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Abstract

Workflow technologies have become a major vehicle for the easy and efficient development of science applications. When

integrating the workflow technology with the state-of-art resource provisioning technology, the challenge is to determine the

amount of resources necessary for the execution of workflow. This paper introduces an algorithm named Balanced Time

Scheduling (BTS), which estimates the minimum number of hosts required to execute a workflow within a user-specified finish

time. The resource estimate of BTS is abstract, so it can be easily integrated with any resource description languages and

resource provisioning systems. Moreover, the experimental results with a number of synthetic workflows and several real

application workflows demonstrate that BTS can estimate the resource capacity close to the lower bound while the algorithm

is scalable so that its turnaround time is only tens of seconds even with workflows having thousands of tasks and edges.

1 Introduction

As high-performance distributed computing technologies such as the Grid[10] advance, scientists and engineers are able

to explore more complex phenomena in a variety of scientific fields such as biology, astronomy, geology, medicine, etc

[15, 23, 2, 25]. One of the key challenges that they confront in this exploration is how to transition their knowledge and

legacy software to new computing environments. Some solutions include the use of higher-level application descriptions



such as workflows, which can specify the overall behavior and the structure of applications in a platform-independent way.

A workflow is often represented as a Directed Acyclic Graph (DAG) that consists of nodes and edges which represents tasks

and data and control dependencies between them. When an application is specified in this high-level manner, workflow

management systems such as Pegasus [8] can target a number of execution environments and automatically transform the

specifications into executable workflows that can be executed on campus or distributed resources.

At the same time, the coordination and the provisioning of distributed resources have been challenging issues in the

high-performance distributed computing community. Recent server-level virtualization technologies such as virtual cluster

[14], Virtual Grid [18, 17], and Amazon’s EC2 [1] enable dynamic resource provisioning taking into account performance,

fault-tolerance, economics, and other factors. They provide resource description languages such as RSL [7], JSDL [4],

ClassAd [21], Redline [22], and vgDL[17]. Using these languages, users can not only specify basic resource attributes such

as processor type, memory/disk, capacity, and network bandwidth but also advanced features such as cost and reliability.

Workflow management systems can potentially benefit from the distributed resource management technologies. For ex-

ample, workflows can obtain better resource provisioning since resource management technologies can acquire resources,

considering complex factors such as resource dynamics, economics and availability. They can also benefit from advanced

fault tolerance features provided by the resource management systems.

A critical issue in the integration of workflow management and resource management is how to make them communicate

with each other. Specifically, a key question is how to automatically estimate resource requirements for given workflows.

The most important attribute from the perspective of high-level workflows is the number of CPUs/hosts required, because

the resource set size is an important factor in determining the makespan of workflow application and of the cost of resource

allocation. If the number of resources is large, parallel execution of independent tasks can reduce the execution time while

too many resources can cause low resource utilization, high scheduling overhead, and high cost. On the other hand, if the

number of resources is too small, the execution time of the workflow can increase. As such, it is important to estimate the

minimum amount of resources to complete a workflow within a given deadline. Note that this problem is different from

conventional workflow scheduling[19, 9, 36, 33, 29, 3, 28] or cost-optimization problems[37, 35, 30, 26, 6], which aim at

minimizing the application’s runtime on a given set of resources.

More importantly, this resource capacity estimate should be neutral so that it is independent of target language, resource

environments, and detail specifications of resources. As a solution, we propose a heuristic algorithm named as Balanced

Time Scheduling (BTS), which estimates the minimum number of hosts required to execute a workflow within a given

deadline. Our algorithm has several benefits when making resource allocation plans. BTS can utilize the idle time of

resources allocated already instead of allocating additional resources by adjusting the start time of tasks on non-critical path.

As a consequence, BTS can execute a workflow with fewer resources than the approaches based on conventional workflow

scheduling techniques. Next, the time complexity of BTS algorithm is small enough so it is scaled well even for workflows



with thousands of tasks. The experiments with synthetic workflows and several real application workflows demonstrate the

efficiency of our algorithm with respect to cost and performance.

The rest of this paper is organized as follows. In Section 2, we discuss the prior studies closely related to our research.

Section 3 defines the resource capacity estimate problem and section 4 describes the details of the proposed algorithm. The

methodology and the experimental results are presented in section 5 and section 6, respectively. Finally, section 7 concludes

this paper with future research directions.

2 Related Work

Workflow scheduling is a well-known problem and many studies have been conducted. The main objective of these

algorithms is to minimize the makespan of workflow for a given set of resources. Most algorithms rely on a list scheduling

technique, which assigns ranking values to each task in a workflow and schedules each task in a descending order of ranking

value. Algorithms differ in the way they calculate ranking values. List scheduling provides quite a good performance with

relatively small time complexity[33, 3, 29, 24]. HEFT[33], which is one of the scheduling algorithms employed by Pegasus,

is one of the most popular algorithms based on list scheduling. HEFT considers both communication and computation cost

and achieves relatively good performance in general cases. For more information about workflow scheduling algorithms and

their characteristics, please refer to [19, 36, 9]. In addition to the list scheduling method, other techniques such as dividing

DAG into several levels [28], greedy randomized adaptive search [5], task duplication [27] and critical path first [33], are also

investigated. Different from the conventional workflow scheduling techniques which aim at minimizing the makespan over

limited resources, our goal is to find the minimum resource set size that satisfies a given deadline.

Another category of scheduling methods is on workflow scheduling over unbounded resources. In practice, clustering

techniques [11] such as DSC [34] and CASS-II [20] return the amount of resources required to minimize the makespan as

well as the resulting schedules. To reduce the makespan, the clustering algorithms remove the data transfer between tasks

with data dependency by scheduling them onto the same cluster. Similar to the conventional workflow scheduling algorithms,

their main focus is to minimize makespan. Therefore, they cannot be used to explore the effect of the application deadline on

the resource amount required for the application.

Singh et al [30] and Yu et al [35] used a genetic algorithm to find optimal task-resource mappings. Singh’s approach

minimizes both cost and makespan at the same time while the Yu’s approach minimize only cost for a given deadline.

Time Distribution approach [37] distributes a deadline to subgraphs and cost-optimization is performed for each subgraph.

Cost optimization is also an important issue in project management. Scheduling techniques for project management [13]

calculateFloat that represents the schedulable time range of each subtask and find optimal task-resource mappings using

a linear programming technique. Our algorithm also uses a notion ofschedulable durationsimilar to Float. However, the

cost-minimization techniques basically solve a problem against bounded resources.



Conceptually, our problem can be thought as a cost-minimization problem with time constraint over unbound resources.

That is, our objective is to find a mechanism to estimate the minimal resource set required for successful workflow execution.

The major difference between the conventional cost-minimization problems and our approach is that they focus mostly on

selecting a subset out of limited resources whose properties such as unit cost and available time range are known. On the

contrary, our approach assumes that resource universe and selection mechanism are completely opaque.

There are only a few prior studies that have the same goal to our research. Sudarsanam et al [31] proposed a simple

technique to estimate the amount of resources. They iteratively calculate the makespan and utilization for numerous resource

configurations and determine the best one. Even though this approach is likely to find an optimal solution, it does not scale

well with large workflows and large resource sets. Next, Huang et al [12] proposed a mechanism for finding the minimum

resource collection (RC) size to complete a workflow within minimum execution time. A RC size is determined by empirical

data gathered from many sample workflows, varying the parameters such as DAG size, communication-computation ratio,

parallelism, and regularity that characterize workflows. Even though this approach provides reasonable performance for

workflows with similar characteristics to those of the sample workflows, it does not guarantee that its estimates are correct

for arbitrary workflows. Additionally, parallelism and regularity cannot be calculated deterministically for workflows with

complex shape. Due to such limitations, this approach is only useful for the specific classes of workflows. By contrast, our

algorithm can be applied to any type of workflows and it does not require any empirical data since our algorithm directly

analyzes the workflow structure. Finally, our algorithm can arbitrarily explore any desired finish times that are greater than

the minimum execution time while Huang’s approach can find the resource collection size only for the minimum execution

time.

3 The Problem

The resource capacity estimate is a critical function required to bridge the gap between workflow management systems and

distributed resource management systems. For instance, Pegasus [8] is a workflow management framework which enables the

users to describe logical behavior of application via abstract workflows, maps abstract workflows onto distributed resources

through intelligent workflow planning, and uses Condor DAGMan [32] to execute tasks with fault-tolerance. On the other

hand, the Virtual Grid (VG) [18] enables users to program their resource environments using a resource description language

named vgDL, specifying a temporal and spatial resource requirements via resource slots [16].

A simple motivating scenario is one where users run their applications via Pegasus while using the resources dynamically

provisioned by Virtual Grid. The user would specify the application-specific knowledge about the resource requirements(e.g.,

processor type, memory capacity) and the application-level information (e.g., locations of executable, data, and replica)

needed to run their application and the requested finish time when they submit the workflow to the system. Then, a resource

capacity estimator intercepts the resource information before the ordinary planning of Pegasus takes place and synthesizes a



description through a capacity estimate. For example, the estimator can generate the following vgDL description when the

user needs a cluster consisting of 1 Ghz Opteron processors with 2 GB memory each and want to finish the application within

1 hour.

// 00/00/0000@00:00:00 - slot start time, 00:00:00 - slot duration

// node = [ ... ] - node definition

vgdl = ClusterOf(node)[ 10 ] <03/31/2008@12:00:00, 01:00:00> {

node = [ (Processor == "Opteron") && (Clock >= 1024) && (Memory >= 2048) ]

}

In this example, the host requirements are embedded into the node definition and the requested finish time is converted

into the slot duration while the size of cluster is determined automatically by the estimator. Once the estimator submits this

description, the Virtual Grid execution system allocates resources and then Pegasus can continue its normal planning process

with the resources. Note that acquiring appropriate resources is up to resource selection systems while runtime schedulers at

the execution phase take care of the dynamics in execution time and data transfer time over actual resources.

The estimator determines the minimum number of hosts to complete a workflow within a certain deadline, termed the

RFT(Requested Finish Time). We provide the resource estimate under several assumptions; A workflow is defined by a

set of tasks with predicted execution time and a set of edges between tasks each with data transfer time; Ahost means

an independent processing unit on which only one task is executed at the same time and it is connected to other hosts via

network; Tasks are non preemtable and can be executed on any host on-demand.

In practice, we consider three criteria in the design of the algorithm;1) Communication cost: When two dependent tasks

are scheduled on the same host, the data transfer time between them can be ignored. This can reduce the makespan and

eventually the number of hosts;2) Overestimation: A resource capacity can be overestimated as long as workflows can

finish within a given deadline. However, we should reduce this overestimate because a tight estimate can improve resource

utilization and reduce the overall resource allocation cost;3) Scalability: Since workflow planning is a time-consuming

process and determining the minimum number of hosts for a deadline is an NP-hard problem, an algorithm should be scalable

with a low time complexity.

4 BTS Algorithm

4.1 Key Idea

Our algorithm is motivated by a simple idea that a task can be delayed as long as the delay does not violate its time

constraints and that other tasks can take advantage of the slack. Figure 1 shows how this simple idea can reduce the number

of resources required to execute a workflow. The structure of workflow and the execution time of each task are shown in



Figure 1 (a). For simplicity, we ignore data transfer time between tasks in this example. A simple resource capacity estimate

is to have 4 hosts to exploit the maximum parallelism of the workflow. Then, we can finish this workflow in 7 time units,

which is the sum of execution times on the longest path (i.e., task 1, 2, and 6). In the meantime, task 3, 4, and 5 use their

resources only during a partial period of time and are idle in the remaining time. Therefore, we can delay task 3, 4, and 5

arbitrarily as long as they can finish by the finish time of task 2. For instance, we can execute task 3, 4, and 5 sequentially on

a single host because the sum of their execution times is equal to the execution time of task 2. Accordingly, we can schedule

all tasks with only two resources as shown in Figure 1 (b).
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Figure 1. An example of workflow with 6 tasks. ET is the execution time of the task.

4.2 Algorithm Details

Our algorithm embodies this idea through three steps; task clustering, task placement, and task redistribution. The task

clustering step selects pairs of tasks with direct data dependencies to remove their data transfer costs. Then, the task placement

step determines the detailed schedule of workflow tasks. Finally, the task redistribution step reduces the number of hosts by

adjusting the start time of the tasks scheduled at the placement step. The following sections describe each step in details.

4.2.1 Task Clustering

When two tasks connected by an edge are scheduled onto the same resource, the data transfer time between them can be

ignored and this eventually lessens the execution time of the critical path of workflow. The goal of task clustering is similar

to that of unbounded scheduling techniques such as DSC[34]. Since this problem is known NP-hard, we use a simple and

fast approximation algorithm. Before we explain the details of the algorithm, we first define two key terms used in this paper.

UpLengthi = max
∀taskj∈P (i)

{UpLengthj + ETj + DTTj,i, 0} (1)

DownLengthi = max
∀taskj∈C(i)

{DownLengthj + ETj + DTTj,i, 0} (2)

whereP (i) : set of parent tasks oftaski, C(i) : set of child tasks oftaski,



1

2

3

4 5 6

S

F

Task ID UpLength

S 0

1 2

2 4

3 6

4 2

5 2

6 2

F 8

(a) Workflow (b) UpLength before task 
clustering

Task ID DownLength

4

3

2

1

2

2

2

0

(c) DownLength

Task ID UpLength

0

1

2

3

2

2

2

4

(e) UpLength after 
task clustering

S

1

2

3

4

5

6

F

S

1

2

3

4

5

6

F

1
1 1

1

1 1 1

1

1

1

1

2

3

4 5 6

S

F

(d) Workflow after 
task clustring

0
1 1

1

1 1 1

0

0

0

Figure 2. Example steps of task clustering phase.

ETi : predicted execution time oftaski, DTTi,j : data transfer time betweentaski andtaskj

TheUpLengthdenotes the length of the longest path to a task from the entry task (denotedS–this task is artificially placed

as the root of a workflow), which is the earliest start time of the task when all parent tasks finish as early as possible. We

can calculate theUpLengthvalue of each task by conducting a depth first search starting from the exit task (denotedF–this

task is artificially placed as the last task of the workflow and depends on all the workflow leaves). On the other hand, the

DownLengthdenotes the length of longest path from a task to the exit task. Once theUpLengths of all tasks are calculated,

we visit tasks in a descending order ofUpLengthand calculateDownLength. For each task, we find the child of the task that

has the largest(DownLength + ET + DTT). If the child task is not clustered with its other parents, the two tasks are clustered

and DTT between the tasks is set to 0. Then, we calculate theDownLengthof the task. Note that all children of a task are

visited prior to the task because theUpLengths of children cannot be smaller than those of their parents. Finally,UpLengths

are recalculated to reflect the updates of clustering.

Figure 2 illustrates how to calculateUpLengthandDownLengthof a workflow with 8 tasks through task clustering. The

execution time of each task and the data transfer time between tasks is uniformly 1 time unit. First,UpLengths for all tasks

are calculated in (b). Then,DownLengths are calculated in the order of task F, 3, 2, 1, 4, 5, 6, and S in (c) while task pairs

(3,F), (2,3), (1,2), and (S,1) are clustered as shown in (d). Finally,UpLengths are recalculated (Figure 2 (e)).

4.2.2 Task Placement

A schedulable durationof a task can be defined by EST(Earliest Start Time) and LFT (Latest Finish Time). Through the task

clustering process, we can have the maximum schedulable duration of each task sinceUpLengthmeans the EST when all

ancestors of task are executed as early as possible and(RFT −DownLength) means the LFT when all descendants of task

are executed as late as possible. Then, in the task placement step, we determine when is the best time to schedule each task

in its schedulable duration, considering the timing constraints of its dependents and the resource utilization.

As shown in Figure 3, task placement calculates theschedulable durationof tasks, determines the scheduling order of



2. Initiate EST and LFT for all tasks.    EST = UnLength,   LFT = RFT - DownLength

3. While there is unscheduled tasks

a. Pick up a task with the narrowest schedulable duration.    Schedulable duration = LFT - EST 
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b. Determine the starting time(x) between EST and LFT – ET such that                                         is minimized
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)}({max
),(

iNH
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NH(i) : the number of tasks already scheduled in time slot i , TimeSlot(a,b):set of time slots covering time range between a and b

1. Check whether RFT is greater than or equal to the length of  critical path. If  not, set RFT as the length of  critical path

Figure 3. Algorithm description of task placement phase.

tasks, and finds the best start time of each task to minimize resource capacity. First, the task placement algorithm checks

if RFT is valid by comparing it to the length of the critical path. Then, it initializes EST withUpLengthand LFT with

(RFT −DownLength). A task can be scheduled anytime in its schedulable duration, the safe time range in a way as to not

violate the time constraints of (forward and backward) dependent tasks. Whenever the start time of a task is determined, EST

and LFT of all dependent tasks are updated by equation 3 and 4. The second term of the max functions in both equations

means the time bound restricted by scheduled tasks whose start and finish times are already set. Basically, the schedulable

duration of unscheduled tasks become narrower as more tasks are scheduled.

ESTi = max
∀taskj∈P (i)−STS,∀taskk∈P (i)∩STS

{ESTj + ETj + DTTj,i, STk + ETk + DTTk,i} (3)

LFTi = max
∀taskj∈C(i)−STS,∀taskk∈C(i)∩STS

{LFTj − ETj −DTTj,i, STk −DTTk,i} (4)

whereSTi : scheduled start time oftaski, STS : set of already scheduled tasks

The scheduling order of tasks and their placement in the schedule is determined by a set of rules. First, tasks with a narrow

schedulable duration are scheduled with higher priority since tasks with a wide schedulable duration have more flexibility.

Second, if two or more tasks have the same schedulable duration, the task having fewer dependents has priority. Third, if the

number of descendants is larger than that of ancestors, a task is scheduled at the earliest time because the slack of a larger

number of tasks will be affected. In the opposite case, the task is scheduled at the latest time. Otherwise, either of the two

places is selected randomly.

Figure 4 illustrates how the task placement technique works for Figure 2(a) when RFT is 7 and the unit time of time slots

is 1. The x-axis represents scheduling time and the y-axis does the number of hosts. The table for EST and LFT has been

constructed already via task clustering and task placement initialization. If a task is scheduled, a rectangle with a height of 1

and a width of ET is placed in its time slot. At first, BTS selects task 4 since(LFT −EST ) of all tasks are equal and task 4

has the least number of dependent tasks. Task 4 is scheduled at the earliest time slot within its schedulable duration since the
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Figure 4. A trace of task schedule graph for workflow in figure 2(a) when RFT is 6 time units.

number of ancestors is not larger than that of descendants (step 1). Due to the scheduling of task 4, LFT of task S is changed

to 1 and task S must be scheduled at s0 (step 2). Next, task 5 is selected and scheduled at s3 which is the leftmost time slot

with the smallest height between its EST and LFT (step 3). This placement updates EST of task F to 5. Then, BTS selects

task F and schedules it at the rightmost time slot (s6) because task F has more ancestors than descendants (step 4). Remaining

tasks are scheduled at time slots with the smallest height (step 5 through 8). BTS allocates another host to schedule task 2 at

step 6 since all the time slots on the first host in its schedulable duration are already occupied.

The time complexity of this algorithm isO(n(n + e + tlogt)) wheren is the number of tasks,e is the number of edges,

andt is the number of time slots; the time complexity of selecting a task with the minimum time range is (O(n)); that of

updating ESTs and LFTs of all dependent tasks is (O(e)); and that of selecting a time slot that minimizes the number of hosts

is (O(tlogt)). The number of time slots is calculated by dividing RFT by unit time. BTS uses the greatest common divisor

(GCD) of predicted execution time of all tasks as the unit time. Since the precision of execution time is coarse, the unit time

in practice is not so small and the order oft is not much larger than the order ofe or n. For example, if the size of unit time

is 10 seconds and RFT is 10 hours, the number of time slots is 3600.

4.2.3 Task Redistribution

The task placement technique can fail to find a global optimum for workflows with certain structures. For example, Figure

5 illustrates a typical workflow that repeats a series of parallel and serial executions, the scheduling result of our placement

algorithm, and on optimal solution. Let the execution time be 1, the data transfer time, zero, and RFT, 10. As shown in the

graphs, our placement algorithm overestimates the resource capacity by 1 because it fails to balance the resource utilization



across hosts. Specifically, task 8 is randomly scheduled as late as possible because the number of ancestors is equal to the

number of descendants by the placement rule 3. Accordingly, the first host does not have enough slack time to schedule the

tasks at the sixth level of the workflow. However, if task 8 is scheduled a little bit earlier, as the optimal solution shows, we

can have a better result.
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Figure 5. Task schedule graph generated through the Task Placement phase and the optimal sched-
ule for an example workflow. Each task is identical and has (ET=1, DTT=0). (RFT = 10)

Instead of introducing more complexity into the placement algorithm, we introduce another step for balancing resource

utilization. This imbalance is mainly due to the placement rule that places a task as early or late as possible, depending on

the number of ancestors and dependents. Hence, the main idea of task redistribution is to move tasks in the tallest time slot

to adjacent time slots one by one within its schedulable duration and to see if it reduces the number of resources or not.

A high-level description of our task redistribution algorithm is shown in Figure 6. The first non-propagated redistribution

step adjusts the start time of tasks in the tallest time slots without affecting other tasks. Then, Step 2 and 3 move tasks in

the tallest time slots to underutilized time slots. We minimize the effects on the original scheduling results of other tasks and

make the results consistent if changes are required. The time complexity of this algorithm isO(n ∗ e ∗ tlogt) in the worst

case.

Figure 7 illustrates how our algorithm balances the tasks presented in Figure 5. Since the tallest slot is slot 8, BTS first

checks if any tasks scheduled in the slot can be relocated via Non-propagated Redistribution. However, BTS cannot find any

lightly loaded slots to relocate the tasks via this simple redistribution. Then, BTS tries to move tasks to the earlier time slots.

BTS selects task 16 of the tallest time slot (since task 13, 14, 15, and 16 share the same ancestors and the UpLength values

of them are same, task 16 is randomly selected) and moves it into the time slot 7. Since task 12 resides in the slot 7 and it is a

parent of task 16, it must be relocated to slot 6. Even though this relocation increases the height of slot 6 to 3, task 12 can be

safely moved to the slot since the slot is not taller than the tallest. Repeatedly, task 11 and 8 must be relocated to slot 5 in this

order since they are the parents of task 12. However, the relocation of task 8 after the relocation of task 11 to slot 5 increases

the height of slot 5 to 4, which makes it taller than the tallest slot. Therefore, task 8 is moved one more time into slot 4.
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If x doesn’t exist, return false 

If x < EST,

If at least one parent return false, return false

Update ESTs of all child tasks  and return true

),(  call  ),(
, tp

DTTxpThrustLefttPp −∈∀

tt
RFTTimeSlotiETxxTimeSloti

ETDownLengthRFTxbiNHiNH
t

−−≤≤<+
∈+∈

     where)}({max1)}({max
),0(),(

ThrustRight(task t, time b) // b: time bound of task t’s start time

Find minimum x which satisfy 

If x doesn’t exist, return false

If x < LFT,

If at least one child return false, return false

Update LFTs of all parent tasks and return true

),(  call  ),(
, ctt

DTTETxctThrustRightCc ++∈∀

Figure 6. Algorithm description of task redistribution phase.
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Figure 7. A simplified trace of task schedule when Task Redistribution is applied to the workflow in
Figure 5.



Again, task 7 in slot 4 which are the parent of task 8 is relocated to slot 3 and then task 6 and 3 are moved into slot 2. Since

the relocation of task 6 and 3 makes the slot 2 taller than 3, task 3 is moved one more time into slot 1. Now, we have a new

stable task schedule graph, so we can repeat the entire task redistribution from the beginning. Through the second iteration,

BTS relocates task 8 and 15 to slot 4 and 7, respectively and finally it realizes that any redistribution methods cannot reduce

the heights of the tallest slots, i.e., as in the last graph of Figure 7 where task 6, 7, 8, 11, 12, 15, and 16 are moved from grey

boxes to white boxes, attempt to reduce the height of slot 2 make the height of slot 4 higher. In consequence, BTS concludes

that it needs 3 hosts to execute the workflow in 10 time units.

5 Methodology

5.1 Target Resources

Our resource capacity estimate is a core component in the automatic synthesis of resource specifications from application

workflows. This estimate is totally based on the structure and attributes of application workflows, independent of selection

mechanisms or target resources while resource brokers or provisioning systems are in charge of providing the resources

that satisfy the requirements. As such, we assume virtual homogeneous resources as target resources, which have identical

computing power and network performance.

5.2 Application Workflows

5.2.1 Synthetic Workflows

We rigorously evaluate the performance of our algorithm with randomly generated synthetic workflows. Especially, we

classify the random workflows into two groups, based on their structures.

• Fully Random Workflows (FRW): Workflows in this group do not have any constraints on the structure; any tasks

can be connected to any other tasks. Every task is a child of the entry task and a parent of the exit task. We use

four parameters for synthesizing this type of workflows; the number of tasks (N), the number of edges (E), range of

execution time of each task (T), and data transfer time of each edge (C). Each edge connects two randomly selected

tasks and the execution time of tasks are selected through random trials with a uniform distribution over given ranges.

• Leveled Parallel Workflows (LPW):Workflows in this group are structured so the tasks only in adjacent levels can

have dependencies. Five parameters are used to represent these workflows: the number of tasks (N), the number of

levels (L), maximum parallelism (MP), range of execution time of each task (T), data transfer time of each edge (C).

MP is the maximum degree of parallelism of a workflow where the degree of parallelism of a level is the number of

tasks in the level. Any tasks in theith level are the parents of the tasks in the(i+1)th level. In the same manner to FRW,



the execution time is selected via uniform random trials. We also consider two cases that the execution time of tasks in

the same level is homogeneous and heterogeneous.

5.2.2 Real Application Workflow

In addition to synthetic workflows, we use two real workflows: Montage [15] and EMAN [23]. Montage creates custom

image mosaics of the sky on demand and consists of four major tasks: re-projection, background radiation modeling, recti-

fication and co-addition. EMAN is a suite of scientific image processing tools aimed primarily at the transmission electron

microscopy community. The structure of these workflows are depicted in Figure 8. These workflows are a type of LWP. We

observed that many workflows of real applications including SCEC [25] and LEAD [2] have similar structures.

mDiffFit

mConcatFit

mBgMode

mBackGround

mImgtbl x 5, ET = 6

mAddx 5, ET = 40

mShrink

mJPEG
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x 410, ET = 2
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x 1, ET = 56
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x 1, ET = 1

x 1, ET = 1
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X 1, ET = 1152
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X 110, ET = 6192
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DTT = 103
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DTT = 1

DTT = 1

DTT = 1
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(a) Montage (b) EMAN

Figure 8. Workflows of Montage and EMAN application.

5.3 Metrics

BTS algorithm estimates the resource capacity required to finish a workflow application within a RFT. Since we employ a

heuristic approach to solve NP-hard problems, the first metric of interest to evaluate algorithms is the overestimated amount

of resources, compared to the optimal solution. Second, as advanced workflow planning infrastructures enable exploring

complex application workflows and dynamic resource provisioning systems facilitate large-scale distributed resources trans-

parently, the scalability of algorithm is critical to adapting to emerging computing environments.

5.4 Algorithms in Comparison

The existing workflow scheduling algorithms can be also used to estimate the resource capacity. We evaluate the efficiency

of our algorithm by comparing to three possible approaches.



• FU (Full Utilization without dependencies): FU determines the number of hosts by summing up the execution

times of all tasks divided by RFT. This is the resource capacity required when all hosts are fully utilized and data

dependencies are ignored. Even though this algorithm does not guarantee RFT, this algorithm can calculate the lower

bound of resource capacity with constant time.

• DSC (Dominant Sequence Clustering) :DSC[34] is one of the most popular algorithms for scheduling over un-

bounded resources. The main goal of DSC is to minimize makespan, assuming there is no resource limit. In particular,

DSC returns the makespan, the number of clusters, a mapping of tasks to clusters, and task execution sequences inside

the clusters. We can use the number of clusters as the number hosts required when RFT is equal to the minimum

makespan. In DSC, all tasks have its own cluster at first and tasks are merged with one of its parents’ clusters if the

merging does not increase the makespan. The order of tasks to be merged is determined by the priority value calculated

dynamically using EST and DownLength.

• IterHEFT (iterative search with HEFT algorithm): HEFT[33] is one of workflow scheduling algorithms which cal-

culate the makespan of workflow over given hosts. HEFT picks the task with the largest value of(ET +DownLength)

and schedules it on the resource which can finish the task as early as possible. In general, the workflow makespan

monotonously decreases as more hosts are used for the scheduling (up to the maximum parallelism of the workflow).

Therefore, we can determine the minimum number of hosts required to finish a given workflow within a deadline by

repeating HEFT scheduling over a growing resource set until the resulting makespan is equal to or shorter than RFT.

We can reduce the search time by setting the initial resource set size by the number of hosts calculated by FU. Due to

iterations, the time complexity of this approach isO(n4) in the worst cases.

6 Experiments

6.1 Synthetic Fully Random Workflows

We evaluate the quality of BTS with respect to turnaround time and the estimated number of hosts, comparing to three

other approaches. The resource capacity estimate of four approaches with a variety of synthetic random workflows is shown

in Figure 9. We present the average estimate of 30 workflows. The execution time of tasks is randomly selected from 2 to 10

time units. The average data transfer time of each edge is 1 time unit for the four groups on the left and 6 time units for the

four groups on the right in the Figure. The minimum execution time of algorithms is the longest path from the entry task (S)

to the exit task (F ).

BTS achieves a slightly better estimate than IterHEFT while it outperforms DSC because DSC focuses on minimizing the

makespan, not on minimizing the number of clusters. Considering the estimate of FU being the low bound, both BTS and
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Figure 9. Comparison of four estimation methods for minimum execution time of fully random work-
flows. DTT is the data transfer time between tasks.

IterHEFT achieve good quality of estimate for fully random workflows. The reason BTS achieves slightly better estimate

than IterHEFT is that HEFT schedules tasks as early as possible so that it can make the idle time fragmented while BTS

more flexibly determines task schedule in schedulable duration to minimize the number of hosts. For example, Figure 10

illustrates how different the task schedules of BTS and HEFT are. The workflow consists of 6 tasks and their execution times

are shown in Figure 10 (a). We assume that the data transfer times are zero and the deadline of workflow is 5. As in Figure

10 (b), HEFT answers that the makespan is 6 with two hosts and consequently IterHEFT will say that 3 hosts are required to

meet the deadline. This is because task 3 is scheduled at the earliest available time of host 1 even though it can be delayed to

time 2 without extending the makespan. As a result, the time period from 0 to 1 of host 1 is wasted and task 2 is scheduled

after task 3 is finished. By contrast, BTS finds more efficient task schedule since it knows that task 3 can be delayed by time

5.
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Figure 10. An example case of overestimation of HEFT.

We conduct a set of experiments to see how RFT affects the estimate quality of BTS and the results are presented in

Figure 11. The X-axis represents the ratio of RFT to the minimum execution time and Y-axis does the average number of

hosts estimated for 30 random workflows. Regardless of RFTs, BTS consistently estimates the resource capacity close to



the lower bounds. Even though we do not present the results, we observed the similar results for workflows with different

characteristics.
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Figure 11. Estimation result for various RFTs. ET is the execution time of tasks, DTT is the data
transfer time between tasks.

Figure 12 summarizes the turnaround time of three algorithms, measured on a PC having a 3Ghz CPU and 2GB RAM.

The result shows that BTS takes less than 1 minute even with large workflows having thousands of tasks and edges while

IterHEFT takes more than one hour. BTS is more efficient method than IterHEFT, considering both the quality and the cost

of estimate.

Workflow complexity IterHEFT BTS DSC

1000 nodes 1000 edges 9.2 1.2 0.2

2000 nodes 2000 edges 84.4 7.6 1.7

5000 nodes 5000 edges 3914 36.1 18.9

Figure 12. Comparison of time cost (in seconds).

6.2 Synthetic Leveled Parallel Workflows

We evaluate BTS and IterHEFT against leveled parallel workflows consisting of tasks with non-identical execution time.

Each workflow has 1000 tasks and 10 levels and the execution time of each task ranges from 3 to 10 for the graphs at the

top of Figure 13 and from 7 to 10 for the graphs at the bottom of the Figure. Data transfer time is 1 for all cases. As shown

in Figure 13, BTS and IterHEFT produce nearly the same estimate. The main reason is that the tasks of leveled parallel

workflows at one level cannot share time slots with tasks at different levels while the fully random workflow can have tasks

with wide schedulable durations. In the meantime, the two graphs on the top show that the number of hosts is less than the

maximum parallelism when the RFT is equal to the minimum makespan because tasks with short execution time (e.g., 3 time

units) at a level can be scheduled onto the same hosts while the tasks with long execution times at the same level are running.

Even though we do not present the results due to the space limit and the similar patterns of results, we also evaluated

BTS and IterHEFT against workflows consisting of tasks with the same execution time. Both approaches estimate exactly



the same number of hosts. In addition, the experiments to evaluate the effects of the maximum parallelism, data transfer

time, and the number of levels on the quality of estimate showed that BTS and iterHEFT achieved almost same performance,

finding near optimal solutions.
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Figure 13. Comparison of BTS and IterHEFT for leveled parallel workflow with non-identical tasks.

6.3 Real Application Workflows

Finally, we evaluate our algorithm against two real application workflows: Montage and EMAN. As shown in Figure 8,

these workflows are a type of LPW and the execution time of the tasks at the same level is identical. Regardless of input data,

the workflows have the same structure even though the number of parallel tasks can vary. EMAN has a longer makespan than

Montage; the number of time slots for Montage ranges between 200 and 400 while that for EMAN ranges between 9000 and

18000. As for the Montage workflow, we set data transfer time to 5 seconds since the size of the intermediate data produced

by the application is at most several megabytes.

The resource capacity estimates for Montage and EMAN are shown in Figure 14. BTS takes 1.1 seconds for Montage and

8.2 seconds for EMAN. As expected, the quality of estimates of IterHEFT and BTS are the same because both applications

have a level parallel workflow. Note that the amount of resources required for both applications dramatically decreases only

with small increase of RFT. The users of these applications can save significant amount of resource consumption when the

deadline is relaxed. This is particularly important when resources such as those provided by Amazon are used and where the

cost is measured in dollars.
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Figure 14. Estimate result of BTS for Montage and EMAN workflow (unit time = 1 second). 100%
corresponds to the RFT=makespan, 200% when RFT= 2*makespan.

7 Conclusions

In this paper, we propose a new algorithm named BTS to estimate The minimum resource capacity needed to execute a

workflow within a given deadline. This mechanism can bridge the gap between workflow management systems and resource

provisioning systems such as for example the emerging cloud computing resource providers. Moreover, the resource estimate

is abstract and independent to the resource selection mechanism, so it can be easily integrated with any resource description

languages and resource provisioning systems. Through the experiments with synthetic and real workflows, we demonstrate

that BTS can estimate the resource capacity very efficiently with small overestimates, compared to the existing approaches. It

also scales comparatively well, giving a turnaround time of only tens of seconds even with large workflows having thousands

of tasks and edges.

In this study, we assume that all resources required for a workflow are available throughout the lifetime of application.

However, holding all resources during the entire lifespan can cause the resources to be underutilized. For instance, Figure

5 shows that we need only 2 hosts from the time slot 3 through the end of execution. If we allocate 3 hosts only for

first 3 time slots and then release 1 host after that, we can save 1 host, which leads to better resource utilization. Resource

provisioning techniques such as Virtual Grid provide fine-grained time-based resource reservation. We believe an extension of

our algorithm can exploit such advanced features of provisioning systems and enable more cost-efficient workflow execution.

In the future, we plan on integrating the Pegasus workflow management system with the Virtual Grid to evaluate the approach

in real settings.
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