
EMAN: A Workflow Application

Preliminary
3D ModelPreliminary

3D model

Particles

Electron Micrograph

Refine

Final 3D
model

EMAN has been developed at Baylor College of Medicine by
Research group of Wah Chiu and Steven Ludtke {wah,sludtke}@bcm.tmc.edu

Workflow Scheduling
• Problem: Map the components of the given Workflow DAG to a

set of available Grid resources

• Objective function is to minimize the makespan of the whole
Workflow application

• Overview
—Resource Modeling using NWS and MDS
—Sophisticated Application Component Performance models that take

into account both computational performance and memory hierarchy
performance

—Walk the DAG and find the components that are currently available
— Add data movement costs from the slowest predecessor in the

performance model of the successor
—Adapted known heuristics from domain of scheduling parameter

sweep applications and use them to schedule available components

Workflow Scheduling: Results
• Testbed

—64 dual processor Itanium IA-64 nodes (900 MHz) at Rice
University Terascale Cluster [RTC]

—60 dual processor Itanium IA-64 nodes (1300 MHz) at University
of Houston [acrl]

—16 Opteron nodes (2009 MHz) at University of Houston Opteron
cluster [medusa]

• Experiment
—Ran the EMAN refinement cycle and compared running times for

“classesbymra”, the most compute intensive parallel step in the
workflow

—Determine the 3D structure of the ‘rdv’ virus particle with large
input data [2GB]

Results: Efficient Scheduling
• We compared the following workflow scheduling strategies

1. Heuristic Scheduling with accurate performance models generated
semi-automatically - HAP

2. Heuristic Scheduling with crude performance models based on CPU
power of the resources - HCP

3. Random Scheduling with no performance models - RNP
4. Weighted random scheduling with accurate performance models -

RAP

• We compared the ‘makespan’ of the “classesbymra” step for the
different scheduling strategies

Results: Efficient Scheduling

762

1121

757

505

Overall
makespan

(minutes)

53076210345357RAP

29811219432189RNP

41075713505258HCP

50538613506050HAP

Execution
Time at
medusa

(minutes)

Execution
Time at
RTC

(minutes)

nodes
picked at
medusa

nodes
picked at
RTC

instances
mapped to
medusa
(Opteron)

instances
mapped to
RTC (IA-64)

Scheduling
method

0

200

400

600

800

1000

1200

Scheduling Strategy

RNP
RAP
HCP
HAP

• Set of resources: 50 RTC nodes, 13
medusa nodes

• HAP - Heuristic Accurate PerfModel
HCP - Heuristic Crude PerfModel
RNP - Random No PerfModel
RAP - Random Accurate PerfModel

Results: Load Balance

410308410383394229

Overall
makespan

(minutes)

Execution
time at
acrl

(minutes)

Execution
Time at
medusa

(minutes)

Execution
Time at
RTC

(minutes)

#
instances
mapped to
acrl

(IA-64)

#
instances
mapped to
medusa

(Opteron)

#
instances
mapped to
RTC

(IA-64)

• Set of resources: 43 RTC nodes, 14 medusa nodes, 39 acrl nodes

• Good load balance due to accurate performance models

Results: Accurateness of Performance Models

• Our performance models were pretty accurate
— rank[RTC_node] / rank[medusa_node] = 3.41
— actual_exec_time[RTC_node] / actual_exec_time[medusa_node] = 3.82
— rank[acrl_node] / rank[medusa_node] = 2.36
— actual_exec_time[acrl_node] /actual_exec_time[medusa_node] = 3.01

• Accurate relative performance model values result in efficient load
balance of the classesbymra instances

EMAN Refinement Process

make3d

volume

Start

proc3d

volume

proc2d

classesbymra

make3diter
project3d

classalign2

Parallel component
Seq. component

classesbymra

classesbymraclassalign2

Framework

Launch

Workflow Engine

Application Manager

Binder

Workflow
Scheduler

Grads Information
Service

Application DAG,
Performance

Model

The Grid

Demo
follows..

Results: Accurateness of Performance
Models

• Our performance models were pretty accurate
— rank[RTC_node] / rank[medusa_node] = 3.41

 rank[RTC_node] = 8802.31
 rank[medusa_node] = 2578.24

— actual_exec_time[RTC_node] / actual_exec_time[medusa_node] = 3.82
 actual_exec_time[RTC_node] = 386 minutes
 actual_exec_time[medusa_node] = 101 minutes

— rank[acrl_node] / rank[medusa_node] = 2.36
 rank[acrl_node] = 6093.91
 rank[medusa_node] = 2578.24

— actual_exec_time[acrl_node] /actual_exec_time[medusa_node] = 3.01
 actual_exec_time[acrl_node] = 308 minutes
 actual_exec_time[medusa_node] = 101 minutes

• Accurate relative performance models result in efficient load
balance of the classesbymra instances

