
Why Performance Models Matter for

Grid Computing

Ken Kennedy
Center for High Performance Software

Rice University

http://vgrads.rice.edu/WoCo9Overview07-06.pdf

Vision: Global Distributed Problem Solving

• Where We Want To Be
— Transparent Grid computing

– Submit job
– Find & schedule resources
– Execute efficiently

• Where We Are
— Low-level hand programming
— Programmer must manage:

– Heterogeneous resources
– Scheduling of computation and data movement
– Fault tolerance and performance adaptation

• What Do We Propose as A Solution?
— Separate application development from resource management

– Through an abstraction called the Virtual Grid
— Provide tools to bridge the gap between conventional and Grid computation

– Scheduling, resource management, distributed launch, simple
programming models, fault tolerance, grid economies

Database

Database

Supercomputer

Supercomputer

The VGrADS Team

• VGrADS is an NSF-funded Information Technology Research project

Keith Cooper
Ken Kennedy

Charles Koelbel
Richard Tapia
Linda Torczon

Rich Wolski

Fran Berman
Andrew Chien

Henri CasanovaCarl Kesselman
Lennart Johnsson

Dan Reed
Jack Dongarra

• Plus many graduate students, postdocs, and technical staff!

VGrADS Project Vision

• Virtual Grid Abstraction
—Separation of Concerns

– Resource location, reservation, and management
– Application development and resource requirement specification

—Permits true scalability and control of resources

• Tools for Application Development
—Easy application scheduling, launch, and management

– Off-line scheduling of workflow graphs
– Automatic construction of performance models

—Abstract programming interfaces

• Support for Fault Tolerance and Rescheduling/Migration
—Collaboration between application and virtual grid execution system

• Research Driven by Real Application Needs
—EMAN, LEAD, GridSAT, Montage

VGrADS Application Collaborations

EMAN
Electron Micrograph Analysis

GridSAT
Boolean Satisfiability

BPEL Workflow
Engine

LDM Service

GridFTP
Service

WRF Service

vgES

Information
Service

Rice
Scheduler

Ensemble
Broker

Visualization
Service

Data arrives

Resource
Broker

Data Mining

Start

End

Static
Workflow

Dynamic
Workflow

LEAD
Atmospheric Science

Montage
Astronomy

VGrADS Big Ideas

• Virtualization of Resources
—Application specifies required resources in Virtual Grid Definition

language (vgDL)
– Give me a loose bag of 1000 processors, with 1 Gb memory per

processor, with the fastest possible processors
– Give me a tight bag of as many Opterons as possible

—Virtual Grid Execution System (vgES) produces specific virtual grid
matching specification

—Avoids need for scheduling against the entire space of global
resources

• Generic In-Advance Scheduling of Application Workflows
—Application includes performance models for all workflow nodes

– Performance models automatically constructed
—Software schedules applications onto virtual Grid, minimizing total

makespan
– Including both computation and data movement times

Workflow Scheduling Results

Dramatic makespan reduction of
offline scheduling over online
scheduling — Application: Montage

Value of performance
models and heuristics for
offline scheduling —
Application: EMAN

”Scheduling Strategies for Mapping Application
Workflows onto the Grid”

HPDC’05

CF=1
 CF=10

 CF=100

Offline

Online
0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

45000000

Simulated
Makespan

Compute Factors

Scheduling
Strategy

Online vs. Offline - Heterogeneous Platform (Compute
Intensive Case)

Offline

Online

”Resource Allocation Strategies for Workflows in Grids”
CCGrid’05

Virtual Grid Results

• Virtual Grid prescreening of resources produces schedules
dramatically faster without significant loss of schedule quality
—Huang, Casanova and Chien. Using Virtual Grids to Simplify

Application Scheduling. IPDPS 2006.
—Zhang, Mandal, Casanova, Chien, Kee, Kennedy and Koelbel.

Scalable Grid Application Scheduling via Decoupled Resource
Selection and Scheduling. CCGrid06.

• Current VGrADS heuristics are quadratic in number of distinct
resource classes
—Two-phase approach brings this much closer to linear time

Performance Model Construction

• Problem: Performance models are difficult to construct
—By-hand and models take a great deal of time
—Accuracy is often poor

• Solution (Mellor-Crummey and Marin): Construct performance
models automatically
—From binary for a single resource and execution profiles
—Generate a distinct model for each target resource

• Current results
—Uniprocessor modeling

– Can be extended to parallel MPI steps
—Memory hierarchy behavior
—Models for instruction mix

– Application-specific models
– Scheduling using delays provided as machine specification

Performance Prediction Overview

Object
Code

Binary
Instrumenter

Instrumented
Code

Execute

BB
Counts

Communication
Volume &
Frequency

Memory
Reuse

Distance

Binary
Analyzer

Control flow graph
Loop nesting
structure
BB instruction mix

Post Processing Tool

Architecture
neutral model Scheduler

Architecture
Description

Performance
Prediction
for Target

Architecture
Static Analysis

Dynamic
Analysis

Post Processing

Modeling Memory Reuse Distance

Execution Behavior: NAS LU 2D 3.0

Value of Performance Models

• True Grid Economy
—All resources have a “rate of exchange”

– Example: 1 CPU unit Opteron = 2 units Itanium (at same Ghz)
—Rate of exchange determined by averaging over all applications

– Weighted by application global resource usage percentage

• Improved Global Resource Utilization
—A particular application may be able to take advantage of

performance models to reduce costs
– Example: For EMAN, 1 Opteron unit = 3 Itanium units
– Thus, EMAN should always favor Opterons when available

—If all applications do this, the total system resources will be used
far more efficiently

Performance Models and Batch Scheduling

• Currently VGrADS supports scheduling using estimated batch
queue waiting times
—Batch queue estimates are factored into communication time

– E.g., the delay in moving from one resource to another is data
movement time + estimated batch queue waiting time

—Unfortunately, estimates can have large standard deviations

• Next phase: limiting variability through two strategies:
—Resource reservations: partially supported on the TeraGrid and

other schedulers
—In advance queue insertion: submit jobs before data arrives based

on estimates
– Can be used to simulate advance reservations

• Exploiting this requires a preliminary schedule indicating when
the resources are needed
—Problem: how to build an accurate schedule when exact resource

types are unknown

Solution to Preliminary Scheduling Problem

• Use performance models to specify alternative resources
—For step B, I need the equivalent of 200 Opterons, where 1

Opteron = 3 Itanium = 1.3 Power 5
– Equivalence from performance model

• This permits an accurate preliminary schedule because the
performance model standardizes the time for each step
—Scheduling can then proceed with accurate estimates of when each

resource collection will be needed
—Makes advance reservations more accurate

– Data will arrive neither too early or too late

• It may provide a mixture to meet the computational
requirments, if the specification permits
—Give me a loose bag of tight bags containing the equivalent of 200

Opterons, minimize the number of tight bags and the overall cost
– Solution might be 150 Opterons in one cluster and 150 Itaniums

in another

Scheduling to a Deadline

• LEAD Project has a feedback loop
—After each preliminary workflow, results are used to adjust doppler

radar configurations to get more accurate information in the next
phase

—This must be done on a tight time constraint

• Performance models make this scheduling possible
—What happens if the first schedule misses the deadline?

– The time must be reduced, either by doing less computation or
by using more resources

– But how many more resources?
—Suppose we can differentiate the model to compute for each step,

the sensitivity of running time to more resources
– Automatic differentiation technologies exist, but other

strategies may also make this possible
—Derivatives can be used to predict resources needed to meet the

deadline along the critical path

88D Radar
Remapper

Satellite Data
Remapper

NIDS Radar
Remapper

Radar data
(level II)

Surface data,
upper air mesonet data,

wind profiler

Radar data
(level III)

Satellite data
ADAS

Terrain
Preprocessor

3D Model Data
Interpolator

(Initial Boundary
Conditions)

3D Model Data
Interpolator

(lateral Boundary
Conditions)

Terrain data files NAM, RUC, GFS data

WRF Static
Preprocessor

ARPS to
WRF Data
Interpolator

WRF

ARPS Plotting
Program

IDV
Bundle

Surface, Terrestrial
data files

1

WRF to ARPS Data
Interpolator

2

3

4

5

6

7

8

9 10

11

12

13

Run Once per
 forecast Region

Repeated for
periodically

 for new data

Triggered if a
storm is detected

Visualization on
users request

LEAD Workflow

Summary

• VGrADS Project Uses Two Mechanisms for Scheduling
—Abstract resource specification to produce preliminary collection of

resources
—More precise scheduling on abstract collection using performance

models
– Combined strategy produces excellent schedules in practice
– Performance models can be constructed automatically

• New Challenges Require Sophisticated Methods
—Minimizing cost of application execution
—Scheduling with batch queues and advanced reservations
—Scheduling to deadlines

• Current Driving Application
—LEAD: Linked Environments for Atmospheric Discovery

– Requires deadlines and efficent resource utilization

Relationship to Future Architectures

• Future supercomputers will have heterogeneous components
—Cray, Cell, Intel, CPU + coprocessor (GPU), …

• Scheduling subcomputations onto units while managing data
movment costs will be the key to effective usage of such
systems
—Adapt VGrADS strategy
—Difference: must consider alternative compilations of the same

computation, then model performance of the result

• Could be used to tailor systems or chips to particular users’
application mixes

