Predicting Bounds on Queuing Delay in Space-shared Compurtg Environments

University of California, Santa Barbara

Technical Report Number CS2005-09

John Brevik, Daniel Nurmi, and Rich Wolski

Computer Scienc

e Department

University of California, Santa Barbara
Santa Barbara, California 93106

Abstract

Most space-sharing resources presently operated by high pe
formance computing centers employ some sort of batch qugguei
system to manage resource allocation to multiple users.hig t
work, we explore a new method for providing end-users wigh pr
dictions of the bounds on queuing delay individual jobs @ifbe-
rience when waiting to be scheduled to a machine partitioe. W
evaluate this method using scheduler logs that cover a 9 pear
riod from 7 large HPC centers. Our results show that it is ploles
to predict delay bounds with specified confidence levelofis jn
different queues, and for jobs requesting different rangfepro-
cessor counts.

1. Introduction

Typically, high-performance multi-processor computetgses
are managed usirngpace sharinga scheduling strategy in which
each program is allocated a dedicated set of processotsefoiut
ration of its execution. In production computing settingsers
prefer space sharing to time sharing, since dedicated gsoceac-
cess isolates program execution performance from thetsftdc
a competitive load. Because processes within a partitionato
compete for CPU or memory resources, they avoid the cache an
translation look-aside buffer (TLB) pollution effects thiane slic-
ing can induce. Additionally, inter process communicataaurs
with minimal overhead, since a receiving process can neverd-
empted by a competing program.

For similar reasons, resource owners and administratefermpr
space sharing as well. As long as the time to allocate parstio,
and reclaim partitions from, parallel programs is small,com-
pute cycles are lost to time-sharing overheads, and reseuumn
with maximal efficiency. Thus, at present, almost all prdatuc
high-performance computing (HPC) installations use soonm f
of space sharing to manage their multi-processor and closie
chines.

*This work was supported by grants from the National Science
Foundation numbered CCF-0331654 and NGS-0305390.

Because each program in a space-shared environment runs in
its own dedicated partition of the target machine, a progcam
not be initiated until there are a sufficient number of preoes
available for it to use. When a program must wait before it can
be initiated, it is queued as “job along with a description of
any parameters and environmental inpueg(input files, shell
environment variablestc) it will require to run. However, be-
cause of the need both to assign different priorities tosuaed to
improve the overall efficiency of the resource, most inatahs
do not use a simple first-come-first-served (FCFS) queuisg di
cipline to manage the queue of waiting jobs. Indeed, a nurober
gueue management systems, including PBS [20], LoadLejgler
EASY [16], NQS/NQE [18], Maui [17] and GridEngine [12] each
offers a rich and sophisticated set of configuration opttbas al-
low system administrators to implement highly customizedrp
ity mechanisms.

Unfortunately, while these mechanisms can be used to balanc
the need for high job throughput (in order to ensure machine e
ficiency) with the desires of end-users for rapid turnarotimes,
the interaction between offered workload and local queulisg
cipline makes the amount of time a given job will wait highly
variable and difficult to predict. Users may wait a long time —
considerably longer the the job’s eventual execution tinfer-a
job to begin executing. Many users find this potential forreap
flictable queuing delay particularly frustrating sincepinduction
settings, theycan make fairly reliable predictions of how long a
program will execute once it starts running. Without anigbtb
predict its queue waiting time, however, users cannot phably
to have results by a specific point in time.

In this paper, we present tHgrevik Method Batch Predictor
(BMBP) — a new methodology for predicting bounds, with quan-
titative confidence levels, on the amount of time an indigidab
will wait in queue before it is initiated for execution on aoduc-
tion “batch scheduled” resource. BMBP bases its predistmtly
the observed history of previous waiting times. Thus, ibaat-
ically takes into account the effects of varying workload @us-
tomized local queuing discipline. In addition, we obseivat the
queuing behavior exhibited by all of the machines we exathine

1we will use the term “job” throughout this paper to refer toea d
scription of a program and its execution requirements toatea-

ing system can use to initiate a program once the necessary re
source become available.

in this study { supercomputers operated by the National Science
Foundation and the Department of Energy overygear period) is
highly . In response to hardware and software upgradesiyésil
and configuration changes, changing organizational pigsriuser
turnover, security eventgtc, administrators appear to tune and
adjust their local queuing policies, often in a way that it olovi-

ous to the user community. BMBP attempts to detect thesegehan
points adaptively so that it uses only relevant history t&enzach
prediction.

We verify both the efficacy and generality of BMBP using the
logging information recorded by various batch scheduleaiswere
in use during the time each machine in our study was in operati
All of the installations except the Lawrence Livermore Idatl
Laboratory maintained a variety of queues for each machivie.
presume that a qualitative queuing policy has been puldisbe
the user community for each queteed, jobs in the “Low” queue
at the San Diego Supercomputer Center would be given lovirer pr
ority than those in the “Normal” queue, which would, in tunaye
lower priority than those in the “High” queue). In this wayete
installations attempt to provide their respective usersrooni-
ties with a rudimentary and qualitative prediction cagabgince,
in general, lower priority jobs can be expected to wait lonige
queue.

previous research efforts that treat the problem of predjcjueu-
ing delay in a quantitative way.

Our work differs from these approaches in two significantsvay
First, our goal is strictly to provide a predictive mechamifor
users and application schedulers rather than to investthatdis-
tributional properties exhibited by HPC systems. We foaug on
the problem of prediction at the expense of a complete ttatis
model of system behavior. As a result, BMBP achieves newdeve
of predictive accuracy and quantitative rigor, but it caneasily
be used to build simulations of future or hypothetical systen
the same way previous results can.

Second, BMBP makes a prediction for each individual job’s
queuing delay rather than a statistical characterizatidineoqueu-
ing delay experienced by all jobs. For example, previousrtsf
have focused on describing job behavior using differentmpet-
ric models so that the mean queuing delay can be estimated. It
is difficult to quantify and predict how the delay that will -
perienced by a job that is about to be submitted will compare t
the estimated mean delay. In contrast, BMBP correctly ptedi
bounds on delay for individual jobs (rather than the colecbf
all jobs) with quantifiable confidence levels.

The remainder of this paper details BMBP and describes its

However, in each case the batch scheduler must choose amongvaluation. In so doing, the paper makes the following tweeho

jobs that are waiting in a number of queues, each of whichwvs go
erned by a specific policy. Moreover, the algorithm used to se
lect a particular job at a particular time from amongst theotes
queues is not typically published, and potentially chagginder
administrator control. Thus, while the implementation afitiple
policies for a given machine through multiple queues canigeo

a high level and qualitative expectation of how a specificyidlb

be treated, it substantially complicates the problem of intaka
quantitative prediction for that job.

We examine the predictive power of BMBP when it is applied
to the various queues implemented at each site by detaitimg h
well our new method predicts in a quantitative way the gaalit
tive characteristics attached to each queue. With imppicdrity
mechanisms such as backfilling [15] in use at some of the, sites
however, users have come to expect that processor coundfalso
fects wait time. In particular, jobs in a particular queuguesting
small numbers of processors are believed, typically, ta feai
shorter periods, since they can be “backfilled” into the ntaeh
around larger jobs. We therefore also examine how well BMBP
predicts the bounds on waiting times for jobs based on thaaue
to which they were submitted and the number of processoys the
specified. In all cases — covering ovemillion jobs — the method
makes predictionfor each joh which are “correct” in a very spe-
cific statistical sense which we will discuss below, for tlo&ibds
on the waiting time.

This ability to make predictions for individual jobs diggnishes
our work from other previous efforts. An extensive body of re
search [21, 5, 6, 8, 11, 3, 7, 9] investigates the statigpicgierties
of offered job workload for various HPC systems. By proviglin
a rigorous statistical characterization of job interatittmes and
program execution times, the resulting statistical propgassoci-
ated with queuing time can be derived through simulatiorsiie
these extensive characterization studies, however, we kfiew

contributions.

e We describe a new predictive methodology for bounding
gueuing delay that is quantitative, non-parametric, and ge
eral. As a result, the method works automatically, without
ancillary analysis or human “tuning” for a specific site or a
specific queue.

We evaluate this methodology by comparing its performance
to an alternative parametric approach based on the assump-
tion that the underlying distribution is log-normal. Our re
sults show that our new approach achieves the specified con-
fidence levels in each case while the log-normal approach
does not.

We emphasize that our intention in developing BMBP is to pro-
vide a practically realizable predictive capability foreetual de-
ployment as a user and scheduling tool rather than a newtarzly
methodology. Therefore our reportage focuses on the segeitt-
erated by a work prototype that is currently being integtatéh
various batch scheduling systems, and our results areaitly,
empirical.

2. Related Work

Smith, Taylor, and Foster in [21] use a template-based agpro
to categorize and then predict job execution times. Froraehe
execution-time predictions, they then derive queue detedip-
tions by simulating the future behavior of the batch schexdir
faster-than-real time. Our work differs from this approactwo
significant ways. To be effective, the Smith-Foster-Taph@thod
depends both on the ability to predict job execution timeigaiely
for each job and on explicit knowledge of the scheduling atgm

used by the batch scheduler. Other work [14, 4] suggestsithiat
ing such predictions may be difficult for large-scale prdahrc
computing centers. Moreover, the exact details of the sdhweg
policy implemented at any specific site is typically unpsbéd.
While the algorithm may be known, the specific instance of the
algorithm and the definition of any parameters it requirestae
prerogative of the site administrators and, indeed, mayhbaged
as conditions and site-specific needs warrant. In contastap-
proach uses only with the observed queue delays. By doinigj so,
does not require execution time predictions, and it autmaidt
takes into account any site-specific effects induced by dhall
scheduling policy (whether static or dynamically changing

Downey [5, 6] uses a log-uniform distribution to model the re
maining lifetimes of jobs executing in all machine partitsoas a
way of predicting when a “cluster” of a given size will become
available and thus when the job waiting at the head of the gueu
will start. Our work differs from Downey’s in that we do notais
predictions of the time until resources become free to egérthe
start time of a job. Rather, we work directly from the observe
queuing delays.

Finally, our approach differs from both of these related ap-
proaches in that it attempts to establish rigorous boundten
time an individual job will wait rather than a specific, siaglalued
prediction of its waiting time. We contend that the highlyighle
nature of observed queue delay is better represented totjabte

one end) that we can assert contain the parameter with a speci
fied level of confidenceroughly corresponding to the “probabil-
ity” that our interval has captured the true parameter ofptbp-
ulation. In general, the more confident we wish to be, the wide
the confidence range; for example9@% confidence interval for
the estimated.95 quantile is wider than a80% confidence in-
terval, because the higher level of confidence demands that w
be more certain that the true parameter lies in our interiair

the purposes of this paper, we will typically be consideripgper
confidenceboundson quantiles, which correspond to left-infinite
intervals(—oo, BJ.

To estimate an upper bound, then, we need to choose two val-
ues: the quantile and the desired level of confidence fordhad.
Returning to the example, to say that a particular stasistethod
produces &9%-confidence upper bound on thé)5 quantile is to
say that, if the method is applied a large number of timesyahee
it produces fails to be greater than the5 quantile no more than
1% of the time. We will term an upper-bound predictioncasrect
if the observed value falls below the predicted value; wé teiim
a prediction method on a set of datarrectif the proportion of
correct predictions it makes is at least as great as the itpidns
predicting.

In this work, we (perhaps somewhat unfortunately) have cho-
sen to use the value.95 for each. We have identified th®95
quantile as appropriate for a level of how certain we wishéo b

system users as quantified confidence bounds than as a specifisbout how long a job will wait in the queue. At the same time

prediction, since users can “know” the odds that their jolb fial
outside the range.

3. Problem Definition: Predicting Bounds on
Queuing Delay

While it is appealing to consider the problem of predictihg t
exact queuing delay a given job will experience through sdeze
terministic mechanism, because the scheduling policy dglén
and potentially changing, and because there is no detestigini
model for job interarrival duration or execution time, weexs that
queuing delay must be treated statistically as well. As altahe
best possible outcome (from the job submitter’s perspekisthe
ability to predict bounds on the delay a job will experieraed to
do so with a quantifiable measure of confidence.

95% is fairly standard from the standpoint of statistical irfiece

as a level of confidence. Note that because it is0thé quantile

we are estimating, a user should expect that there is at niost a

20 chance that the actual wait time experienced by a job exceed
the predicted wait time (provided, of course, that the potboln
method is correct in the sense of the above paragraph).

Our aim in producing predictions is not only that they be cor-
rect at leas5% of the time, but also that they be meaningful
to the user. If we were to make extremely conservative predic
tions, based, say, on the maximum wait time ever observeukein t
queue, the percentage of correct predictions would dossile
crease; however, the extremely large predictions producadd
have little utility to someone wishing to use these valuegpfan-
ning purposes. One sees, then, that there is a direct tfabe-o
tween having a high percentage of correct predictions aaseth
predictions reflecting what a “typical” wait time might bef:the

For example, suppose that a scheduler or machine user wouldoredictions are correct at a substantially higher rate trer-

like to know the maximum amount of time a job is likely to wait
in a batch queue before it is executed. In order to be preaise,
quantify the word “likely” to mean that we wish to generatera-p
dicted number of seconds so that we @5§¢ certain that our job
will begin execution within that number of seconds, in thasse
that, over time95% of our predictions will be at least as great as
the actual wait-times of the jobs. If we regard the wait tini@o
given job as a random variable, then, this amounts to finding a
estimate for th@s" percentile, 00.95 quantile of this variable’s
distribution.

Since the distribution of interest is unknown, any of itsgrar
eters in which we might be interested must be estimated;aiigi
from a sample. Standard methods of statistical infererioevals

to use a sample to produce an interval (which may be infinite on 4.

tised, it is a sign that they are overly conservative andefioee
less meaningful than they could be. Thus the fact that, ireigen
only slightly more tha®5% of our predictions are correct for each
queue, as we will see in Section 6, shows that they are meahing
for the purpose for which they are designed.

Note also that, while we have presented the problem in terms
of estimating the upper bound on queuing delay, it can bdasilyi
formulated in terms of produce lower confidence bounds, or tw
sided confidence intervals, at any desired level of configefur
any population quantile.

Inference for Quantiles

In this section, we describe our approach to the problem-of de
termining upper bounds, at a fixed level of confidence, fomgua
tiles of a given population whose distribution is unknowrs de-
scribed previously, our intention is to use this upper boaadch
conservative estimate of the queuing delay, and to repertiéx
gree of conservatism as the quantified confidence level.

4.1 The Brevik Method Batch Predictor

Our approach, which we term tievik Method Batch Predic-
tor (BMBP), is based on the following simple observation:Xif
is a random variable, and,, is theq quantile of the distribution
of X, then a single observationfrom X will be greater thanX,
with probability (1 — ¢). Thus (under suitable assumptions about
independence and identical distribution) we can regardfate
observations as a sequence of independent Bernoulli txidis
probability of success equal §go where an observation is regarded
as a “success” if it is less thaki,. If there aren observations, the
probability of exactlyk “successes” is described by a Binomial
distribution with parameters andn. Therefore, the probability
thatk or fewer observations are greater thipis equal to

@)

k
> (?) (1= "¢

j=

We provide a more complete description of the method in the
Appendix of this paper. However, in short, we can find the smal
est value of for which Equation 1 is larger than some specified
confidence level, and thé" value in a sorted set of observations
(of sufficient size) will be greater than or equal to thig quantile
of the distribution from which the observations were madthwi
the specified level of confidence.

Nonstationarity

In the specific context of batch-queue wait times, one adytai
cannot make the unsupported assumption that the data e i.i
(independent and identically distributed); therefore, ittea men-
tioned above that the wait time forspecific jobis to be regarded
as a random variable with its own specific distribution resuro
the foreground. In fact, we have observed that, over theseour
of a long data trace, the above prediction method, whichnesse
tially regards a specific wait time as simply a particulatanse of

a general “wait time” random variable, is subject to degtiata
We assume that this degradation is because the system girchan
over time making the observation sequence nonstationary.

We circumvent this difficulty in the following way. First, eb
serve that, given an i.i.d. sequence of data from a randorablar
X and a sequence valug that is greater than, sa¥; o5, the prob-
ability that the next valuer;41 is also greater thaX o5 is .05,
which is low but not exceptional; however, the probabilligtthe
next two are greater thal o5 is .0025 — an extremely rare occur-
rence. Therefore, if we are trying to make inferences atiau06
quantile of a data set and we find three measurements in a abw th
exceed their95-quantile estimates, we can be almost certain that
this has taken place due to some nonstationarity in the détarr
than purely by chance from a stationary sequence.

Now, suppose that the data, regarded as a time series, tsxhibi
some autocorrelation structure. If the first autocorretats fairly
strong, three or even five measurements in a row abovedthe
quantile might not be such a rare occurrence, since one higle v
would tend to produce another. For this reason, we conducted
Monte Carlo simulation using log-normal distributions lwitari-
ous values of first autocorrelation in order to identify themer
of consecutive measurements above.fiequantile necessary to
constitute a “rare event,” meaning one that occurs for lhas t
5% of the errors. We then generated a coarse-grained lookup ta-
ble with autocorrelations and “rare-event” thresholds.teNihat
our choice of log-normal distribution does not amounagsum-
ing that the distributions of wait times are log-normal; we ombe
this distribution to give a very rough sense of how many conse
tive incorrect predictions constitute a “rare event,” aarelsterized
above, for heavy-tailed autocorrelated data. As a prdaticd-
ter, the log-normal is an easy distribution to work with, andn
light of Downey’s below-mentioned endorsement of log-nalsn
as well as the fact that log-normals did in fact perform faidell
as prediction models, log-normal distributions seem to bead
choice for our simulation. In any event, it should be noteat th
is not vital to our method that the log-normal be entirelylaate:
Our choice 06% was somewhat arbitrary to begin with, and if the
number produced by this method turns out to give an event that
occurs with3% or 7% probability, it can hardly be construed as a
serious difficulty.

For each queue, we calculate the first autocorrelation gurin
the training period and use the lookup table to find the “erent”
threshold for that data set. When we observe the determimed n
ber of consecutive incorrect predictions, we assume tleati#ta
has changed in some fundamental way so that old data is nerlong
relevant for our predictions. Accordingly, we trim the list as
much as we are able to while still producing meaningful confi-
dence bounds.

For example, it follows from formula 1 above that in order to
produce a5% confidence bound for the)5 quantile the mini-
mum history from which a statistically meaningful inferencan
be drawn is59: Setj; = n — 1, so that the sum gives the prob-
ability thatn — 1 or fewer are less thaX,; the smallest. for
which this sum is at leasb5 is 59. Therefore, for this specific
quantile and level of confidence, upon seeing the assignedeu
of missed predictions in a row (determined by the first auteezo
lation observed during training), we would trim our histeoythe
most recenb9 and start making predictions based on the short-
ened history. Thus our confidence bounds automaticallytadap
the longest history that is clearly relevant to the curreatijztion.

For the data sets considered, our method produces (conserva
tive) predictions for thed5 quantile for each wait time so that, for
each data set, our predictions were correct at l&5tof the time.

The relatively high level of confidence chosen enabled tkdipr
tor to work well in spite of possible effects of non-independe
and short-term nonstationarity in the data.

4.2 Model-Fitting with Log-Normals
In [5], Downey hypothesizes that the job at the head of a FCFS

gueue experiences a delay that is well-modeled lgauniform
distribution; however, in a private communication with thghor,

he expressed a belief that overall wait times are well meddily
log-normaldistributions; note that that a random variafles dis-
tributed log-normally iflog X is a normally-distributed variable.
This observation suggests another approach to the prolflpro-o
ducing quantile estimates for batch-queue wait times;iipalty,

one can fit a log-normal to the data (or, equivalently, a nérma
distribution to their logarithms) using, preferably, thetimod of
maximum likelihood estimation (MLE), and then produce tlee d
sired population quantile from a lookup table or the inverkthe
cumulative distribution function.

In fact, the above method will likely produce accurate quan-
tile estimates for a true log-normal; however, in the inséeref
statistical rigor, as well as an “apples-to-apples” coriguar with
BMBP, we produce confidence upper bounds for quantiles rrathe
than quantile estimates themselves. To this end, we woltktivi
logarithms of the data; since they are assumed to be norneal, w
can use the(’ distribution for confidence bounds on quantiles for
normal populations, given in Table 4.6 of [13].

Generally, model-fitting is done with all of the data avaiégb
and our experiments include the use of full histories to poed
confidence bounds; however, in light of the long-term ndista
arity phenomenon discussed above, we additionally impitede
an estimation scheme incorporating the same history-atiow
strategy that we used with BMBP. The result separates tketsff
of using a binomial approach from the effects of our automati
identification of change points.

5. Evaluation

Our goal is both to determine the statistical correctne 88wiB P
and to investigate its accuracy. Recall that a method iscbif,
provided the number of job predictions is large enough teetff
short-term statistical anomalies, the percentage of comedic-
tions is at least as large as the specified level of confideWd.
examine several different combinations of quantile andidence
level as part of this verification. As a measure of accuraeyger
tail the degree of over-prediction each upper bound geeerato-
tice that a simple prediction method in which the predicepaat-
edly guesses an astronomically large numbgtimes followed
by a single guess of a very small number will generate priedist
that are above the corresponding observatmractly95% of the
time and therefore, under our definitions, is “correct.” @& other
hand, it is not an “accurate” predictor, in a way that we wisi-d
Cuss.

While we plan to deploy BMBP in production computing set-
tings, to first determine its efficacy, we use a trace-basedtev
driven simulation (described in the next subsection). liogglata
from a variety of HPC sites (described in Subsection 5. 9)ndx
the queue name, arrival time, queue delay, and processot cou

decisions based on the predictions furnished, this cosaonly
demonstrates that the method retroactively captures thandigs
that were present at the time of each submission. We belmate t
the correct and accurate behavior of BMBP in this settingy-ho
ever, warrants deployment and “live” evaluation as a nesq.st

We have also been able to obtain preliminary timings for BMBP
from its use in simulation. Using a 1 gigahertz Pentium Hg awv-
erage time required to make a prediction over the approxiyat
1.2 million predictions we examine across all batch queue Isgs i
milliseconds. Clearly BMBP is efficient enough to delivanély
forecasts.

5.1 Simulation Implementation

Our simulator takes as input a file containing historicathat
gueue job wait times from a variety of machines/queue coaibin
tions and parameters directing the behavior of our modets. F
each machine/queue for which we have historical infornmatice
were able to create parsed data files which contain one joi ent
per line comprising the UNIX time stamp when the job was sub-
mitted and the duration of time the job stayed in the queuerbef
executing.

The steady state operation of the simulation reads in adame f
the data file, makes a prediction based on the current modg be
used, and stores the job in a “pending queue”. We then inareme
a virtual clock until one of three things happen.

e The virtual time specified for the job to wait in the pending
expires.

e A new job enters the system according to the virtual clock.

e A specified number of seconds elapses (specified as an in-
put parameter) allowing the prediction method to “refit” its
models.

When the first case occurs, the job is simply added to a growing
list of historical job wait times stored in memory. Althougfie
waiting time for the job is carried in the trace, the predic®
not entitled to “see” the waiting time in the history untilstops
waiting in queue and is released for execution.

When the second case occurs, the current prediction value is
used to make a prediction for the job entering the queue jthe-s
lation checks to see if the predicted time for that job is tgethan
or equal to the actual time the job will spend in the pendingugu
(success), or the predicted time was less than the actualgitb
time (failure). The success or failure is recorded, and tiei$
placed on the pending queue. Note that in a “live” setting $lic-
cess or failure could only be determined after the job cotedle

for all of the jobs submitted to each system. Because we can re its waiting period.
play each submission trace we can compare BMBP to an alterna-

tive approach based on a dynamically fit log-normal distidsu

When the third case occurs, the simulation makes a new pre-

determined by an MLE (as described previously) over the samediction based on the current contents of the historical batter.

job workloads. For each job in each trace we record the predic
tion that the job’s usewould have been giveheither the BMBP

or log-normal prediction system were in place when the job wa
submitted. However, since users might change their sulmiss

This prediction is used for all jobs until another time epdes
elapsed. The reason why we wait a set number of seconds before
making new predictions (case 3) instead of making new predic
tions every time a new job enters the queue (case 2) is to aienul

a real world problem; we do not expect to actually have rigaét

Abbreviation| Detalil

access to job wait time data. Instead, we assume that thefmed
will get an up-to-date “dump” periodically (every five mimstfor

Datastar Power4 P690 parallel computer built

by the IBM Corporation

the results reported in the next section). We note that we hav
simulations for which the epoch length is setitgeconds, simu-

Cray-Dell Dell x86 processors, built by Cray Research

Incorporated

lating the (likely unrealizable) deployment scenario inieththe
predictor state is updated for each job, and the effect orethdts
was minimal.

LANL Los Alamos National Laboratory located in
Los Alamos, New Mexico and operated for th

Department of Energy

11}

Also, because predictions are based on history, we train eac
simulation using an initial fraction10% in this study) of each

NERSC National Energy Research Center located at
the University of California, Berkeley and

operated or the Department of Energy

job sequence. During the training period, the simulatioecekes
as above but does not record the successes or failures ofehe p

02K Origin 2000 parallel computer built by

Silicon Graphics Corporation

dictions begin made; in effect, it is simply putting the sfied
fraction of job wait times in a historical buffer.

Paragon Paragon parallel computer built the

Intel Corporation

When the training period is exhausted, the simulation ertker
result phase. In this phase, the code executes as desarnibkithg

SDSC San Diego Supercomputer Center located
at the University of California, San Diego and

operated for the National Science Foundation

quantile predictions with a given confidence bound, andrding
a success or failure for each job entering the queue. Thdationu

SP SP-series parallel computer built by the

IBM Corporation

also records the ratio of the prediction to the observed tirai
for each job. We use the median of these ratios to measure the

TACC

—

Texas Advanced Computing Center located 4
the University of Texas, Austin and operated {

accuracy of each simulation run (as described in Section 6).
5.2 Batch Queue Data

We obtained 7 archival batch-queue logs from different high
performance production computing settings covering difiema-
chine generations and time periods. From each log, we ¢gttac
data for the various queues implemented by each site. Feysl
tems except the ASCI Blue Pacific system at Lawrence Liveemor
National Laboratory (LLNL), each queue determines, in pidue
priority of the jobs submitted to it. For example, jobs sutted
to theinteractivequeue at the National Energy Research Science
Center (NERSC) are presumably given higher-priority asdes
available processors than those submitted tedfelarlongqueue
in an effort to provide interactive users with shorter queude-
lays.

Typically, a center publishes a set of constraints that kgl
imposed on all jobs submitted to a particular queue. These co
straints include maximum allowable run time, maximum aHow
able memory footprint, and maximum processor count whieh th
batch-queue software enforces. The priority mechanisrd bge
the scheduler to select jobs from across the advertisedegueu
however, is either partially or completely hidden from theeu
community and may change over time. For example, the center
may choose temporarily to give higher priority to long-rimgn
large jobs immediately before a site review or nationallyiblie
demonstration. While the user community may be informedhef t
change and its duration, they may not be told exactly how lit wi
affect the priority given to jobs submitted to other queues.

In this work, we consider only the historical job submission
information associated with each queue and machine. Whhile i
some cases the queue names suggest a potential pricoitias
with t