VGrADS is an NSF project creating higher-level abstractions for grid programs.

Seven universities performing research:

Research thrusts include defining Virtual Grids (VGs), scheduling workflows onto VGs, and application collaborations.

Virtual Grid Application Development Software

Virtual Grids (VGs)

- **Virtual Grid Description Language (vgDL)** allows abstract specification of grid
 - Cluster0F, TightBagOf, LooseBagOf
 - Near, Far
 - Resource constraints

- **Virtual Grid Execution System (vgES)** finds and binds candidate resources into a VG

- **Application uses VG as needed**
 - Scheduling sub-computations
 - Executing components

Scheduling onto VGs

The Problem: Given a program represented as a DAG, map it to the VG and schedule the tasks.

Method 1: Batch Queue Prediction

- Batch queue wait time predictions derived from logs and current queue state
- Computational performance models derived from training set runs and input size
- Heuristics map DAG to minimize predicted total time

Method 2: Slot Management

- Request “slots” (dedicated time periods) on resources
- Slots can be obtained by advanced reservation (e.g. Maui scheduler) or batch queue prediction (see Method 1)
- Heuristics fit DAG nodes within scheduled slots

Both methods are now supported by vgES.

VGs for LEAD

See our demonstration of VG scheduling for LEAD, an atmospheric science code.

VGrADS is supported by the National Science Foundation under Cooperative Agreement No. CCR-0331654.