The Virtual Grid Application Development Software (VGrADS) Project

Ken Kennedy
Center for High Performance Software
Rice University

http://www.hipersoft.rice.edu/vgrads/
The VGrADS Team

- VGrADS is an NSF-funded Information Technology Research project

- Plus many graduate students, postdocs, and technical staff!
The VGrADS Vision: National Distributed Problem Solving

• Where We Want To Be
 — Transparent Grid computing
 - Submit job
 - Find & schedule resources
 - Execute efficiently

• Where We Are
 — Low-level hand programming

• What Do We Need?
 — A more abstract view of the Grid
 - Each developer sees a specialized “virtual grid”
 — Simplified programming models built on the abstract view
 - Permit the application developer to focus on the problem
The Original GrADS Vision

Program Preparation System

Execution Environment

Performance Feedback

Performance Problem

Libraries

Source Application

Software Components

Whole-Program Compiler

Configurable Object Program

Real-time Performance Monitor

Resource Negotiator

Scheduler

Negotiation

Binder

Grid Runtime System

Virtual Grid Application Development Software Project
Lessons from GrADS

• **Mapping and Scheduling for MPI Jobs is Hard**
 - Although we were able to do some interesting experiments

• **Performance Model Construction is Hard**
 - Hybrid static/dynamic schemes are best
 - Difficult for application developers to do by hand

• **Heterogeneity is Hard**
 - We completely revised the launching mechanisms to support this
 - Good scheduling is critical

• **Rescheduling/Migration is Hard**
 - Requires application collaboration (generalized checkpointing)
 - Requires performance modeling to determine profitability

• **Scaling to Large Grids is Hard**
 - Scheduling becomes expensive
VGrADS Virtual Grid Hierarchy
Virtual Grids and Tools

• Abstract Resource Request
 - Permits true scalability by mapping from requirements to set of resources
 - Scalable search produces manageable resource set
 - Virtual Grid services permit effective scheduling
 - Fault tolerance, performance stability

• Look-Ahead Scheduling
 - Applications map to directed graphs
 - Vertices are computations, edges are data transfers
 - Scheduling done on entire graph
 - Using automatically-constructed performance models for computations
 - Depends on load prediction (Network Weather Service)

• Abstract Programming Interfaces
 - Application graphs constructed from scripts
 - Written in standard scripting languages (Python, Perl, Matlab)
Virtual Grids

• **Goal:** Provide abstract view of grid resources for application use
 – Will need to experiment to get the right abstractions

• **Assumptions:**
 – Underlying scalable information service
 – Shared, widely distributed, heterogeneous resources
 – Scaling and robustness for high load factors on Grid
 – Separation of the application and resource management system

• **Basic Approach:**
 – Specify vgrid as a hierarchy of ...
 - Aggregation operators (ClusterOf, LooseBagOf, etc.) with ...
 - Constraints (type of processor, installed software, etc.) and ...
 - Application-based rankings (e.g. predicted execution time)
 – Execution system returns (candidate) vgrid, structured as request
 – Application can use as it sees fit, make further requests
Programming Tools

• **Collaborating on definition of the Virtual Grids interface**
 - Initial experiments based on GrADS infrastructure

• **Focus: Automating critical application-development steps**
 - Building workflow graphs
 - From Python scripts used by EMAN
 - Scheduling workflow graphs
 - Heuristics required (problems are NP-complete at best)
 - Good initial results if accurate predictions of resource performance are available (see EMAN demo)
 - Constructing of performance models
 - Based on loop-level performance models of the application
 - Requires benchmarking with (relatively) small data sets, extrapolating to larger cases
 - Initiating application execution
 - Optimize and launch application on heterogeneous resources
VGrADS Demos at SC04

- **EMAN - Electron Microscopy Analysis [Rice, Houston]**
 - 3D reconstruction of particles from electron micrographs
 - Workflow scheduling and performance prediction to optimize mapping

- **GridSAT - Boolean Satisfiability [UCSB]**
 - Classic NP-complete problem useful in circuit design and verification
 - Performance-based dynamic resource allocation and scheduling

Figure 1: Example of conflict analysis with learning and non-chronological backtracking