The Virtual Grid Application Development Software (VGrADS) Project

Chuck Koelbel

Rice University

Dan Nurmi

University of California, Santa Barbara

http://vgrads.rice.edu/

In Memoriam

Ken Kennedy 1945-2007

The VGrADS Team

• VGrADS is an NSF-funded Information Technology Research project

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Dan Reed

Keith Cooper Ken Kennedy Charles Koelbel Richard Tapia Linda Torczon

Jack Dongarra

Carl Kesselman

• Plus many graduate students, postdocs, and technical staff!

Vision: Global Distributed Problem Solving

Ę

- Where We Want To Be
 - Transparent computing
 - In an increasingly distributed space
 - Applications to cloud computing
 - Applications to HPC
- Where We Are
 - Low-level hand programming
 - Programmer must manage:
 - Heterogeneous resources
 - Scheduling of computation and data movement
 - Fault tolerance and performance adaptation
- How Do We Get from Here to There?
 - Separate application development from resource management
 - Through an abstraction called the Virtual Grid
 - Provide tools to bridge the gap
 - Scheduling, resource management, distributed launch, simple programming models, fault tolerance, grid economies

Vision: Global Distributed Problem Solving

- Where We Want To Be
 - Transparent computing
 - In an increasingly distributed space
 - Applications to cloud computing
 - Applications to HPC
- Where We Are
 - Low-level hand programming
 - Programmer must manage:
 - Heterogeneous resources
 - Scheduling of computation and data movement
 - Fault tolerance and performance adaptation
- How Do We Get from Here to There?
 - Separate application development from resource management
 - Through an abstraction called the Virtual Grid
 - Provide tools to bridge the gap
 - Scheduling, resource management, distributed launch, simple programming models, fault tolerance, grid economies

Vision: Global Distributed Problem Solving

- Where We Want To Be
 - Transparent computing
 - In an increasingly distributed space
 - Applications to cloud computing
 - Applications to HPC
- Where We Are
 - Low-level hand programming
 - Programmer must manage:
 - Heterogeneous resources
 - Scheduling of computation and data movement
 - Fault tolerance and performance adaptation
- How Do We Get from Here to There?
 - Separate application development from resource management
 - Through an abstraction called the Virtual Grid
 - Provide tools to bridge the gap
 - Scheduling, resource management, distributed launch, simple programming models, fault tolerance, grid economies

VGrADS Big Ideas

- Virtualization of Resources
 - Application specifies required resources in Virtual Grid Definition language (vgDL)
 - Give me a tight bag of as many Opterons as possible
 - Virtual Grid Execution System (vgES) produces specific virtual grid matching specification
 - May involve adding layer of capabilities
 - vgES also reports properties of the virtual grid to application
- Generic In-Advance Scheduling of Application Workflows
 - Application includes performance models for all workflow nodes
 - Performance models automatically constructed
 - Software schedules applications onto virtual Grid, minimizing total makespan
 - Including both computation and data movement times

Virtual Grids (VGs)

- A Virtual Grid (VG) takes
 - Shared heterogeneous resources
 - Scalable information service
- and provides
 - A hierarchy of applicationdefined aggregations with constraints and rankings
 - E.g. Cluster of Opteron nodes
- Virtual Grid Execution System (vgES) implements VG
 - Brings order out of chaos
- Can be implemented on multiple platforms
 - Grids
 - Compute clouds
 - HPC
 - Manycore chips

Virtual Grid Application Development Software Project

Virtual Grids (VGs)

- A Virtual Grid (VG) takes
 - Shared heterogeneous resources
 - Scalable information service
- and provides
 - A hierarchy of applicationdefined aggregations with constraints and rankings
 - E.g. Cluster of Opteron nodes
- Virtual Grid Execution System (vgES) implements VG
 - Brings order out of chaos
- Can be implemented on multiple platforms
 - Grids
 - Compute clouds
 - HPC
 - Manycore chips

Virtual Grid Application Development Software Project

Virtual Grids (VGs)

- A Virtual Grid (VG) takes
 - Shared heterogeneous resources
 - Scalable information service
- and provides
 - A hierarchy of applicationdefined aggregations with constraints and rankings
 - E.g. Cluster of Opteron nodes
- Virtual Grid Execution System (vgES) implements VG
 - Brings order out of chaos
- Can be implemented on multiple platforms
 - Grids
 - Compute clouds
 - HPC
 - Manycore chips

VGrADS Tool Research

- Scheduling of workflow computations
 - Off-line look-ahead scheduling dramatically improves total time
 - Accurate performance models significantly affect quality of scheduling
 - Batch queue behavior can be predicted accurately enough for scheduling decisions
- Fault tolerance
 - Diskless checkpointing for linear algebra computations (application-specific)
 - Qualitative performance analysis for fault detection
 - Optimal checkpoint frequency for iterative applications
 - Availability prediction

VGrADS: Application-driven Research

- SC04
 - Executing the EMAN application
 - Incorporated performance models
- SC05
 - Executing the EMAN application
 - Used batch queue predictions (and performance models)
- SC06
 - Executing the LEAD application
 - Scheduled to vgES virtualized resource reservation slots (leveraging queue predictions and performance models)
- SC07: Fault tolerance through virtual grid abstractions
 - Executing the LEAD application
 - Incorporates reliability information (and above features)
 - Combine replication and migration of workflow nodes

Overview of SC07 Demo

- Demonstrate fault-tolerance on top of vgES
 - Scheduler
 - Fault Tolerance & Recovery (FTR)
 - Workflow Planner (WP)
- Fault tolerance mechanisms
 - Scheduler, FTR, WP communicate during planning to decide overprovisioning
 - Scheduler, FTR, EM, vgES communicate during execution for rescheduling
 - FTR uses availability prediction service for reliability estimates
- vgES
 - Management of multiple copies
 - Passive and application agnostic
- LEAD the driving application

The LEAD Vision: A Paradigm Shift

The CS challenge: Build cyberinfrastructure services that provide adaptability, scalability, availability, useability, and real-time response.

NWS Private Companies VGrADSSuccents Virtual Grid Application Development Software Project

End Users

VGrADS at SC07

- Booth Talks and Demos
 - When and where
 - Tuesday, 4:00-5:00pm, GCAS booth (789)
 - Wednesday, 10:30-11:30am, RENCI booth (3215)
 - Wednesday, 3:00-4:00pm, SDSC booth (561)
- Other talks and posters
 - Poster: "Performability Modeling for Scheduling and Fault Tolerance Strategies for Grid Workflows" by Lavanya Ramakrishnan & Dan Reed
 - All Week (Reception, Tuesday 5:15-7:00pm), Ballroom Lobby
 - Paper: "Automatic Resource Specification Generation for Resource Selection" by Richard Y. Huang, Henri Casanova and Andrew A. Chien
 - Tuesday, 1:30-2:00pm, room A1/A6
 - Doctoral Showcase Presentation: "Qualitative Performance Analysis for Large-Scale Scientific Workflows" by Emma Buneci
 - Wednesday, 3:45-4:00pm, room A10/A11
 - Presentation: "A Framework for Qualitative Performance Analysis of Large-Scale Scientific Applications" by Emma Buneci and Dan Reed
 - Wednesday, 10:00-10:30, SC07 Education Booth (L1)

