
Using Virtual Grids to Simplify Application Scheduling

Richard Huang1, Henri Casanova2, and Andrew A. Chien1

1Computer Science & Engineering and Center for Networked Systems
University of California, San Diego
{ryhuang, achien}@csag.ucsd.edu

2Information and Computer Sciences Department, University of Hawai`i at Manoa
henric@hawaii.edu

Abstract

Users and developers of grid applications have
access to increasing numbers of resources. While more
resources generally mean higher capabilities for an
application, they also raise the issue of application
scheduling scalability. First, even polynomial time
scheduling heuristics may take a prohibitively long time
to compute a schedule. Second, and perhaps more
critical, it may not be possible to gather all the resource
information needed by a scheduling algorithm in a
scalable manner. Our application focus is scientific
workflows, which can be represented as Directed Acyclic
Graphs (DAGs). Our claim is that, in future resource-rich
environments, simple scheduling algorithms may be
sufficient to achieve good workflow performances. We
introduce a scalable scheduling approach that uses a
resource abstraction called a virtual grid (VG). Our
simulations of a range of typical DAG structures and
resources demonstrate that a simple greedy scheduling
heuristic combined with the virtual grid abstraction is as
effective and more scalable than more complex heuristic
DAG scheduling algorithms on large-scale platforms.

1. Introduction

Efficiently scheduling the tasks of a parallel
application on the resources of a distributed computing
platform is critical for achieving high performance. The
scheduling problem has been studied for a variety of
models and assumptions and has proved to be NP-
complete in most cases [1]. Consequently, researchers
have developed many heuristics that exhibit polynomial
time complexity and attempt to approach the optimal
schedule. A popular application model for which
scheduling heuristics have been developed is the “task
graph” model, by which an application is represented as a

weighted Directed Acyclic Graph (DAG). Nodes in the
DAG represent computational tasks, and edges represent
data communication among tasks. Node weights represent
computational costs, and edge weights represent amounts
of data to transfer between tasks. A survey of “DAG
scheduling algorithms” is available in [2].

The DAG application model is particularly relevant
for scientific workflows [3]. The last few years have seen
active development and deployment of many such
workflows in various domains [4-6] and these workflows
require considerable amounts of computing power.
Therefore, it is natural to explore the possibility of
executing them on large-scale computing platforms such
as grids [7]. And indeed, several efforts are underway to
provide software frameworks for “grid workflows” [8].
These efforts typically focus on workflow instantiation
and deployment issues and they leave the question of
efficient scheduling mostly unaddressed.

In this paper we ask the question: “Are sophisticated
DAG scheduling algorithms required to schedule
workflows on grid platforms?” Our claim is that, in many
relevant cases, simpler scheduling approaches are viable
alternatives and can be preferable in practice as they are
as effective, more robust, more scalable, and simpler to
implement.

To “replace” the work done by sophisticated
scheduling algorithms, we employ a resource abstraction
called the Virtual Grid (VG) [9, 10]. With this
abstraction, we demonstrate in simulation that a naïve
greedy scheduling algorithm, which does not account for
resource information nor for application information
beyond task dependencies, can be as effective as a
popular DAG scheduling algorithm for scheduling a
workflow on large-scale grid platforms.

The rest of this paper is organized as follows. In
Section 2 we define the problem, identify challenges, and
highlight the limitations of current solutions. Section 3
details our approach based on the VG abstraction. Section
4 presents our experimental methodology, and Section 5

presents our results. Section 6 discusses our results and
highlights future directions.

2. Scheduling Applications in Large-Scale
Environment

Users of scientific applications, and in particular of
scientific workflows, are increasingly faced with
situations in which they have to select appropriate
compute resources among a large number of potential
resources distributed over the wide-area. This is due to
two factors. First, with dropping hardware prices for
commodity computers, with several cluster vendors, and
with the availability of open-source cluster management
tools [11], it is increasingly affordable and
straightforward to purchase/deploy powerful Linux
clusters. Second, the development of the grid middleware
infrastructure [12] makes it straightforward for users to
access a wide collection of resources uniformly and
securely. Additionally, with projects [13] exploring
optical networks and providing high bandwidth among
many clusters, there is a trend towards resource-rich
environments with good network connectivity in which
users can access many clusters in many institutions
concurrently. Workflow applications can benefit from
such environments because they are often loosely coupled
and can utilize resources at multiple sites concurrently
and efficiently.

With more resources to choose from, the question of
effective scheduling becomes critical. In this paper we
define application performance as application turn-around
time, which includes the time to compute a schedule
(encompassing selection of resources and selection of
task-resource mappings) and the time to execute the
schedule (also called makespan).

2.1. Challenges

With the explosion in the number of computing
resources, the major challenge for scheduling workflows
is scalability of the scheduling algorithm itself. Although
of polynomial complexity, DAG scheduling heuristics
may become impractical when considering large numbers
of individual resources. More importantly perhaps,
existing heuristics require information about individual
resources and about their distances from each other over
the network. Collecting and processing reasonably up-to-
date such information may itself not be scalable. There is
therefore a trade-off between the time spent computing a
schedule (perhaps prohibitively high for a sophisticated
heuristics, but low for a simple one) and the time spent
executing it (arguably low for a sophisticated heuristic,
but probably high for a simple one).

2.2. Current Approaches and Limitations

As seen in [2], DAG scheduling heuristics that
calculate and account for the ``critical path’’ of the DAG
are often the most effective. The critical path is essentially
the longest path in the DAG (in terms of node and edge
weights), and is thus a lower bound on the overall
makespan. These heuristics attempt to lower this lower
bound in the hope of lowering the makespan.

In practice however, for the purpose of scheduling
grid workflows, these heuristics are not used. For
instance, the Pegasus grid workflow framework [14, 15]
implements only the simplistic random, round-robin, or
min-min [16] heuristics for scheduling workflows of the
Montage astronomy application [17, 18].

There are several reasons for the lack of acceptance
of more sophisticated scheduling algorithms. First, these
algorithms are more complicated to implement. Second,
they often require more information about the application
and/or the resources, which may be difficult to obtain
scalably. Third, there has been no clear demonstration
that they would improve application turn-around time in
practice (i.e., achieve a good trade-off between the time to
compute a schedule and the time to execute it).

An open question is then “Should sophisticated
scheduling algorithms be used for workflows in grid
environment?” While scheduling is a common topic of
discussion in the grid workflow community there is not
consensus on the answer to this question. In this paper we
show that although the use of sophisticated algorithms
may be worthwhile, simplistic algorithms can achieve
comparable or even better application turn-around time in
many relevant cases, provided that an adequate resource
abstraction is used for resource pre-selection

3. Scheduling Using Virtual Grids

One simple way in which to improve the scalability
of a scheduling algorithm is to constrain its operation to a
pre-selected set of resources. Scheduling algorithms
typically perform implicit resource selection: they
consider a large number of potential resources and
compute a schedule that utilizes only a fraction of these
resources in the end. On resource-rich grid platforms for
workflow applications this fraction is typically minute. If
instead one pre-selects a “good” subset of the potential
resources and then run the scheduling algorithm, one
should be able to obtain schedules with comparable
makespans in significantly less time. Perhaps more
importantly, if the pre-selection is reasonable, it is
possible that very simple scheduling algorithms could
achieve similar makespans as more sophisticated
algorithms. The sophisticated algorithms should improve
the makespan, but at the expense of longer time to
compute the schedule and may require a wealth of

information regarding resources and/or applications. The
question is whether one can “get by” with simpler
algorithms in practice.

3.1. Virtual Grids

A Virtual Grid (VG) provides a high-level,
hierarchical abstraction of the resource collection that is
needed and used by an application. This abstraction
provides a clean separation of concerns between grid
applications and the complexity of the grid infrastructure:
the application specifies its resource needs using a high-
level language, vgDL, and the Virtual Grid Execution
System (vgES) finds and allocates appropriate resources.

This abstraction is implemented as part of the
VGrADS project [19]. We discuss here only the concepts
and features that are relevant to the following sections.
More information on the vgDL language and the vgES
system can be found in [9] and [10].

The salient point of vgDL is the capability for
applications to specify hierarchical resource aggregates
and qualitative notions of network proximity between
these aggregates. vgDL contains three resource
aggregates, distinguished by homogeneity and network
connectivity: (i) LooseBag: a collection of heterogeneous
nodes with possibly poor connectivity; (ii) TightBag: a
collection of heterogeneous nodes with good
connectivity; and (iii) Cluster: a set of well-connected
nodes with identical (or nearly so) individual resource
attributes. The notion of “good” is defined in term of a
network latency threshold. The implicit assumption is a
positive correlation between low latency and high
bandwidth. For instance, in vgDL, an application can
request a Cluster of 32 Opteron processors with clock rate
higher than 2Ghz and more than 1GB of RAM that is
“close” to a TightBag of 32 to 128 processors that have
clock rates higher than 1Ghz. The tenet of the VGrADS
project is that such simple and qualitative specifications
fit the need of most applications in practice. Such requests
are sent to the vgES system.

The vgES system constantly gathers and indexes
information about available resources in an off-line
manner using grid information services [20, 21]. It then
uses relational database technology and efficient
algorithms to select resources that match the requirements
expressed in a vgDL query (see [10] for an evaluation).
Note that this system operates at a higher level than grid
middleware such as Globus [12] and leverages such
middleware to acquire grid resources.

3.2. Scheduling with VGs

Our scheduling approach consists of pre-selecting
resources by obtaining a VG corresponding to a simple
vgDL description, and then scheduling the application

within the resources in the VG. In essence, whereas
complex scheduling algorithms explicitly (and sometimes
by brute force) search for a good schedule by examining
trade-offs between computation and communication
explicitly, the vgES, when processing a vgDL requests,
immediately bypasses undesirable branches of the search.
There is no magic here: vgES does a lot of the necessary
work to prune the search space. The point is that it does it
very efficiently and scalably. Furthermore, vgES does
this once for the entire workflow – not for each task.
Thus, we anticipate that this reduced resource search
space (and reduced work) and a simple greedy heuristic
can in fact achieve comparable or perhaps better turn-
around times for many relevant applications in practice.

4. Experimental Approach

Our goal is to investigate whether using the VG
abstraction can indeed simplify the scheduling of
workflow applications on large-scale platforms. We
perform the following experiments. We use DAGs from
a real-world grid workflow applications, Montage [17], as
well as randomly generated DAGs to better understand
the impact of DAG characteristics on our results. We
consider a computing platform generated by a tool [22]
that instantiates synthetic large-scale computing
environments that are representative of current
technology.

Using simulation we execute two different
scheduling algorithms: a naïve greedy algorithm (which
we call “simple”) and a standard DAG scheduling
algorithm (which we call “complex”). We execute these
algorithms in three modes: (i) on the whole “resource
universe” without pre-selection of resources; (ii) only on
some pre-selected “top” fraction of the resources sorted
by clock rate; and (iii) only on pre-selected resources that
have been obtained as part of a VG. We obtain the VG by
querying our vgES prototype, which has stored resource
information corresponding to our synthetic computing
environment. Therefore, we conduct 6 different types of
experiments, as summarized in Table 1. We provide
details on all the above in the following sections.

Table 1: Scheduling schemes in Grid
environments

Scheduling
Algorithm

Resources

Complex Universe
Complex Top Hosts
Complex VG
Simple Universe
Simple Top Hosts
Simple VG

4.1. The Montage Application

Montage is an astronomy application that creates a
mosaic image of a portion of the sky on demand. Figure 1
shows the structure of a small Montage workflow. All
tasks on level k have a parent task on level k-1. The top-
level tasks (level 1) are not dependent on any other tasks.

For our experiments, we consider a 4469-task
Montage workflow used to create a five square degree
mosaic of the sky centered at M16. Table 2 shows the
average runtimes of Montage tasks on a 1.5Ghz host as
reported in [23]. We are interested in seeing how
communication might affect scheduling. Therefore, for
each Montage workflow, we vary the communication-to-
computation ratio (CCR). We test ratios of 0.1, 0.5, 1.0,
2.0, and 10.0. A ratio of 1 implies equal amount of
computation and communication. For each task, we
calculate the size of its output file based on the
computational cost, the CCR, and the maximum
bandwidth in the network, which in our case is 10Gbps.
For example, for a CCR of 1, we derive the appropriate
file size such that the communication cost would also be
8.2 seconds. In this case, the files size would be 152MB,
as it would take 8.2 seconds to transfer this on the fastest
link in our synthetic platform.

Figure 1: A small Montage workflow

Table 2: Runtime and number of tasks at various
levels of the Montage workflow

Level Task name Number
of Tasks

Runtime (in
seconds)

1 mProject 892 8.2
2 mDiffFit 2633 2
3 mConcatFit 1 68
4 mBgModel 1 56
5 mBackground 892 1
6 mImgtbl 25 6
7 mAdd 25 40

4.2. Random DAGs

We also generate a collection of random DAGs
following the method outlined in [2]. For each random
graph, we vary its size, its mean computation cost (using
a 1.5Ghz host as the reference), its communication-to-
computation ratio (CCR), its parallelism, its density, its
regularity, and its mean task computational cost. The
parallelism parameter determines the width of the DAG;
density characterizes the number of edges; regularity
determines the regularity of the number of tasks at each
level. Table 3 summarizes the different parameters and
their corresponding values for the random DAGs we
generate. See [2] for more details.

Table 3: DAG parameters and corresponding
values for random DAG generation

DAG
Parameter

Values Default
Value

DAG size (tasks) 44, 447, 4469, 8938 4469
CCR 0.1,0.2,1,2,10 1
Parallelism 0.1,0.2,0.5,0.8,1 0.5
Density 0.1,0.2,0.5,0.8,1 0.5
Regularity 0.1,0.2,0.5,0.8,1 0.5
Mean comp cost 1,5,40,100 40

4.3. Scheduling Algorithms

Among all the DAG scheduling algorithms surveyed
and evaluated in [2] we choose the popular MCP
(Modified Critical Path) algorithm [24], as it is
competitive according the results in [2]. MCP is our
“complex” scheduling algorithm. The pseudo code for
MCP is shown in Figure 2.

CP = length of the longest path (in terms of node weights
 and edge weights) from the root node to the end
 node, including both these nodes
For each non-root node Ni in the DAG
 BLi = length of the longest path (in terms of node
 weights and edge weights) from node Ni to the
 end node, including both these nodes
 ALAPi = CP – BLi
End For
For each node Ni
 Li = list of the ALAP values of node Ni and all its
 descendents, in ascending order
End For
Sort all Li lists in lexicographical order and
Re-Order the nodes according to this order
For each node Ni
 Schedule Ni on the host that would complete its
 execution soonest
End For
Figure 2: Modified Critical Path (MCP) Algorithm

Figure 3: Simple Greedy Algorithm

For our “simple” scheduling algorithm we use a
greedy scheduling algorithm that assigns each task to a
random available host as soon as the task’s dependencies
have cleared. The corresponding pseudo code is shown in
Figure 3.

We expect that running a more complex scheduling
algorithm such as MCP on the resource universe would
produce the best makespan by taking into consideration
all the resources. We hope that appropriate resource pre-
selection would allow a simple scheduling algorithm to
achieve better trade-off between the time to compute a
schedule and the time to execute the schedule, thereby
leading to better turn-around time.

4.4. Resources

We are interested in scheduling applications in large-
scale environments. Since we do not have immediate
access to hundreds of clusters for running our
experiments, we use simulation of a synthetic resource
pool. We use the synthetic resource generator described in
[22] that bases its models on the characteristics of 650
real-world clusters (ones registered with the Rocks project
[25]). We generate 1000 clusters for a total of 33,667
hosts. While having access to 1,000 different clusters may
seem far-fetched today, current trends indicate that this
may be typical within 5 years.

When scheduling and simulating the execution of
workflows we ignore the architectures of the hosts and
use only clock rates to determine task runtimes. We scale
the reference task runtimes on a 1.5GHz host to account
for lower or higher clock rates.

A survey of three topology generators [26-28]
showed that none had convincing models for latencies,
bandwidths, or contention. We opted for the following
simple model. We use a Gaussian distribution for the
latencies between clusters. The Gaussian distribution has
mean of 100ms and standard deviation of 100ms. We
opted for classifying the bandwidths in our synthetic
resource pool into 10Gbps for intra-cluster connections
and connections with latency lower than 0.5ms (e.g.,
within a building), 1Gbps for latencies lower than 1ms
(e.g., within a campus), 622Mbps (OC12 link) for
latencies lower than 40ms, and 155Mbps (OC3 link) for
latencies greater than 40ms.

To run our experiments, we used an Intel Xeon
2.4GHz machine, on which all scheduled computations
and VG instantiations were performed.

We have assumed that vgES has negotiated with the
local resource managers such that the application has sole
access to the resources in the VG for the duration of its
execution; thus we do not consider resource contention.
For network contention, we did not find any other
convincing models, so we are using the Gaussian
distribution outlined above. We have assumed no wide
variance in network workloads for the duration of the
application. Studying the effects of possible jitter in file
transfer times is outside the scope of this paper, but these
effects should impact all our scheduling methods equally
anyway.

While there are still some tasks to schedule
 For each node Ni whose predecessors, if any,
 have already been scheduled
 Schedule Ni on the host that would start its execution
 soonest
 End For
End While

Virtual Grids. In general, one can expect that using an
unlimited number of the fastest machines in a cluster will
lead to the lowest application makespans. Unfortunately,
the number of nodes in a cluster is limited. In fact, the
fastest clusters might not always be the biggest clusters.
Furthermore, it may be best to use multiple clusters
provided they are not too “far” from each other.

The above is exactly the sort of trade-offs that make
scheduling difficult. The VG abstraction allows users the
luxury of asking for a TightBag (that is sets of
heterogeneous hosts that are “close”), with a parameter to
determine what “close” means. The vgES will identify
such a TightBag quickly, even in large-scale
environments [10]. Our approach focuses on finding an
appropriate TightBag for a given DAG. The size of the
TightBag (in number of hosts) should be proportional to
the widest portion of the DAG to allow maximum
parallelism. For instance, for the Montage workflow
described in Table 2, we can write the vgDL specification
shown in Figure 4, which asks for a TightBag containing
between 500 and 2633 hosts, where hosts have clock rates
higher than 3Ghz. We choose 2633 as the upper bound on
the number of hosts in the VG as this represents the
widest portion of the Montage DAG. The [rank = Nodes]
statement just means that a larger TightBag is preferable.
(See [10] for all details regarding vgDL.) When the
resource platform does not contain the number of
resources we want (2633) for a TightBag, we can specify
the willingness to accept fewer resources.

In our synthetic resource environment such a request
returns a VG containing 924 hosts. If a sufficiently large
TightBag cannot be found however, then more complex
VG structures may be required. This is an interesting
question and a possible answer is to use a LooseBag of
TightBags (with as few TightBags as possible so that a
sufficient number of nodes are acquired). In this case,
sophisticated scheduling algorithms would indeed be
necessary, especially for applications that tend to be data-
intensive and for which scheduling of data transfers

between TightBags must be judiciously chosen. Other
efforts [29] in the VGrADS project are exploring the use
of such resource structures and of non-greedy scheduling
algorithms to achieve high performance. We argue that,
although this may not be true today, when and if resource
environments become abundant with good networking
connectivity among many subsets of the available
clusters, then for many relevant applications (but not all),
the vgES would acquire reasonably sized TightBags on
behalf of the user with high probability.

Figure 4: vgDL used for the Montage workflow
Top Hosts (Fastest). To show that using a VG is better
than just picking the fastest hosts in the resource universe,
we experiment with a subset of the resource universe that
consists of the fastest 2633 hosts. We run our scheduling
algorithms on this subset of the hosts.

5. Results

The main result from our experiments is that,
regardless of DAG size, using the VG approach with a
simple scheduling algorithm is preferable. We discuss
below specific results for Montage and random DAGs.
We compute a lower bound on application makespan by
assuming that all tasks run on hosts as fast as the fastest
available host and that all data transfers take place on
network links as fast as the fastest network link available.

5.1. Montage

Figure 5 and Figure 6 show results for the Montage
workflow using the MCP and the greedy algorithm.
Results include the time to compute the schedule, the
application makespan resulting from the schedule, the
time to obtain a VG when applicable, and the total
application turn-around time including all of the above.

The results in Figure 5 are for the actual Montage
communication costs. The intermediate files generated by
different stages ranged from 300 bytes to 4 megabytes, so
communication costs were relatively low. The conclusion
from these results is that running the greedy algorithm on
a VG achieves the best application turn-around time
overall (within 8% of the ideal lower bound), if not the
best makespan. The best makespan is achieved when
running MCP on the whole resource universe, but this
makespan comes with a prohibitive scheduling cost.
Running on Top Hosts (fastest) gives good performance
(if not best) because communication costs are low.
Interestingly, running the greedy algorithm on the whole

resource universe still outperforms running MCP on the
whole universe in spite of poor makespan since the time
to compute the MCP schedule is so high.

0

50

100

150

200

250

300

350

A
pp

lic
at

io
n

Tu
rn

-A
ro

un
d

Ti
m

e
(s

)

MCP
Universe

MCP Top
Host s

MCP VG Greedy
Universe

Greedy
Top Host s

Greedy VG

VGCreat ion

scheduler runt ime

makespan

Figure 5: Running Montage workflow with actual
Montage communication costs

VG = TightBagOf(nodes) [500:2633]
[rank = Nodes] {
 nodes = [(Clock>=3000)]
}

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

A
pp

lic
at

io
n

Tu
rn

-
A

ro
un

d
Ti

m
e

(s
)

MCP
Universe

MCP Top
Hosts

MCP VG Greedy
Universe

Greedy Top
Hosts

Greedy VG

VGCreation

scheduler runtime

makespan

Figure 6: Running Montage workflow with equal
communication and computation costs

Figure 6 shows similar results for a CCR value of 1,
which is balanced communication and computation cost.
Here, it is not enough to simply schedule tasks on the
fastest machines as communication costs matter, and the
benefits of using a VG are plain. Surprisingly, running the
greedy algorithm on a VG produces a better makespan
than running MCP on the resource universe. This is
because MCP is just a heuristic with no guarantees. It
makes greedy decisions based on the relations between
tasks and the critical path, disregarding possibly harmful
effects due to task dependencies. More sophisticated
scheduling algorithms may or may not lead to better
makespans in our experimental setting. At any rate, using
a simple greedy scheduling algorithm is as effective once
resources have been pre-selected.

Varying CCR. Figure 7 shows the ratio of Montage
makespans as compared to running MCP on the universe,
for increasing CCRs. One striking result is that when the
CCR is increased, either algorithm running on the VG can
construct schedule with much shorter makespans than the
schedule MCP can construct on the whole resource
universe.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.1 0.5 1 2 10

Communication-to-Computation Ratio

R
at

io
 o

f A
pp

lic
at

io
n

M
ak

es
pa

n

M CP Uni ver se

M CP T op Hosts

M CP VG

Gr eedy VG

Figure 7: Ratio of Montage makespan compared
to running MCP on universe while varying CCR

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0.1 0.5 1 2 10

Communication-to-Computation Ratio

R
at

io
 o

f A
pp

lic
at

io
n

T
ur

n-
A

ro
un

d
T

im
e

MCP Universe
MCP Top Hosts
MCP VG
Greedy Universe
Greedy Top Hosts
Greedy VG

Figure 8: Ratio of Montage makespan compared
to running MCP on universe while varying CCR

For most CCRs, when using the VG, no differences
exist between using the greedy algorithm and MCP. Only
when the CCR is very high do we notice a slight
improvement in performance when MCP is used. The
makespan for the greedy algorithm running on either the
top hosts or the universe were 6 to 23 times longer than
the MCP on universe makespan. We contend that this is
not the case for many workflow applications.

We show Figure 8 to highlight the definite advantage
of using the VG. When taking the scheduling time into
consideration, using either algorithm running on the VG
achieves application turn-around time less than 30% of
the turn-around time needed to run MCP on the universe.

5.2. Random DAGs

We generate random DAGs according to the
characteristics in Table 3. When varying a single
parameter all other parameters take the default values
shown in the table. In some cases the application turn-

around time for running the greedy algorithm on the
resource universe were so large that we left them out of
the figures. Each data point is averaged over 10 random
DAGs. The coefficients of variation for these samples
were all within 3%, except for the case of running MCP
on the universe, which ranged from 1% to 73%.

Varying DAG Sizes. As we vary the DAG sizes, we
needed to vary the corresponding vgDLs to create
different VGs for each DAG size (that is larger VGs for
larger DAG widths). Expectedly, scheduling time for
running MCP increases as the DAG sizes increased.
However, because of the relative small sizes of the VGs
compared to the universe, this increase was only
marginal. Application makespan consists of the major
bulk of the contribution of application makespan for MCP
running on the universe. We also observed no significant
makespan differences between running MCP on VG and
running greedy on VG. Figure 9 shows the ratios of the
application turn-around times compared to running
greedy on VG. One can see that there is virtually no
difference between running greedy or running MCP on
VG in terms of turn-around time, especially with bigger
DAGs. With smaller DAGs, because of smaller turn-
around time, the difference between using MCP or greedy
algorithm on the VG is magnified.

0

1

2

3

4

5

6

7

44 447 4469 44690

DAG Size

R
at

io
 o

f A
pp

lic
at

io
n

Tu
rn

-A
ro

un
d

Ti
m

e

MCP Universe

MCP VG

Greedy VG

Figure 9: Varying DAG sizes for random DAGs

0

1

2

3

4

5

6

0.1 0.5 1 2 10

Communication-to-Computation Ratio

R
at

io
 o

f A
pp

lic
at

io
n

Tu
rn

-
A

ro
un

d
Ti

m
e

M CP Universe

M CP VG

Greedy VG

Figure 10: Varying CCR for random DAGs

Varying CCR. As with Montage, we wanted to
investigate whether the greedy on VG approach would
tolerate high-communication scenarios. Figure 10 shows
that greedy on VG is within only 4% of results for MCP
on VG for all CCR values. The performance of running
greedy on the universe was between 16 and 62 times the
application turn-around time for running greedy on VG.

Varying Parallelism. When the parallelism of a DAG (as
defined in [2]) is 0, then the DAG is just a chain of tasks
where each task depends on the previous task. Scheduling
consists in finding the fastest host. When the parallelism
is 1, all of the tasks can be run in parallel and scheduling
consists in finding the fastest N hosts for each of the N
tasks in the DAG.

Figure 11 shows results for varying DAG
parallelisms. We see that at 0.5 or higher, running the
greedy algorithm on the VG has comparable performance
to running MCP on the VG. For parallelism of 0.8,
running the greedy algorithm is actually preferable to
running MCP due to MCP taking more time to compute
the schedule because of the increased number of tasks at
each level. However, we see the limitation of using the
VG as a means for good performance when the
parallelism is below 0.5. (A value of 0.5 implies that the
number of tasks per stage is equivalent to the square root
of the total number of tasks in the DAG.)

0

1

2

3

4

5

6

7

8

9

10

0.1 0.2 0.5 0.8 1

Parallelism

R
at

io
 o

f A
pp

lic
at

io
n

Tu
rn

-
A

ro
un

d
Ti

m
e

M CP Universe

M CP VG

Greedy VG

Figure 11: Varying parallelism for random DAGs

The poorer performance while running the greedy
algorithm for less parallel DAGs is due to increased
communication costs, or rather, the lack of opportune
communications savings. Whereas MCP actively seeks to
minimize communication costs by calculating the tradeoff
between scheduling two tasks on the same host
sequentially that would lead to longer computational time,
but zero communication costs, the greedy algorithm
would greedily schedule the two tasks on separate hosts
whenever the second host becomes available. Of course,
note that a minor modification of our greedy algorithm

could alleviate this deficiency (e.g., always try to reuse a
host that has been used before). Nevertheless, while the
implication of Figure 11 is that when workflows are not
highly parallel our approach is not effective, it is
reasonable to expect that many applications will in fact
have parallelism higher than 0.5 and thus not mandate
anything more sophisticated than our greedy algorithm.

Varying Density. The density of a DAG determines the
number of dependencies among the tasks. A density of
0.5 means that each task depends on 50% of the tasks in
the previous level. Here again we found that scheduling
on a VG greatly outperforms scheduling on the whole
universe of resources. The application turn-around time
for running MCP on the universe is 3 to 15 times more
than running greedy on VG, depending on the density of
the DAG. Figure 12 shows that running MCP on VG
outperforms running greedy on VG in most cases. For
densities higher than 0.2 the difference is below 4%, but it
is up to 18% for a density of 0.1.

MCP was able to achieve better application
performance as the number of dependencies decreased
because it was able to schedule some of the tasks on the
same hosts as their parents, particularly tasks that have
one parent task. As the number of dependencies
decreases, unlike the greedy algorithm, MCP can
increasingly optimize the communication costs.

Varying Regularity. Regularity quantifies the
distribution of the number of tasks per level in the DAG.
A regularity of 1 means that all levels have the same
number of tasks. The lower the granularity the higher the
variance in the numbers of tasks per level. Here again,
using a VG is preferable to using the whole resource
universe. Figure 13 shows that with the appropriate VG,
running a greedy algorithm can create a schedule with
makespans more than ten times shorter than running MCP
on the universe when the DAG is highly irregular.
Performance is more than fifty times better (not shown)
when compared to greedy running on the whole universe
of resources. We see that for any regularity type, the
greedy algorithm running on the VG performs within 3%
of MCP running on the VG.

Varying Mean Computational Cost. Varying the mean
computational cost makes very little difference between
running the greedy algorithm or running MCP on the VG,
as seen in Figure 14. Here again, using a VG greatly
outperforms using the whole resource universe.

5000

5500

6000

6500

7000

7500

0.1 0.2 0.5 0.8 1

Density

A
pp

lic
at

io
n

Tu
rn

-A
ro

un
d

Ti
m

e
(s

)

M CP VG

Greedy VG

Figure 12: Varying density for random DAGs

0

1

2

3

4

5

6

0.1 0.2 0.5 0.8 1

Regularity

R
at

io
 o

f A
pp

lic
at

io
n

Tu
rn

-
A

ro
un

d
Ti

m
e

M CP Universe

M CP VG

Greedy VG

Figure 13: Varying Regularity of number of tasks

per stage in the DAG

0

1

2

3

4

5

6

7

1 5 40 100

Mean Computational Cost

R
at

io
 o

f A
pp

lic
at

io
n

Tu
rn

-
A

ro
un

d
Ti

m
e

M CP Universe

M CP VG

Greedy VG

Figure 14: Varying mean computational costs for

random DAGs

5.3. Summary

Montage DAG. Our results show that under various
CCRs the greedy algorithm on a VG achieves the
comparable or better turn-around times than using more
sophisticated algorithms such as MCP.

Random DAGs. In almost all of the scenarios we tested,
the greedy algorithm running on the VG perform within
4% of MCP running on the VG, both of which greatly
outperforms either running on the resource universe. The
only limitations we found for using the greedy algorithm
on the VG occurs when the DAG is very sparse, either
due to low parallelism or low number of dependencies
among the tasks.

6. Summary and Impact

 In this study, we have addressed the question of
whether sophisticated DAG scheduling algorithms are
needed to schedule workflows on grid platforms. We have
considered two scheduling algorithms: (i) MCP, a popular
DAG scheduling algorithm that accounts for node and
edge weights in the DAG and for the characteristics of the
heterogeneous underlying resources in terms of compute
power and network connectivity; and (ii) a greedy
algorithm that accounts only for task dependencies and is
oblivious to node and edge weights and to resource
capabilities. We have used simulation to demonstrate that,
by using the virtual grid abstraction, the greedy algorithm
leads to performance that is either better or within a few
percents of that of MCP in many cases that are relevant to
practice.

The above result was confirmed for DAGs from a
real-world application as well as for random DAGs, and
holds even for DAGs that exhibit high CCR ratios. We
found that our approach does not perform well when the
DAGs are sparse, either because of small amount of
parallelism or small number of dependencies. We contend
that in practice DAGs from real-world scientific
workflows are rarely so sparse that our approach would
be ineffective.

The impact of our finding is clear for scheduling grid
workflows in practice: rather than investing time in
developing and implementing sophisticated scheduling
algorithms, one should initially implement simplistic
algorithms but perform fast and appropriate resource pre-
selection. The VG abstraction defined and prototyped in
[9, 10, 19] provides the necessary resource pre-selection
capabilities. Given that most existing grid workflow
frameworks already implement simple scheduling
algorithms similar to our greedy algorithm, these
frameworks could just integrate and use the VG
abstraction directly to ensure that many applications
experience good performance. As discusses in Section
4.4, there are cases in which our approach will not suffice.
If a sufficiently large TightBag cannot be found, then
more complex VG structures would be required and
mandate more sophisticated scheduling algorithms,
especially for data-intensive applications. Other efforts in
the VGrADS project [29] consider more complex VG
structures and scheduling algorithms. Nevertheless, we

argue that in (future) resource-rich environments, with
high bandwidth between many clusters, finding a
reasonably large TightBag should be possible with high
probability for many relevant applications.

Another direction for future work is to explore the
impact of the resource management policies. We have
assumed that all resources are instantly available when
needed and dedicated once acquired. However, in real-
world grid platforms resource acquisitions may be
delayed, denied, or revoked. Note that common sense
suggests that in such a complex and time-varying
environment, a simple greedy algorithm such as the one
we used in this study should be more robust than and thus
preferable to a more complex scheduling heuristic such as
MCP.

7. Acknowledgements

The authors and research described here are
supported in part by the National Science Foundation
under awards NSF Cooperative Agreement ANI-0225642
(OptIPuter), NSF CCR-0331645 (VGrADS), NSF ACI-
0305390, and NSF Research Infrastructure Grant EIA-
0303622. Support from the UCSD Center for Networked
Systems, BigBangwidth, and Fujitsu is also gratefully
acknowledged.

8. References

1. Ullman, J., NP-complete scheduling problems. Journal
of Computer and System Sciences, 1975. 10: p. 434-
439.

2. Kwok, Y.-K. and I. Ahmad, Benchmarking and
Comparison of the Task Graph Scheduling
Algorithms. Journal of Parallel and Distributed
Computing, 1999. 59(3): p. 381-422.

3. http://www.extreme.indiana.edu/swf-survey/.
4. Barish, B. and R. Weiss, Ligo and detection of

gravitational waves. Physics Today, 1999. 52(10).
5. Deelman, E., et al. GriPhyN and LIGO, building a

virtual data grid for gravitational wave scientists. in
Proceedings of the IEEE High Performance
Distributed Computing. 2002.

6. Hastings, S., et al. Image Processing on the Grid: a
Toolkit for Building Grid-enabled Image Processing
Applications. in Proceedings of the International
Symposium on Cluster Computing and the Grid. 2003.

7. Computational Grids: Blueprint for a New Computing
Infrastructure. 2nd ed, ed. C. Kesselman. 2003: M
Kaufman Publishers, Inc.

8. Yu, J. and R. Buyya, A Taxonomy of Scientific
Workflow Systems for Grid Computing. ACM
SIGMOD Record, 2005. 34(3): p. 44-49.

9. Chien, A., et al., The Virtual Grid Descriptive
Language: vgDL. 2004, UCSD Technical Report
CS2005-0817.

10. Kee, Y.-S., et al. Efficient Resource Description and
High Quality Selection for Virtual Grids. in
Proceedings of the IEEE Conference on Cluster
Computing and the Grid. 2005.

11. http://rocks.npaci.edu/Rocks/.
12. http://www.globus.org.
13. http://www.optiputer.net/.
14. Deelman, E., et al. Pegasus: Mapping Scientific

Workflows onto the Grid. in Across Grids Conference
2004. 2004. Nicosia, Cyprus.

15. Deelman, E., et al., Pegasus: a Framework for
Mapping Complex Scientific Workflows onto
Distributed Systems. Submitted to Scientific
Programming, 2005.

16. Ibarra, O.H. and C.E. Kim, Heuristic Algorithms for
Scheduling Independent Tasks on Nonidentical
Processors. Journal of the ACM, 1977. 24(2): p. 280-
289.

17. Jacob, J.C., et al. The Montage Architecture for Grid-
Enabled Science Processing of Large, Distributed
Datasets. in Proceedings of the Earth Science
Technology Conference (ESTC). 2004.

18. Berriman, G.B., et al. Montage: a Grid Enabled
Engine for Delivering Custom Science-Grade Image
Mosaics on Demand. in Proceedings of the SPIE
Conference on Astronomical Telescopes and
Instrumentation. 2004.

19. http://vgrads.rice.edu/.
20. Wolski, R., N. Spring, and J. Hayes, The Network

Weather Service: A Distributed Resource
Performance Forecasting Service for Metacomputing.
Journal of Future Generation Computing Systems,
1998. 15(5-6): p. 757-768.

21. Globus Monitoring and Discovery System (MDS).
http://www-unix.globus.org/toolkit/mds/.

22. Kee, Y.-S., H. Casanova, and A. Chien. Realistic
Modeling and Synthesis of Resources for
Computational Grids. in Proceedings of the ACM
Conference on High Performance Networking and
Computing. 2004.

23. Singh, G., C. Kesselman, and E. Deelman, Optimizing
Grid-Based Workflow Execution. 2005, University of
Southern California 05-851 PDF.

24. Wu, M.-Y. and D.D. Gajski, Hypertool: A
Programming Aid for Message-Passing Systems.
IEEE Transactions on Parallel and Distributed
Systems, 1990. 1(3): p. 330-343.

25. http://www.rocksclusters.org/rocks-register/.
26. Tangmunarunkit, H., R. Govindan, and S. Jamin.

Network TOpology Generators: Degree-Based vs.
Structure. in SIGCOMM. 2002.

27. Li, L., et al. A First-Principles Approach to
Understanding the Internet's Router-level Topology.
in SIGCOMM. 2004.

28. Medina, A., et al. BRITE: An Approach to Universal
Topology Generation. in Proceedings of MASCOTS
'01. 2001.

29. Zhang, Y., et al., Scalable Grid Application
Scheduling via Decoupled Resource Selection and
Scheduling. 2005, Rice University TR06-871.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

