
EMAN: A Workflow Application

EMAN has been developed at Baylor College of Medicine by Research group of *Wah Chiu* and *Steven Ludtke* {wah,sludtke}@bcm.tmc.edu

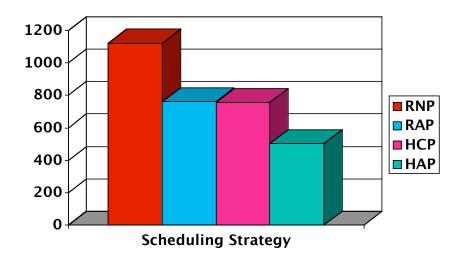
Workflow Scheduling

- Problem: Map the components of the given Workflow DAG to a set of available Grid resources
- Objective function is to minimize the makespan of the whole Workflow application
- Overview
 - -Resource Modeling using NWS and MDS
 - Sophisticated Application Component Performance models that take into account both computational performance and memory hierarchy performance
 - -Walk the DAG and find the components that are currently available
 - Add data movement costs from the slowest predecessor in the performance model of the successor
 - Adapted known heuristics from domain of scheduling parameter sweep applications and use them to schedule available components

Workflow Scheduling: Results

- Testbed
 - —64 dual processor Itanium IA-64 nodes (900 MHz) at Rice University Terascale Cluster [RTC]
 - —60 dual processor Itanium IA-64 nodes (1300 MHz) at University of Houston [acrl]
 - 16 Opteron nodes (2009 MHz) at University of Houston Opteron cluster [medusa]
- Experiment
 - —Ran the EMAN refinement cycle and compared running times for "classesbymra", the most compute intensive parallel step in the workflow
 - Determine the 3D structure of the 'rdv' virus particle with large input data [2GB]

Results: Efficient Scheduling

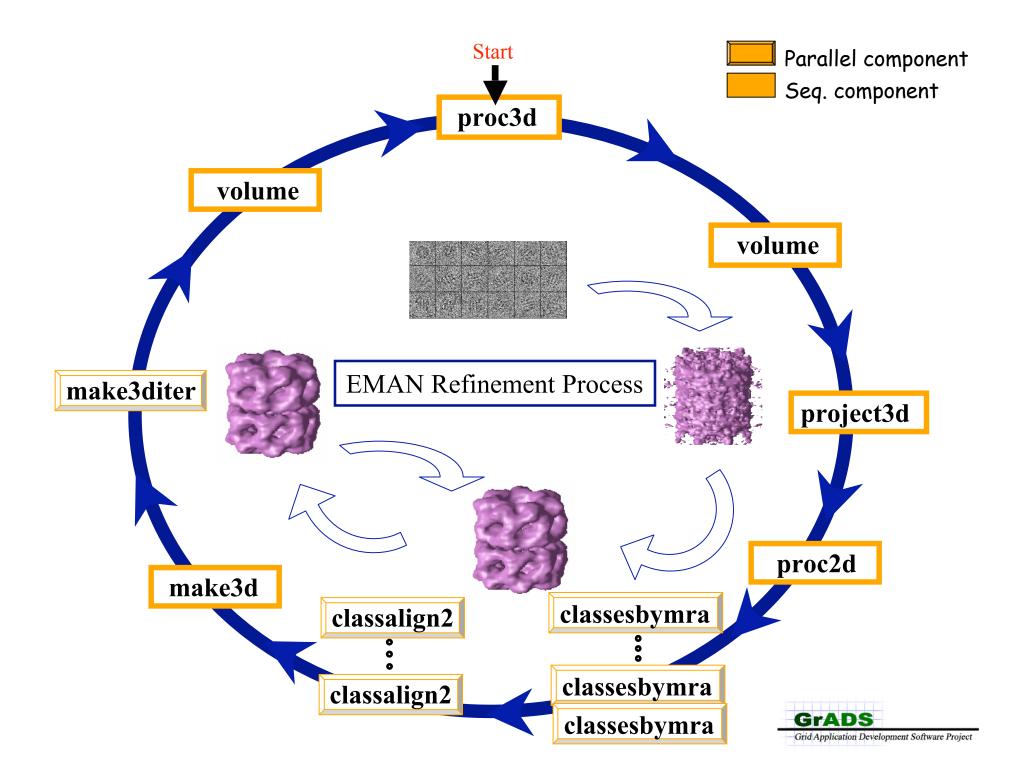

- We compared the following workflow scheduling strategies
 - 1. <u>Heuristic Scheduling with accurate performance models generated</u> semi-automatically - HAP
 - 2. <u>H</u>euristic Scheduling with <u>c</u>rude <u>p</u>erformance models based on CPU power of the resources - HCP
 - 3. <u>Random Scheduling with no performance models</u> RNP
 - 4. Weighted <u>random scheduling with accurate performance models</u> RAP
- We compared the 'makespan' of the "classesbymra" step for the different scheduling strategies

Results: Efficient Scheduling

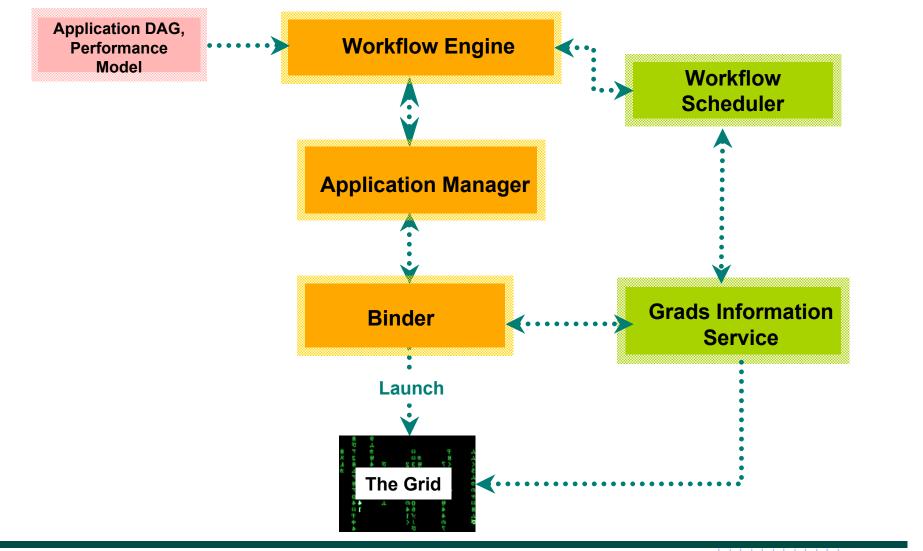
Scheduling method	# instances mapped to RTC (IA-64)	# instances mapped to medusa (Opteron)	# nodes picked at RTC	# nodes picked at medusa	Execution Time at RTC (minutes)	Execution Time at medusa (minutes)	Overall makespan (minutes)
НАР	50	60	50	13	386	505	505
НСР	58	52	50	13	757	410	757
RNP	89	21	43	9	1121	298	1121
RAP	57	53	34	10	762	530	762

- Set of resources: 50 RTC nodes, 13 medusa nodes
- HAP Heuristic Accurate PerfModel
 - HCP Heuristic Crude PerfModel
 - RNP Random No PerfModel
 - **RAP Random Accurate PerfModel**

Results: Load Balance


29	42	39	383	410	308	410
instances mapped to RTC (IA-64)	instances mapped to medusa (Opteron)	instances mapped to acrl (IA-64)	Time at RTC (minutes)	Time at medusa (minutes)	time at acrl (minutes)	makespan (minutes)
#	#	#	Execution	Execution	Execution	Overall

- Set of resources: 43 RTC nodes, 14 medusa nodes, 39 acrl nodes
- Good load balance due to accurate performance models


Results: Accurateness of Performance Models

- Our performance models were pretty accurate
 - rank[RTC_node] / rank[medusa_node] = 3.41
 - actual_exec_time[RTC_node] / actual_exec_time[medusa_node] = 3.82
 - rank[acrl_node] / rank[medusa_node] = 2.36
 - actual_exec_time[acrl_node] /actual_exec_time[medusa_node] = 3.01
- Accurate relative performance model values result in efficient load balance of the classesbymra instances

Framework

Demo follows..

Results: Accurateness of Performance Models

- Our performance models were pretty accurate - rank[RTC_node] / rank[medusa_node] = 3.41 rank[RTC_node] = 8802.31 rank[medusa_node] = 2578.24 — actual_exec_time[RTC_node] / actual_exec_time[medusa_node] = 3.82 actual_exec_time[RTC_node] = 386 minutes actual_exec_time[medusa_node] = 101 minutes - rank[acrl_node] / rank[medusa_node] = 2.36 rank[acrl_node] = 6093.91 rank[medusa_node] = 2578.24 — actual_exec_time[acrl_node] /actual_exec_time[medusa_node] = 3.01 actual_exec_time[acrl_node] = 308 minutes actual_exec_time[medusa_node] = 101 minutes
- Accurate relative performance models result in efficient load balance of the classesbymra instances

