
Empirical Auto-tuning Code Generator
for FFT and Trigonometric Transforms

Ayaz Ali and Lennart Johnsson
Texas Learning and Computation Center

University of Houston, Texas
{ayaz,johnsson}@cs.uh.edu

Dragan Mirkovic
MD Anderson Cancer Center

The University of Texas, Houston
dmirkovi@mdanderson.org

Abstract—We present an automatic, empirically tuned code
genenrator for Real/Complex FFT and Trigonometric Trans-
forms. The code generator is part of an adaptive and portable
FFT computation framework - UHFFT. Performance portability
over varying architectures is achieved by generating highly
optimized set of straight line C codelets (micro-kernel) that
adapt to the microprocessor architecture. The tuning is per-
formed by generating several variants of same size codelet
with different combinations of optimization parameters. The
variants are iteratively compiled and evaluated to find the best
implementation on a given platform. Apart from minimizing the
operation count, the code generator optimizes for access pattern,
register blocking, instruction schedule and structure of arrays.
We present details of the optimizations conducted at several
stages and the performance gain at each of those levels. We
conclude the paper with discussion of the overall performance
improvements due to this aggressive approach to generating
optimized FFT kernels.

I. INTRODUCTION

The large gap in the speed of processors and main memory
that has developed over the last decade and the resulting
increased complexity of memory systems introduced to ame-
liorate this gap has made it increasingly harder for compilers
to optimize an arbitrary code within palatable amount of time.
The challenge to achieve high efficiency is now becoming
more complex through the emergence of multi-core architec-
tures and architectures using “accelerators” or special purpose
processors for certain tasks, such as FPGAs, GPUs or the Cell
Broadband Engine. To address the challenge to achieve high
efficiency in performance critical functions, domain specific
tools and compilers have been developed. There is a need
for the development of high performance frameworks that aid
the compilers by generating architecture conscious code for
performance critical applications.

The Fast Fourier Transform (FFT) is one of the most
widely used algorithms for scientific and engineering com-
putation especially in the field of signal processing. Since
1965, various algorithms have been proposed for solving FFTs
efficiently. However, the FFT is only a good starting point
if an efficient implementation exists for the architecture at
hand. Scheduling operations and memory accesses for the
FFT for modern platforms, given their complex architectures,

is a serious challenge compared to BLAS-like functions. It
continues to present serious challenges to compiler writers and
high performance library developers for every new generation
of computer architectures due to its relatively low ratio of
computation per memory access and non-sequential memory
access pattern. FFTW[7], [6], SPIRAL[13] and UHFFT[12],
[11] are three current efforts addressing machine optimization
of algorithm selection and code optimization for FFTs.

Current state-of-the art scientific codes use re-usable com-
ponents and a layered scheme to adapt to the computer
architecture by using run-time performance analysis and
feedback[14], [15]. At the lower level, the components may
use highly optimized sets of straight line parametrized codes
(micro-kernels) that are generated to adapt to microprocessor
architecture. At the higher level, the parametrization allows
for optimal data access patterns to be searched to enhance
effective memory bandwidth and lower latency without exten-
sive code optimization. In UHFFT[12], [11], the adaptability
is accomplished by using a library of composable blocks of
code, each computing a part of the transform. The blocks of
code, called codelets, are highly optimized and generated by
a code generator system called FFTGEN. We use an automatic
code generation approach because hand coding and tuning the
DFT is a very tedious process for transforms larger than size
five. Moreover, by implementing a number of optimizations,
we were able to achieve operation counts that were smaller
than traditionally assumed for the transform for many sizes.

As shown in Figure 1, eleven different formulas for FFT
size 12 result in three different floating point operation counts.
In the given graph and the results to follow, we use (Million
Floating Point Operations per Second) “MFLOPS” metric to
evaluate the performance. We use standard radix-2 FFT al-
gorithm complexity to estimate the number of floating point
operations and then divide that by the running time in micro
seconds.

Related Work

Using simple heuristics that minimize the number of op-
erations is not sufficient to generate the best performance
FFT kernels; especially on modern, complex architectures.



Fig. 1. Performance vs Operation Count for different formulas of size 12
Complex FFT.

Among other factors, instruction schedule and pipelining play
an important role in the overall performance. For embedded
systems with limited number of registers and instruction cache,
it is even more important to employ aggressive optimization
techniques to make best use of available resources.

In [9], authors describe an iterative compilation approach
to exploring the best combination of tuning parameters in
an existing compiler. The empirical technique is shown to
yield significant performance improvement in linear algebra
kernels. However, the optimizations are mainly focused on
loops, which reduces the prospects of major performance
gain in small FFT code blocks. More recently, the iterative
empirical compilation techniques have been studied [5], [8],
[4] on whole applications instead of compute intensive kernels.

An excellent example of automatic generation of tuned
linear algebra micro-kernels is given in [14], [15]. The method-
ology, called Automatic Empirical Optimization of Software
(AEOS), employs iterative empirical evaluation of many vari-
ants to choose the best performing BLAS routines.

Because of the unique structure of FFT algorithms with
output dependence between successive ranks (columns), loop
level optimizations are not as effective as in the case of linear
algebra codes. The most important tuning parameter for FFT
turns out to be memory (register and cache) blocking and the
factorization (formula). SPIRAL[13] searches for the best FFT
formula for a given problem size using empirical evaluation
and feedback. FFTW[7], [6] employs simple heuristics, similar
to the one given in section 3, to determine the best formula.
Unlike SPIRAL, both FFTW and UHFFT[12], [11] generate
micro-kernel of straight line FFT code blocks (codelets) and
defer the final optimization of a given problem till the run-
time. The set of codelets (micro kernel), generated at instal-
lation time is usually restricted to sizes depending on the
size of instruction cache and the number of floating point
registers. For some architectures, FFTW also generates ISA
specific codelets to boost the performance. We believe that
such translation should be performed by compiler and the code
generator should aid the compiler to achieving that goal. This
paper presents an aggressive approach to generating adaptive
and portable code for FFT and Trigonometric Transforms by
iteratively compiling and evaluating different variants. Apart

from exploring the best FFT formula and register blocking,
we try limited number of instruction schedules, translation
schemes to probe and adapt to both architecture and compiler.

This paper is organized as follows. Section 2 gives the
design details and functionality of the code generator. Section
3 describes the automatic optimization and tuning methodol-
ogy using compiler feedback loop in the UHFFT. Finally, in
section 4, we report performance gain due to our new approach
and develop models to understand the cache performance of
codelets for different strides.

II. DESIGN DETAILS

The UHFFT system comprises of two layers i.e., the code
generator (FFTGEN) and the run-time framework. The code
generator generates highly optimized straight line C code
blocks called codelets at installation time. These codelets are
combined together by the run-time framework to solve large
FFT problems on Real and Complex data. The type of code
to generate is specified by the type and size of the problem.
The code generator adapts to the target platform i.e., compiler
and hardware architecture by empirically tuning the codelets
using iterative compilation and feedback. In order to limit the
search space of various parameters, tuning is conducted in
three phases (stages) and at the end of each phase, values of
the parameters are selected. The design overview of FFTGEN
is given in Figure 2. FFTGEN2, which implements the new
empirical tuning strategy will be integrated in UHFFT version
2.0.1; the beta version is available online and can be down-
loaded at [1].

Fig. 2. Fftgen2 Block Diagram

A. Specifying the Set of Codelets
The set of desired codelets can be defined in a script

file, which internally uses FFTGEN2 to generate the codelets.



The codelet sizes should typically be limited by the size
of instruction cache and the number of registers on target
architecture. After the set of desired codelet sizes is specified
in the script file, code generator does not require any further
user intervention in order to produce highly optimized micro-
kernel of codelets for the platform. Nevertheless, an expert
user can suggest alternative FFT formulas (factorizations)
that FFTGEN2 should try as variants of desired codelet. We
have implemented a concise language called FFT Formula
Description Language (FFDL), which is used to describe the
FFT factorizations. The code generator supports a subset of
FFDL rules as given in Figure 3. Full FFDL specification is
part of the UHFFT 2.0.1 run-time framework, which includes
multiprocessor and multi-dimensional FFT expressions [3].

Fig. 3. FFT Formula Description Language (FFDL) Rules.

B. Types
The code generator (FFTGEN2) is capable of generating

various types of tuned code blocks. As shown in Figure 4,
each codelet is identified by a string of characters and size.
For a given size and rotation, many different types of codelets
can be generated depending on the following parameters:
Precision: Codelets with either double or single precision can

be generated depending on this flag.
Direction: Codelets with both forward and inverse direction

for FFT (complex/real) and DCT/DST Type-I can
be generated.

Twiddle: Cooley Tukey FFT algorithm involves multiplica-
tion with diagonal twiddle matrix between the two
FFT factors. Similar to the approach in FFTW[7],
we generate special twiddle codelets, which have
this multiplication fused inside to avoid extra
loads.

I/O Stride: Every codelet call has at least two parameters,
i.e. input and output vectors. The vectors can be
accessed with different strides or same strides as
in case of inplace transform. If the strides are
same, excess index computation for one of the
strides can be avoided by generating a codelet that
takes only one stride parameter.

Vector Recurse: In most cases multiple vectors of same size
need to be transformed. A codelet with the vector

flag enabled lets user specify the strides (distance)
between successive vectors.

Transform: Transform type is specified at the sixth position
in the string. Apart from generating FFT and
rotated (PFA) codelets, trigonometric transforms
can also be generated by specifying flags ’c’ and
’s’ for DCT and DST transforms respectively.

Datatype: Both real and complex data codelets can be gen-
erated depending on the transform type.

Rotation: This parameter is only applicable to rotated (PFA)
codelets that are used as part of the Prime Factor
Algorithm. Note that a PFA codelet with rotation
1 is same as a NON-PFA codelet.

Fig. 4. Two example strings for specifying the type of Codelet to be generated
by FFTGEN2.

An illustration of two codelet types is given in Figure 4.
Rotated codelets are useful as part of the PFA execution.
Only a few options are applicable to PFA and DCT/DST; for
instance, there is no need to generate separate inverse and
forward direction codelets for PFA execution. Also the twiddle
flag is ignored except when the codelet transform type is FFT
(without rotation).

C. Fast Trigonometric Transforms
Trigonometric Transforms have a wide range of applicabil-

ity, both in signal processing and in the numerical solution
of partial differential equations. As given in [10], we have
implemented FFT based algorithms for these transforms that
require 2.5m log m flops, assuming that m is a power of two.
The basic idea is to expand the input vector x to x̃, as given
in Table I, using certain symmetries, apply real FFT F2mx̃
of size 2m and then exploit the symmetries to generate the
codelet of complexity ∼ 2.5m log m. In our current version
we have implemented only Type-I DCT and DST. Extending it
to other types of transforms is straightforward for algorithms
that are based on FFT.

III. COMPILER FEEDBACK LOOP

Performance of the codelets depends on many parameters
that can be tuned to the target platform. Instead of using
global heuristics for all platforms, the best optimization pa-
rameters are discovered empirically by iteratively compiling
and evaluating the generated variants. The optimization is
performed in three stages (levels) independently; for example,
all factorization policies are not tried for all block sizes. The
evaluation module benchmarks the variants and returns an
array of performance numbers along with the index of best



TABLE I
DCT/DST - INPUT VECTOR EXPANDED TO USE FFT (m = 4)

Transform x x̃

DST
[

x1 x2 x3

] [
0 x1 x2 x3 0 −x3 −x2 −x1

]

DCT
[

x0 x1 x2 x3 x4

] [
x0 x1 x2 x3 x4 x3 x2 x1

]

DST-II
[

x1 x2 x3 x4

] [
x1 x2 x3 x4 −x4 −x3 −x2 −x1

]

DCT-II
[

x0 x1 x2 x3

] [
x0 x1 x2 x3 x3 x2 x1 x0

]

performing variant. In order to generate statistically stable
measurements, each codelet is executed repeatedly. Codelet
are normally called with non-unit strides in the context of a
larger FFT problem. Therefore, it’s performance should take
into account the impact of strided data access. To achieve that
goal, the benchmarking data is collected for strides 1 to 64K
with increments of 2. We use average over all the samples
to represent the quality of a variant. However, the selection
policy can be easily extended to incorporate more complicated
models.

Level 1: Arithmetic Optimizations
Different FFT formulas are evaluated in this phase to

optimize for the floating-point operations and the access
pattern. This phase generates the butterfly computation, which
is abstracted internally as a list of expressions. Simple op-
timizations such as constant folding, strength reduction and
arithmetic simplifications are applied on the list of expressions
to minimize the number of operations.

Due to exponential space of possible formulas for a given
size, built-in heuristics along with limited user supplied for-
mulas (training set) are tried. Following is the algorithm that
is used to generate different formulas that will eventually be
evaluated to select the best.

Algorithm 1 FFT Factorization and Algorithm Selection
If N = 2 then algo ← DFT and r ← 2
Else if IsPrime(N) then algo ← RADER and r ← N
Else

FindClosestBestSize n in Trained Set S
If n = N then then algo ← S[n].algo and r ← S[n].r
Else /* Use Heuristics */

If n is a factor of N then k ← n
Else k ← GetMaxFactor(N)
If gcd(k , N

k ) then algo ← PFA, r ← k
Else if N > 8&4 | N then algo ← SR, r ← 2
Else if N > k3and k2 | N then algo ← SR, r ← k
Else algo ← MR and r ← k

If FactorizationPolicy #= LeftRecursive then r ← N
r

The algorithm given above is called each time the factor-
ization or algorithm selection is to be made. In the simplest
case when N is equal to 2 or when N is a prime number, the
algorithm returns the size N as a factor, selecting appropriate
algorithm. If the size of codelet can be factorized then the
training database is queried to find the best and closest size (n)
to N such that either n is a factor of N or vice versa. If there is
no such record found in the database, heuristics are used that

minimize the operation count by preferring algorithms with
lowest complexity. Note that when the training knowledge is
utilized, the factors are selected in a greedy fashion, i.e. the
factor with the highest performance is selected.

Fig. 5. Examples of Left and Right Recursive Factorization Policies.

TABLE II
OPTIMIZATION LEVEL 1 TUNING PARAMETERS

Variants Left Recursion Rader Mode
1-3 0 CIRC,SKEW,SKEWP
4-6 1 CIRC,SKEW,SKEWP

In this phase, six variants are generated depending on
the factorization policy, i.e. left recursive or right recursive
factorization tree as illustrated in Figure 5. For each type of
factorization policy, different rader algorithm options (depend-
ing on the convolution solver) are enabled as listed in Table
II.

Fig. 6. Level 1 Variants for Real FFT Codelets of size 8, 12 and 16. Six
variants are evaluated for each codelet for varying strides given by vertical
lines. The mean of performance for different strides is used to represent the
performance of that variant.

Figure 6 shows performance variation for six variants of
each of the three Real FFT codelets (8, 12 and 16). Each



vertical bar represents the minimum and maximum perfor-
mance for that codelet depending on the stride. Notice that
rader mode does not bring the performance variation to sizes
that are powers of two. Hence only two variants need to be
evaluated for powers of two FFTs, ignoring the rader mode
parameter.

Level 2: Scheduling and Blocking
Second phase performs scheduling and blocking of ex-

pressions by generating a Directed Acyclic Graph (DAG).
The main purpose of this scheduling is to minimize register
spills by localizing the registers within block(s). A study [2]
conducted by the authors of this paper revealed that even
for very small straight line codelets the performance variation
due to varying instruction schedules could be as large as 7%.
Finding the best schedule and blocking for all factorizations
is a hard problem, hence, only a few possible permutations of
instructions and block sizes are evaluated.

TABLE III
OPTIMIZATION LEVEL 2 TUNING PARAMETERS

Variants Reverse Blocking
1-3 0 2,4,8
4-6 1 2,4,8

Three different block sizes, i.e. 2,4 and 8 are tried in
combination with the option of reversing independent instruc-
tions within that block, as given by Table III. Each block is
topologically sorted internally in the end. In total, six different
variants of schedules and block sizes are generated and the best
is selected after empirical evaluation.

Fig. 7. Level 2 Variants for Real FFT Codelets of size 8, 12 and 16. Six
variants are evaluated for each codelet for varying strides given by vertical
lines. The mean is used to represent the performance of a variant.

As shown in Figure 7, the performance variation at level 2
indicates that smaller block sizes perform better in most cases.
There is no clear winner between the two sorting strategies
of instructions. The reversing is intended to be a trial and
error mechanism that generates some random permutations of
instructions.

Level 3: Unparse scheme
All codelets take two essential parameters, i.e. input and

output vector. For computation of FFT over complex data type,

the vectors are represented by arrays of structures. Different
compilers behave differently to the structure of input and
output arrays. To generate a code that results in the best
performance, we tried three different representations for input
and output vectors of complex type as given in Figure 8. In
the first representation, input and output vectors are accessed
as arrays of structure (Complex). In the second scheme, each
of the complex vectors is accessed as a single array of Real
data type with the imaginary values at odd indices. In the third
scheme, the complex vector is represented by two separate real
and imaginary arrays of Real data type.

!"#$

!"#$
%&'

%&'

(

)

*+&,$"-./0.1

!"#$

!"#$
%&'

%&'

(

)

2"#$.-!.0.1

3
4

!"#$

!"#$
%&'

%&'

(

(

2"#$.-!.0.15.-%.0.1

3
3

Fig. 8. Input or Output Vector of complex data elements can alternatively be
accessed as a single array of interleaved Real/Imaginary data or two arrays
of Real and Imaginary data.

TABLE IV
OPTIMIZATION LEVEL 3 TUNING PARAMETERS

Variants Scalar Rep. I/O Vector Structure
First 0 Complex, 1 and 2 Real

Second 1 Complex, 1 and 2 Real

Apart from the three array translation schemes for Complex
type codelets, two more variants are tried for all types of
codelets, as given in Table IV. As shown in Figure 9, for small
size codelets, we noticed that explicit step of replacing I/O
vector elements in temporary scalar registers performed better
in most cases. However it did increase the total size of code
in terms of lines of C code.

Fig. 9. Level 3 Variants for Real FFT Codelets of size 8, 12 and 16. For
Real Codelets, only two variants (based on the scalar replacement flag) are
evaluated for varying strides given by vertical lines. The mean is used to
represent the performance of a variant.

Table V shows the values of parameters selected after
evaluating ten variants of Real FFT Codelet of size 16.

IV. RESULTS

We performed benchmarking of the complex type FFT
codelets of sizes that were powers of 2 up to 128 for a range



TABLE V
SELECTED VARIANT FOR Real CODELET OF SIZE 16

Option Selection
Left Recursion On
Reverse Sort On
Block Size 2

Scalar Replacement Off
I/O Structure One Real Vector

of input and output strides (also powers of 2). Since the sizes
of cache lines, cache and memory are mostly equal to some
power of 2, we expect to catch some of the worst performance
behavior this way. Each reported data item is the average of
multiple runs. This was done to ensure that errors due to
the resolution of the clock are not introduced in the results
presented. The benchmarking and evaluation was carried on
two hardware architectures, Itanium2 and Opteron. A summary
of the platform specifications is given in Table VI.

TABLE VI
ARCHITECTURE SPECIFICATIONS

Itanium2 Opteron
Processor 1.5GHz 2.0GHz

Data Cache 16K/256K/6M 64K/1M
Registers 128 FP 88 FP

Inst. Cache 16K 64K
Associativity 4/8/12 way 2/16 way

Compilers gcc3.4.6/icc9.1 gcc3.4.6/pathcc2.5

In the first set of benchmarks, the results were collected
using two compilers for each of the two architectures. Note
that same compiler and hardware architecture was used to
generate the variants. We compared the performance of em-
pirically tuned codelets with that of the codelets generated by
previous version (1.6.2) of UHFFT to evaluate the efficacy of
our new methodology. In the previous version of UHFFT, the
codelets were generated using simple heuristics that reduced
operation count without any blocking or scheduling.

As shown in Figure 10 and 11, there is significant perfor-
mance improvement for large size Complex FFT Codelets for
both compilers on Itanium 2. In most cases the performance
improvement was seen for small as well as large strides as
shown in the graph by vertical lines. Having said that, there
is slight degradation of performance for size 16 codelet. We
understand that the reason behind that could be our simple
model for evaluating and selecting the best variant. As the
stride is increased the performance of a codelet is dominated
by the memory transactions which introduces noise in the
evaluation of variants. As an alternative to choosing the variant
with the best average performance over many strides, a codelet
with best maximum and minimum performance could be
chosen or the evaluation of variants could be limited to low
strides so that cache misses are minimized.

In Figure 12 and 13, we performed the same exercise on
Opteron using gcc and pathscale compilers. Even though we
got some performance improvement for most sizes, the gain
was not as much as on the Itanium 2. That may be due to the
fact that Itanium 2 has 45% more FP registers than Opteron;
thereby affecting the performance of large size codelets.

In the second experiment, we compared the performance

Fig. 10. Performance Comparison of Complex FFT Codelets generated by
UHFFT-1.6.2 and the new version 2.0.1 on Itanium 2 using icc. There is small
performance improvement for most codelets. Each vertical error bar represents
the variation in performance due to strides.

Fig. 11. Performance Comparison of Complex FFT Codelets generated by
UHFFT-1.6.2 and the new version 2.0.1 on Itanium 2 using gcc. There is
significant performance improvement for larger size codelets. Each vertical
error bar represents the variation in performance due to strides.

Fig. 12. Performance Comparison of Complex FFT Codelets generated by
UHFFT-1.6.2 and the new version 2.0.1 on Opteron using gcc.



Fig. 13. Performance Comparison of Complex FFT Codelets generated by
UHFFT-1.6.2 and the new version 2.0.1 on Opteron using pathscale compiler.

Fig. 14. Impact of size of codelet on the performance. Larger codelets suffer
from performance degradation due to register pressure and instruction cache
misses.

of same codelet sizes for unit stride data on both Itanium
2 and Opteron. The performance of codelets increases with
the size of transform and then starts deteriorating once the
code size becomes too big to fit in the instruction cache and
registers as shown in Figure 14. Interestingly, the performance
decline on Opteron was not as sharp as found on Itanium 2.
We believe, that is owing to the bigger instruction cache on
Opteron compared to Itanium 2.

For all platforms considered, the performance decreases
considerably for large data strides. If two or more data
elements required by a particular codelet are mapped to the
same physical block in cache, then loading one element results
in the expulsion of the other from the cache. This phenomenon
known as cache trashing occurs most frequently for strides
of data that are powers of two because data that are at such
strides apart are usually mapped to the same physical blocks
in cache depending on the type of cache that is used by
the architecture. On Itanium 2, the cache model shown in
Figure 15 was harder to predict due to deeper hierarchy and
more complex pipelining. However, as shown in Figure 16,
for a more conventional architecture like Opteron, the sharp
decrease in performance due to cache trashing occurs when:

sizedatapoint × stride × 2 × sizecodelet ≥
sizecache

Associativity

Fig. 15. Cache Performance Model generated using Complex FFT Codelets
with varying strides on Itanium 2.

Fig. 16. Cache Performance Model generated using Complex FFT codelets
with varying strides on Opteron.

where datapoint size is the size of one data element (for
complex data with 8 Byte real and imaginary data, each data
point is of 16 Bytes), codelet size is the number of data
elements being transformed by the codelet, cache size is the
total size of the cache in Bytes, stride is the data access
stride, and associativity is the type of cache being used by
the architecture.

CONCLUSION

We have implemented and evaluated the empirical auto-
tuning methodology in UHFFT library to generate highly
optimized codelets for FFT(Real/Complex) and Trigonometric
Transforms. The adaptive approach that we have chosen for
the library is shown to be an elegant way of achieving both
portability and good performance. Internally the code genera-
tor implements flexible mathematical rules that can be utilized
to extend the library to generate other kinds of transforms
and convolution codes, especially when the algorithms are
based on FFT. The ease with which the whole UHFFT library
tunes itself without user intervention allows us to generate any
supported type of transform on any architecture.

REFERENCES

[1] Uhfft-2.0.1 www.cs.uh.edu/ ayaz/uhfft. 2006.
[2] ALI, A. Impact of instruction scheduling and compiler flags on codelets’

performance. Tech. rep., University of Houston, 2005.
[3] ALI, A. An adaptive framework for cache conscious scheduling of fft

on cmp and smp systems. Dissertation Proposal, 2006.



[4] ALMAGOR, L., COOPER, K. D., GROSUL, A., HARVEY, T. J., REEVES,
S. W., SUBRAMANIAN, D., TORCZON, L., AND WATERMAN, T. Find-
ing effective compilation sequences. In LCTES ’04: Proceedings of the
2004 ACM SIGPLAN/SIGBED conference on Languages, compilers, and
tools for embedded systems (New York, NY, USA, 2004), ACM Press,
pp. 231–239.

[5] CHAME, J., CHEN, C., DINIZ, P., HALL, M., LEE, Y.-J., AND LUCAS,
R. An overview of the eco project. In Parallel and Distributed
Processing Symposium (2006), pp. 25–29.

[6] FRIGO, M. A fast fourier transform compiler. In PLDI ’99: Proceedings
of the ACM SIGPLAN 1999 conference on Programming language
design and implementation (New York, NY, USA, 1999), ACM Press,
pp. 169–180.

[7] FRIGO, M., AND JOHNSON, S. G. The design and implementation of
FFTW3. Proceedings of the IEEE 93, 2 (2005), 216–231. special issue
on "Program Generation, Optimization, and Platform Adaptation".

[8] FURSIN, G., O’BOYLE, M., AND KNIJNENBURG, P. Evaluating iter-
ative compilation. In LCPC ’02: Proc. Languages and Compilers for
Parallel Computers. (College Park, MD, USA, 2002), pp. 305–315.

[9] KISUKI, T., KNIJNENBURG, P., O’BOYLE, M., AND WIJSHO, H. Iter-
ative compilation in program optimization. In Proc. CPC2000 (2000),
pp. 35–44.

[10] LOAN, C. V. Computational frameworks for the fast Fourier transform.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
1992.

[11] MIRKOVIC, D., AND JOHNSSON, S. L. Automatic performance tuning
in the uhfft library. In ICCS ’01: Proceedings of the International
Conference on Computational Sciences-Part I (London, UK, 2001),
Springer-Verlag, pp. 71–80.

[12] MIRKOVIC, D., MAHASOOM, R., AND JOHNSSON, S. L. An adaptive
software library for fast fourier transforms. In International Conference
on Supercomputing (2000), pp. 215–224.

[13] PÜSCHEL, M., MOURA, J. M. F., JOHNSON, J., PADUA, D., VELOSO,
M., SINGER, B. W., XIONG, J., FRANCHETTI, F., GAČIĆ, A., VORO-
NENKO, Y., CHEN, K., JOHNSON, R. W., AND RIZZOLO, N. SPIRAL:
Code generation for DSP transforms. Proceedings of the IEEE, special
issue on "Program Generation, Optimization, and Adaptation" 93, 2
(2005), 232–275.

[14] WHALEY, R. C., PETITET, A., AND DONGARRA, J. J. Automated
empirical optimizations of software and the ATLAS project. Parallel
Computing 27, 1–2 (2001), 3–35.

[15] WHALEY, R. C., AND WHALEY, D. B. Tuning high performance
kernels through empirical compilation. In ICPP ’05: In Proceedings
of the 2005 International Conference on Parallel Processing (Oslo,
Norway, 2005), EEE Computer Society, pp. 89–98.


