## The Virtual Grid Application Development Software (VGrADS) Project

#### Ken Kennedy Center for High Performance Software Rice University

http://vgrads.rice.edu/



## The VGrADS Team

• VGrADS is an NSF-funded Information Technology Research project



Rich Wolski



Fran Berman Andrew Chien Henri Casanova





Jack Dongarra

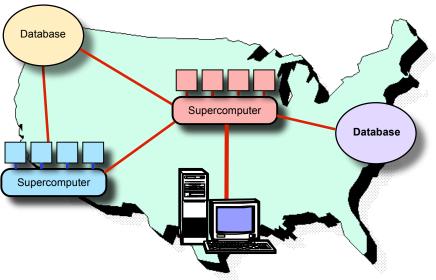


Carl Kesselman



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Dan Reed




• Plus many graduate students, postdocs, and technical staff!



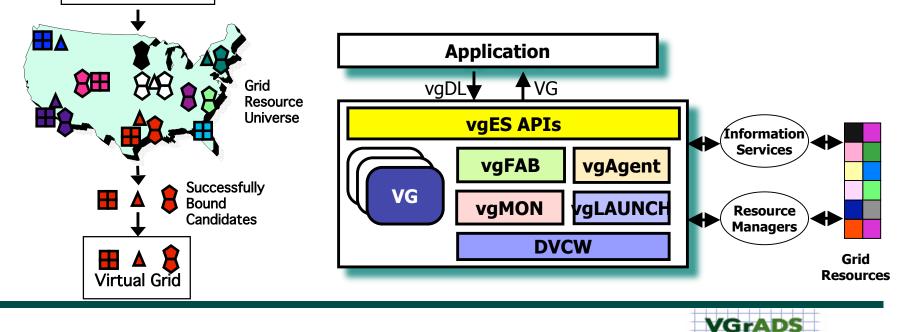
#### The VGrADS Vision: National Distributed Problem Solving

- Where We Want To Be
  - Transparent Grid computing
    - Submit job
    - Find & schedule resources
    - Execute efficiently
- Where We Are
  - -Low-level hand programming
  - -Programmer needs to manage
    - Heterogeneous resources
    - Computation and data movement scheduling
    - Fault tolerance and performance adaptation
- What Do We Need?
  - -A more abstract view of the Grid
    - Each developer sees a scalable "virtual grid"
  - $-\operatorname{Simplified}$  programming models built on the abstract view
    - Permit the application developer to focus on the problem



VGrADS

Virtual Grid Application Development Software Project

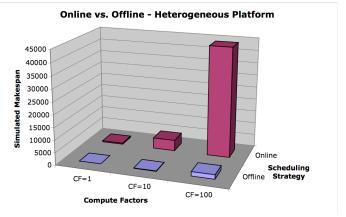

#### Abstraction: Virtual Grid Execution System (vgES)

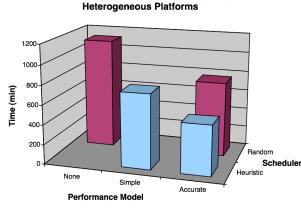
- A Virtual Grid (VG) takes
  - Shared heterogeneous resources
  - Scalable information service
- and provides

vqDL Description

- An hierarchy of applicationdefined aggregations (e.g. ClusterOf) with constraints (e.g. processor type) and rankings
- Virtual Grid Execution System (vgES) implements VG
  - VG Definition Language (vgDL)
  - VG Find And Bind (vgFAB)
  - VG Monitor (vgMON)
  - VG Application Launch (VgLAUNCH+DVCW)
  - VG Resource Info (vgAgent)

Virtual Grid Application Development Software Project

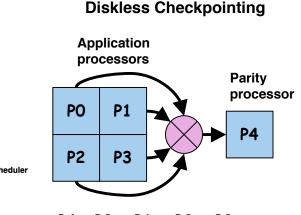




# Tools:

# Scheduling and Fault Tolerance Methods

VGrADS is studying a range of tools for grid programming tasks, including

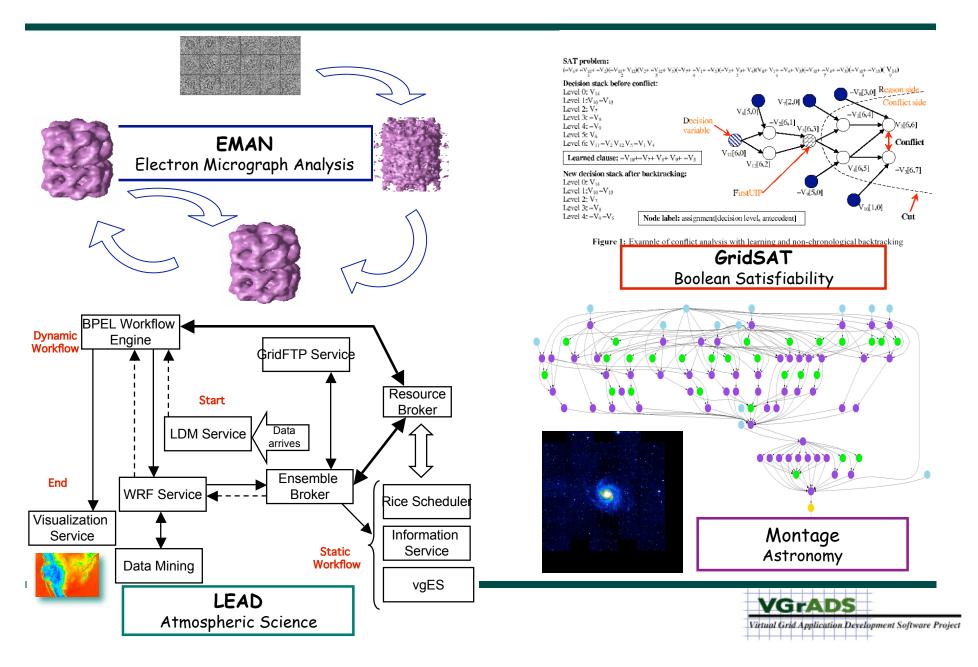
- Scheduling of workflow computations
  - Off-line look-ahead scheduling dramatically improves in makespan (total time)
  - Accurate performance models significantly affect quality of scheduling
  - Queue wait prediction allows scheduling into batch queues






Performance Models and Schedulers -




- Diskless checkpointing for linear algebra computations (application-specific)
- Temporal reasoning for fault prediction
- Optimal checkpoint frequency for iterative applications



 $\textbf{P4}=\textbf{P0}\otimes\textbf{P1}\otimes\textbf{P2}\otimes\textbf{P3}$ 

VGrADS Virtual Grid Application Development Software Project

#### **VGrADS** Application Collaborations



## VGrADS Demos at SC|05

- vgES / vgMON (UCSD)
  - -Runs EMAN application under vgES
  - -Track and visualize progress with vgMON
- Batch queue scheduling
  - -Schedules EMAN onto resources fronted by batch queues
  - -Allows running across clusters
- GridSolve
  - Submits linear algebra problems for solution on the grid ala NetSolve
  - -Uses vgES for
    - Integrated performance information
    - Integrated monitoring
    - Fault prediction
    - Integrating the software and resource information repositories

