, because of the relative small sizes of the VGs 
compared to the universe, this increase was only 
marginal. Application makespan consists of the major 
bulk of the contribution of application makespan for MCP 
running on the universe. We also observed no significant 
makespan differences between running MCP on VG and 
running greedy on VG. Figure 9 shows the ratios of the 
application turn-around times compared to running 
greedy on VG. One can see that there is virtually no 
difference between running greedy or running MCP on 
VG in terms of turn-around time, especially with bigger 
DAGs. With smaller DAGs, because of smaller turn-
around time, the difference between using MCP or greedy 
algorithm on the VG is magnified. 
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Figure 10: Varying CCR for random DAGs 

 



Varying CCR. As with Montage, we wanted to 
investigate whether the greedy on VG approach would 
tolerate high-communication scenarios. Figure 10 shows 
that greedy on VG is within only 4% of results for MCP 
on VG for all CCR values. The performance of running 
greedy on the universe was between 16 and 62 times the 
application turn-around time for running greedy on VG. 

Varying Parallelism. When the parallelism of a DAG (as 
defined in [2]) is 0, then the DAG is just a chain of tasks 
where each task depends on the previous task. Scheduling 
consists in finding the fastest host. When the parallelism 
is 1, all of the tasks can be run in parallel and scheduling 
consists in finding the fastest N hosts for each of the N 
tasks in the DAG.  

Figure 11 shows results for varying DAG 
parallelisms.  We see that at 0.5 or higher, running the 
greedy algorithm on the VG has comparable performance 
to running MCP on the VG. For parallelism of 0.8, 
running the greedy algorithm is actually preferable to 
running MCP due to MCP taking more time to compute 
the schedule because of the increased number of tasks at 
each level. However, we see the limitation of using the 
VG as a means for good performance when the 
parallelism is below 0.5. (A value of 0.5 implies that the 
number of tasks per stage is equivalent to the square root 
of the total number of tasks in the DAG.) 
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Figure 11: Varying parallelism for random DAGs 

The poorer performance while running the greedy 
algorithm for less parallel DAGs is due to increased 
communication costs, or rather, the lack of opportune 
communications savings. Whereas MCP actively seeks to 
minimize communication costs by calculating the tradeoff 
between scheduling two tasks on the same host 
sequentially that would lead to longer computational time, 
but zero communication costs, the greedy algorithm 
would greedily schedule the two tasks on separate hosts 
whenever the second host becomes available. Of course, 
note that a minor modification of our greedy algorithm 

could alleviate this deficiency (e.g., always try to reuse a 
host that has been used before). Nevertheless, while the 
implication of Figure 11 is that when workflows are not 
highly parallel our approach is not effective, it is 
reasonable to expect that many applications will in fact 
have parallelism higher than 0.5 and thus not mandate 
anything more sophisticated than our greedy algorithm. 

Varying Density. The density of a DAG determines the 
number of dependencies among the tasks. A density of 
0.5 means that each task depends on 50% of the tasks in 
the previous level. Here again we found that scheduling 
on a VG greatly outperforms scheduling on the whole 
universe of resources. The application turn-around time 
for running MCP on the universe is 3 to 15 times more 
than running greedy on VG, depending on the density of 
the DAG. Figure 12 shows that running MCP on VG 
outperforms running greedy on VG in most cases. For 
densities higher than 0.2 the difference is below 4%, but it 
is up to 18% for a density of 0.1.  

MCP was able to achieve better application 
performance as the number of dependencies decreased 
because it was able to schedule some of the tasks on the 
same hosts as their parents, particularly tasks that have 
one parent task. As the number of dependencies 
decreases, unlike the greedy algorithm, MCP can 
increasingly optimize the communication costs. 

Varying Regularity. Regularity quantifies the 
distribution of the number of tasks per level in the DAG.  
A regularity of 1 means that all levels have the same 
number of tasks. The lower the granularity the higher the 
variance in the numbers of tasks per level. Here again, 
using a VG is preferable to using the whole resource 
universe. Figure 13 shows that with the appropriate VG, 
running a greedy algorithm can create a schedule with 
makespans more than ten times shorter than running MCP 
on the universe when the DAG is highly irregular. 
Performance is more than fifty times better (not shown) 
when compared to greedy running on the whole universe 
of resources. We see that for any regularity type, the 
greedy algorithm running on the VG performs within 3% 
of MCP running on the VG. 

Varying Mean Computational Cost. Varying the mean 
computational cost makes very little difference between 
running the greedy algorithm or running MCP on the VG, 
as seen in Figure 14. Here again, using a VG greatly 
outperforms using the whole resource universe. 
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Figure 12: Varying density for random DAGs 
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Figure 13: Varying Regularity of number of tasks 

per stage in the DAG 
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Figure 14: Varying mean computational costs for 

random DAGs 

5.3. Summary 

Montage DAG. Our results show that under various 
CCRs the greedy algorithm on a VG achieves the 
comparable or better turn-around times than using more 
sophisticated algorithms such as MCP. 

Random DAGs. In almost all of the scenarios we tested, 
the greedy algorithm running on the VG perform within 
4% of MCP running on the VG, both of which greatly 
outperforms either running on the resource universe. The 
only limitations we found for using the greedy algorithm 
on the VG occurs when the DAG is very sparse, either 
due to low parallelism or low number of dependencies 
among the tasks. 

6. Summary and Impact 

 In this study, we have addressed the question of 
whether sophisticated DAG scheduling algorithms are 
needed to schedule workflows on grid platforms. We have 
considered two scheduling algorithms: (i) MCP, a popular 
DAG scheduling algorithm that accounts for node and 
edge weights in the DAG and for the characteristics of the 
heterogeneous underlying resources in terms of compute 
power and network connectivity; and (ii) a greedy 
algorithm that accounts only for task dependencies and is 
oblivious to node and edge weights and to resource 
capabilities. We have used simulation to demonstrate that, 
by using the virtual grid abstraction, the greedy algorithm 
leads to performance that is either better or within a few 
percents of that of MCP in many cases that are relevant to 
practice.  

The above result was confirmed for DAGs from a 
real-world application as well as for random DAGs, and 
holds even for DAGs that exhibit high CCR ratios.  We 
found that our approach does not perform well when the 
DAGs are sparse, either because of small amount of 
parallelism or small number of dependencies. We contend 
that in practice DAGs from real-world scientific 
workflows are rarely so sparse that our approach would 
be ineffective. 

The impact of our finding is clear for scheduling grid 
workflows in practice:  rather than investing time in 
developing and implementing sophisticated scheduling 
algorithms, one should initially implement simplistic 
algorithms but perform fast and appropriate resource pre-
selection. The VG abstraction defined and prototyped in 
[9, 10, 19] provides the necessary resource pre-selection 
capabilities. Given that most existing grid workflow 
frameworks already implement simple scheduling 
algorithms similar to our greedy algorithm, these 
frameworks could just integrate and use the VG 
abstraction directly to ensure that many applications 
experience good performance. As discusses in Section 
4.4, there are cases in which our approach will not suffice. 
If a sufficiently large TightBag cannot be found, then 
more complex VG structures would be required and 
mandate more sophisticated scheduling algorithms, 
especially for data-intensive applications. Other efforts in 
the VGrADS project [29] consider more complex VG 
structures and scheduling algorithms. Nevertheless, we 

 



argue that in (future) resource-rich environments, with 
high bandwidth between many clusters, finding a 
reasonably large TightBag should be possible with high 
probability for many relevant applications.   

Another direction for future work is to explore the 
impact of the resource management policies. We have 
assumed that all resources are instantly available when 
needed and dedicated once acquired. However, in real-
world grid platforms resource acquisitions may be 
delayed, denied, or revoked.  Note that common sense 
suggests that in such a complex and time-varying 
environment, a simple greedy algorithm such as the one 
we used in this study should be more robust than and thus 
preferable to a more complex scheduling heuristic such as 
MCP.  
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