
UNIVERSITY OF CALIFORNIA
Santa Barbara

GridSAT: A Distributed Large Scale Satisfiability

Solver for the Computational Grid

A Dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Wahid Chrabakh

Committee in Charge:

Professor Rich Wolski, Chair

Professor Kevin Almeroth

Professor Amr El Abbadi

September 2006

UMI Number: 3233731

3233731
2006

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

 by ProQuest Information and Learning Company.

The Dissertation of
Wahid Chrabakh is approved:

Professor Kevin Almeroth

Professor Amr El Abbadi

Professor Rich Wolski, Committee Chairperson

June 2006

GridSAT: A Distributed Large Scale Satisfiability Solver for the Computational

Grid

Copyright c© 2006

by

Wahid Chrabakh

iii

To my parents, my wife and the beautiful

trio Weam, Hazem and Raneem.

iv

Acknowledgements

This PhD dissertation was not possible with the support and guidance of many
people. First, I would like to thank my advisor Rich Wolski for his confidence in
me. By sharing his vision and deep knowledge this research was made more
encompassing. I must also thank the other members of my committee: Kevin
Almeroth and Amr El Abbadi for their comments and probing questions which
helped shape the focus of this work.

During my PhD career I met and interacted with many people who influenced
in some way this thesis and how I approach research in general. Also I would like
to thank all past and present members of the Mayhem lab for their friendship. I
especially thank Graziano Obertelli for his methodical effort in maintaining the
machines I used for many of my experiments.

Most importantly, I would like to thank my mother and father for their sup-
port. This work would not have been completed without my wife Hasna Bellagha.
Hasna, your patience, love and companionship were indispensable during every
step. You were always by my side cheering me on. I thank you deeply and sin-
cerely. Finally, I am grateful for my three children Weam, Hazem and Raneem.
They have provided me with the most memorable and precious part of my life.
Their love and affection are overwhelming and were pivotal in the most trying of
times.

v

Curriculum Vitæ

Wahid Chrabakh

Education

2006 Ph.D. in Computer Science,

University of California, Santa Barbara

2000 Master of science in Computer Science,

University of Tennessee, Knoxville

1994 Bachelor of Science in Electrical Engineering,

University of Tennessee, Knoxville (Summa Cum Laude)

Experience

1997–2000 Lead Software Engineer, The Learning Company, Knoxville, TN

1995–1997 Lead Software Engineer, TELNET, Tunis, Tunisia

1994–1995 Software Engineer, ALCATEL Corporation,Tunis,Tunisia

Selected Publications

Chrabakh, W. and Wolski, R., “Solving ’hard’ satisfiability problems using GridSAT”,

Global Grid Forum 14, June 27-30, 2004, Chicago IL.

vi

Chrabakh, W. and Wolski R., “GridSAT Portal: A Grid Portal for Solving Satisfia-

bility Problems On a Computational Grid”,Global Grid Forum

14, June 27-30, 2004, Chicago IL.

Chrabakh, W. and Wolski, R., “GridSAT: A Chaff-based Distributed SAT Solver for

the Grid”, Proceedings of supercomputing, Phoenix, AZ, Novem-

ber, 2003.

Chrabakh, W. and Wolski, R., “GridSAT Portal: A Grid Web-based Portal for Solv-

ing Satisfiability Problems Using National Cyberinfrastrcture”,

Journal of Concurrency and Computation: Practice and Experi-

ence, Published by John Wiley & Sons 2006 [to appear].

Chrabakh, W. and Wolski, R., “GridSAT: A System for Solving Satisfiability Prob-

lems Using a Computational Grid”, Journal of Parallel Applica-

tions, Published by Elsevier, ISSN: 0167-8191 Imprint: NORTH-

HOLLAND 2006 [to appear].

Chrabakh, W. and Wolski, R., “GridSAT: Design and Implementation of a Compu-

tational Grid Application”, Journal of Grid Computing, Pub-

lisher: Springer Netherland 2006 [to appear].

Experience

vii

Chrabakh, W. and Wolski, R., “GrADSAT: A Parallel SAT Solver for the Grid”,

University of California, Santa Barbara Computer Science Tech-

nical Report Number 2003-05, February, 2003.

Invited Professional Talks

“The Making of a ’true’ Computational Grid Application”, SIAM Conference on Par-

allel Processing for Scientific Computing, Software Development,

February 2006.

“Solving ’hard’ satisfiability problems using GridSAT”, Global Grid Forum 14 (GGF14),

Grid Applications: from Early Adopters to Mainstream Users,

June 2005.

“GridSAT Portal: A Grid Portal for Solving Satisfiability Problems On a Computational Grid”,

Global Grid Forum 14 (GGF14), Science Gateways: Common

Community Interfaces to Grid Resources, June 2005.

“GridSAT: A ’Chaff’ Based Satisfiability Solver”, SuperComputing Conference, Ap-

plications, November 2003.

Demonstrations

viii

SuperComputing Conference 2004, Demonstration in conjunction with San Diego

Supercomputing Center (SDSC).

SuperComputing Conference 2003, Flagship demonstration as a leading application

using SDSC resources (four times).

SuperComputing Conference 2002, Demonstration as a component application of the

Grid Application Development Software (GrADS) project.

Software and Tools

GridSAT Portal: Available at http://orca.cs.ucsb.edu/sat portal. The GridSAT

Portal is a simple web interface for solving Satisfiability prob-

lems using supercomputing cyber-infrastructure. The portal uses

GridSAT to automatically solve user supplied Satisfiability prob-

lems.

GridSAT System: The GridSAT System is portable and can be deployed on any set

of computational resources.

Technical Referee

SuperComputing conference 2002, 2003, 2004.

High Performance Distributed Computing 2002, 2003, 2004.

ix

Journal of Parallel and Distributed Computing.

International Conference High-performance Distributed Computing.

International Conference on Parallel and Distributed Systems.

x

Abstract

GridSAT: A Distributed Large Scale Satisfiability Solver for

the Computational Grid

Wahid Chrabakh

Grid Computing is an emerging field in computer science. Research in this

area aims at aggregating distributed, heterogenous and federated resources and

make it available to Grid applications. In the past two types of applications have

been deployed with varying degrees of success. The first type of applications is

embarrassingly parallel (a bag of independent tasks). This category adapts well to

a computational grid environment. The second category of applications includes

mainly scientific code which is tightly coupled in nature. This type of applications

is very hard to deploy in a grid environment.

In this thesis we present GridSAT, a new grid application. GridSAT is a

distributed complete boolean satisfiability solver based on the sequential solver

Chaff [70]. In addition to its theoretical significance, the satisfiability problem

has numerous practical applications. SAT solvers are used in many engineering

and scientific fields including circuit design and model checking.

xi

GridSAT is able to achieve new results by solving faster those problems that

were previously solved by other solvers. Moreover, it was able to solve problems

which were left unsolved by other solvers. GridSAT accomplishes these results by

achieving two goals. The first is parallelizing the sequential solver in a manner

which allows it to run efficiently on a large collection of resources. GridSAT also

uses techniques to enable information sharing between the parallel components

to avoid redundant work. The second goal is to design and implement the ap-

plication so that it can adapt to the dynamic conditions of a computational grid

environment. The techniques and design used to realize GridSAT can be deployed

with other application to achieve new results.

In addition, we show how multiple GridSAT instances can cooperate to run

efficiently on a common set of resources without explicit synchronization. These

experiments represent realistic scenarios where many grid applications share a

common resource pool.

We have also developed a web portal which accepts problem instances through

a standard web browser and returns status and results while shielding users from

complexities of running the application manually.

xii

Contents

Acknowledgements v

Curriculum Vitæ vi

Abstract xi

List of Figures xvii

List of Tables xix

1 Introduction 1

1.1 Computational Grid Computing and Related Challenges 2
1.2 Solving Boolean Satisfiability Problems 7
1.3 Thesis Statement . 9
1.4 Existing Satisfiability Solvers . 11
1.5 Current State of Application Development in Computational Grids 14
1.6 Research Plan . 17

2 Background: Sequential Satisfiability Solvers 19

2.1 Definition of the Satisfiability Problem 21
2.2 Sequential Algorithm . 24

2.2.1 Backtrack Searching . 25
2.2.2 Boolean Constant Propagation 30

2.3 Conflict Analysis and Learning 32
2.3.1 Learning and Implication Graphs 34
2.3.2 Example Execution of DPLL Algorithm with Leaning . . . 38

xiii

2.4 Memory layout . 40
2.4.1 Space Management . 42

2.5 Chaff Implementation . 44
2.5.1 Watched literals . 45
2.5.2 Variable State Independent Decaying 49

2.6 Summary . 50

3 Parallel Satisfiability Solver 51

3.1 Parallelization Strategy . 52
3.2 Algorithm Parallelization . 54

3.2.1 Search Space Splitting . 54
3.2.2 Decision Stack Construction 57
3.2.3 Clause Reduction . 59
3.2.4 Sending Clause Database 61
3.2.5 Ping-pong Effect . 62

3.3 Clause Sharing . 63
3.3.1 The Lazy Method . 66
3.3.2 The Immediate Method 69
3.3.3 The Periodic Method . 75
3.3.4 Clause Duplication . 76

3.4 Solution Enumeration . 77
3.4.1 Solution Enumeration with Modified DPLL 79
3.4.2 Parallel Solver with Solution Enumeration 83

4 Programming Methodology and Application Architecture 87

4.1 Execution Model . 88
4.2 Application Characteristics . 91
4.3 Application Architecture . 94

4.3.1 Design of the Client Process 94
4.3.2 Design of the Master Process 96
4.3.3 The Splitting Process . 100
4.3.4 Reducing Communication Overhead 102
4.3.5 Failure Recovery and Checkpointing System 103
4.3.6 Work Backlog . 106

4.4 Multiple Site Scheduling and Migration 107
4.5 Concurrently Running Multiple GridSAT Instances 110

4.5.1 Adaptive Memory Allocation 113

xiv

4.5.2 Resource Scheduling . 115
4.6 Programming Methodology . 118

4.6.1 GridSAT Implementations 122

5 Experimental Results 124

5.1 Splitting strategy . 125
5.1.1 Experimental Setup . 125
5.1.2 Results . 125

5.2 Comparing Clause Sharing Strategies 128
5.2.1 Experimental Setup . 128
5.2.2 Results . 129

5.3 Comparison to Sequential Solver 130
5.3.1 Experimental Setup . 130
5.3.2 Results . 133

5.4 Solving “Hard” Satisfiability Problems Using GridSAT 139
5.4.1 Experimental Setup . 139
5.4.2 Results . 143

5.5 Running Multiple GridSAT Instances 150
5.5.1 Interactions between multiple GridSAT instances 151
5.5.2 Evaluation of Runtimes for multiple GridSAT instances . . 157

6 GridSAT Portal Design and Implementation 165

6.1 Portal Design . 169
6.2 User Environment . 171
6.3 Portal Challenges and Solutions 176
6.4 Budget Based Scheduling . 178

7 Related Work 180

7.1 Satisfiability Research . 180
7.1.1 Sequential Solvers . 180
7.1.2 Parallel Solvers . 183
7.1.3 Related Problems . 189

7.2 Computational Grid Computing 190
7.2.1 Services . 191
7.2.2 Applications . 193
7.2.3 Grid Computing Environments and Portals 197

xv

8 Conclusion and Future Work 201

8.1 Future Work . 202
8.1.1 Algorithmic improvements and resource specific implemen-
tations . 203
8.1.2 New applications . 203
8.1.3 New Schedulers . 204
8.1.4 Generalized Tools . 204

Bibliography 206

xvi

List of Figures

1.1 Simplified view of a generic grid application. 16

2.1 Flow chart for the DPLL algorithm 24
2.2 Illustration of Depth-First-Search vs the search used by the DPLL
algorithm. The satisfiable paths have a leaf value of 1 (or true) 28
2.3 Example showing different possible cuts through an implication
graph . 35
2.4 Example of conflict analysis with learning and non-chronological
backtracking . 40
2.5 Memory layout of clause database and variable indexing strucuture
in zChaff . 49

3.1 Illustration of search space split using a pivot variable 57
3.2 Example of stack transformation when a problem is split into two
clients. 58
3.3 DPLL algorithm modified to enable lazy clause merging 67
3.4 DPLL algorithm modified to enable immediate clause merging . . 70
3.5 Solution Enumeration . 77
3.6 Decision stack and secondary stack modification during splitting
when solution enumeration is used. In the secondary stack X and O
stand for flipped and not flipped respectively. 84

4.1 Message exchange between master and client during the splitting
process . 100
4.2 GridSAT components and their internal and external interactions. 110

xvii

5.1 A six day snapshot representing GridSAT processor count usage
from the different resources in logarithmic scale. 150
5.2 Estimation of Instructions per second 151
5.3 Interaction between two GridSAT instances sharing the same re-
source pool without mitigating the effect of stale information. 153
5.4 Interaction between two GridSAT instances sharing the same re-
source pool while mitigating the impact of stale information. 155
5.5 Runtimes for the first problem to be solved using a variable number
of GridSAT instances running simultaneously. 160
5.6 Runtimes for the last problem to be solved using a variable number
of GridSAT instances running simultaneously. 161
5.7 Time consumed per instance while simultaneously running multiple
GridSAT instances. 162
5.8 Average runtime for all the problems using a variable number of
GridSAT instances running simultaneously. 164

6.1 Portal design overview: The portal user submits problems through
the portal. For each problem a GridSAT instances is launched on the
available resources. Feedback is provided to the user through the portal
interface. 169
6.2 Portal login form . 171
6.3 Portal submission form . 172
6.4 Portal list view . 173
6.5 Portal detailed view . 174

xviii

List of Tables

5.1 Selecting ratio of clause database to send after splitting. The run-
times are in seconds for a benchmark of 31 problems. No clause sharing
was allowed in these experiments. 126
5.2 GridSAT results comparing all three learning methods with maxi-
mal learn clause size equal to 5, 10 and 15. 129
5.3 Problem solved by both zChaff and GridSAT from the SAT2002
Benchmark Results usning the GrADS testbed. GridSAT shows a sig-
nificant speedup for the majority of the problems. 134
5.4 Problems from the SAT2002 Benchmark which were solved by
GridSAT only using the GrADS testbed 135
5.5 Remaining unsolved problems by GridSAT from the SAT2002 Bench-
mark Results using the GrADS testbed 135
5.6 GridSAT results using VGrADS testbed, Blue Horizon, Data Star
and TeraGrid. All these problems were not previously solved by any
other solver. 148
5.7 Batch jobs used to solve the k2fixgrrcsw9.cnf instance from SAT
2003 benchmark . 149
5.8 CPU-hours per resource used to solve the k2fix-gr-rcs-w9.cnf in-
stance from SAT 2003 benchmark . 149

xix

Chapter 1

Introduction

Many practical applications require solutions to arbitrarily complex boolean

constraint problems. Also this type of problems is very important from a the-

oretical perspective. In this dissertation we present a new application GridSAT

capable of using a diverse set of computational resources to solve previously un-

solved boolean constraint problems. The application is capable of dynamically

adapting its resource usage based on the computational environment. By combin-

ing existing federated and geographically distributed computational infrastructure

the presented application makes it possible to solve problems that were up till now

out of reach for existing solvers; thus achieving new domain science results.

1

Chapter 1. Introduction

1.1 Computational Grid Computing and Related

Challenges

The use of computational resources has experienced many epochs with every

new technological progress in both computation units and networking. In the past

decade, there was an accelerated proliferation of computational power in the form

of more powerful workstations, small scale clusters and supercomputers. These

computational resources are ubiquitously connected using faster more reliable net-

works. If used collectively this large set of interconnected computational resources

presents enormous compute potential. Achieving this goal makes it possible to

satisfy the ever growing need for compute power by many applications in the area

of science and engineering. It will also enable the deployment of a new generation

of applications. For the past decade, many research efforts have been directed

towards realizing this potential. One such area of research that aims to enable

the simple use of large sets of federated heterogenous resources is Computational

Grid Computing.

Grid computing [43, 45, 68] is based on the notion of software enabled me-

diation to realize its grand vision. This vision is usually expressed by using the

electrical grid as a metaphor for the computational grid. Just like the electri-

2

Chapter 1. Introduction

cal grid provides electrical power to electrical appliances, the computational grid

enables applications to consume computational power. This metaphor aims at

imitating three characteristics of the electrical grid: heterogeneity, federation and

geographical distribution.

First, electrical appliances can consume electrical power no matter its prove-

nance: fossil, solar, wind, etc. Similarly, computational applications should be

able to use compute power regardless of the device. In a computational grid en-

vironment, resources can be heterogenous in hardware, operating system or other

software tools and libraries a grid application may interact with. This aspect of a

grid environment presents two challenges: variable performance and portability.

Traditional providers of large computational power present uniform predictable

performance of the underlying resources from the point of view of the application.

All computational nodes are usually identical in hardware and software. In con-

trast, components of a computational grid are diverse. Thus their performance

are not identical and can in fact span a wide range. For example a hand-held

device and a supercomputer can be part of the same grid. Also each resource’s

performance as observed by an application may change over time. This change

occurs most often because of other programs concurrently running on the same

resource. Other factors may also affect a particular resource such as malfunction,

3

Chapter 1. Introduction

software and hardware upgrades and other administrative decisions. Therefore, a

successful deployment over these resources should preserve high performance in

spite of these global and time dependent variations. A grid application has to use

adaptive scheduling to enable resource usage patterns that maximize its overall

performance.

The other challenge is portability. Portability across all levels of heterogeneity

is very important in order to reduce development cost and debugging complexity.

Portability can be viewed in two ways. First, portable code allows the application

modules to execute on various platforms using standard compilers and libraries.

This is achieved to varying degrees using standard programming languages such

as C or Java. Second, portability can be viewed as the ability of the application

to interact with remote services as well as other applications. This type of porta-

bility can be achieved using standard interfaces that allow for uniform interaction

regardless of the implementation.

Second, the electrical grid delivers electricity from various geographical loca-

tions depending on demand. Compute power should also be harnessed from ge-

ographically distributed sites depending on their availability and computational

needs of applications. A distributed resource pool presents additional communica-

tion overhead for the application. Overall the network delay is increased and the

4

Chapter 1. Introduction

network bandwidth is reduced. In addition, since these network links are shared

there will be variability over time in the observed characteristics. Enabling appli-

cations that can tolerate lower performance and are resilient to dynamic variations

is a complex task. Such network characteristics further complicate scheduling poli-

cies for computational grid applications.

Third, electrical power is generated by various independent companies. In the

same way, different sites with local administrative control can contribute com-

putational power to a computational grid. In a computational grid local admin-

istrators have complete control over their resources. Resources can be updated,

upgraded or even removed without warning outside users. Also new resources can

be added without notice. As such, an application is not guaranteed a quality of

service or even the continued use of a particular resource. This puts yet another

burden on grid applications because they have to deal gracefully with resources

leaving and joining their execution environment. Thus these applications need

mechanisms that allow them to discover and update the status of all potential

resources. These mechanisms need to be active during the entire duration of an

execution and not just at the beginning when applications are instantiated. This

especially important because grid applications usually require long runtimes.

5

Chapter 1. Introduction

The metaphor of the electrical grid used to describe the computational grid

characterizes the desired view point of the end-user. This metaphor, however,

breaks in various ways from a developers perspective. An electrical appliance is

geographically located in a single place while the electricity travels to it from dif-

ferent generators. In contrast, a computer application has to send its components

to the various resources where they can consume computational power. Also, all

electricity is the same independent of its origin but computer applications might

have resource preferences. For example, an application might only run on certain

hardware or require specific software support. In addition, computer applica-

tions might prefer certain collection of resources connected by special networks to

achieve desired performance level.

By promising to mitigate the challenges presented by the main features of

a computational grid environment: heterogeneity, geographical distribution and

federation, the computational grid promises two inter-related goals: ease of use

like the electrical grid and enabling advances in science by achieving new scientific

results.

6

Chapter 1. Introduction

1.2 Solving Boolean Satisfiability Problems

One of the most intriguing problems in science are those that are simple enough

to explain even to non-experts but are very hard even for the brightest specialists

to find a solution for. Such is the boolean satisfiability problem. Stated simply,

this problem answers the following question:

Given a set of variables which can be either true or false and logical
formula using logical AND and OR, is there an assignment of values
to variables so that the entire formula is true.

Boolean SAT is a critical problem to solve, but it is so complex, it requires

extensive computational capability. This problem is the first problem to be proven

NP-Complete [30] and is therefore computationally intensive. There are several

engineering and scientific domains that require the solution of domain-specific

instances of satisfiability. Satisfiability is especially important in the area of Elec-

tronic Design Automation (EDA). EDA encompasses a variety of problems such

as circuit design [96], Field-Programmable Gate Arrays (FPGA) detailed rout-

ing [71], combinational equivalence checking [60, 80] and, automatic test and pat-

tern generation [62]. Other disciplines where satisfiability solvers are used include

scheduling [11], model checking [20], security [17], Artificial Intelligence [59] and

software verification [56]. Because of the importance of this problem in many prac-

7

Chapter 1. Introduction

tical fields and theory, there has been a plethora of research aimed at generating

more and more efficient solvers.

The problems generated in practice use thousands and even millions of vari-

ables [123]. Solvers must check, speculatively, different possible truth assignments

creating a search space the size of which is an exponential function of the num-

ber of variables. Thus the size of the search space for such problems is very

large. Actually, it is extremely large since it dwarfs the number of particles in

the universe, that is estimated to be between 278 and 2200. Therefore, a naive

case-by-case investigation would take a prohibitively long duration. Many more

efficient algorithms have been developed. The most commonly used algorithms

are sequential. It tackles a given problem by investigating its search space while

using optimizations that allow them to prune the search space and avoid redun-

dant work. This optimization termed learning was shown to very successful and

is now adopted into most solvers. As the algorithm progresses, learning is used

to gain more knowledge about the problem at hand. This knowledge is stored in

a large database. As part of its progress the algorithm frequently accesses and

updates the knowledge database. Thus the database is kept memory resident for

efficient access.

8

Chapter 1. Introduction

Another approach to speeding-up sequential solvers is parallelization. Paral-

lelization is usually applied by splitting the original problem to many subproblems.

Combining parallelization with learning presents some problems since the knowl-

edge base produced by the learning process requires frequent updates. From this

perspective, satisfiability algorithms and their implementations are hard to par-

allelize in a computational grid environment since a simple distribution of the

knowledge database will result in significant slow down. The main cause is the

high communication and synchronization overhead.

1.3 Thesis Statement

A new approach to SAT application design that exploits distributed and par-

allel resources may lead to a new solver capability. This thesis presents a novel

distributed SAT solver designed to adaptively execute in a dynamic computational

environment and demonstrates that:

“It is possible to enable a more powerful satisfiability solver in the form
of a ’true’ grid application that is capable of harnessing the computa-
tional power of large collections of dynamic resources while enabling
new domain results.”

The first step in proving this statement is by implementing a satisfiability

solver capable of using multiple resources while using the most efficient known

9

Chapter 1. Introduction

optimizations such as learning. Such a solver should provide a significant speed

up over existing solvers. Since there is no theoretical basis for ensuring that such

a solver exists, the distributed solver is to be evaluated empirically and should

show speed-up in the majority of cases. We intend to use large collections of

computational resources to attempt to solve problems that are left unsolved by

existing solvers. By answering conclusively whether those problems are satisfiable

or not we intend to prove that the new solver provides new capability.

The solver should also be able to adapt to variations in the SAT instance

and the computational environment. Some SAT instances are trivial while others

are complicated. The solver should use as much resources as needed to solve a

particular problems. For example, trivial problems should use few resources while

more complex ones may use all available resources. The solver should be able to

selectively run on those resources that are more probable to advance the solution

of the problem at hand. It should not use those resources that might appear to

be operational but provide no additional actual help to the solving process. The

solver should continually check when resource fall in to this category.

Another measure of the success of the application is its ability to gracefully

share resources and adapt in the presence of other grid application. The ap-

plication should be able to cooperatively run and make progress while sharing

10

Chapter 1. Introduction

resources with other distributed applications. Deploying many instances of ap-

plication simultaneously would validate there ability to adapt in the presence of

other applications. Also we can determine how sharing resources effects their

solving capabilities.

1.4 Existing Satisfiability Solvers

The boolean satisfiability problem is very famous and is also known simply

as the SAT problem. The SAT problem is at the core of many computationally

intractable problems. It was the first problem to be proven NP-complete by

Cook [30] in 1971. Even before this proof was published, researchers were looking

as early as 1962 [36] for efficient algorithms to solve this problem because it was

identified as central to many problems is science and engineering. Because it is

NP-complete, it is unlikely that any algorithm has a fast worst-case time behavior.

Moreover, there is currently no known method to predict accurately the runtime

of a particular algorithm for a given problem. In spite of all of this, research has

continued unabated into finding gradually more effective and clever methods to

solve SAT problems of practical importance.

11

Chapter 1. Introduction

Over the past four decades there was tremendous progress in generating more

and more efficient solvers. At the same time new practical applications for sat-

isfiability have been introduced. Currently, SAT solvers are being used in many

fields of science and engineering such as automated reasoning, computer aided

design, computer circuit design and computer network design [123].

In spite of this progress, there are many problems that are now considered out

of reach for current sequential solvers. In fact, a number of benchmark problems

during the SAT competition [89] are left unsolved. Also, there are many theoret-

ical problems that have so far been left unproven because of their difficulty can

potentially be solved after being expressed as a SAT problem.

Current solvers run as sequential code and their performance is sensitive to

both CPU speed and the size of memory on the host machine. One approach to

extending the capability of existing solvers is to increase the computational power

that these solvers can use simultaneously. The fastest sequential solvers only run

on a single machine because of frequent memory updates. One possible method

is to use even larger machines with larger memory. Since such machines are in

heavy demand it will be unlikely that all potential users will have access to such

machines. Also, the cost of these machines will be out of reach for many users.

12

Chapter 1. Introduction

Another way to increase computational power is to allow the simultaneous use

of many machines. Many research efforts have produced parallel solvers [58, 97,

41, 21]. These efforts were limited in two aspects. First the cooperation between

the parallel components was restricted. Second, the types of resources used were

constrained to a small set of locally connected homogenous workstations. Our

approach explores cooperation between the parallel components to increase the

overall efficiency of the solver. Since the basic algorithm learns new information

throughout its execution, our solver shares this information so that other com-

ponents do not have to waste resource relearning the same piece of information.

Our goal is also to make it possible to incorporate any new advances in sequential

solvers with minimal effort. Thus our solver allows new agents to be executed on

other computational resources and be integrated almost effortlessly.

Also we aim to use all and any computational resources available. This strat-

egy accomplishes two goals. First, users can start solving there own problems

immediately. This has the potential to solve those problems that are easy imme-

diately without unnecessary delay as the user may wait for a long time before new

resources are made available to him. Second, the user can make use of all potential

computational resources no matter where they originate from. This assures the

user that he is provided with the best chance to solve a given problem.

13

Chapter 1. Introduction

In the next section, we discuss how our application relates to the current state

of grid computing which made it its core mission to aggregate computational

power and make it easily available for users.

1.5 Current State of Application Development

in Computational Grids

Grid computing research has produced many advances to realize its vision of

seamless aggregation of computational power, data centers and scientific instru-

ments to enable new scientific results and change the way in which computing

centers and organizations interact.

The results are middleware and other tools that provide basic application ser-

vices. Figure 1.1 shows a generic view of a grid application and how it makes

use of current grid services and components. Some of the grid components may

become part of the application such as libraries. At the same time, a grid appli-

cation may also interacts with other grid services that are totally disjoint from

the application.

The infrastructure created by computational grids must be usable by poten-

tial grid applications. These application are the lifeblood of future success of grid

14

Chapter 1. Introduction

computing. In the past, two types of applications have been deployed on the grid.

The first type consists of embarrassingly parallel applications. These are applica-

tions that can be divided into a –usually large– set of totally disjoint tasks. As

such they are suitable for the computational grid because they can easily cope

with the dynamic nature of the computational environment. The second type of

applications does not cope so well with highly variable performance and availabil-

ity of resources. These are applications that require frequent synchronization and

are sensitive to variations in connectivity and discrepancy in performance between

different hosts.

The application we present in this thesis provides a new type of applications

that can dynamically adjust their communication and computation needs. It rep-

resents a middle ground between both extremes represented by the two types of

application mentioned above. In addition to being malleable, GridSAT can overlap

computation and communication. As such, our application presents a new type

of application distinct from those previously deployed in the context of computa-

tional grids. There are many other applications that share these characteristics

and can be deployed in a similar fashion.

Like many systems, the design and deployment of computational grid services

and resources will be influenced by those applications that will use them. By

15

Chapter 1. Introduction

providing a diverse set of applications the grid infrastructure is influenced to take

into consideration a wider scope of actual application features.

Moreover, GridSAT was designed to take advantage of existing grid services

and tools without being tied to anyone in particular. GridSAT is written from

first principals and shows another example of how many grid services are inte-

grated into new applications. Also GridSAT is capable of tuning its footprint on

host machine so as to be cooperative with other applications. This programming

methodology allows for efficient use of resources and avoids overloading them.

Finally, the unique design of GridSAT made for a simple portal design that

does not get clobbered by explicit resource management.

Figure 1.1: Simplified view of a generic grid application.

16

Chapter 1. Introduction

1.6 Research Plan

In order to answer the thesis question in Section 1.3, we plan to use as basis for

our research the best available sequential solver [120]. We take two separate but

complementary steps in order to realize the target application. First, we parallelize

the solver and introduce additional optimizations for sharing information between

the parallel components. Second, the parallel components are modified so that

they can execute in a computational grid environment.

Finally, the application is experimentally evaluated to show its performance

and stability. We conduct four experimental sets.

• The first set of experiments evaluates the many options and parameters the

parallel solver could employ. The results help us identify which strategy is

best and how significant the improvement is.

• The second set of experiments compares the parallel solver to the original

sequential solver in order to evaluate when using more resource helps improve

solver speed.

• The third set of experiments proves that GridSAT can employ a large set of

diverse resources for extended time periods to demonstrate its stability and

scalability while tackling and solving some previously unsolved problems.

17

Chapter 1. Introduction

• The final set of experiments shows how many GridSAT instances can share

a common set of resources in a cooperative environment.

The remainder of this dissertation is organized as follows. Chapter 2 intro-

duces the satisfiability problem and sequential SAT solvers, while Chapter 3 de-

scribes the parallel algorithm used and the optimization employed in a parallel

setting. Chapter 4 presents the programming methodology and architecture used

in our application. Different experimental results evaluating our solver and the

techniques used are discussed in Chapter 5. In Chapter 6, we present the portal

developed to make the application available through a simple web based interface.

Finally we summarize related work in Chapter 7 and conclude in Chapter 8.

18

Chapter 2

Background: Sequential

Satisfiability Solvers

In this chapter we introduce the current state of the art for sequential sat-

isfiability solvers. We also fill in the details and important insight into some of

the techniques used in these solvers. The problem of propositional boolean satis-

fiability belongs to a larger group of problems. These problems are classified as

constraint satisfaction problems [84]. In the rest of this document we will the re-

fer to the boolean satisfiability problem simply as the satisfiability problem. This

problem was first proven to be NP-complete by Cook [30] in 1971. However, the

first algorithm proposed to solve this problem was more than a decade earlier,

precisely in 1960 by Davis and Putnam [37].

In the past four decades a lot of research effort has been put towards producing

more efficient and faster solvers. In general, SAT solvers can be classified into two

19

Chapter 2. Background: Sequential Satisfiability Solvers

types: complete and incomplete. Complete solvers are guaranteed to show that a

specific SAT instance either has at least one solution or no solution. The solver

will only halt after proving one of these results. Incomplete solvers, however, can

generally produce faster solutions for satisfiable problems (i.e. a solution exists)

because of the heuristics they employ. These solvers have an important drawback

since they do not terminate for those instances which are not satisfiable. In the

rest of this chapter we will only consider complete solvers.

We chose as the basis for our research the most powerful sequential solver

available zChaff [70]. zChaff is an implementation of Chaff [120] by L. Zhang from

Princeton. Chaff is a design of SAT solver with certain effective optimizations and

heuristics. Using the best available solver will allow us to leverage the efficient

techniques used by this solver. It also allows us to study how well these techniques

perform when deployed in new computational environments. In the next section

we start by defining the SAT problem and describing the most basic algorithm that

is the basis for most modern solvers including Chaff. Later we describe additional

optimizations before we present optimizations and heuristics specific to zChaff.

20

Chapter 2. Background: Sequential Satisfiability Solvers

2.1 Definition of the Satisfiability Problem

This section defines the satisfiability problem and related terminology. We

start by stating the satisfiability problem. Surprisingly, even though the satisfia-

bility problem is associated with complexity, it can be formulated briefly in very

few words:

Given a boolean formula using a set of variables. Find an assignment
of values to variables such that the formula evaluates to true.

More formally, a satisfiability instance is defined as follows:

• Given a set of variables {Vi|1 <= i <= N}, where N is the number of

variables.

• The domain of each variable is {false,true} or equivalently {0,1}.

• A literal is defined as the instantiation of a variable V or its complement

∼V .

• The satisfiability formula is a finite boolean expression consisting of a set of

literals and boolean operators: conjunction (AND, . or ∧)and injunction(OR,

+ or ∨). In the rest of this document we will use + and . notations (the

latter is sometimes implicit in the notation).

21

Chapter 2. Background: Sequential Satisfiability Solvers

The boolean satisfiability problem differs from other Constraint Satisfaction

Problems (CSP) in two aspects. First, the variables in a SAT problem are re-

stricted to the boolean domain while in a CSP the domain of variables can include

many values and can even be continuous. Second, the constraints in a CSP are

more complex and varied and are not usually limited to a single logical expression.

A SAT formula is satisfiable if a set of assignments of values to variables makes

the formula evaluate to true. If no such assignments exists the formula is called

unsatisfiable. An assignment is called complete if all variables used in the origi-

nal problem are assigned values, otherwise the assignment is called incomplete or

partial.

Usually the SAT formula is expressed in Conjunctive Normal Form (CNF).

Requiring the formula to be in CNF does not limit the set of formulae that can be

used because there exists a polynomial time transformation algorithm to transform

any boolean formula to an equivalent one in CNF [35]. This transformation might

come at the cost of additional variables added to the new formula.

Formulas in CNF are represented as a conjunction of clauses. Each clause is

an injunction of literals. The CNF is special in two ways. First, all clauses have

to be true for the entire formula to be satisfied. Second, only one literal per clause

needs to be true. Clauses can be called satisfied, unsatisfied or undetermined under

22

Chapter 2. Background: Sequential Satisfiability Solvers

a given assignment. In the first and second case the clause evaluates to true and

false respectively. In the last case, the value of the clause cannot be determined

based on the partial assignment under consideration.

For example the following formula is in CNF: (V1+∼V3)(∼V2+∼V1)(∼V2+V4).

The formula has three clauses and uses four variables. In this case the formula is

satisfiable since setting (V1 = 1, V2 = 0) make all clauses true and thus the entire

formula evaluates to true. This is an incomplete assignment since V3 and V4 are

not assigned values.

Usually there are trivial occurrences in the formula that could be checked by

inspecting the formula once. For example, if a literal occurs more than once in

a clause, then only one of the occurrences is kept. Also, if both literals from the

same variable exist in the same clause, then that clause can be removed since it

will always evaluate to true. Finally, clauses with single literals can immediately

lead to variable assignment for the variable represented by that literal in a way

that makes the clause true. Consequently, those clauses can be removed and the

corresponding variable assignments are saved as part of a possible solution. For

the rest of the discussion we assume that such trivialities have been addressed.

23

Chapter 2. Background: Sequential Satisfiability Solvers

2.2 Sequential Algorithm

Our solver GridSAT is based on the sequential solver zChaff. zChaff is in turn

based on Davis-Putnam-Logeman-Loveland (DPLL) [36]. We start by presenting

this algorithm and related optimizations before we show the modifications and

extensions needed to enable it to execute in a computational grid environment.

Figure 2.1: Flow chart for the DPLL algorithm

Figure 2.1 represents a block diagram of the basic algorithm which is the

basis for most modern SAT solvers. The algorithm is based on tentatively assign-

ing values to variables using some implementation dependent heuristics. These

heuristics are designed to enhance the chances of yielding a solution quickly if

24

Chapter 2. Background: Sequential Satisfiability Solvers

one exists. However, these successive assignments most often result in a logical

contradiction, also called a conflict. The conflict indicates that the current par-

tial assignment cannot be extended to a satisfying one. Therefore, in order to

maintain logical consistency, part of the partial assignment needs to be undone

before the algorithm can continue. When a contradiction occurs, the algorithm

backtracks and tries other decisions while avoiding repeating previous work. The

process is repeated until a solution is encountered or the algorithm proves that no

such solution exists.

The next section describes how the basic DPLL algorithm proceeds in more

detail.

2.2.1 Backtrack Searching

The basic DPLL algorithm takes successive steps which assign values (i.e.

true or false) to variables. Initially all variables are unassigned and marked as

unknown. The speculative assignment of values to variables is called a decision.

Each decision consists of the assignment of a boolean value to a single variable. A

decision usually results in more clauses becoming satisfied (i.e. evaluate to true).

These decisions are incremental as the algorithm adds a single new decision on

every iteration. Each new decision can potentially cause one or more conflicts as

25

Chapter 2. Background: Sequential Satisfiability Solvers

some clauses become false because of the new variable assignment. The algorithm

must resolve every existing conflict before making the next decision. Conflicts

are resolved by undoing some of the previous variable assignments and possibly

adding new ones. The decisions are stored in a stack to facilitate addition and

removal of new and old decisions respectively.

In DPLL, each decision is given a unique decision level. After each decision the

algorithm inspects the set of clauses in order to determine the status of the entire

formula. If the formula can still be satisfied, the algorithm continues further by

making new decisions. In case the formula cannot be satisfied because a clause

is false, the algorithm simply backtracks by undoing the last assignment decision

and trying the opposite value for that variable. This is accomplished in two steps.

First the variable assignment corresponding to that decision is removed. Later, a

new decision is added where the same variable is assigned the inverse value.

When a decision is inverted, the corresponding variable is marked as flipped.

When the algorithm tries to flip a variable it checks if it has been flipped before.

If the variable is not flipped, then the algorithm flips it at continues as usual.

In case that variable has been tried both ways then that decision is removed.

Now a new decision is at the top of the stack and is treated in a similar fashion.

Thus the algorithm stops backtracking when a decision level is reached where

26

Chapter 2. Background: Sequential Satisfiability Solvers

the corresponding variable is not marked as flipped. This type of backtracking is

called chronological because it tries to undo the most recent decision first. The

process continues until a satisfying assignment is found or the decision stack is

emptied. This happens when the algorithm backtracks in a way that results in

removing the first decision in the stack.

The first decision level is reserved for a special class of variable assignments.

This class contains those variables which have been assigned final values and these

cannot be undone. When a variable is assigned a final value then the formula will

only be satisfiable if that variable has that assigned value. For example, the

variables whose values are deduced because of single literal clauses, as described

in previous sections, are added to the first decision level. We can say that variables

on this level have known values. There are other circumstances under which more

variables are added to the first decision level as will be shown in section 2.3.

The DPLL algorithm with backtracking terminates when either a solution is

encountered or it backtracks to the first decision level. In the former case, the

problem is satisfiable and a solution is the partial or full assignment represented

by the decision stack. In the latter case, when the DPLL algorithm reaches the

first level then a conflict has occurred since both possible values of the decision

27

Chapter 2. Background: Sequential Satisfiability Solvers

variable at level two were tried without finding a satisfying solution. Therefore,

the problem is determined to be unsatisfiable.

Figure 2.2: Illustration of Depth-First-Search vs the search used by the DPLL
algorithm. The satisfiable paths have a leaf value of 1 (or true)

The DPLL algorithm is similar to a Depth-First-Search (DFS) in a binary tree

representation of the search space. The tree in figure 2.2 shows the search space

for the SAT formula (V1 +∼V3 +∼V4)(V1 + V2)(V2 +∼V4). Each node in the tree

represents a variable. Each node has two sub-trees one for each possible value of

the variable. The leafs of the tree represent the value of the formula under the full

assignment represented by the path from the leaf to the root. The total number

of leafs is equal to 2N – the size of the search space. A simple DFS visits the leafs

in order and may visit all 2N leafs before terminating.

The basic DLL algorithm, however, does not visit all the states because for

each non-satisfying partial assignment it tries, it skips the rest of the subtree. The

28

Chapter 2. Background: Sequential Satisfiability Solvers

reason is that a partial assignment that falsifies one of the clauses simply cannot

be extended to make a longer assignment which satisfies the formula. As shown in

figure 2.2, the DPLL algorithm skips the highlighted subtree because it encounters

the unsatisfying partial assignment (V1 = 0, V2 = 0). Thus the DPLL algorithm

skips all other possible partial or complete assignments if they contain the current

unsatisfying partial assignment. The algorithm, however, is still exponential in

complexity.

It is important to note that the DPLL algorithm explores two search spaces.

The first is the assignment search space that represents all the possible assignment

of values to the set of variables. This is the formula search space which size is

2N . The other search space is the path search space that represents the navigation

space. The path search space consists of all possible orders of variable assignments

that the algorithm may use to search for a solution. This space is (N ! 2N) which

is much larger than the assignment search space. Referring back to figure 2.2,

we have assumed for simple DFS that the variables are assigned values in a given

order. Thus the number of possible paths is restricted to consisting of 2N – number

of all distinct paths from root to leaves. After each conflict, however, an algorithm

such as DPLL can select any other variable for the next decision. For example,

each node in the tree of figure 2.2 can be viewed as just one possible outcome of

29

Chapter 2. Background: Sequential Satisfiability Solvers

variable selection. Thus, at the root of the tree there will be N possible nodes.

At the next level, each of the root nodes can select anyone of the remaining N −1

variables. The same procedure continues for later levels where the child nodes

cannot reselect any variable previous selected in any of the parent nodes. The

result is a representation of all possible selection paths which differ in the variable

assignment order but share the same set of final states.

2.2.2 Boolean Constant Propagation

An optimization used by the DPLL algorithm is Boolean Constant Propagation

(BCP). BCP improves performance because it automatically deduces new variable

assignments based on the current partial assignment. Automatically augmenting

the decision stack reduces the total number of decisions made by the algorithm

since certain parts of the search space are pruned.

The BCP process inspects the clauses to find whether the values of other

variables can be deduced as a results of previous variable assignments. After each

new decision, the algorithm searches for unit clauses. These are clauses with a

single unassigned literal and all other truth values false. In a unit clause, the last

remaining literal must have the value true for the clause to be also true. When the

algorithm encounters a unit clause, it sets the previously unknown literal to true.

30

Chapter 2. Background: Sequential Satisfiability Solvers

When a literal is set to true because of a unit clause, this is called an implication.

The corresponding variable is assigned the value that makes the literal true and

is pushed onto the current decision level. Therefore, each new unit clause results

in a new variable being assigned a truth value. The BCP process is repeated for

each new implication which in turn may lead to the discovery of new unit clauses.

As a result, more implications might be added in a cascade because of earlier

implications. All these implications are added in sequence to the current decision

level.

BCP, therefore, allows each decision level to contain a series of new implica-

tions in addition to the decision variable. Even though an implication is a direct

result of the previous assignment, it is also predicated on some subset of the pre-

vious variable assignments. Since the decisions made by DPLL are speculative,

propagating those decisions or later implications can result in a contradiction.

BCP is the most costly process in DPLL based solvers because it requires ex-

amination of the entire clause set. In addition, it is frequent because it is executed

after every new variable assignment as a result of either a decision or an implica-

tion. There are many implementations of BCP described in the literature [123].

According to some studies, BCP accounts for up to 90% of the runtime of SAT

solvers [70]. In section 2.5, we will introduce optimizations which lead to more

31

Chapter 2. Background: Sequential Satisfiability Solvers

efficient implementations of BCP. Even with these optimizations, BCP is still the

dominant procedure in the algorithm based on its share of the total execution

time.

2.3 Conflict Analysis and Learning

After the DPLL algorithm encounters a conflict, the algorithm reacts by back-

tracking. A conflict indicates that a satisfying solution cannot be found in a

particular region of the search space. The basic DPLL algorithm does not try to

analyze the conflict any further. In this case, the algorithm simply restricts itself

to detecting the conflict. Then it immediately tries to visit a new part of the

search space solely based on the content of the decision stack. To accomplish this

task, the algorithm keeps track of which decisions in the search space have been

flipped. Those decisions which are not flipped can be tried using the complemen-

tary value. Flipped decisions on the other hand are simply removed when they

are on the top of the stack when backtracking.

Such backtracking is usually effective when used in randomly generated SAT

instances [64]. SAT instances created by practical applications are usually not

random but rather have a structure. Thus chronological backtracking is not the

32

Chapter 2. Background: Sequential Satisfiability Solvers

most effective method to take advantage of such structure. Instead there are other

methods which can be employed to backtrack to higher levels in the search tree

by removing multiple levels at once. Backtracking by undoing multiple levels is

called non-chronological backtracking. In practice, this form of backtracking is

more efficient because it prunes the search space faster.

An optimization that allows non-chronological backtracking is learning. The

learning process analyzes a conflict when it occurs and stores the information

about the conflict in the form of new clauses. These clauses represent redundant

information since they can always be deduced from the set of clauses in the original

SAT problem. These learned clauses do not change the satisfiability solutions of

the problem. The addition of new clauses after a conflict is called conflict-driven

learning. Thus learning enables the augmentation of the initial formula with

additional implicate clauses that are deduced during the search procedure.

Learning [90, 61, 95] was first used in SAT solvers in 1996 [95]. It was, however,

first used in Constraint Satisfaction Problems [78]. The addition of learned clauses

restricts the search space by preventing the solver from retrying those parts of the

search tree which previously led to conflicts. Because learned clauses are deduced

from the initial formula they can be discarded without changing the solution set

33

Chapter 2. Background: Sequential Satisfiability Solvers

of the initial problem. In the next section we describe how learned clauses are

constructed.

2.3.1 Learning and Implication Graphs

In DPLL with learning, new implicate clauses are deduced after the cause of

the conflict is analyzed. Conflict analysis is based on implication graphs. An im-

plication graph is a DAG that expresses the implication relationships of variable

assignments. An example implication graph is shown in figure 2.3. The vertices

of the implication graph represent assigned variables. The incident edges on a

vertex originate from those variables that triggered the implication of the repre-

sented variable assignment. The implication graph is not maintained explicitly in

memory. Instead, each implied variable points to the unit clause that caused its

implication (i.e. caused this variable to assume some truth value). This clause

is called the antecedent of this variable. Note that decision variables have no an-

tecedents because they are not implied. In practice decision variables are given a

fictitious antecedent clause. Initial and learned clauses are given indices greater

than or equal to 1, thus we use clause 0 (which does not exist) as antecedent for

decision variables.

34

Chapter 2. Background: Sequential Satisfiability Solvers

Figure 2.3: Example showing different possible cuts through an implication
graph

However not all cuts generate clauses which lead to a more efficient algorithm.

A cut must be selected in order to make learning effective [65] in improving the

algorithm’s performance. A trivial cut, such as ”cut 3” in figure 2.3, would result

in a clause that includes all the previous decision variables made before reaching

the current conflict. Such cuts are equivalent to simple backtracking. In fact

simple backtracking by marking whether decision variables are flipped is a more

cost effective representation memory wise. Instead of storing a new learned clause

after each backtracking a simple flag is used. Storing learned clauses in this case

35

Chapter 2. Background: Sequential Satisfiability Solvers

consumes additional memory and creates overhead during BCP. Thus some ill-

chosen cuts can generated large clauses which waste memory and are not effective

in pruning the search space. Carefully selected cuts would have fewer intersections

and therefore will produce a smaller clause. Smaller clauses have been shown to

be more effective in pruning the search space than longer ones [28].

A learned clause is obtained by partitioning the implication graph into two

sides using a cut. Figure 2.3 shows three possible cuts for the shown implication

graph. For a given cut one partition is called the reason side and contains all the

decision variables. The other partition which contains the conflict is called the

conflict side. The cut is used to generate a new learned clause using the vertices

(representing literals) on the reason side whose edges intersect the cut. The choice

of the partitioning method determines the learning scheme generated.

The purpose of the new clause is to prevent, in the future, the set of simul-

taneous assignments which led to the current conflict. A learned clause can also

participate in the generation of new learned clauses. The new learned clause is

obtained by using the complement of the variables on the reason side. In addi-

tion, a conflict clause causes the solver to perform a non-chronological back-jump.

After back-jumping, the new decision level is the highest decision level among all

the decision levels of the variables in the new learned clause.

36

Chapter 2. Background: Sequential Satisfiability Solvers

Non-chronological backtracking allows the algorithm to backtrack by undoing

multiple levels at a time. Also some decision levels may grow as more variable

implications are added to it because of back-jumping. Sometimes the algorithm

can backtrack to the first decision level. After the conflict is resolved a new

variable is added to this level. In this way the first decision level can grow in

size as more variables are assigned final values. Finally the algorithm terminates

by finding a satisfiable solution or running into conflict at the first decision level.

A conflict at this level cannot be resolved because all values there are assigned

final values. Thus when a conflict occurs at this level, the algorithm concludes its

investigation declaring the problem to be unsatisfiable.

In order to construct small efficient clauses, Chaff [70] uses a method called

FirstUIP. This method is based on finding a dominant node to the conflict nodes.

A dominant node is a node in the implication graph such that it belongs to all

paths from the vertex representing the current decision variable to the conflict

vertices. The variable corresponding to the selected dominant node is the only

variable added to the learned clause besides the set of decision variables. Since

there might be many such nodes, the FirstUIP method uses the node closest to

the conflict. In this case, the cut is made such that all implications between the

dominant node and the conflict vertices are on the conflict side.

37

Chapter 2. Background: Sequential Satisfiability Solvers

In the next section, we give a detailed example and explanation of how conflict

clauses are constructed and how non-chronological back-tracking is performed.

2.3.2 Example Execution of DPLL Algorithm with Lean-

ing

The SAT formula for this example is shown at the top of Figure 2.4. It consists

of nine clauses and fourteen variables. We start with an empty decision stack and

with current decision level set to 0. Since clause 9 is a unit clause, then variable

V14 is set to true as it must be true for the original problem to be true. It is put

in level 0 because this assignment should hold if the problem is to be satisfiable.

Since there are no implications, we make a new decision level and push it on the

decision stack. We choose (arbitrarily in this example) to set V10 to true and add it

to level 1 as a decision variable. Like all other arbitrary decisions in this example,

this decision might not be optimal but it is just used to illustrate how a SAT solver

functions. After V10 is set to true, clause 8 only has one unknown ∼V13 while the

other literal V10 is already assigned the value false. The assignment of false to V10

leads to an implication and ∼V13 is set to true. Because ∼V13 is an implication

it is added to current decision level (level 1). We use this same procedure until

38

Chapter 2. Background: Sequential Satisfiability Solvers

we get to level 6. In level 6, we decide to set V11 to true making V11 the decision

variable for that level. This results in a cascading series of implications that lead

to a conflict. The implication graph in Figure 2.4 shows how the implications

cascade. The black nodes (V6, V7,∼V8,∼V9, V10) represent previous assignment

decisions, whereas the white ones represent implications at the current decision

level. The conflict as shown in the graph is due to V3 being implied to both true

and false because of clauses 6 and 7 respectively. The FirstUIP node is V5. It is a

node through which all paths from the decision variable at the current level (V11

in the figure) to the conflict nodes must pass.

The implication graph in the figure shows how zChaff would make a cut. Other

learning algorithms would construct cuts that are different from zChaff’s, generat-

ing different learned clauses for this example. The subject of cut determination is

an active research area among competing SAT solvers [70]. The figure also shows

the conflict and reason sides defined by the zChaff cut. All decisions that have

edges intersecting the cut and the implication point (V5 shown crosshatched in the

figure along the path from V11 to the conflict point) represent the reason for this

conflict. Thus, we learn from this conflict that V10·V7·∼V8·∼V9·V5 should not all

be true simultaneously making the new learned clause ∼V10 +∼V7+V8+V9+∼V5.

We then backtrack to the maximal decision level of all the decision variables in-

39

Chapter 2. Background: Sequential Satisfiability Solvers

volved in the conflict. This level is 4 which is the decision level of ∼V9. The new

decision stack is also shown in Figure 2.4. Note that when using this method

the new learned clause leads to an implication after backtracking involving the

FirstUIP variable(V5). In this implication the FirstUIP node V5 is set to false.

Figure 2.4: Example of conflict analysis with learning and non-chronological
backtracking

2.4 Memory layout

Current SAT solvers are used to solve very large instances with thousands

and even millions of clauses. Storing the initial set of clauses alone requires a

sizable chunk of memory. It is not uncommon for the initial set of clauses to

40

Chapter 2. Background: Sequential Satisfiability Solvers

require over a few hundred Mega Bytes of memory. In addition, the number of

learned clauses during execution is potentially very large and often requires more

memory than the initial set of clauses. Clauses are kept in memory and are not

stored on disk to avoid the slowdown of BCP due to long delays when accessing

information stored on disk. Thus, using disk for storing clauses would significantly

slow down the solver. In addition, not all learned clauses can be stored with the

initial clause set because it requires large memory size, thereby consuming and

ultimately exhausting the memory capacity of any given host.

Effectively managing the memory used to store the large set of clauses is critical

to the performance of the solver. A major concern for SAT solvers is the memory

layout of the data structure used to hold clauses and its effects on the efficiency

of the algorithm. A well designed memory layout of the clauses is important

because the clause set is frequently accessed, added to or deleted from. The most

important of these operations that needs be targeted by the optimization of the

memory layout is the access of the clauses. Clause access occurs primarily during

BCP – by far the most costly operation in SAT solvers.

Some early solvers used linked lists and array of pointers to store the clause

set. The motivation was that pointer heavy data structures are convenient to

navigate, add to and remove from. However, these structures when updated

41

Chapter 2. Background: Sequential Satisfiability Solvers

frequently usually leads to fragmentation of the clause set in memory. Therefore,

accessing the clauses does not exhibit locality of memory reference. As a result,

implementations using pointer heavy structures suffer from frequent cache misses

resulting in degraded performance.

In most newly developed solvers, a common memory layout for storing clauses

is a single-dimensional array. The array structure allows for efficient access to the

clauses while incurring minimal storage overhead compared to linked lists. Stor-

ing clauses in an array makes use of locality of reference which improves cache

performance, thus resulting in a considerable speed-up of the solving process. In

section 2.5 we show how access to the clauses is further improved by reducing

the set of clauses visited during BCP. Maintaining the array structure needs ad-

ditional code for garbage collection and organization. This code is only invoked

intermittently which makes for very low execution overhead.

2.4.1 Space Management

The host machine of a solver need sufficient memory to store a large set of

clauses. If the memory becomes scarce, a SAT solver continues to make progress

albeit very slowly. The slowdown is caused by the decrease in the solver’s ability to

store newly learned clauses which are essential to pruning the search space. In this

42

Chapter 2. Background: Sequential Satisfiability Solvers

case more memory space needs to be made available to store newly learned clauses

which are more relevant to the current part of search space being investigated by

the solver. Modern solvers use heuristic to delete some of the learned clauses.

Deleting some of the learned clauses periodically alleviates memory use and allows

the addition of new learned clauses which are currently more relevant.

In general, since all learned clauses represent redundant information, the al-

gorithm can discard them without affecting correctness. Deleting learned clauses,

however, should only be performed to alleviate memory usage because it may

hinder the solver’s progress. Still there are some learned clauses which may not

be deleted because they may be used by the learning process. These are clauses

which are antecedents of variables currently in the decision stack. These clauses

cannot be removed because they are used in the conflict analysis and learning

for subsequent conflicts. When backtracking occurs, those variables which are

unassigned are no longer bound to their antecedent clauses. These clauses do not

serve as antecedents to any variables and can be safely deleted.

When a solver initially has little memory available, what little memory it can

use may be consumed by antecedent clauses. This leaves little additional memory

to store learned clauses. This virtually eliminates the benefits of learning. The

result is that the solver’s progress is hindered. In the next section we discuss Chaff

43

Chapter 2. Background: Sequential Satisfiability Solvers

specific heuristics [70] to select which learned clauses are deleted depending on

their size and other properties.

2.5 Chaff Implementation

As mentioned earlier, we chose zChaff as a basis for our research because it

is the most powerful sequential solver available. zChaff is an implementation

of Chaff by L. Zhang from Princeton. There is another implementation called

mChaff [70, 67] which was independently developed by M. Moskewicz. Both ver-

sions implement the same optimizations which Chaff makes but differ in the imple-

mentation details. Both versions differ in the data structures and some heuristics

used to delete clauses. Chaff is a modern solver which uses all the optimizations

mentioned earlier. In addition, Chaff introduces two optimizations to the basic

stack-based algorithm: a more efficient method for BCP and a new heuristic for

choosing decision variables. These optimization are also being adopted by other

solvers [47].

44

Chapter 2. Background: Sequential Satisfiability Solvers

2.5.1 Watched literals

As mentioned earlier, BCP accounts for a large portion of the execution time of

the DPLL algorithm. BCP involves the inspection of the clause database in search

of unit clauses, after each variable assignment. We use the term database in the rest

of this thesis to refer to the set of clauses used by the solver. Actually, we can think

of the solver as performing only a very specific query but very often. The query is

executed after every decision or implication. The query matches all clauses which

contain a specific literal. However since efficiency is of utmost importance, zChaff

uses a very efficient BCP procedure to boost the overall performance. This section

is dedicated to describing how zChaff implements this procedure.

An intuitive but inefficient way to check for unit clauses is to check all clauses

that have one of their literals set to false by the last variable assignment. Thus

a clause composed of n literals will be checked (n-1) times before it becomes a

unit clause. However, a clause need only be visited when there are two unknown

literals left because that is when it is likely to become a unit clause and generate

an implication. Chaff uses this observation to implement the two-literal watching

scheme. In this scheme two literals are selected for each clause and are called the

watched literals.

45

Chapter 2. Background: Sequential Satisfiability Solvers

In the course of the algorithm a clause can become a unit clause because of

different literals, therefore the watched literals cannot be determined in advance

and are not always the same. In Chaff this procedure is implemented by initially

marking two literals from each clause – the first and the last one. When one of

the watched literal becomes false because its variable has been assigned a value

(i.e. true or false), then that literal is unmarked . If another unmarked literal

with unknown value from the same clause exists then it is marked. In this case

one of the watched literals has been modified. If no such literal exists then the

clause is unit and the other marked literal is implied to be true. Thus after each

variable assignment not all clauses containing the false literal are visited. Instead

only those clauses where this literal is watched need to be included in the BCP

procedure. This technique reduces the number of clauses visited after a variable

assignment. In addition, it reduces the number of times a clause is visited before

it becomes a unit clause. The overall result is a more efficient BCP procedure.

Figure 2.5 shows the memory layout of the zChaff database. The figure shows

a large array that is allocated as a memory pool for storing clauses within zChaff.

This layout is designed for fast access and easy update of the set of all clauses both

initial and learned. The set of initial clauses is stored at the beginning of the array.

The figure also shows how zChaff uses an index over the set of clauses based on

46

Chapter 2. Background: Sequential Satisfiability Solvers

the variables. This index enables efficient inspection of clauses where a particular

variable (or its complement) is used. Also notice that each variable corresponds

to two indices: one for positive literal and the other for its complement. Each

index points to a subset of clauses where the literal occurs.

The clause lists of each index are built by adding only those clauses where

the corresponding literal occurs and is being marked as watched in its containing

clause. When a variable is assigned a value it only considers those clauses pointed

by the index of that literal which evaluates to false. All clauses pointed to by

the true literal component are now satisfied and need not be considered at this

point. Since each literal index contains only those clauses that are being watched

not all clauses are inspected during BCP. In fact only a small portion of clauses

are visited after a variable is assigned a value. For example even those clauses

which contain the current literal may not be visited if that literal is not being

watched. By inspecting a small subset of clauses, the two watched literal scheme

implements a very efficient BCP process.

When a clause is inspected during BCP, then one of the watched literals has

just been assigned a false value. There are three possible cases.

47

Chapter 2. Background: Sequential Satisfiability Solvers

• In the first case, the other watched literal is still unknown and all other

literals are false. This leads the remaining unknown literal being implied as

true.

• In the second case, all other literals are also false. This leads to a contradic-

tion since the entire clause is unsatisfied. The other watched literal is also

false because of previous implications. This is the first time BCP visits this

clause after the last decision was made.

• Finally, the other watched literal is unknown and at least one non-watched

literal is still unknown. In this case, one of the non-watched literals is

selected and marked as watched. This literal replaces the watched literal

which led BCP to visit this clause. Thus only two literals are marked as

watched when BCP is done inspecting this clause. This clause will not be

visited during BCP until one of the watched literals is assigned the false

value.

During backtracking, the watched literals need not be modified, since the last

pair of watched literals represent the variables in the clause that were last assigned

values. When a backtrack occurs, those variables and their respective literals will

48

Chapter 2. Background: Sequential Satisfiability Solvers

be unassigned before any other variables in the same clause. Since they are now

unassigned, they can be immediately used as a pair of watched literals.

Figure 2.5: Memory layout of clause database and variable indexing strucuture
in zChaff

2.5.2 Variable State Independent Decaying

An important heuristic in the DPLL algorithm is selecting decision variables

and the values they are assigned. There are many different heuristics used by

various solvers to make this selection. The general goal of these heuristics is to

cause as many clauses as possible to be satisfied. Most heuristics used by solvers

are based on the initial set of clauses and are mostly static. In Chaff, a more

dynamic method is used.

For making decisions Chaff uses Variable State Independent Decaying (VSIDS).

In this heuristic each literal (V or ∼V) is assigned a counter that initializes to

49

Chapter 2. Background: Sequential Satisfiability Solvers

zero. When a clause is added to the database all counters for literals occurring

in the clause are incremented. The literal with the highest count is chosen for

assignment. Periodically all counts are divided by a constant so that more recent

clauses have more influence on the next choice than older clauses. This method

was found to incur low overhead compared to other heuristics.

2.6 Summary

In this chapter, we have presented the DPLL algorithm that is the basis for

most complete sequential solvers. Many additional optimizations can enhance the

performance of the basic algorithm. The most effective optimizations are conflict-

driven non-chronological backtracking, more efficient BCP and clause deletion.

zChaff introduced a new implementation of BCP and a heuristic for making de-

cisions which have propelled zChaff to being one of the most powerful solvers. In

the next chapter, we present a parallel version of this algorithm.

50

Chapter 3

Parallel Satisfiability Solver

In this chapter we present the techniques we used to parallelize the sequential

SAT solver. The parallel solver is based on one of the most powerful sequential

solvers available today - zChaff as determined by the SAT competition [89]. We

start by stating the parameters used in defining a successful parallelization. Then,

we present a detailed discussion of the parallel algorithm. Next we introduce

additional techniques such as clause sharing and clause reduction that improved

the overall performance of the solver. In section 3.4, we present a parallel version

of the solver capable of enumerating all solutions to a given SAT problem.

51

Chapter 3. Parallel Satisfiability Solver

3.1 Parallelization Strategy

There are many alternatives to consider when parallelizing the DPLL algo-

rithm. Our goal is to enable the most powerful parallel solver that is capable of

exploiting all resources in a computational grid environment. In order to accom-

plish this task there are two characteristics the parallel solver must have. First, it

has to make use of the extensive research in the field of sequential solvers. Thus

in implementing our solver we chose to use and extend all of the optimizations

used in modern solvers whenever possible. Second the solver has to be capable

of adapting to the dynamic computational environment. Some of the most im-

portant characteristics crucial to the solver’s performance in such an environment

are memory availability for the individual resources and connectivity between re-

sources.

There are three possible approaches to parallelizing the zChaff SAT solver.

The first approach is based on one main solver that is extended by helpers. The

role of each helper is to get a smaller part of the problem and communicate to the

main solver any potentially helpful results. If any of the helpers stops working

voluntarily or because of a failure, the main solver would not be affected. In

this case helpers play a purely advisory role since they are not responsible for

52

Chapter 3. Parallel Satisfiability Solver

providing any definite answer about any part of the problem. Such a deployment

does not reduce the workload for the main solver because it is still responsible for

entire SAT instance. In fact, the parallel solver can be viewed as a combination of

many incomplete solvers (i.e. the helpers) and one complete solver (i.e. the main

solver).

The second possible deployment is using a distributed clause database. Similar

to the previous solution there is only one solver deployed. The premise of this

strategy is that distributing the clause set helps speeding up the time consuming

BCP process. In order for this premise to be realized, the speedup realized by

providing more memory to the solver has to offset communication and synchro-

nization overhead. In a grid environment with large number of resources and

highly variable computational and network performance, the overhead is poten-

tially crippling.

The third strategy which we advocate and use in this thesis has many advan-

tages over both previous options. In this method, the algorithm is parallelized by

using multiple solvers simultaneously. Each solver is assigned its own subproblem

and is entirely responsible for conclusively answering whether that part of the

problem is satisfiable or not. Unlike both other options where one resource carries

the entire burden, this strategy means that all resources are equally responsible

53

Chapter 3. Parallel Satisfiability Solver

for making progress in investigating the problem. Also this option reduces the

search space for each of the solvers involved. This solution is also more suitable

for the computational grid since the individual solvers are not tightly coupled to-

gether. This feature allows the resulting implementation to be more adaptable to

dynamic performance variations in computational power, available memory and

network characteristics.

3.2 Algorithm Parallelization

Parallelizing the algorithm allows multiple resources or clients to cooperate

in solving the same problem. In the next section we present in detail how par-

allelization of the algorithm is implemented in GridSAT and some optimizations

that can used to further improve the individual solvers.

3.2.1 Search Space Splitting

Search space splitting can be applied at any point during the execution of

a solver. In general, this process divides a given set of possible solutions into

multiple disjoint subsets. The outcome of splitting are two or more new SAT

54

Chapter 3. Parallel Satisfiability Solver

problems. The SAT problems can be solved independently. However, cooperation

between solvers is beneficial as we will show later in section 3.3.

Once a problem is split, the same process can be repeated recursively. Thus the

parallel solver can use as many resources as are available. Each new subproblem

is defined using a set of clauses and a decision stack. Initially we can assume that

the decision stacks are identical. The set of clauses for each problem contain the

original set of initial clauses, the new set of clauses learned by the algorithm in

addition to space-splitting clauses. Learned clauses are included because splitting

can occur after the solver has made some progress which allowed it to generate

new clauses.

Each of the new subspaces is defined using the space-splitting clauses. These

clauses are added in conjunctive form to the entire SAT problem. In case the

problem is in CNF these clauses can be treated by the solver exactly like the

initial set of clauses. Since deleting these clauses changes the scope of the search

space, these clauses are never deleted just like the initial set of learned clauses.

For example, if we wish the search space to be divided to two subspaces based

on whether variables V1 and V2 are equal or different. The first search space is

defined by the variables being equal while the second search space includes the

rest of the search space (i.e. V1 6=V2). Thus, for the first subspace we add the

55

Chapter 3. Parallel Satisfiability Solver

two clauses (V1 + V2)(∼V1 + ∼V2). The second problem is defined by adding

(V1 + ∼V2)(∼V1 + V2). In this example the search space is divided in half. It is

possible to divide the problem into different sizes. In some cases the search space

is divided in a manner where certain variables are assigned specific values. In this

case instead of adding single literal clauses, the new assigned variables are simply

added immediately to the decision stack at the first decision level.

The parallel algorithm adopted by GridSAT allows a given SAT instance to

be split into two subproblems. The splitting is conducted around a particular

variable called the pivot variable. Each of the two subproblems assumes one of

two possible values of the pivot variable. In this case, one of two new single literal

clauses Vi or ∼Vi (where i is the variable index) can be added to each of the

new subproblem. A much simpler solution to accomplish search space splitting is

shown in section 3.2.2.

Consider again the same example from figure 2.2. If the problem is divided

using variable V1 as pivot variable, then the entire problem search space is divided

in half as shown in figure 3.1.

The pivot variable cannot be selected from level one since those variables have

been deduced to have specific value. The pivot variable should be selected to

minimize perturbation to the solver that is initiating the splitting procedure. For

56

Chapter 3. Parallel Satisfiability Solver

Figure 3.1: Illustration of search space split using a pivot variable

this reason we select the decision variable on the second decision level. As we will

see in the next section this leads to an easy definition of the decision stacks of the

two new subproblems.

3.2.2 Decision Stack Construction

During the splitting process, the desired goal is to start a new solver while

keeping the other solver running on the same resource with as little delay as

possible. Selecting the first variable in the second decision stack as the pivot

variable, the splitting process can be accomplished by simple manipulation of the

decision stack. As a result the solver initiating the splitting is allowed to continue

without undoing any of the progress it has achieved so far.

Figure 3.2 shows an example of the split process which starts with a SAT

problem being solved by client A. The new created subproblem is spawned and

57

Chapter 3. Parallel Satisfiability Solver

Figure 3.2: Example of stack transformation when a problem is split into two
clients.

assigned to client B. The old problem is modified by making all variables on the

second decision level of the assignment stack part of the first decision level. All

the variables on this level have been deduced from the assigned value of the pivot

variable. Thus if the pivot value has assumed that same final value because of

splitting, the rest of the variables on the decision stack will also assume their

respective final values. Since all these variables are assigned final values, they are

all stored at the first decision level. In figure 3.2, V10 is the pivot variable. For the

old client V10 is assumed true, thus V13 is now false according the second decision

level. Both V10 and ∼V13 become part of the first decision level in the context of

58

Chapter 3. Parallel Satisfiability Solver

client A. All other levels of the decision stack are shifted up one level but are not

modified. The solver in client A can continue by making a decision at level 4.

The new problem generated consists of a set of variable assignments and a set

of clauses. The decision stack for this problem is based on the initial decision

stack of client A and the pivot variable. The stack for the new client has only

one decision level. The variable assignments on this level include all assignments

from the first decision level and the complement of the first assignment in the

second decision level, thus ensuring the splitting of the search space. As shown

in figure 3.2, client B assumes V10 to be false. Thus ∼V10 is added to the first

decision level of client B. The solver in client B starts making new decisions at

the second decision level.

3.2.3 Clause Reduction

After splitting based on a pivot variable, each process maintains its own sepa-

rate clause database. Since both processes have assumed new final values for one

or more variables, some clauses become inconsequential. These are clauses whose

final values are now fixed. In fact, if these clauses are kept, the algorithm will

never refer to them again. Thus they are simply wasting valuable memory. These

clauses are different for both new sub-problems and include both initial clauses

59

Chapter 3. Parallel Satisfiability Solver

as well as learned clauses. Removing these clauses alleviates memory usage by

learned clauses and causes the initial set of clauses to be reduced. Reducing mem-

ory usage allows for more more memory to store learned clauses. As a result the

solver’s performance is improved because more learned clauses can prune a larger

portion of the search space.

The inconsequential clauses evaluate to true because they contain literals which

are also true according to the assignments on level 0 of the local decision stack.

In the example in figure 2.4 client A can remove clauses 8 and 9 because their

respective literals ∼V13 and V14 are true. Client B can remove clauses 7, 9 and also

the newly learned clause because their respective literals ∼V10, V14 and ∼V10 are

true. For the new client B, the set of inconsequential clauses can be determined

before the entire clause database is sent. Therefore, inconsequential clauses are

not sent to the new client in order to reduce communication overhead.

This memory saving technique can also be applied to a sequential solver each

time the first decision level is augmented with new assignments. Because scarcity

of memory is often the limiting factor, we also implemented this procedure in the

sequential version of zChaff that we use for comparison.

60

Chapter 3. Parallel Satisfiability Solver

3.2.4 Sending Clause Database

Part of the splitting process of the search space with another client involves

sending a set of learned clauses. The set of learned clauses could be very large

and therefore very expansive to communicate. Sharing these clauses, however, im-

proves the solver by providing valuable pre-computed information that the solver

can then immediately use to prune the search space. The desired strategy is to

send the smallest number of clauses which will be most useful to the solver. The

solution chosen is evaluated based on the speedup the solver gains. Since the

speedup is not usually guaranteed it is desirable to choose a solution with low

overhead.

There are many possible heuristics that can be used to select which sets of

clauses are shared with the new client. One such approach is to only send a

random fraction of the entire set of clauses. Another possibility is to rank the

clauses based on their age and only send the newest portion of the clause database.

The heuristic we use is based on the observation that the smallest clauses are

the most useful in pruning the search space. Thus only a fraction of clauses with

the smaller sizes are shared. This solution uses only one parameter which is the

fraction of clauses to be shared, we call it the splitting fraction. The implemen-

tation finds the corresponding maximum clause size for this parameter. This is

61

Chapter 3. Parallel Satisfiability Solver

accomplished by sorting all clauses sizes in the database in increasing order. Once

the maximum clause size is determined only those clauses smaller than this clause

size are shared.

3.2.5 Ping-pong Effect

A possible risk in parallelizing a SAT solver comes from the possibility of excess

overhead introduced by parallel execution. In particular, because the duration of

execution time that will be spent to solve a subproblem cannot be predicted easily

beforehand, it is possible for subproblems to be investigated in such a short amount

of time that the overhead associated with spawning them cannot be amortized.

As a result a solver spends more time communicating the necessary subproblem

descriptions, thinning the database, and collecting the results than it does actu-

ally investigating assignment values. Even though the solver is advancing, the

execution time will be longer than if it were executed sequentially. This problem

is occasionally referred to as the “ping-pong” effect [58]. This risk is mitigated at

the implementation level as shown later in chapter 4.

62

Chapter 3. Parallel Satisfiability Solver

3.3 Clause Sharing

Although all subproblems are assigned disjoint parts of the search space they

are still working on very similar and related problems. The different subproblems

obviously may still share some of the initial clauses. In addition, the solvers might

be making speculative decisions about common variables. Thus it is probable that

they will learn information which can be shared.

In a parallel solver each process is given a unique top level in the decision

stack after problem splitting occurs. However, this level usually contains a small

number of variables compared to the total number of variables especially at the

onset when splitting is most likely to be used. Therefore, a large number of the

variables still under investigation are shared amongst subproblems. Such variables

are called active variables.

The different solvers working on the various subproblems can learn new clauses

about a common set of active variables. These solvers will learn different clauses

because they will be making different decisions as a result of the status of their

respective decision stacks, existing clauses and heuristics. Even though the learned

clauses are generated by investigating parts of the search space defined partially

by the initial decision stack, the clauses may not explicitly depend on the decision

63

Chapter 3. Parallel Satisfiability Solver

stack. An explicit dependence means that some of variables in the initial decision

stack (or their complements) are part of these clauses. Because of the large number

of variables, newly learned clauses may not contain variables from the initial

decision stack.

Therefore, after the initial problem is split into many new subproblems, each of

these subproblems will produce new learned clauses using a shared set of variables.

Since all the subproblems are still investigating the assignment space for these

variables, knowledge discovered by one process can be used in the context of

other subproblems. According to the learning process in section 2.3, each of the

new learned clauses is a direct logical deduction from the initial set of clauses.

Therefore, these learned clauses are logically independent from the decision stack.

Actually, any learned clause can be used as-it-is within any other solver at any

time. Thus when these learned clauses produced by one client are shared with

other clients they help prune parts of their search space which they have not yet

investigated. In addition, by obtaining these clauses a receiving client saves the

time and resources needed to discover this information on its own. The overall

effect is improved solver performance.

Allowing clause sharing, however, limits the kind of simplifications that can be

made. For example, variables (and their complements) which have known truth

64

Chapter 3. Parallel Satisfiability Solver

assignments (i.e. in the first decision level) can be removed since they will not

influence future decisions made by the solver. Removing such variables can be

accomplished by deleting the occurrence of all literals with known values from

all clauses. This deletion results in shorter clauses and more efficient use of the

memory. However, the resulting clauses are not anymore logically independent of

decision stack. Thus sharing clauses modified in this manner leads to incorrect

results because variables of known values in one process might still be unknown

in another process. Thus in order for a clause to be still valid when shared

with another process it must contain complete variable information. Therefore

simplifications such as removing known variables are not possible when clauses

are shared because they make learned clauses only valid in the context of the

current solver.

When new learned clauses are received from other clients, they are merged with

the local clause database. The merging process has to be accomplished in a way

that is logically consistent. Adding a clause directly to the database may cause

logical inconsistencies if that clause contradicts some of the deductions previously

made by the algorithm. For example, a variable may have been deduced to have

a true value. However, if the learned clause was known to the algorithm at the

time of that deduction the algorithm may have run into a conflict. Thus adding

65

Chapter 3. Parallel Satisfiability Solver

received clauses from other clients may include undoing some of the previous

decisions or adding new ones. We have investigated three merging strategies.

In the next three sections we present the three methods that GridSAT uses for

sharing learned clauses.

3.3.1 The Lazy Method

The lazy method is the simplest method for making use of learned clauses

because it limits the merging of newly obtained clauses into the clause database

to certain phases of the DPLL algorithm. These phases occur after the algorithm

has backtracked to the first decision level. In this case, merging the new clause

does not involve any stack manipulation because the stack contains one level and

no speculative decisions. The only variables to take into consideration are in the

first level of the stack. The truth values of these variables are never altered by

subsequent decisions thus no speculative decision need to be undone.

Under the conditions outlined previously, merging a received clause is straight

forward. Figure 3.3 shows how the DPLL algorithm is modified to enable this

method of merging clauses. The DPLL algorithm is augmented by adding a

simple test before each new decision to check if the algorithm has backtracked

to the first decision level. If the test fails, the algorithm continues as before. If

66

Chapter 3. Parallel Satisfiability Solver

Figure 3.3: DPLL algorithm modified to enable lazy clause merging

the test succeeds however, the merging process is activated. During the merging

process each of the clauses received are processed one at a time. The literals of

the received clause are examined for their truth values which can be either true,

false or unknown. For a given clause there are four possibilities:

• If the clause contains at least one true literal, then the entire clause is

true. Since the decision stack contains no speculative decisions, the variable

corresponding to the true literal could have only come from the first decision

67

Chapter 3. Parallel Satisfiability Solver

level. Since this variable will always be true, the clause will always be

satisfied. Therefore the clause is of no value to the solver since it does not

help restrict the search space and is discarded. In the rest of the cases we

assume that no literal is true.

• If the clause has only one unknown literal and the remaining literals are false,

then an implication is generated. The newly implied variable assignment,

is therefore predicated only on variables on the first decision level. Thus

the implied variable is added to the first level of the decision stack. The

clause under consideration is marked as the antecedent for the newly implied

variable.

• If the clause has more than one unknown literal then the clause can be used

to restrict the search space. In this case the clause is added to the set of

learned clauses and the decision stack is not altered.

• If the clause has all literals set to false then this clause is not satisfied by

the existing variable assignments and a conflict exists. Since the decision

stack contains no speculative decisions, then all the variables in the new

clause must be in the first decision level. Therefore, we have a conflict

68

Chapter 3. Parallel Satisfiability Solver

because of variable assignments which should be correct if the subproblem

were satisfiable. Thus the subproblem is unsatisfiable.

The clauses are processed in batches where no BCP is performed until all

clauses in the same batch are inspected. During the batch processing, some clauses

may be added to the database while new implications are saved to a temporary

queue. If a clause in the batch causes a conflict then the solver terminates im-

mediately. However, if there is no conflict after all new clauses are processed, the

solver continues by retrieving the queued implications one at a time, adding them

to the first decision level and performing BCP as described earlier. Like other

implications, the ones caused by merging the received clauses can also lead to a

cascade of implications.

3.3.2 The Immediate Method

The lazy method is simple to implement and has low overhead, but it is inef-

fective in many cases. For many hard problems it may take a long time before the

solver would make enough progress to cause it to backtrack to the first decision

level. In this case, the solver is not able to use the clauses received from other

processes. Therefore, all the shared clauses accumulated by the local solver are

wasting valuable memory space since they are never used. Thus sharing clauses

69

Chapter 3. Parallel Satisfiability Solver

does not have the desired effect of helping to prune the search space of the local

solver. Instead performance is degraded because of wasted memory space. This

problem could be solved by allowing immediate integration of received clauses into

the solver’s clause database. Thus this method is called the immediate method.

The modified DPLL algorithm for this method is shown in figure 3.4. It is similar

to the lazy method in figure 3.3, except that the decision level test is removed.

Figure 3.4: DPLL algorithm modified to enable immediate clause merging

70

Chapter 3. Parallel Satisfiability Solver

The implementation of the immediate method is more complex compared to

the lazy method described earlier because it involves complex manipulation of

the decision stack. The complexity originates from ensuring logical consistency

while modifying on-the-fly the decision stack which may include multiple levels of

speculative decisions. The smallest granularity at which the immediate method

is activated is before each new decision is made. This happens frequently in the

span of the execution of the DPLL algorithm. The merging procedure is only

activated if new clauses have been received and are waiting to be merged.

When a new clause is about to be merged it might not be logically consistent

with implications and decisions in the decision stack. For example, the new clause

might cause a new implication in an earlier level of the decision stack. It may

also conflict with some implication at any level in the decision stack. This kind of

decision stack manipulation is complex but it has a simple underlying principle.

For each clause, the effect (i.e. implication, conflict or none) of the new clause is

evaluated. Then the decision stack is rolled back and the sequence of implications

or conflicts is resolved as if the new clause has been known to the solver all along.

The algorithm for merging clauses starts by inspecting the newly obtained

clauses. The algorithm determines how many literals in the clause have values

true, false or unknown. Also the algorithm determines for clauses with a single

71

Chapter 3. Parallel Satisfiability Solver

literal being true, the decision level true lit dl of such a literal. For the given

clause it determines the maximum decision level (false lit max dl) amongst the

decision levels of the literals set to false. After determining these value there are

only five possible outcomes:

• If the clause is satisfied because of a variable assignment at the first decision

level, then this clause is useless for the local solver and is discarded. This

case is similar to the first case in the old merging algorithm.

• If the clause has only one unknown literal and no true literals, then the

clause results in an implication. Actually if the clause was available when

the solver was still generating implications for false lit max dl decision level,

then this clause would have become a unit clause and would have generated

an implication. Because generating implications as early as possible is very

important for directing the search, we allow the solver to backtrack in order

to make use of this implication. In this case, the solver backtracks to decision

level false lit max dl and the clause is inserted to the clause database. After

the solver backtracks to false lit max dl decision level, the same previous

speculative decision at this level is put in temporary queue.

72

Chapter 3. Parallel Satisfiability Solver

• If the clause has only one true literal and no unknown literals, then if

false lit max dl is smaller than true lit dl then this is indeed an implica-

tion. This restriction is necessary because there might be cases where the

clause has only one true variable but it does not represent an implication.

In such cases the true variable was set at a level while some of the remain-

ing literals were unknown but are now set to false. The solver proceeds by

backtracking to false lit max dl and queuing an implication in the same way

as the previous case.

• If the clause has all its literals set to false, then the clause has resulted in a

conflict. In fact if this clause was available when decision level false lit max dl

was still being populated by implications then this clause would have caused

a conflict at this level. This conflict would have helped direct the search, if

detected. Thus the solver backtracks to make use of this conflict. However,

if the conflict is at the first decision level then this situation is the same as

the fourth case in the previous merging algorithm mentioned above. There-

fore the sub-problem is unsatisfiable. If the conflict is at a higher level then

the solver backtracks to false lit max dl. Also previous decision at this level

is saved in a temporary queue in the same way as the previous two cases.

73

Chapter 3. Parallel Satisfiability Solver

• If none of the above cases apply then the clause is added immediately to the

clause database without altering the decision stack.

If many clauses are received during the time interval between two consecutive

decisions, the immediate method needs to merge them all at once. During the

merging of each new clause, the decision stack is modified and a backtrack is

performed in three of the five cases presented above. In addition, every backtrack

results in reduction of the decision stack depth unless the top level is reached.

When the stack depth is reduced, the implication queue is cleared before any new

implications are added. Also the decision level from which the solver will start

(i.e. false lit max dl) is also cleared. The solver then proceeds to reconstruct the

resulting sequence of implications while taking the new clauses into consideration.

When the solver backtracks to the first level in the decision stack, the immediate

method becomes equivalent to the lazy method since no backtracking can be done

beyond this level.

The effect of backtracking to a higher level in the decision stack helps the

solver investigate a more relevant part of the search space due to the newly found

implication or conflict. The merging of shared clauses from other solvers restricts

the search space and prevents the solver from wastefully revisiting some parts of

the search space. Merging new clauses has an effect similar to randomization.

74

Chapter 3. Parallel Satisfiability Solver

Randomization is a process where the decision stack is cleared after a timeout

period and then starts at another random location in the search space. Thus

if the solver does not makes progress within a given period of time it should

be directed to investigate possible solutions elsewhere in the search space. The

solver keeps all learned clauses but the decision stack is cleared except for the

first decision level. The hope is that the restart will lead to a better location

in the search space which will help solve the problem faster. Randomization is

used by most solvers and has been shown to improve solver performance. Unlike

randomization, merging new clauses helps choose more relevant parts of the search

space based on new knowledge and not based on random chance.

3.3.3 The Periodic Method

The lazy and immediate methods for sharing clauses have two types of over-

head. The first, is communication overhead which is the same in both methods.

The second is solver interruption overhead which is incurred because the solver

is momentarily stopped to allow clause merging to happen in a consistent man-

ner. This type of overhead is more significant for the immediate method since it

interrupts the solver frequently and at a very fine grain level in the main DPLL

algorithm loop.

75

Chapter 3. Parallel Satisfiability Solver

The communication overhead can exacerbate the interruption overhead. For

example, when a large number of clients are sharing even a small number of clauses

the total communication overhead becomes significant. Shared clauses could be

streaming into each solver occasionally at high rates, especially if the number of

processes used is high. Therefore merging the clauses immediately causes frequent

preemption of the solver. When the solver is preempted it stops until the received

clauses are merged. In order to decrease the rate of solver preemption, there is a

third merging method that can be used. This is called the periodic method where

the solver is parameterized to allow clause merging only after a fixed number of

iterations or a fixed time interval. This results in the clauses being merged in

batches in a similar fashion to the lazy method.

3.3.4 Clause Duplication

There is a chance that some of the newly merged clauses which are added to

the clause database can be duplicates of other previously existing clauses. Only

clauses which do not result in implications or conflicts can be duplicates. Duplicate

clauses will waste valuable memory space. However, checking each new clause

received by a solver to ensure that it is not a duplicate before adding it to the

database is computationally expensive. It requires scanning the entire database

76

Chapter 3. Parallel Satisfiability Solver

and comparing the new clause with every clause in the database. However, since

GridSAT broadcasts clauses immediately after they are learned, then all solvers

become aware of the new clause quickly. Once a solver has a copy of the clause

in its database it will not re-learn it. Therefore, there it is unlikely that duplicate

clauses will be an overwhelming problem.

3.4 Solution Enumeration

Figure 3.5: Solution Enumeration
: Example decision and secondary stack modifications after a solution is encoun-
tered. In the secondary stack X and O stand for flipped and not flipped respec-
tively.

There are many related problems to satisfiability which are also computa-

tionally intensive, such examples include #SAT and solution enumeration. The

#SAT problem only asks to determine the number of solutions for a given SAT

problem instance. Solution enumeration problems, however, require the listing of

77

Chapter 3. Parallel Satisfiability Solver

all solutions to a SAT problem and not just the number of solutions or whether

the problem is satisfiable or not. The solution enumeration problem is important

because in many cases it is desirable to find all solutions to a problem or at least

a representative subset of the solution set. In [56], the author presents a motiva-

tion for solution enumeration and how it can be used to improve software testing

procedure. Similarly, solution enumeration could generate multiple solutions to

a scheduling problem [11]. These solutions would present alternative solutions

to choose from instead of being restricted to a single one. In another example, a

circuit designer with access to multiple solutions can select the solution that best

suits his needs. Moreover, in cases where satisfiable solutions represent design

errors multiple solutions provide more information about the sources of error and

may lead to quicker determination of the source of error. Solutions to the #SAT

and solution enumeration problems can be derived from solutions to the original

satisfiability problem.

The basic DPLL algorithm terminates after the first solution is determined.

However, a satisfiability problem may have more than one solution. There are

multiple ways to alter a DPLL-based sequential solver in-order to enable solution

enumeration. For example, a simple approach would be to augment the initial set

of clauses with a clause for every solution encountered. These clauses are never

78

Chapter 3. Parallel Satisfiability Solver

deleted just like the initial set of clauses defining the SAT instance. The addition of

each solution clause would prevent the solver from generating the same solution

in later steps. Such clauses are usually long because satisfiable instances often

include most of the variables. A major drawback of such a solution is the need to

use more memory to store all these clauses. As the number of solutions is usually

high, the memory needed to store the clauses produced by solutions becomes very

large. This makes the solver less efficient as less memory is available for clauses

obtained through learning.

GridSAT with enumeration uses a different approach that incurs little memory

overhead as the number of solutions found increases. This method could easily

be integrated to other DPLL-based solvers and is not specific to zChaff. In the

next section, we describe this method as it applies to a sequential solver. In

section 3.4.2 we present how this method can be incorporated into the parallel

solver.

3.4.1 Solution Enumeration with Modified DPLL

The DPLL algorithm with simple backtracking presented in chapter 2 inverts

decision variables when it runs into a contradiction. It is possible to use the same

mechanism to implement solution enumeration. The DPLL-based solver with

79

Chapter 3. Parallel Satisfiability Solver

solution enumeration that we present uses an additional stack in order to prevent

itself from reproducing identical solutions. After each solution is found, the solver

continues the search for satisfiable solutions by moving to a different part of the

search space. The solver terminates when the search space is exhausted.

The enumeration solver in GridSAT uses an additional stack called the sec-

ondary stack. The function of this stack is to track the state of each decision

variable on each level of the decision stack. Thus the size of the secondary stack

is equal to the size of the decision stack and is at most equal to the number of

variables in the original SAT problem. Each level in the secondary stack has one

entry which tracks the state of the decision variable at the corresponding level

in the decision stack. An entry in the secondary stack is a flag which indicates

whether the decision variable is either flipped or not-flipped. A flipped variable

is one whose value has been inverted after the initial assignment was fully in-

vestigated. In the following description we also use the equivalent pair of terms

inverted and non-inverted Initially all entries on the secondary stack are marked

as not flipped.

The enumeration process does not impose any restrictions on the normal exe-

cution of the DPLL algorithm. The algorithm start execution normally by spec-

ulatively assigning values in its quest to find a solution. The solver adds new

80

Chapter 3. Parallel Satisfiability Solver

decisions and backtracks in the usual fashion. The secondary stack shrinks and

expands mirroring the decision stack. When a solution is found the current vari-

able assignments are saved in a repository external to the solver process.

After the assignment representing the solution is saved, both stacks are mod-

ified. First, the decision variable in the highest level of the decision stack is

inverted. Second, the corresponding flag entry in the secondary stack is marked

as flipped. The solver continues by clearing the highest decision level and inverting

the value of the same decision variable. After both stacks are updated, the sequen-

tial solver proceeds as usual by making more speculative decisions, augmenting

the decision stack and backtracking when a conflict is encountered leading to a

reduction in the decision stack. When the decision stack shrinks because of back-

tracking all states in the secondary stack above the current decision level lose their

logical significance and are cleared by marking all of them as non-inverted.

When a solution is encountered and the current decision level in the secondary

stack is marked as inverted, the solver proceeds by removing the highest decision

levels and backtracking to a level where the decision variable on the secondary

stack is not flipped. When such a level is found before reaching the second deci-

sion level, the solver marks that level as flipped and continues by assuming the

inverted value at the same decision level. For example, in figure 3.5 a solution

81

Chapter 3. Parallel Satisfiability Solver

was encountered at level four as shown on the left side of the figure. The right

hand side shows how the decision and secondary stacks are modified. The solver

backtracks to level 2 since it is the first non-flipped entry encountered on the sec-

ondary stack. This entry is marked with an O (not-flipped) before the solution is

found. The same entry is marked with an X (flipped) after the solution is found.

Notice that entries in the secondary stack (level 3 and 4) below the new decision

level (level 2) are cleared and marked as not-flipped after the solution is found.

Also the variable at the new decision level V7 is flipped in the modified decision

stack to ∼V7. After updating both stacks, the solver proceeds to explore the rest

of the search space.

If the solver backtracks to the second decision level, then the solver has finished

sweeping the branch of the search space which assumes the current value of the

decision variable at this level. Therefore, the solver can assume the opposite value

of this variable for the remaining search space. Thus, the solver backtracks to the

first decision level and augments this level with the inverted value of the decision

variable previously found at the second decision level. The solver then proceeds

by searching for implications produced by the newly assumed values.

The secondary stack is used as an additional mechanism to restrict the search

space after a solution is found. In addition, the new extension to the basic al-

82

Chapter 3. Parallel Satisfiability Solver

gorithm does not restrict the efficient sequential algorithm in any fashion. The

solver continues to navigate and prune the search space as before. The role of

the secondary stack is to prevent the solver from reproducing the same solutions

unnecessarily.

3.4.2 Parallel Solver with Solution Enumeration

This section describes the process used to adopt solution enumeration in the

context of a parallel solver. Deploying parallel solvers with solution enumeration

only requires minor modifications to the version presented in section 3. The role

of the parallel solver infrastructure is to collect all the solutions in a repository.

In the parallel version described in section 3.2, each solver is given an initial

decision stack and a clause database. In contrast,in the parallel solver with so-

lution enumeration, each client is given a clause database, a decision stack and

an additional secondary stack. In order to illustrate how the secondary stack is

split in the case of a parallel solver with solution enumeration, we use the example

in figure 3.6. Before splitting, the original client A has both a secondary stack

and a decision stack. Client (B) gets the exact same decision stack as previously

described in the splitting process of section 3.2. The new client (B), also, re-

ceives a totally blank secondary stack. Client (A), however, might get a decision

83

Chapter 3. Parallel Satisfiability Solver

stack with more variables on the first decision level and smaller number of levels.

Initially, the first decision level is augmented by adding all variables from the

second decision level. In addition, this level is padded with any sequence of levels

with flipped decision variables starting at level three on the original stack. These

variables are added for the same reason that all variables in the second level are

added. When the flip variable is given a final value, all these variables are auto-

matically assigned the current value because all other options have already been

investigated. Also, the new client (A) will receive the same original secondary

stack except that all levels deleted from the decision stack are also deleted from

the secondary stack.

Figure 3.6: Decision stack and secondary stack modification during splitting
when solution enumeration is used. In the secondary stack X and O stand for
flipped and not flipped respectively.

84

Chapter 3. Parallel Satisfiability Solver

In figure 3.6, we show an example of problem splitting in a solution enumer-

ating parallel solver. The initial client A, has a secondary and a decision stack.

In the secondary stack, the first and second levels are marked as flipped. Since

the first level only contains variables with final values, it is always flipped. After

splitting, the client (A) gets a new decision stack which includes three additional

variables. Two of these variables (V10 and ∼V13) come from the second decision

level. The third variable (V7) comes from the third decision level because it is

marked as flipped. In this case, the third level does not have any other levels

flipped immediately after it. Thus no other variables are added. The new sec-

ondary stack for client A has two levels (1 and 2) deleted since these levels have

been removed from the decision stack. On the other hand, the newly created

client (B), gets only an additional variable (V10) on the first decision level. Also

client (B) gets a secondary stack which also contains one level.

This method of solution enumeration will not produce redundant solutions. In

a parallel solver, each client starts from a distinct initial decision stack as described

earlier. If any client finds a solution, the initial decision stack will be a subset of

that solution. Therefore, it is guaranteed that no two clients will produce the same

solution since all clients start from distinct initial decision stacks. Furthermore,

no client will produce the same solution more than once because the decision

85

Chapter 3. Parallel Satisfiability Solver

stack is different for each iteration of the DPLL algorithm. Therefore, the above

algorithm will produce a set of distinct solutions.

86

Chapter 4

Programming Methodology and

Application Architecture

In this chapter we describe the design and implementation of the GridSAT

application. The design of the GridSAT application has three main goals. The

first goal is to enable a parallel SAT algorithm that permits the use of a variable

number of resources depending on the specific needs of given SAT instance. The

second goal is to make efficient use of available resources. The final goal is to make

GridSAT adapt to variations in the availability and composition of the resource

pool.

These goals can be achieved using an efficient implementation which is tailored

to the overall characteristics of the application. We start by describing the main

features of the satisfiability solver. Then, we describe the main design components

87

Chapter 4. Programming Methodology and Application Architecture

and their interaction. Finally, we discuss the programming methodology used to

realize our GridSAT application.

4.1 Execution Model

Most traditional parallel applications make resource selection decisions (i.e.

resource scheduling) based on a performance model. This model gives a precise

prediction for the cost of execution of a particular task in a particular environment.

Under such conditions, it is possible to predict the time duration needed to execute

an entire parallel job. It is also possible to quantify the effect of the size and type

of available resources on the turnaround time of the application.

The satisfiability problem, however, does not have an execution model that

would allow for time or resource prediction. This is a major difficulty facing the

SAT solver community. It is not currently possible to predict how much time and

resources are needed to solve any SAT problem. In addition, some satisfiability

problems can be easy because they can be solved quickly with few resources. Some

other problems are hard or complex because they require a long time and many

resources to solve them. In fact, due to the interaction between learning heuristics

and the data dependent nature of SAT problems, a SAT problem instance may

88

Chapter 4. Programming Methodology and Application Architecture

be perceived differently by two SAT solvers. For example, a problems that is

deemed easy by one solver may be found difficult by other solvers depending on

the heuristics each employs. Thus, it is not currently possible to determine the

resource and time requirements for a given satisfiability problem just by inspecting

its logical formula.

There are, however, some heuristics that can be employed to detect when a

SAT solver is making progress. One heuristic examines internal solver state to

estimate both the rate at which the solver is pruning the search space and the

rate at which it is exhausting memory and then extrapolates time-to-solution from

these rates. If the ratio of the speed with which the solver prunes the search space

to the rate at which it is consuming memory is low, the problem is perceived as

being “hard” according to this heuristic. For a hard problem, a learning solver

will either run out of memory and terminate, or prematurely discard and then

subsequently relearn clauses to avoid memory exhaustion and, because it must

run longer, may eventually incur a user timeout.

The execution model we adopt for GridSAT uses incremental resource admit-

tance and release. Since the resource requirements of a given SAT problem are

unknown, GridSAT starts by using a small number of resources. This strategy

incurs low parallelization overhead for easy problems that can be solved quickly

89

Chapter 4. Programming Methodology and Application Architecture

with a few resources. Thus easy problems can be solved in a time duration com-

parable to that of a sequential solver. For harder problems, a timeout interval is

used after which a given resource can split its search space with another one. The

timeout interval is used to amortize the splitting cost and to avoid the ping-pong

effect introduced in section 3.2.5. The timeout interval is defined in function of

the overhead of the splitting process as detailed later in section 4.3.2.

As the execution progresses, new resources are added to participate in solving

the current SAT instance. Simultaneously, those resources that are done investi-

gating their assigned portion of the search space are release immediately. In this

manner, the resource pool used by the GridSAT solver can expand and shrink

based on the SAT problem. If the problem is hard the set of resources will ex-

pand. On the other hand, if the problem is perceived to be easy the number of

resources in use can decrease. Actually, the same problem can exhibit different

phases where it is at times perceived by the solver as hard and at other times as

easy.

Finally, the GridSAT solver terminates when all sub-problems have been solved

or one of the clients finds a satisfying assignment. In the latter case, the client

that finds the satisfying assignment sends its stack to the master. The master

verifies that the set of truth assignments it received does indeed satisfy all clauses

90

Chapter 4. Programming Methodology and Application Architecture

in the initial problem. Most solvers in the literature are evaluated based on the

time the first satisfiable instance is found. But there are cases [56] where knowing

all satisfiable instances is helpful. GridSAT can also enumerate all the instances

where a problem is satisfiable. In both cases, when the master determines that the

problem is solved, it sends a message to all clients requesting them to terminate.

4.2 Application Characteristics

The GridSAT application is different from many other high-performance com-

puting applications in terms of programming model and resource usage. Tra-

ditional higher-performance applications use the Single-Program-Multiple-Data

(SPMD) [57] or bulk-synchronous parallel (BSP) model [110]. In general, these

programming models are characterized by a set of alternating steps involving com-

putation and communication. In addition, the computation and communication

intervals do not overlap. The communication steps are followed by synchroniza-

tion barriers and enable the various components of the application to exchange

information. From the resource usage perspective, these applications use a prede-

termined set of compute resources throughout their execution. Actually one of the

motivations for using BSP is the ability to predict the execution cost (i.e. time) of

91

Chapter 4. Programming Methodology and Application Architecture

the entire program based on the source code and a few parameters characterizing

the execution environment.

Based on the execution model described it the previous section, our applica-

tion differs in much of the above aspects. The GridSAT application has variable

resource requirements depending on the problem instance. In general, the number

of resources and duration of use of those resources cannot be predicted for satisfi-

ability instances. In fact, the set of active resources that are assigned parts of the

search space during runtime is dynamic. On one hand, resources are added each

time the problem is split. On the other hand, resources are released immediately

after a subproblem is solved. At any given instant, the application can simulta-

neously acquire new resources and release other unneeded resources. Moreover,

the application components communicate with each other to share intermediate

results as soon as they are produced. These results are asynchronously used by

all the receiving clients.

Therefore, all the GridSAT components are event driven and events are pro-

duced and consumed asynchronously. The solver components, for instance, can

simultaneously perform communication and computation. All application mod-

ules are designed and implemented to allow for efficient management and handling

of these events.

92

Chapter 4. Programming Methodology and Application Architecture

Dynamic resource usage can potentially solve a large set of satisfiability prob-

lems an efficient manner. Solving “hard” satisfiability problems introduces further

challenges. For “hard” problems, a small number of resources would be exhausted

in a relatively short time. While solving the hard problems, available CPU and

memory resources can become saturated, thus additional resources are required.

Therefore, we need to use all computational resources at our disposal, in order to

render the solution of the hardest problems more plausible. The set of available

resources varies from desktop machines, to small-size clusters, to supercomputers.

This collection of resources is heterogeneous in terms of hardware, operating sys-

tems and resource management software. This heterogeneity represents a further

challenge in the deployment of the application.

The application characteristics described above are representative of a true

computational grid application. As more “power” is added to the grid that Grid-

SAT is deployed on, GridSAT’s flexible design enables it to efficiently use the

available resources. At the same time, fluctuations in available power are tolerated

automatically so that the overall application remains maximally efficient while it

is executing. Thus, GridSAT is designed to be one of the first programs to realize

the vision of grid computing originally articulated in [43] and to demonstrate this

capability by generating new domain science. Moreover, these characteristics are

93

Chapter 4. Programming Methodology and Application Architecture

not unique to GridSAT. Other branch-and-bound or master/worker applications

can benefit from similar use of computational resources.

4.3 Application Architecture

GridSAT is implemented as a special form of the master/client model where

individual clients communicate directly and share clauses. There are two main

types of processes: the master and the client. In the next sections we describe the

design of both of these components.

4.3.1 Design of the Client Process

The client process is designed to be a “cooperative” satisfiability solver. The

main component of the client is the sequential SAT solver. This solver is modified

in order to enable it to interact with other components of the parallel satisfiability

solver. The client process is designed as a threaded program with two threads.

The main thread is the SAT solver and the helper thread is the communication

thread.

The solver thread is perfoems four main functions. These functions are:

94

Chapter 4. Programming Methodology and Application Architecture

• Problem Splitting: This function allows the solver to split its search space

and send the new sub-problem to another client. This procedure is expensive

because it requires that the entire database be analysis twice. The set of

relevant clauses for the new search space has to be determined once for the

new client and once for the current solver. Also this procedure involves

sending the largest message consisting of a large part of the clause database

to a new client. In order to avoid making an extra copy of the clauses the

solver is stopped momentarily as the clauses to be transmitted are identified.

• Memory management: The solver is designed to use as little memory as

possible. Thus, the clause database is allowed to expand till the host memory

becomes scarce. At this point the clause database is reduced by shedding

some learned clauses if possible. By reducing its memory usage the client

can allow other programs to use the host while avoiding overloading the

hosts memory or other OS specific policies such as the “Out-Of-Memory

killer”in Linux.

• Clause Sharing: Each client saves generated clauses below a certain config-

urable size. These clauses are periodically shared with other clients.

95

Chapter 4. Programming Methodology and Application Architecture

• Clause Merging: The client continuously receives clauses from other clients.

These clauses are saved temporarily in a buffer and then merged based on

one of the merging policied used as detailed in section 2.3.

The communication thread is responsible for exchanging messages with the

master process as well as other clients. The goal of this thread is to limit the

interruption of the main solver thread. This thread is responsible for handling

three types of messages. The first message type requires immediate action from

the solver thread. Such examples include messages that require the solver to

exit after a solution has been encountered. The second type of messages can be

delayed until the solver thread is ready to handle their content. For example,

received clauses are buffered before they are merged by the solver into the clause

database. The third type of messages includes periodic messages such as heartbeat

signals that indicate which resources are still active.

4.3.2 Design of the Master Process

Each GridSAT client keeps track of its own progress while solving sub-problem

it was assigned. The process which tracks the status of the entire SAT problems is

the master. The master process is the only process the user interacts with. After

96

Chapter 4. Programming Methodology and Application Architecture

its instantiation, the master is responsible for assigning sub-problems to clients

and deciding when the parallel solver terminates.

A general architecture of the master process is shown in figure 4.2. The master

also uses external services which are shown in the “clouds.” The master consists

of four main components: the resource manager, the client manager, the scheduler

and the checkpoint server.

The resource manager loads resource information from one or more Grid in-

formation systems such as Globus MDS [31] and the NWS [117, 103, 116].

The scheduler, on the other hand, is responsible for coordinating the interactions

between all the components. In addition, it handles interactions with external

resources and monitors them to detect failures. The resource manager is aware

of the different types of resources. Thus, only one GridSAT process per host is

launched for shared resources. Also, the resource manager launches one job at the

start of the execution for batch systems. Additional jobs can be manually submit-

ted and GridSAT can use their resources when they become available. Actually,

the client manager will use any additional clients launched from newly available

resources or previously submitted batch jobs. It is the role of the client manager

to maintain the list of active clients and monitor their progress.

97

Chapter 4. Programming Methodology and Application Architecture

The GridSAT scheduler is the focal point of the master process and is responsi-

ble for coordinating the rest of the components. It is also responsible for launching

the clients. The scheduler uses a progressive scheme for acquiring resources and

adding them to the resource pool. Also resources that are no longer performing

a task on behalf of GridSAT are released immediately when possible. The reason

for this approach is the variability and unpredictability of resource usage for a

particular SAT problem.

A typical execution will start by launching the master. The master will exam-

ine the problem to find any obvious variable assignments and remove any inconse-

quential clauses. Some problems might be solved at this stage because of an easily

detectable conflict. After this stage, the master requests the resource list available

from deployed grid services such as the Globus MDS [31] and NWS [117]. The

master may also use a configuration file to obtain resource information. After this

step, the scheduler immediately submits any batch jobs to their respective queues.

When a remote client starts running it contacts the client manager and registers

with it. The scheduler ranks the set of available clients based on their processing

power and available memory as provided by the NWS [117, 103]. Static values

for these resource parameters can be used when GridSAT is configured without

NWS or the Globus MDS.

98

Chapter 4. Programming Methodology and Application Architecture

The GridSAT scheduler uses the first available client to immediately start

solving the problem. Each client records the time it took to receive the problem

data. Clients also monitor their memory usage. The decision for splitting a

problem is made locally by the client and not by a centralized scheduler. A client

decides to split its subproblem when its memory usage exceeds a certain limit

or after running for a specified period of time. This time period is determined

as two times the duration of the communication period the client used to obtain

the problem data. Using this method, the scheduler allows for computation time

to offset the communication overhead. The clients, therefore, do not spend most

of their time splitting instead of doing useful computation, thus avoiding the

“ping-pong” effect described in section 3.2.5. When a client wants to split its

subproblem, it notifies the master.

The GridSAT master also uses a threaded execution model similar to the client.

The master has two main threads: the communication thread is responsible for

receiving messages and storing them in an event queue, while the scheduler thread

removes events from the event queue and services them one at a time.

99

Chapter 4. Programming Methodology and Application Architecture

Figure 4.1: Message exchange between master and client during the splitting
process

4.3.3 The Splitting Process

One of the most important operations in GridSAT is the splitting process. The

logical concept is described in section 3.2. The implementation of this process

requires the cooperation of three components: the master, the splitting client

and an idle client. The idle client is a process that was not previously assigned

a sub-problem to investigate. The splitting is realized in a way as to minimize

communication costs.

Figure 4.1 shows a step-by-step description of the splitting process. Client A

that has presumably been solving a sub-problem, has detected that it needs to

100

Chapter 4. Programming Methodology and Application Architecture

split its search space. Client A then notifies the master using message (1). Upon

receiving this message, the master selects the highest ranked client and includes

it in message (2) which it sends to client A. Using the information in message

(2), client A determines which of its peers it will split the problem with. Client

A then proceeds to communicate directly with client B by sending it message

(3). This message is very large and varies in size from 10 KB to 500 MB. By

using direct peer-to-peer communication the overall communication overhead is

reduced. When the splitting is successfully completed, both clients independently

alert the master using messages (4) and (5). In Message (4), client A sends new

stacks for both clients A and B. Each stack is used as a checkpoint for its respective

client. Both messages are used so that GridSAT can recover gracefully if one or

both clients fail during the splitting procedure. Also if only one of the clients fail,

then only that client will be restarted because acknowledgements (4) and (5) are

received separately.

Message (3) above allows the transfer of a newly created sub-problem to the

idle client. This message is the largest message and contains three different parts:

• The assignment stack: It is the smallest part and is in the order of the

number of variables.

101

Chapter 4. Programming Methodology and Application Architecture

• The set of original problem clauses: This could be as large as the initial

problem file

• The database of learned clauses: It is the largest component and is 100s of

MegaBytes in size.

4.3.4 Reducing Communication Overhead

GridSAT reduces the communication overhead of the solver in two ways. First,

problem files are copied only once when several hosts share a common file system.

Therefore, split messages targeting the same set of hosts will be smaller since

they will not include the second part of message (3) discussed above. The second

modification makes it possible for the new client to proceed with its computations

immediately after it receives the assignment stack and load the problem file from

the shared file system. Since learned clauses contain redundant information, then

they are not required to start solving the new sub-problem. Therefore they are

sent in a separate message. This message takes a long time to transfer, and the new

clauses will be merged as they are received using the clause merging algorithms

discussed earlier. Using these techniques, the new client (client B in figure 4.1)

will not have to idly wait for the entire message to arrive before starting solving

102

Chapter 4. Programming Methodology and Application Architecture

the newly assigned sub-problem. The old client (client A in figure 4.1) still waits

because the clause database is locked until the transfer is completed. Making

an additional copy of the clause database in order to prevent the old client from

stalling is not practical because the size of the clause database is very large and

there is not sufficient memory to hold a separate copy. The old client waits and

does not proceed until the clause database destined for the new client is trans-

ferred. Transferring these clauses to the new client is essential to the efficiency of

the solver. Eliminating this transfer would slow the solver significantly.

4.3.5 Failure Recovery and Checkpointing System

A computational grid environment resource is composed of numerous resources

and network components. Thus the probability that any one element of the com-

putational grid fails is much higher. As a result failures are more frequent in such

an environment. Therefore a grid application has to be able to recover from such

failures. There are two components to failure recovery. First, the grid applica-

tion should establish a mechanism for detecting the failure of remote components.

GridSAT uses heartbeat messages to decide when a remote solver has failed. Sec-

ond, the grid application should be able to restart with minimal work loss when

failures occur. The current version of GridSAT uses checkpointing to recover from

103

Chapter 4. Programming Methodology and Application Architecture

such failures. Each checkpoint belongs to one remote solver and represents a SAT

sub-problem that can be restarted when combined with the initial SAT problem.

GridSAT can use two types of checkpoints:

• Light checkpoints: This method requires little storage space and commu-

nication overhead. Only the top level of the assignment is recorded in the

checkpoint for each client. In this case checkpoints for a client will be up-

dated only when more variables are added to the first decision level. This

form of checkpointing records the most important advances of the SAT solver

while using little storage and communication overhead.

• Heavy checkpoints: In addition to the light checkpoint data, heavy check-

points save all newly learned clauses. It is also possible to save the top levels

of the decision stack in order to reconstruct the exact decision levels after

restart. These checkpoints can be saved at regular time intervals in addi-

tion to the instances when the top level is augmented. These checkpoints

require more storage and incur higher communication overhead compared

to the previous form. However, they are more effective when the solver does

not make progress which results in modifying the first decision level. In this

case the progress is evident only at higher levels of the decision stack.

104

Chapter 4. Programming Methodology and Application Architecture

The master stores and updates the checkpoints as they are received from the

clients. The checkpoints can be stored either on a local file system or in a dis-

tributed fashion using IBP [75]. Idle clients are assigned new sub-problems either

through splitting or from saved checkpoints. Sometimes the number of check-

points exceeds the number of active clients. This happens when a large number of

previously active clients terminate leaving behind their checkpoints. In this case

the scheduler keeps a list of checkpoints and assigns them to newly created clients

or those that have just finished solving their own sub-problem. Idle clients are

assigned problems through splitting only after all checkpointed sub-problems are

assigned to active clients.

When the master fails, GridSAT can recover by simply re-instantiating the

master process on another machine if necessary. If checkpoints are available, the

new master process can use them to recover pre-failure state. Also a user could

cause an intentional failure by halting the master while it is solving a problem in

order to start another problem for example. The user can later resume solving

the previous problem using the saved set of checkpoints.

105

Chapter 4. Programming Methodology and Application Architecture

4.3.6 Work Backlog

The GridSAT execution model allows for the application to generate new tasks

depending on the number of resources available. As time progresses, more and

more tasks are produced as more clients request that their problem be split. The

master records these requests and keeps a backlog so that at a later time when a

a resource becomes idle, the master can choose a client that has requested a split,

and allow that split to proceed. The master splits clients that have been running

the longest on the same subproblem. This strategy gives more resources to those

parts of the search space that take the longest.

At a global level, the master ensures that most of the clients are doing useful

work. This is accomplished by setting a limit on the number of clients splitting

simultaneously. The maximum number of clients involved in splitting is set as

a configurable parameter. The effect of this strategy is to dynamically lengthen

the splitting timeout interval when the number of splitting clients grows large.

Therefore, only a small portion of clients will be splitting simultaneously at any

instant. As a result, even if the resource pool is very large, most resources are

guaranteed to be doing useful work instead of splitting.

106

Chapter 4. Programming Methodology and Application Architecture

4.4 Multiple Site Scheduling and Migration

GridSAT processes communicate as peers during problem splitting. The opti-

mization presented above reduce communication overhead due to master/worker

communication. Most of the remaining overhead is due to peer-to-peer messages.

Therefore, more efficient problem splitting will improve overall solver efficiency.

More efficient problem splitting could be accomplished when clients belong to a

pool of well connected resources. Such pools of resources usually become avail-

able when new batch jobs reach the head of their waiting queue and start running.

GridSAT migrates problems from dispersed nodes to processes that are part of a

batch job.

Efficient Use of Batch Jobs

Existing computational grids contain two types of resources. The first type

includes shared resources that allow many users to execute jobs simultaneously on

the same hosts. The second type comprises time shared resources such as super-

computing facilities [22, 106] and collections of grid resources such as Condor [29,

104]. In these resources, a batch scheduler gives a user exclusive access to a

subset of hosts for a particular time period. Users in these environments are given

a budget (i.e. a quota of CPU-hours) to use. Since this is valuable time, it is

107

Chapter 4. Programming Methodology and Application Architecture

important from the user’s perspective to use it effectively. The scheduler bills the

user and deducts from his budget an amount proportional to the total time and

number of nodes his job consumes. The user is billed for the time used and not

the time he initially requested. Thus if a job terminates early the user is only

billed for the time during which his job actually ran. From a user’s perspective,

the goal is to minimize the cumulative idle time for all nodes during a batch job

execution.

In traditional parallel applications, such as MPI [69] programs, the number of

processes spawned is sufficient to ensure that all nodes have a slice of the work

assigned to them during the entire duration of the execution. All nodes start and

stop execution simultaneously. This scenario leads to an efficient use of the batch

jobs. GridSAT is not a traditional parallel application. In the case of GridSAT,

the number of jobs (i.e. sub-problems) varies during execution. Actually, when

a new large batch job becomes available the number of workers might be much

larger than the number of available sub-problems. The goal of GridSAT is to

make good use of the newly available and valuable processing power. It is possible

to immediately split a sufficient number of sub-problems. This will lead to more

efficient use of batch jobs but it may also affect negatively the solver’s performance.

108

Chapter 4. Programming Methodology and Application Architecture

If GridSAT, however, waits till enough problems split to populate all the batch

nodes it may lead to an inefficient use of super-computing nodes.

In GridSAT, initial batch job requests are large with a high number of nodes

and long durations. This leads to a long waiting period in the scheduler’s batch

queue. Thus if a job is not solved after this long waiting period than it most

probably is a hard problem. Thus batch jobs are only used when the problem

is hard. When a batch job starts execution, GridSAT uses problem migration

to achieve more efficient use of batch nodes. Numerous remote GridSAT nodes

will migrate immediately to occupy batch nodes. At this point, splitting happens

at higher rates because super-computing nodes are linked by a high performance

network. Also the number of active nodes (i.e. those with sub-problems) will

increase exponentially. This happens because the number of new sub-problems

is increased in proportion to the number of existing active solvers. Therefore,

problem migration leads to a more efficient use of batch jobs.

109

Chapter 4. Programming Methodology and Application Architecture

Figure 4.2: GridSAT components and their internal and external interactions.
The external components and systems that GridSAT uses, such as the Globus
MDS and the NWS, are shown in clouds.

4.5 Concurrently Running Multiple GridSAT In-

stances

In a computational grid environment resources may be shared by multiple ap-

plications. As these applications may have conflicting needs they tend to stress

the different components of the computational infrastructure. For example, the

memory and CPU in computational nodes may be exhausted by the demands of

the grid applications. Similarly networks can be saturated as different applica-

tions communicate internally between their distributed components. Under such

conditions the resources may be overloaded and become unresponsive. Such re-

110

Chapter 4. Programming Methodology and Application Architecture

sults are not desirable and may be disruptive to those applications that wish to

make use of a given resource. In order to increase efficiency of the resources and

the Grid applications, these applications should be designed to avoid overloading

the computational infrastructure.

A well designed grid application should avoid depleting a computational re-

source to the point where it becomes nonfunctional. A grid application should

accomplish this goal in order to curb any disruptive effects its activity could have

on the computational environment. This goal could be accomplished by monitor-

ing certain vital characteristics and taking appropriate measures when possible

to alleviate any problematic symptoms. A well known example for sharing com-

mon media is the TCP backoff mechanism [94, 113] that allows several senders to

fairly share a common communication medium. In addition, an application should

tolerate the failures of resources because such failures are not always avoidable.

GridSAT is a resource intensive application in terms of host memory and CPU

as well as network load. Running multiple GridSAT instances simultaneously will

further load a given set of resources. There are many possible scenarios where

multiple GridSAT instances can be deployed simultaneously. For example, a user

might want to solve many SAT instances but it is not clear whether the execution

should be sequential or simultaneous in order to solve as many of the problems as

111

Chapter 4. Programming Methodology and Application Architecture

possible. Also many users may share a common set of computational nodes for

the purpose of solving SAT problems.

One possible solution is to schedule resources using a batch system where

each GridSAT instance will be given exclusive access to a subset of the nodes

for a given time period. This solution is a common method used for allocating

computational resources because it limits the effects of one application on another.

Such a solution,however, is not totally effective since applications still share the

network and other services. In addition, if the SAT instance being solved does

not use all the allocated resources many nodes will remain idle. Thus valuable

computational power is wasted because it idle nodes are not available for use by

other applications.

Another possible solution would be to allow the GridSAT instances to execute

on the resources simultaneously. This solution is more suitable for GridSAT since

the number of resources used by the application varies. Thus executing more than

one GridSAT instance would make it possible for those resources that are idle to

be used to solve some other SAT instance.

In the next two sections we describe the mechanisms used by GridSAT to

enable multiple instances of the applications to effectively share a set of resources.

112

Chapter 4. Programming Methodology and Application Architecture

4.5.1 Adaptive Memory Allocation

The size of memory available to a solver is an important factor in determining

its efficiency. A GridSAT solver has little utility for resources with heavily loaded

memory. When a solver has little memory available it cannot store many learned

clauses, thus limiting its effectiveness. In this case splitting the problem with a

memory starved resources is not likely to improve time to solution. At the same

time, these starved resources will experience additional depletion of whatever

little available memory they still have. This may in turn adversely effect the

performance of other applications already executing on that resource. Thus, each

GridSAT client is configured to only use resources when a minimum memory size

is available. Actually, the client ensures that a configurable memory size (50MBs

by default) is free after the instantiation of the client. Allowing for free memory

allows other small programs such as Linux shells and commands to be initiated

so that the resource is still responsive.

The GridSAT solver starts by allocating a clause database of minimal size.

As the solver progresses it increases the size of the clause database incrementally

to allow for more learned clauses to be stored. The size of the database cannot,

however, grow indefinitely. The solver is limited by the memory available on the

113

Chapter 4. Programming Methodology and Application Architecture

host. The size of the free memory is dynamic and depends on how much memory

the applications running currently on the host are using.

Each client implements a local memory sensor based on NWS memory sensors.

This enables the client to get instant information about the size of free memory

on the host. When the solver detects that the amount of memory is far lower than

a certain threshold (50MBs by default) it shrinks its clause database so that the

size of free memory is not below the desired limit. The client can later expand its

memory usage if more memory is available.

At the start of the execution clients can use all the memory available. However,

when a new client wishes to share the same resource, the clients already executing

on that resource shrink their memory usage. If enough memory is freed the new

client can instantiate successfully. However, in some cases not enough memory

will be available so the new client will not be able to use that resource. The

overall effect is that only a maximum number of clients execute per host. At the

same time each of the clients is allocated enough memory to make progress. This

strategy avoids the scenario where many clients share the resource but none of

them is making significant progress.

If the number of GridSAT instances is large enough the resources may be

saturated. In this case all resources are busy and no additional sub-problems can

114

Chapter 4. Programming Methodology and Application Architecture

be successfully split. Thus each GridSAT instance temporarily suspends splitting.

This decision is made in a distributed manner without a central scheduler or

GridSAT masters communicating with each other.

4.5.2 Resource Scheduling

Each GridSAT instance keeps track of its own resource usage and will not

launch more than one client per resource. GridSAT uses NWS to receive infor-

mation about CPU and memory usage of resources. The default configuration

of NWS sensors updates resource parameters every ten seconds. This period

represents the time interval during which resource information and performance

characteristics might change without the application becoming aware of it. We

call this period the Resource Information Update Period (RIUP).

During this period the various GridSAT schedulers might have to make many

decisions concurrently. The characteristic of a given resource (CPU usage and

memory available) may change within the RIUP because of resource allocation

decisions and activity by other application. In fact, many GridSAT instances can

initiate many new clients within a few seconds because each client instantiation

only takes a few milliseconds. Thus the monitoring information could become

stale during each time interval before the sensors update their data.

115

Chapter 4. Programming Methodology and Application Architecture

In the initial implementation of GridSAT, we did not take any precautions to

ensure that running many GridSAT instances will not result in negative effects.

All GridSAT instances base their resource allocation on a common scheduling

policy and resource information obtained from NWS. The GridSAT scheduler

ranks resources based on their available CPU and memory. Thus when many

GridSAT instances start selecting least loaded resources using stale data they will

make similar decisions. As shown later in the results section 5.5.1, this naive

strategy causes a “herding effect” where all masters select the same resource for

starting new clients. This has a negative effect on the performance of the solvers

since they are overloading one resource while other resources are unused. For

example, at the start many resources are free so the different GridSAT instances

will make the same selection decision while there are other equivalent options.

The herding effect might also occur if a few resources are selected for launching

new clients compared to the number of GridSAT instances requesting new clients

at any one moment. Situations like these make the herding effect even more

pronounced.

After making this observation our goal was to avoid the herding effect while

making little modification to the GridSAT scheduler. An additional challenge

was to provide a single implementation that could be used by all GridSAT in-

116

Chapter 4. Programming Methodology and Application Architecture

stances. Also we wanted the solution to avoid explicit synchronization between

the GridSAT instances. Explicit synchronization can be implemented through

direct communication between multiple GridSAT instances or through a global

entity. Avoiding explicit synchronization and information sharing is important

for two main reasons. The first one is scalability because direct communication

or a global synchronization approach would have a high overhead and would scale

to a large number of application instances. Second, using explicit synchronization

may not always be possible because it might be adversely affected by other grid

applications that do not use the same solution.

The solution GridSAT adopts solves the herding effect problem using a two

step approach. First, the resource selection chooses all resources that are within

10% of the highest ranked resource. The specific resource used to start the new

client is selected randomly from this set. This method ensures that the least

loaded resources are used to launch new clients. At the same time when the dif-

ference between resources is not significant it allows the master to choose randomly

amongst those resources.

This solution minimizes the chances of occurrence of herding but does not

completely avoid it. The “herding effect” is still likely to occur when many re-

sources are similarly loaded. Such a condition exists for example, at the start of

117

Chapter 4. Programming Methodology and Application Architecture

execution where many resources are free while many GridSAT instances are fre-

quently expanding their resource usage. As shown in the results section 5.5.1, the

herding effect was significantly reduced. As time progresses, GridSAT instances

will request new resources less often and at different moments thus reducing the

possibility of a resource being selected by many masters at once. Another condi-

tion that GridSAT tries to address is when a large number of GridSAT instances

are competing for few resources. In this case, we cannot completely avoid the

herding effect. The solution we adopt allows the GridSAT instances to compete

for the resource and only some of them will be able to successfully start a new

client. The other GridSAT instances react by incrementally waiting for longer

intervals before trying again to start a new client. The result is that when all

resources are busy GridSAT instances in need of more resources will wait and not

interfere with other running applications.

4.6 Programming Methodology

A major challenge before implementing the various application components

was to develop an implementation strategy. The final implementation aims at

118

Chapter 4. Programming Methodology and Application Architecture

using all the available grid resources efficiently while dynamically adjusting to the

application behavior and resource needs.

Given the resource usage patterns of GridSAT, which are typical for a true

Grid application, we had to choose an implementation strategy that would sat-

isfy these requirements. There are several technology choices to select for the

implementation of the application. Such options include, among others, MPI [69],

Globus [42], vanilla Web Services [118] and later improvements such as WSRF [73].

These technologies represent low level programming interfaces. Other projects

such as GAT [13] aim to provide a simplified and unified interface to other Grid

middleware.

According to our experience with GridSAT we have learned that a successful

implementation technology should allow for three pivotal capabilities: dynamic

resource pool management, error detection/reporting, and universal deployment.

The first capability is to allow the use of a dynamic resource pool. This

feature, for example, was not available in MPI-1 which did not allow for dynamic

Communicators. MPI-2 has introduced extensions to allow for dynamic creation

and destruction of communicators. Globus and Web services also allow for a

dynamic set of resources.

119

Chapter 4. Programming Methodology and Application Architecture

The second capability is error detection and reporting. Since GridSAT runs

for extended periods of time using a set of geographically distributed resources,

network and resource failures are more frequent. Therefore in order to implement

this application we need a means to detection of these errors. From the perspective

of the application, the distinction between resource and network failures is not

important. It suffices for the application to obtain a feedback if a certain operation

is not successful after a certain time period.

Error detection and recovery are very important because in our experience all

resources experience a failure at some point. Even those resources that are profes-

sionally maintained can become unresponsive from the application’s perspective.

Those resources that do not experience hardware and software failures usually

have routine preventive maintenance periods or a combination of software and

hardware upgrades. From the point of view of the application these are “sched-

uled” or “anticipated” failures. Without rigorous error handling the application

would not be able to run for extended periods as shown later in the results section.

Different programming tools provide some form of error handling. MPI-1

allows for error handling in a limited scope which is expanded further in MPI-

2. Globus GRAM [44] allows for error handling and call-back functions for job

management. In Web Services, WS-Notification [50], WS-BaseFaults [101] and

120

Chapter 4. Programming Methodology and Application Architecture

related standards could be used to provide this functionality. Other high level

projects such as GAT [13] mirror, albeit in a simplified manner, the error detection

capability of the underlying middleware.

The desirable error handling policy for our application is to provide a time

period for some actions after which some form of error handling should be per-

formed. Sometimes if an action fails, then all that is needed is to retry it. In other

cases, it is assumed that the resource (or the connecting network) has failed. This

form of error handling is not available for the grid technologies mentioned above;

therefore it needs to be implemented at the application level.

The last desirable capability for a suitable grid technology is universal deploy-

ment. This is not only a characteristic of the technology but of the computational

environment as well. A widely deployed technology is advantageous because it re-

duces the development overhead since one version can be deployed on all available

resources. In our experience, there was no grid technology that was universally

adopted and deployed enabling us to combine all computational resources at our

disposal. Thus a multi-infrastructure approach such as EveryWare [115, 114] was

necessary.

Furthermore, in order to deploy our application over a large set of resources,we

had to interface with many types of resource managers. For example, resources

121

Chapter 4. Programming Methodology and Application Architecture

could be managed by one of many batch schedulers like PBS and Condor [104] or

could be simply shared. Our goal was to use all these resources simultaneously

regardless of which systems managed them. This is accomplished by determining a

general job description that can be instantiated differently using specific launchers

for each resource manager. For instance, shared resources can be accessed directly

using SSH. Batch systems, however, are accessed by submitting a batch script with

syntax tailored to the scheduler used. Whenever Globus is deployed we use it to

launch and monitor job submissions.

4.6.1 GridSAT Implementations

We believe that many of these technologies could be used to develop GridSAT.

In fact, we have developed a previous versions of GridSAT called GrADSAT [27]

(note the “A” in the spelling) using GrADSoft. GrADSoft is a set of program-

ming abstractions where the baseline grid infrastructure is provided by Globus

and the NWS. GrADSoft is part of the Grid Application Development Software

(GrADS) project [18, 51] which is a comprehensive research effort studying grid

programming tools and application development. To facilitate experimental ap-

plication research and testing, the project maintains a nationally distributed grid

of resources for use as a production testbed. Since the GrADS tools were univer-

122

Chapter 4. Programming Methodology and Application Architecture

sally deployed on this testbed we were able to deploy our application with little

effort on the entire testbed.

The current version of GriDSAT uses EveryWare [115, 114] a very portable

communication library. EveryWare has been designed explicitly to manage the

heterogeneity and dynamism inherent in grid resource environments. EveryWare

can be easily deployed as library on all the resources. In addition, all communi-

cation calls use a timeout argument, as desired, for error detection.

The resource management system interfaces with resources that use batch

systems as well as desktop machines that are accessible through SSH. All resource

related operations have been implemented to allow for a specific timeout. If the

resource is not responsive after the timeout period expires, then the resource is

considered unreachable.

123

Chapter 5

Experimental Results

In this chapter we evaluate the performance of the GridSAT solver from five

different perspectives. First we study the effect of changing the fraction of clauses

shared during the split on the GridSAT performance. Second, we compare the

merging strategies that were presented in section 3.3. These two sets of experi-

ments help determine what parameters are used to increase the solver’s efficiency.

Third, we present empirical evidence that the GridSAT solver outperforms the

original sequential solver zChaff. Fourth, we showcase the ability of GridSAT

to solve some of hardest problems using a large collection of computational re-

sources. Finally, we present experimental results for running multiple GridSAT

instances to demonstrate the ability of the application to be efficient even in a

highly competitive computational environment.

124

Chapter 5. Experimental Results

5.1 Splitting strategy

5.1.1 Experimental Setup

In these experiments we determine what fraction of the clause database is

shared during the splitting process. We use 31 problems from the SAT competition

benchmark. The splitting fraction is varied from 0% to 100% in increments of 20%.

It is important to note that the fraction of shared clauses refers to the number of

clauses and not to their total size. The total size of the database here is counted

as the total number of literals in all clauses in addition to a constant per clause

overhead. As an example, sharing the small 50% of the clauses will result in

sending less than 50% of the total size of the database. The performance of the

solver is based on the total turnaround time of the entire problem set.

For these experiments we used 32 desktop machines where each host used a

2.20 GHz Intel Xeon CPU and 512 MB of RAM. The machines were exclusively

used by GridSAT during these experiments.

5.1.2 Results

Table 5.1 shows the results for six experiments. Each experiment was con-

ducted with six different values of the splitting fraction. For each experiment

125

Chapter 5. Experimental Results

Shared Ratio(%) 0 20 40 60 80 100

Experiment 1
Runtime(sec) 31955 37426 31077 30002 36302 34308
% performance loss 6.5 24.7 3.5 (min) 21.0 14.4

Experiment 2
35471 29550 26599 31265 29087 33614

% Performance loss 33.4 11.1 (min) 17.5 9.3 30.1

Experiment 3
Runtime(sec) 30815 35824 30618 30946 28464 44889
% Performance loss 8.3 25.9 7.6 8.7 (min) 57.7

Experiment 4
Runtime(sec) 41938 38818 32943 31807 32332 33107
% Performance loss 31.9 22.0 3.6 (min) 1.7 4.1

Experiment 5
Runtime(sec) 30374 30807 29549 29663 32329 29718
% Performance loss 2.8 4.3 (min) .4 9.4 .6

Experiment 6
Runtime(sec) 39761 33592 34297 34475 33717 31715
% Performance loss 25.4 5.9 8.1 8.7 6.3 (min)

Table 5.1: Selecting ratio of clause database to send after splitting. The runtimes
are in seconds for a benchmark of 31 problems. No clause sharing was allowed in
these experiments.

126

Chapter 5. Experimental Results

the table shows two rows. The first row displays the total runtime for the entire

benchmark. For the second row we select the minimum runtime from the first

row, which we denote as min, and then we calculate the percent performance loss

of the other runtimes relative to it. The percent performance loss for a given

runtime rt is calculated as: % performance loss = (rt − min)/min ∗ 100.

These experiments evaluate different parameter values for sharing clauses dur-

ing the splitting process. The communication overhead during splitting is very

significant since the messages can be 100s of MBs in size. Thus determining what

fraction of the database to send can reduce unnecessary network load. According

to these experiments, the best ratio to share during splitting varies from 40% to

100%. The variation of the best ratio is expected given that the GridSAT solver

is non-deterministic when solving a given problem instance. These experiments

show, however, that sharing the learned clauses leads to shorter time to solution

most of the time. The best fraction of the clause database to share during splitting

is around 60% to 80%. Thus sharing most of clauses is most of the time better

than sharing all of it. The reason is that sharing all the database leads the solver

to rank the variables in the same order. Therefore it is susceptible to making the

same decisions in the future. However, sharing less of the database causes the

solver to make different decisions. The overall effect we believe is similar to ran-

127

Chapter 5. Experimental Results

domization which is extensively used by most sequential solvers. More over using

80% of the clauses leads to a reduction of more that 50% in the message size. The

significant reduction in message size is due to the fact that the fraction of clauses

GridSAT is sharing consists in the smallest clauses. The results is significant re-

duction of the communication overhead while sharing most of the clauses. For the

next set of experiments we chose to set the splitting fraction value to 80%.

5.2 Comparing Clause Sharing Strategies

5.2.1 Experimental Setup

In this set of experiments we study the effectiveness of the three different learn-

ing methods: the lazy method, the immediate method and the periodic method.

These methods use different algorithms to share intermediate clauses as described

in section 3.3. The experiments are conducted using a set of 33 benchmark prob-

lems used by the different satisfiability competitions [89]. The experiments were

conducted on a set of 32 dedicated nodes on a cluster available at the University

of California, Santa Barbara (UCSB). The cluster nodes are Pentium IV CPUs

with 2.66 GHz frequency and 2 GB of memory. Each experiment uses ten nodes

and one of the three methods. The total number of experiments is 297 = 33

128

Chapter 5. Experimental Results

Method Lazy Immediate Periodic

Maximum size of shared clause = 5

Total 76776 68620 64675
% Speedup (base) 10.6 15.8

Maximum size of shared clause = 10

Total 71860 67292 63400
% Speedup (base) 6.4 11.8

Maximum size of shared clause = 15

Total 69527 67292 63400
% Speedup (base) 3.2 8.8

Table 5.2: GridSAT results comparing all three learning methods with maximal
learn clause size equal to 5, 10 and 15.

problems ∗ 3 shared clause sizes ∗ 3 methods. These experiments are grouped

into three sets where the maximal size of a shared clause is varied between 5, 10

and 15.

5.2.2 Results

Table 5.2 shows experimental results for using a maximal size of shared clauses

of 5, 10 and 15 respectively. The table contains three sections, one for each of

size of shared clauses used. Each section shows to total time for each of the three

methods and the relative speed-up compared to the lazy method.

From inspecting each of the three experimental sets, we learned that no par-

ticular method outperformed the other two methods all the time. Instead each

129

Chapter 5. Experimental Results

method outperforms the other two methods for a subset of the problems. We use

the total runtime of all the problems to compare the efficiency of the methods.

Using the total runtime for all problems in a benchmark is the standard method

for comparing solvers.

These experiments help us decide which merging strategy we should use for

the GridSAT solver. The merging strategy is important in improving the solver’s

performance. We notice that in each case both the immediate and periodic meth-

ods outperform the lazy method. The immediate method outperforms the lazy

method by an average of about 7%. The periodic method was the most efficient

and showed a speedup of about 12% on average compared to the lazy method.

We also notice that the speedup decreased as the size of maximal shared clause

increased. These experiments show that using the periodic method gives the best

overall performance.

5.3 Comparison to Sequential Solver

5.3.1 Experimental Setup

The purpose of these experiments is to compare the parallel solver GridSAT

to the initial version as implemented by the sequential solver zChaff. In order to

130

Chapter 5. Experimental Results

outperform the sequential solver, GridSAT should only use additional resources

when needed. In addition, GridSAT should amortize the overhead of using any

additional resources.

In these experiments we used 34 machines from the GrADS testbed and an

additional machine (that we could completely instrument) as a master node. The

machines were distributed among three sites: two clusters (separated by cam-

pus networking) at the University of TN, Knoxville (UTK), two clusters at the

University of Illinois, Urbana-Champaign (UIUC) and 8 desktop machines at the

University of San Diego (UCSD). The master node was also at UCSD. The ma-

chines had varying hardware and software configurations, with one of the UTK

clusters having the best hardware configuration. For each zChaff (single machine)

test we used a dedicated node from this cluster.

As a set of test applications, we chose a suite of challenge problems used

to judge the performance of automatic SAT solvers at the SAT2002 conference

[86]. These benchmarks are used to rate all competing solvers. They include

industrial and hand-made or randomly generated problem instances that can be

roughly divided into two categories: solvable and challenging [87]. The solvable

category contains problem instances that SAT solvers have been known to solve

correctly. They are useful for comparing the speed of competitive solvers since it is

131

Chapter 5. Experimental Results

likely that each solver in the competition will be able to generate an answer when

the competition is held. Alternatively, the challenging problem suite contains

problem instances that have yet to be solved by an automatic method or that

have only been solved by one or two automatic methods, but are nonetheless

interesting to the SAT community. Of these problems, many have solutions that

are known through analytical methods, but several are open questions in the field

of satisfiability research.

In these experiments the maximum size of learned clauses shared is 10. Learned

clauses bigger than 10 are not shared. This size allows for sharing of important

clauses that would have maximal effect without increasing significantly the over-

head of clause sharing. For the solvable problems we set an overall maximum

execution time out to a total of 6000 seconds for GridSAT. That is, if the entire

problem is not solved in 6000 seconds, the application gives up and terminates

without a definitive answer. For the challenging benchmarks, we double the overall

time out to 12000 seconds.

In all of the experiments, we compare GridSAT to zChaff running in dedicated

mode on the fastest processor to which we have access with an 18000 second total

time out. For the challenging set we used 12000 seconds as the timeout value.

Note that in the actual 2002 competition, using faster machines than the fastest

132

Chapter 5. Experimental Results

we had available, zChaff was only able to complete a few instances from this set

using a six-hour (21600 second) time out. Thus we believe that the comparison

between the two using the machines in the GrADS testbed offer useful insight into

the additional capability provided by GridSAT.

5.3.2 Results

In this section we present experiments comparing GridSAT to the best sequen-

tial solver zChaff (according to the SAT 2002 competition). The GridSAT and

zChaff solver were run on a set of files that are grouped into three categories. The

first category represents the those problems which were solved by both GridSAT

and zChaff. The second category represents those which were solved by GridSAT

only but zChaff was not able to solve. The final category represents those problem

which were left unsolved since neither GridSAT nor zChaff could solve them. In

fact these problems were not solved by any other solver according to the SAT

2002 competition.

Now we describe the contents of each of the tables 5.3, 5.4 and 5.5. The

second column contains the solution to the instance: satisfiable(SAT), unsatisfi-

able(UNSAT), or unknown. We have marked those problem instances that were

previously open satisfiability problems with an asterisk (*). If a problem was

133

Chapter 5. Experimental Results

File name UNSAT/ zChaff GridSAT Speed Max
SAT/* (sec) (sec) -Up clients

6pipe UNSAT 6322 4877 1.23 34
avg-checker-5-34 UNSAT 1222 1107 1.10 9
bart15 SAT 5507 673 8.18 34
cache 05 SAT 1730 1565 1.11 34
cnt09 SAT 3651 1610 2.27 12
dp12s12 SAT 10587 532 19.90 8
homer11 UNSAT 2545 1794 1.42 10
homer12 UNSAT 14250 4400 3.24 33
ip38 UNSAT 4794 1278 3.75 11
rand net50-60-5 UNSAT 16242 1725 9.42 20
vda gr rcs w8 SAT 1427 681 2.10 15
w08 14 SAT 14449 1906 7.58 34
w10 75 SAT 506 252 2.01 2
Urquhart-s3-b1 UNSAT 529 526 1.01 4
ezfact48 5 UNSAT 127 196 0.65 1
glassy-sat-sel N210 n SAT 7 68 0.10 1
grid 10 20 UNSAT 967 3165 0.31 12
hanoi5 SAT 2961 1852 1.60 33
hanoi6 fast SAT 1116 831 1.34 4
lisa20 1 a SAT 181 243 0.75 2
lisa21 3 a SAT 1792 337 5.32 4
pyhala-braun-sat-30-4-02 SAT 18 84 0.21 1
qg2-8 SAT 180 224 0.80 2

(*): problem solution is unknown

Table 5.3: Problem solved by both zChaff and GridSAT from the SAT2002
Benchmark Results usning the GrADS testbed. GridSAT shows a significant
speedup for the majority of the problems.

134

Chapter 5. Experimental Results

File name SAT/UNSAT/ zChaff GridSAT Max
UNKNOWN (sec) (sec) clients

7pipe bug SAT TIME OUT 5058 34
dp10u09 UNSAT TIME OUT 2566 26
rand net40-60-10 UNSAT TIME OUT 1690 30
f2clk 40 UNSAT(*) TIME OUT 3304 23
Mat26 UNSAT MEM OUT 1886 21
7pipe UNSAT MEM OUT 6673 34
comb2 UNSAT(*) MEM OUT 9951 34
pyhala-braun-unsat-40-4-01 UNSAT MEM OUT 2425 34
pyhala-braun-unsat-40-4-02 UNSAT MEM OUT 2564 34
w08 15 SAT(*) MEM OUT 3141 34

(*): problem solution previously unknown

Table 5.4: Problems from the SAT2002 Benchmark which were solved by Grid-
SAT only using the GrADS testbed

File name UNSAT/ zChaff GridSAT Max
SAT/* (sec) (sec) clients

comb1 * TIME OUT TIME OUT 34
par32-1-c SAT TIME OUT TIME OUT 34
rand net70-25-5 UNSAT TIME OUT TIME OUT 34
sha1 SAT TIME OUT TIME OUT 34
3bitadd 31 UNSAT TIME OUT TIME OUT 34
cnt10 SAT TIME OUT TIME OUT 34
glassybp-v399-s499089820 SAT TIME OUT TIME OUT 34
hgen3-v300-s1766565160 * TIME OUT TIME OUT 34
hanoi6 SAT TIME OUT TIME OUT 34

(*): problem solution is unknown

Table 5.5: Remaining unsolved problems by GridSAT from the SAT2002 Bench-
mark Results using the GrADS testbed

135

Chapter 5. Experimental Results

originally unknown and was later solved by a solver, then we still keep it marked

with an asterisk for completeness. The last column shows the maximum number

of active clients during the execution of an instance. For all instances this num-

ber starts at one and varies during the run. The maximum it could reach is 34,

the number of hosts in the testbed, but the scheduler may choose to use only a

subset. This column records the maximum that the scheduler chose during each

particular run. When a problem is solved the number of active clients collapses

to zero. Speedup is measured as the ratio of the fastest sequential execution time

of zChaff (on the fastest, dedicated machine) to the time recorded by GridSAT.

Table 5.3 represents the set of instances which were solved by both zChaff and

GridSAT (taken from both the solvable and challenging categories of the SAT2002

benchmark suite since zChaff was able to solve some of the latter). On the small

instances (ones that complete in less than 300 seconds) where communication costs

are significant we notice that zChaff running on a single machine outperforms

GridSAT. The slowdown however is not very significant because the actual time

is short. For instances with long running times GridSAT shows a wide range of

speed-ups ranging from almost none to almost 20 for dp12s12. Because GridSAT

was using more machines it was capable of covering much more of the search

space even when the run times were comparable. In only one relatively long

136

Chapter 5. Experimental Results

running instance, grid 10 20, did GridSAT show a slowdown. The maximum

number of active clients for the entire problem only reached a maximum of twelve

during its execution. With this little sharing, parallelism did not seem to improve

performance. This particular problem comes from a non-realizable circuit design

illustrating the data-dependent nature of SAT solver performance results.

Table 5.4 represent those SAT instances that GridSAT was able to solve while

zChaff either timed-out or ran out of memory. In addition, only three out of the

ten problems in this category were solved by another solver during the SAT2002

competition [88]. Note that zChaff was crowned the overall winner because of

its cumulative performance across benchmarks. Individual instances may have

been better solved by particular solvers, but because the competition attempts to

identify the best general method, aggregate time is used, and zChaff is the best

on aggregate.

Table 5.5 shows the remaining seven instances what have only been solved by

GridSAT to the best of our knowledge. Three of the solved instances were part of

the challenging benchmark for which results were originally unknown constituting

new domain science in the field of satisfiability. The other four had known an-

alytical answers, but no automatic generalized solver had been able to correctly

137

Chapter 5. Experimental Results

generate them indicating the additional solution power that a Grid implementa-

tion brings to the field.

These results show that GridSAT provides a speedup compared to existing

sequential solvers. This speed up is not linear with respect to the number of

resources used because the DPLL algorithm used to solve SAT instances is a

branch-and-bound algorithm. In such search based algorithms the time to solution

is not always proportionally related to the number of times the search space is

divided. For example, dividing the search space in half may not cause a two-

fold speedup in time to solution. In fact, the two sub-problems may have very

different times to solution. Actually there is no theoretical guarantee that dividing

the search space will result in speedup because of all the heuristics involved. In

practice, however, partitioning the search space causes performance improvements

most of the time. The contribution of GridSAT is not only to provide speedup over

sequential solvers but also to enable the solution of problems that were previously

unsolved as shown by the next set of experiments.

The aim of these experiments was to show if GridSAT would realize better

performance compared the zChaff. The results in these tables show that GridSAT

was able to solve those problems zChaff could solve faster. In addition, GridSAT

was able to solve problems that zChaff was not able to solve. In fact these problems

138

Chapter 5. Experimental Results

were not solved by any other solver. There are, however, those problems that were

left unsolved by GridSAT as well as other solvers.

We also tried to compare GridSAT to other parallel solvers. The only other

parallel solver we had access to was ParaSatz [58]. ParaSatz would timeout on all

instances we used from the benchmark. The reason is that ParaSatz does not use

many of the new techniques which distinguish modern solvers.

5.4 Solving “Hard” Satisfiability Problems Us-

ing GridSAT

5.4.1 Experimental Setup

Since GridSAT is a true grid application, (robust, portable, heterogeneous,

pervasive, etc. [43]), we ran a set of experiments to show that GridSAT can run

for extended periods of time robustly using a wide variety of resources and also

solve previously unsolved hard satisfiability instances.

In these experiments we simultaneously use computational resources that be-

long to collections of individual machines, small size research clusters and super-

computing scale clusters. The computational resources we use are composed from

139

Chapter 5. Experimental Results

four main sources:(1) 40 machines from the GrADS [51] testbed located at Univer-

sity of Tennessee, Knoxville (UTK), University of California, San Diego (UCSD)

and UCSB, (2) Blue Horizon at San Diego Supercomputing Center (SDSC), (3)

TeraGrid site at SDSC, (4) TeraGrid site at National Center for Supercomputing

Applications (NCSA) and (5) DataStar at SDSC. The TeraGrid [105] project is

a multi-site national scale project which is aimed at building the worlds largest

distributed infrastructure for open scientific research.

During our experiments, none of the resources we used were dedicated to

our use. As such, other applications shared the computational resources with

our application. It is, in fact, difficult to determine the degree of sharing that

might have occurred across all of the available machines after the fact. In batch

controlled system such as Blue Horizon, Data Star and the TeraGrid, the queue

wait time incurred is highly variable because of jobs submitted by other users.

Thus, if it were possible to dedicate all of the VGrADS resources to GridSAT,

we believe that the results would be better. As they are, they represent what is

currently possible using non-dedicated Grids in a real-world compute setting.

These experiments also use a more diverse set of resources for longer periods

of time (up to a month in duration) and multiple job requests. We chose a

set of challenge problems from both [88] benchmarks. These benchmarks are

140

Chapter 5. Experimental Results

used to judge and compare the performance of automatic SAT solvers at the

annual SAT conference. All the problems in the benchmarks are shuffled to ensure

that submitted benchmarks are not biased in favor or against any solver. These

benchmarks are used to rate all competing solvers. They include industrial and

hand-made or randomly generated problem instances that can be roughly divided

into two categories: solvable and challenging. The solvable category contains

problem instances that some SAT solvers have solved correctly. They are used for

comparing the speed of competing solvers. Alternatively, the challenging problem

suite contains problem instances that have yet to be solved by an automatic

method or which have only been solved by one or two automatic methods, but

are nonetheless interesting to the SAT community. Some of these problems have

known solutions that are known through analytical methods (i.e. the problem

has a known solution by construction), but several of these problems are open

questions in the field of satisfiability research.

In these experiments, we only chose problems from the challenging set. These

problems were deemed hard by all participating solvers in both the 2002 and 2003

SAT competitions. We investigate seven previously unsolved problems where three

instances are from the SAT 2003 benchmark category, and four are instances from

141

Chapter 5. Experimental Results

the SAT 2002 benchmark category, all of which we have not been able to solve

using previous versions of GridSAT.

This group of problems represent a variety of fields where problems are re-

duced to instances of satisfiability and solvers are used to determine the solutions.

The problems contain a pair of problems in FPGA routing and model checking.

These two disciplines benefit heavily from efficient SAT solvers. The remaining

problems are of theoretical nature. In addition, we set the absolute minimum

size of shared clauses to two and absolute maximum to 15. This range allows

for sharing clauses which would help prune the search space without significant

communication overhead.

Unlike previous experiments there was no timeout value set for the maximum

execution time. Every problem was run using different job description for the

batch systems. Jobs on the different batch queues were manually re-launched at

random intervals. Job re-submission could have been automated but we wanted

more control over rationing our limited compute budgets to specific experiments

based on their perceived progress. Experiments where GridSAT was making

progress were allotted bigger jobs with longer durations and more nodes. The

progress of the solver was judged by inspecting how often the checkpoints were

updated. We can also inspect the internal state of a particular solver using some of

142

Chapter 5. Experimental Results

the tools we developed. The VGrADS nodes were used during the entire duration

of each experiment unless the hosts experienced failures.

5.4.2 Results

The experimental results are summarized in Table 5.6. The first column con-

tains the problem file name. The second column indicates the field from which

this problem instance in obtained. The third column contains the solution to the

instance: satisfiable (SAT), unsatisfiable (UNSAT), or unknown. We have marked

those problem instances which were previously open satisfiability problems with

an asterisk (*). If a problem was originally unknown when the benchmark was

created and was later solved by one of the SAT solvers, then we still keep it

marked with an asterisk for completeness. The fourth column represents the total

wall-clock time that the problem was tried. Finally, the fifth and last column rep-

resents the solution obtained by GridSAT which is represented by SAT, UNSAT

or (-) if we terminated the experiment before GridSAT found an answer. Some

of these problems were terminated because it did not seem that GRidSAT was

making enough progress to warrant the use of valuable supercomputing resources.

Note that each problems can be continued later using its last checkpoint.

143

Chapter 5. Experimental Results

Table 5.6 shows that GridSAT was able to solve three problems all of which

were not previously solved. Two of the problems were found unsatisfiable and they

are both from the field of FPGA routing. The first problem k2fix-gr-rcs-w8.cnf was

solved using the VGrADS testbed only. Batch jobs which were submitted for this

experiment were canceled when the problem was solved. On the other hand the

second problem k2fix-gr-rcs-w9.cnf took much longer to solve, it took more than

two weeks. Table 5.7 gives a more detailed description of the resources used during

this experiment. For each job a number of GridSAT solver components were

launched as indicated in the last column of table 5.7. In table 5.8 a break down

of the CPU-hours used on each resource are tabulated. Note that the VGrADS

testbed machines were able to deliver a sizable amount of compute power because

they were available in a shared mode for the duration of the experiment.

The last problem cnt10 was also solved using the VGrADS testbed only under

similar circumstances to k2fix-gr-rcs-w8. We previously tried solving this problem

in [28] using the same testbed for four days in addition to Blue Horizon for 12

hours but were not successful. We believe the improvements made to the solver

and especially the new clause sharing method have helped achieve this result.

In order to illustrate further GridSAT’s success in using all the above variety

of resources mentioned earlier we present a section of a run using instance hanoi6.

144

Chapter 5. Experimental Results

This problem is a SAT representation of the Hanoi Towers problem using six disks.

A six day snapshot from a 23 day run is shown in figure 5.1 using logarithmic

scale. The figure shows several jobs from Blue Horizon, Data Star and TeraGrid

sites participating in the execution. This figure shows that GridSAT was able

to make use of the available resource when some of their nodes became available

and then continued to run after the nodes were taken away to serve other users.

GridSAT processes continue to run on the batch controlled resources until the

scheduler decides to terminate them. This abrupt termination has no effect on

the application which deals with these events as (scheduled) resource failures.

GridSAT was able to manage up to 350 processes running on different resources

as show in this figure.

Application Efficiency

One of the concerns about distributed applications in general is resource ef-

ficiency. The application should be able to make the utmost use of the compu-

tational power of the resources in spite of communication and synchronization

overhead. The application scheduler should ensure that resources exclusively as-

signed to the application are always doing useful work and are not idle. In this

145

Chapter 5. Experimental Results

section we discuss the efficiency of the GridSAT solvers by tracking their CPU

usage.

The satisfiability solver performs mostly integer, branching and load-store op-

erations. The number of floating point operations is very low (less than .1 FLOPS).

We present in figure 5.2 an estimate of the total number of instructions per second

during the same six day period. Since instrumenting GridSAT can cause signif-

icant slow down, we conducted some benchmarking on some machines at UTK

to determine the average efficiency of the solver. Since the solver code is mostly

sequential, we assume that at the maximum only one instruction per cycle can be

finished by the processor. The determined efficiency is 70%. We estimated that

other hardware and OS combinations will exhibit equal efficiencies. The number

of operations provided by a resource is estimated to be the product of its peak per-

formance and the estimated efficiency. The total number of instructions in figure

5.2 is the sum of operations of all active resources. We notice that the VGrADS

testbed is able to deliver about 20 Billion instructions per second (IPS). In

the middle of the graph, there is a batch job from Blue Horizon which failed sud-

denly while joining the GridSAT execution. This might have happened because

the Blue Horizon machine became unavailable for scheduled maintenance. The

146

Chapter 5. Experimental Results

total number of IPS was multiplied by more than five times when some batch jobs

became active. It reached up to 110 Billion IPS.

Another measure of performance, is how much of the batch job maximum

computational power is actually used by GridSAT processes. Most other parallel

jobs run on all the processes from start to finish with little overhead. In this case,

batch jobs are efficiently used. In the case of GridSAT, however, there are two

main sources of inefficiency. First, some jobs might wait ideally at the start. Batch

jobs usually include a large number of processes. Some of these processes have to

wait until a sufficient number of splits occur to generate new sub-problems for all

the newly created solvers. Second, some batch processes may contain idle solvers

for a period of time after they solve the previously assigned sub-problem. The

solver in this case, waits until it is assigned a new sub-problem by the master. For

the first job in figure 5.1, which is a large 100-node job, the efficiency is 98.9%.

Thus GridSAT was able to use batch jobs efficiently. The main reason is that

batch jobs usually wait in the batch queue for a long time before executing. Thus

by the time the job is executed, GridSAT was unable to solve the problem because

it is hard. This means that batch jobs are only used when the problem is in deed

hard. It is possible that for certain problems, the efficiency of batch jobs might

147

Chapter 5. Experimental Results

File name SAT/UNSAT/* Time GridSAT Result
3bitadd-31(T) UNSAT 8 days -
k2fix-gr-rcs-w8(F) * 83261 sec (23 hours) UNSAT
k2fix-gr-rcs-w9(F) * 14 days and 8 hours UNSAT
cnt10(F) SAT 13134 sec (4hours) SAT
comb1(M) * 11 days -
f2clk50(M) * 9 days -
hanoi6(T) SAT 23 days -

(*): problem solution initially unknown
(T): Theoretical
(F): FPGA Routing
(M): Model Checking

Table 5.6: GridSAT results using VGrADS testbed, Blue Horizon, Data Star
and TeraGrid. All these problems were not previously solved by any other solver.

be low. In this case, future versions of GridSAT might monitor the batch job

efficiency to determine whether and when a job is to be terminated.

During our experiments, the Blue Horizon super-computer was being decom-

missioned and DataStar was released as its replacement. GridSAT was able to

continue executing through this transition, starting on Blue Horizon and contin-

uing on Datastar. We continued to submit jobs to BlueHorizon but we did not

notice when it stoppped responding. The failure of this single (but important) re-

source which did not affect the already running experiments shows the robustness

of GridSAT.

148

Chapter 5. Experimental Results

Compute Job Job Node procs
resource count dur.(hr) count /node
BlueHorizon 2 10 100 3
Blue Horizon 1 12 100 3
DataStar 2 10 8 11
TG@SDSC 1 10 40 2
TG@SDSC 1 12 40 2
TG@SDSC 3 10 4 2
TG@SDSC 4 5 4 2
TG@NCSA 3 10 4 2
TG@NCSA 4 5 4 2
in addition to 40 machines from VGrADS testbed for
14 days 7 hours and 44 minutes

Table 5.7: Batch jobs used to solve the k2fixgrrcsw9.cnf instance from SAT 2003
benchmark

Compute node- CPUs/ CPU
resource -hours node -hours
BlueHorizon 3200 8 25600
DataStar 160 11 1760
TG@SDSC 1080 2 2160
TG@NCSA 200 2 400
GrADS(*) 13750 1 13750
(*) machines were shared with other users

Table 5.8: CPU-hours per resource used to solve the k2fix-gr-rcs-w9.cnf instance
from SAT 2003 benchmark

149

Chapter 5. Experimental Results

Figure 5.1: A six day snapshot representing GridSAT processor count usage
from the different resources in logarithmic scale.

5.5 Running Multiple GridSAT Instances

In this section we present two sets of experiments. The first set of experiments

show that GridSAT instances are capable of sharing effectively a common set of

resources. The second set of experiments study the effect of executing multiple

GridSAT instances using a common resource pool on the turnaround time for

solving SAT problems.

150

Chapter 5. Experimental Results

Figure 5.2: Estimation of Instructions per second
usage for all resources during the same six day snapshot shown in figure 5.1.

5.5.1 Interactions between multiple GridSAT instances

Experimental Setup

In this section we study the interaction between two GridSAT instances sharing

the same resource pool. We present two experiments to study the effects of stale

information. The first experiment uses a version of GridSAT which is oblivious

to the effects of stale information. This version shows how the different GridSAT

instances suffer from the herding effect. The second experiment, however, uses

the techniques described in section 4.5 to mitigate the effects of stale resource

information.

151

Chapter 5. Experimental Results

Each of the GridSAT instances is started by instantiating the master on the

same machine. The master process has very low overhead and does not load the

host machine. Thus both master processes do not interfere with each other. Both

GridSAT instances are started with the same parameters. The maximum size for

shared clauses is set to 10 and the fraction of the clause database shared during

splitting is set to .8.

The resource pool is composed of a small cluster of 30 machines. Each of

the machines has a 2.66 GHz Intel Xeon CPU with 1 GB of RAM. During these

experiments the GridSAT scheduler used the Network Weather Service to monitor

resource CPU and memory. NWS sensors were started on all cluster hosts used

by GridSAT.

Results

In this section we present two experiments where we compare the behavior

of GridSAT resource scheduling before and after we employ measures to reduce

the effect of stale resource information. Refer to section 4.5 for details about how

GridSAT deals with stale information.

Figures 5.3 and 5.4 show the interaction between two GridSAT instances

sharing the same pool of resources. The figure shows how three types of resources

152

Chapter 5. Experimental Results

change as time progresses. The first resource type is free resource which are not

currently running any GridSAT clients. The second type are single resources which

are executing a single client from either GridSAT instances. The third resource

type are shared resources which is executing two clients one from each GridSAT

instance.

Figure 5.3: Interaction between two GridSAT instances sharing the same re-
source pool without mitigating the effect of stale information.

In the first experiment both instances were started simultaneously using NWS

and allowing the use of stale information. We notice that initially the number

of shared resources rises sharply. Actually both GridSAT instances are making

153

Chapter 5. Experimental Results

the same resource selection. Every increase in singly used resources is followed

by a decrease where all those resources become shared. This period lasts from 0

seconds to 380 seconds. This is undesirable ideally both instances should initially

be able to use separate resources. We noticed that this is due to the inability

of this version of GridSAT instances to detect which resources are really loaded.

This same problem persist through out the execution since there continues to exist

free resources while the two instances are sharing some of the other resources.

There are two additional phases in figure 5.3. The phase that extends between

380 and 920 seconds is characterized by all resources being in continuous use. In

this phase resources are either shared by both GridSAT instances or used by a

single instance. This phase shows that both instances are no more making the

same decisions. Because of the runtime non-determinism both instances are now

making their own decisions and at different times.

In the last phase, which extends from 290 to 1890 seconds, most of the resources

are in use. The change in the number of resources used by a single instance and

the number of shared resources are almost mirroring each other. This shows that

both instances are still making the same resource selection. The changes are not

exact mirrors of each other because of the GridSAT non-determinism at runtime.

This phenomena could be seen in the second phase but is not as pronounced.

154

Chapter 5. Experimental Results

Figure 5.4: Interaction between two GridSAT instances sharing the same re-
source pool while mitigating the impact of stale information.

In the second experiment GridSAT instances deploy measures described in

section 4.5 to mitigate the effects of stale resource information. The measures

GridSAT employ a modified resource selection process. Instead of selecting the

best resource to launch a new client, the GridSAT scheduler chooses randomly

from amongst a set of best resources.

Figure 5.4 shows the interaction between two GridSAT instances launched

simultaneously on the same set of resources as the previous experiment. This

155

Chapter 5. Experimental Results

figure shows three phases similar to figure 5.4. The characteristics and duration

of the three phase, however, is very different.

During the first phase from 0 to 400 sec the number of resources used by a

single instance increases first. Actually the number of resources used by a single

instance reaches 90% of all resources before we see a sharp increase in shared

resources. This shows that the instances are choosing different resources to satisfy

their resource needs. Since there is no direct coordination between the separate

GridSAT instances and because of stale information, there is a possibility that

they will sometimes choose a resource that was already in use in spite there are

other free resources available. This probability increases as the number of clients

being instantiated increases. The phase ends by all resources becoming shared in

a very short period. This occurs because the GridSAT instances are splitting at

an exponential rate.

The second phase is where all resources are being used. It extends from 400

to 1000 seconds, longer than the previous experiment. In this experiment there is

less instances where single resources appear. This is due to non-determinism in

the application.

The last phase shows a steady decrease in the number of shared resources and

a steady mirrored increase in single resources. In this phase the sub-problems

156

Chapter 5. Experimental Results

generated by splitting are “easier” and take a short time to solve. In this case

more clients terminate than are being instantiated which results in the GridSAT

instances having less overall clients. Thus as clients terminate some resources be-

come free as shown at the beginning of this phase. The GridSAT instances in this

experiment select these resource for instantiating future clients. Thus the num-

ber of single resources increases. This is different from the previous experiment

where the GridSAT instances may choose non-free resources leading the a slower

decrease in shared resources. Thus this experiment provides better load balance.

The overall effect of reducing the effects of stale information is that the total

runtime of the problem being solved in reduced from more than 2000 second to

1800 seconds. In the next section we study the effect of the number of GridSAT

instances on the turnaround time of solving SAT instances.

5.5.2 Evaluation of Runtimes for multiple GridSAT in-

stances

Experimental Setup

This set of experiments are designed to evaluate the performance of GridSAT

with multiple instances running simultaneously on a common set of hosts. We

157

Chapter 5. Experimental Results

use 10 hosts that have 3.20 GHz Intel Xeon CPU and 1 GB of RAM. The NWS

was used as a service with memory and CPU sensors on each host. All GridSAT

instances were assigned the same problem avg-checker-5-34.cnf, which belongs to

the SAT benchmark. This problem is unsatisfiable.

In these experiments we varied the number of simultaneous instances from 1

to 30. Since the runs are nondeterministic, we performed 10 runs for each of the

selected number of instances. For each group of 10 experiments using the same

number of instances, we recorded several important metrics.

Results

The results presented in this section include similar plots with the number of

GridSAT instances versus the time value in seconds. The time represents three

different metrics which we use to evaluate the application performance and trends.

The first metric is the time the first problem was solved during each run. The

second metric is the time the last problem was solved. The last metric is the

average time to solution for all the GridSAT instances which were executed simul-

taneously. In each of these graph we plot an error bar representing the minimum,

maximum and average of each metric within each experiment.

158

Chapter 5. Experimental Results

The first graph in figure 5.5 shows the variation of the time the first problem

is solved. This time shows the effect of the number of instances on the application

startup. As expected the larger the number of instances the longer it takes for the

first GridSAT instance to solve the assigned problem. This is due to the larger

set of clients competing for resources. So each GridSAT instance gets less clients

executing initially and uses less overall computational power. Also the longer

error bars indicate that there is higher variation when the number of instances

increases. There is a singular application behavior when the number of instances

is 10. In this case the variation is small (200 seconds). This behavior is particular

to the SAT problem being considered.

The second metric we study in the maximum time taken by any of GridSAT

instances to terminate. This metric is shown in figure 5.6. The maximum time

indicates the duration when all instances successfully solver the problem and ter-

minate. This metric shows higher variation than the minimum time especially

for larger number of application instances. There is also some singular behavior

for this parameter when 8 application instances are used. Similar to the previous

figure the variation is also smaller (100 seconds) than the general trend would

indicate but for a different number od GridSAT instances. We believe that this

behavior is particular to the SAT problem being considered.

159

Chapter 5. Experimental Results

Figure 5.5: Runtimes for the first problem to be solved using a variable number
of GridSAT instances running simultaneously.

A related parameter to the maximum time is the average time consumed

per instance in a particular experiment. This parameter expresses the average

turnaround time of each instance and therefore is probably the most important

value for a user. A plot of this parameter is shown in figure 5.7. We notice that

this value actually improves as more GridSAT instances share the available hosts.

The speedup reaches up to 400% compared to dedicating all hosts to a single

160

Chapter 5. Experimental Results

Figure 5.6: Runtimes for the last problem to be solved using a variable number
of GridSAT instances running simultaneously.

GridSAT instance. This is an indication that GridSAT is greedy in resource use

for this particular problem. The average turnaround time per instance shows little

variation and becomes almost constant after the number of application instances

reaches 10. This is an indication that the resource set has reached a saturation

level as the number of GridSAT instances becomes large. Because of GridSAT’s

cooperative computing model, those GridSAT instances that cannot instantiate

161

Chapter 5. Experimental Results

0 10 20 30

Number of GridSAT instances

0

100

200

300

400
T

im
e

(s
ec

)

Figure 5.7: Time consumed per instance while simultaneously running multiple
GridSAT instances.

new clients wait until some other instance of the application releases some re-

sources. The overall effect is a voluntary queueing system that leaves constant

load on the resources. This constant load is defined by the maximum load the

resource set can sustain. This behavior enables constant performance even after

the number of GridSAT instances becomes very large.

162

Chapter 5. Experimental Results

Figure 5.7 shows that GridSAT distributed scheduling is capable of managing

a high number of simultaneous instances without reducing the efficient use of

resources. In addition, the variability of the time per instance is almost constant

and does increase dramatically with the number of application instances until it

reaches a saturation level. This further indication that the overall scheduling of

resources is stable and does not have negative effects on the application even in

such a competitive computational environment.

The last metric is the average runtime for each group of GridSAT instances

executed simultaneously. The results are shown in figure 5.8. The trends in this

figure are similar to the other figures for the minimum and maximum durations in

figures 5.5 and 5.6. The increase of average runtime is linear with respect to the

number of instances. Also the variation of this parameter increases as the number

of instances increases.

In this section, we have shown that many instances of GridSAT applications

can share a common set of resources in a cooperative manner and also improve

performance. When the resources are saturated the different GridSAT instances

self regulate and wait until less loaded resources become available. In addition,

the GridSAT application was able to deploy techniques to successfully reduce the

163

Chapter 5. Experimental Results

Figure 5.8: Average runtime for all the problems using a variable number of
GridSAT instances running simultaneously.

effects of stale information namely. All of this was accomplished in a distributed

fashion without direct or global synchronization.

164

Chapter 6

GridSAT Portal Design and

Implementation

GridSAT is a powerful solver and we would like to make this new solving

power available to users. The GridSAT system could be made available to users

for download and personal deployment. However, two problems exist with this

approach. First, the GridSAT system is complex and therefore is hard and time

consuming to deploy. Most importantly, not all users are willing to invest in such

a deployment. Some users might not have the needed expertise. Second, to solve

challenging satisfiability problems from many domains requires using a large set

of resources. Most potential users do not have access to such large resources.

Moreover, the feedback we have obtained from the community is that users want

to simply submit their problems and then get a response with minimal effort. This

165

Chapter 6. GridSAT Portal Design and Implementation

approach is attractive to many of users especially those with minimal computer

science training.

Many complex grid applications face the same challenge as GridSAT because

they also need to be made easily accessible to users. Grid applications are usually

complex because they have to run in a hostile environment and coordinate the

use of numerous resources. This complexity is at odds with the promise of ease

of use that the grid computing vision advocates and users unfamiliar with such

applications want. One way grid users are presented with an easy to use interface

to complex grid applications is through grid portals [12, 4, 7, 2, 9, 1]. The goal

of a portal is to hide the complexity at the application and resource management

level from users. User effort is minimized by transparently executing the desired

application with minimal user input. More advanced users may be given optional

access to additional application features. Portals can also improve user efficiency

by automating the generation and execution of large sets of jobs. Good examples

of previously successful application portal efforts include the Cactus [12] portal for

relativistic physics and the Lattice [4] portal specializing in high energy physics.

In order to make this solving power available to interested users, we have de-

veloped a GridSAT portal http://orca.cs.ucsb.edu/sat_portal. The portal

provides a simple and public interface to scientists and other users. In fact, any-

166

Chapter 6. GridSAT Portal Design and Implementation

one with access to a web browser can submit their specific problem instances.

Users are presented with a simple interface and they are prompted to enter a few

parameters. Most importantly, the user is insulated from the complex interaction

with the GridSAT application and the large number of sophisticated resources.

Developing the GridSAT portal is not merely replacing command line argu-

ments with a web interface. There are many challenges associated with deploying

the GridSAT application under the constraints of the portal environment. There

are two main categories for these challenges. The first category relates to the

portal development, but the second one impacts the application itself. The Grid-

SAT portal shares these challenges with most other portals, but is unique in some

respects.

Developing a portal requires the challenging task of using a single user account

from the resource’s perspective in order to manage and provide access to several

portal users. The reason is that as provider of the resources (or allocations on

these resources) it is administratively impractical for the portal maintainer to

obtain an account for each portal user. Thus, the preferred approach is to give all

portal users a unique portal identity but require them to share the same resource

user account. It is the responsibility of the portal to manage the different user

jobs and provide an accurate accounting of the resource usage for each individual

167

Chapter 6. GridSAT Portal Design and Implementation

user. The portal would also make sure that the available resources (i.e. disk

space, allocation quota) are not exhausted and that the application can tolerate

such scenarios.

In addition, most other portals are responsible for complex job of managing

the grid resources. This is not the case for the GridSAT portal because the Grid-

SAT application assumes the task of interacting with the computational grid. The

application is responsible for automatically selecting the resources and dynami-

cally scheduling the parallel components in order to provide the best performance.

This has simplified both the design and implementation of the portal. The por-

tal’s role is a simple one; it consists of initiating the application, updating the

progress status and collecting the final result.

Furthermore, providing a simple user interface is a challenge from the ap-

plication’s perspective. Such a simple interface requires hiding all the complex

parameters and configuration details from the users. For this purpose, the appli-

cation has to be provided with default parameters when possible. In other cases,

it is best to determine such parameters dynamically according to some heuristics.

This requires more effort as the heuristics are developed, evaluated and integrated

into the application. This approach makes it more attractive to users and also

allows the portal to be used as part of a larger work-flow.

168

Chapter 6. GridSAT Portal Design and Implementation

In this chapter we first present the portal design and user environment. Then

we present some challenges associated with the implementation of the portal.

Finally, we introduce the scheduling strategy used for the execution of portal

jobs.

6.1 Portal Design

Figure 6.1: Portal design overview: The portal user submits problems through
the portal. For each problem a GridSAT instances is launched on the available
resources. Feedback is provided to the user through the portal interface.

The general view of the GridSAT portal design is shown in figure 6.1. The

portal user can access the portal through a web interface. When the user submits

a problem through the SAT portal, the portal launches an instance of the GridSAT

169

Chapter 6. GridSAT Portal Design and Implementation

solver. During this step, the portal starts the GridSAT coordinator component

locally or on a trusted host. The coordinator is started on a trusted host to guard

against its abnormal termination. More importantly, if the resource on which the

coordinator becomes inaccessible, so then will all the checkpoints saved by the

coordinator. If the GridSAT coordinator fails, it can be re-instantiated on another

host if necessary. If previous checkpoints are available, the coordinator can use

them for recovery. Therefore, it is not necessary to use multiple coordinators

simultaneously. It suffices to save multiple replicas of the checkpoints on other

resources. The replicas may be encrypted for security reasons. Any of the replicas

can be later used to restart the coordinator in case of failure. Client processes

can be launched on any available resources because the recovery cost is small.

The failure of the coordinator, however, is expensive. Thus this process is not

instantiated on shared resources because they are more prone to failure.

Since the master process is long lived, the probability that some of the re-

sources used by GridSAT will fail becomes higher. In fact, in GridSAT we assume

that any remote resource may fail at any moment. This may happen because of

the resource’s own failure or because the resource becomes unreachable through

the network. According to our experience, all resources even those which are

professionally maintained can become unresponsive from the application’s per-

170

Chapter 6. GridSAT Portal Design and Implementation

spective. Those resources that do not experience hardware and software failures

usually have scheduled routine preventive maintenance periods or a combination

of software and hardware upgrades. From the point of view of the application

these are ”scheduled” or ”anticipated” failures. Thus the GridSAT portal starts

the coordinator process locally. It is the responsibility of this process to ensure the

continual execution of the application in-spite of resource failures or performance

degradations.

6.2 User Environment

In this section, we present the interface to which the user is exposed. For each

of the views, we present its function and the significance of each of its components.

Figure 6.2: Portal login form
used by users to authenticate to the GridSAT portal.

171

Chapter 6. GridSAT Portal Design and Implementation

The portal allows users to create their private accounts where they can enter

contact information, username and password. After registering, the user can

then securely login to use his account as shown in figure 6.2. Since the portal

is for general use, the username and password authentication is sufficient. More

sophisticated security systems can be deployed later.

Figure 6.3: Portal submission form
used by GridSAT portal to submit satisfiability problems.

After logging-in a user can submit satisfiability problems using the form shown

in figure 6.3. The user submits problems as files in the standard CNF format. A set

of test problems of variable sizes are available for download and can be submitted

to the portal at http://orca.cs.ucsb.edu/sat_portal/test_problems.htm.

The user also specifies the maximum number of processors to use and the duration.

The GridSAT application can take more parameters to control the rate of sharing

intermediate results and other aspects of the scheduling procedure. The portal

172

Chapter 6. GridSAT Portal Design and Implementation

hides all these details because most users cannot determine which values to use

for these parameters. Instead, the GridSAT application uses heuristics to assign

values to these parameters.

Figure 6.4: Portal list view
which shows the user a history of his submissions to the portal. The user can
select a detailed view of each problem using this page.

Currently, the GridSAT portal can use many TeraGrid [106] sites located at

the National Center for Supercomputing Applications (NCSA), the San Diego

Supercomputing Center (SDSC) and DataStar [34] also at SDSC. Additional re-

sources can be incorporated by simply installing the application and updating a

configuration file. Managing the set of resources is restricted to the portal admin-

istrator. Thus, the user is agnostic to which set of resources will be used. Instead

the GridSAT application selects the resources automatically. The scheduler uses

resources in a round-robin fashion. But each resource is only assigned a new job

after the previous allocation has expired. Thus a resource will only have one job

173

Chapter 6. GridSAT Portal Design and Implementation

request from GridSAT at a time. Each GridSAT instance can have many waiting

or executing jobs over the entire resource pool. In the future, we will use other

tools to determine which resource is the most likely to allocate the fastest a given

job. The user is also provided with detailed information about the resources used

by each problem.

Figure 6.5: Portal detailed view
of a submitted problem. The page shows several progress statistics and current
resource usage details.

The user can query and manage his set of submissions while being provided

with continuous feedback. For example, the user can query the portal for all

the sets of problems which he has previously submitted as shown in figure 6.4.

Moreover, the user can view a detailed status for each problem. A sample view

174

Chapter 6. GridSAT Portal Design and Implementation

of this detailed status is shown in figure 6.5. The status of each problem is

continuously updated. The detailed view of a problem shows the CPU*Hours

consumed, the number of active clients are running and the number of total splits

which occurred during the elapsed execution time. Moreover, the portal displays,

at the bottom of the page, a description of all job requests issued by the GridSAT

scheduler. Each job entry includes the resource used and the submission, start and

end times of each job. The combination of all this information presents the user

with the progress rate at which a given problem is being solved. When a problem

is solved the satisfiable solution found is displayed. Otherwise the problem is

marked as unsatisfiable. In some cases, the problem might timeout because the

specified period has expired before a solution can be determined. Using the details

page, the user can also cancel a given problem at any time even when it already

started running. A user may also choose to delete the problem altogether using

the same page. In this case, the problem will not be displayed in the history of

his submissions. Also any disk resources used by the problem will be purged. In

fact, all files associated with a given file will be deleted after a given time period

in order to alleviate disk space consumption.

175

Chapter 6. GridSAT Portal Design and Implementation

6.3 Portal Challenges and Solutions

The GridSAT application is designed to run and adapt to the computational

grid environment. Hence, the portal is not responsible for managing the resources

and interacting with them. The portal’s role is to launch the GridSAT coordinator

and update all the related user and problem information in a database. Therefore,

the portal is made simpler and easier to develop. However, the GridSAT applica-

tion has to be adapted to running in a portal environment. In the following we

will discuss some of the challenges presented by the portal and how they affected

the GridSAT application.

For our portal, we have obtained a set of accounts for several national comput-

ing centers supported by the National Science Foundation. We have obtained a

single account for each of the computing centers. In other cases, portal providers

have the ability to create a separate account per user. This option is not always

practical because it requires privileged access to the resources. Therefore, all the

GridSAT portal users will in effect share the same account on any given resource.

Each account has two main components: allocated time and disk space. With

respect to allocated time, the portal has to make sure that users can fairly share

the resource. This is accomplished by implementing a maximum number of active

176

Chapter 6. GridSAT Portal Design and Implementation

problems a user can have at any moment. In this manner, a single user cannot

starve jobs submitted by others.

Disk space presents a different kind of problem. Most resources assign a specific

disk quota for each account. Thus all portal users will share this disk space. In

GridSAT, this disk space is used as cache to store problem files. These files can be

up to 100 MB in size. Storing these files makes the GridSAT solver more efficient

by reducing communication overhead. However, if the number of problems is large,

the disk quota may be overwhelmed. In order to efficiently use the disk space,

all problem files are deleted when a problem terminates. Also, the GridSAT

components will use the disk as cache space only if there is enough space to store

the problem file. Thus, GridSAT clients check available disk space every time

the problem file is requested by a client. When the disk space available is not

sufficient, the client receives the problem file in memory and is used immediately

without saving it to disk.

In the next section, we discuss the scheduling policy used by GridSAT in

the portal setting. We adopted this policy, in order to simplify and automate

scheduling for portal users.

177

Chapter 6. GridSAT Portal Design and Implementation

6.4 Budget Based Scheduling

In order to adapt the GridSAT application to the portal setting, a special

scheduler has been adopted which requires minimal user input. As shown in

figure 6.3, when submitting a problem the user specifies two additional parameters

which are the maximal number of processes and a maximal duration for trying

to solve the satisfiability problem. The GridSAT scheduler uses only these two

parameters to automatically schedule the application on all the available resources.

Since it is not always possible to fulfill exactly the user requests through a sin-

gle allocation, the GridSAT scheduler uses these two parameters only as guidelines

for submitting resource requests. For example, if the user asks for a number of

processes greater than the number that can be provided by the resources available,

GridSAT uses the maximal number of processes available within the resources in-

stead. Also when a user specifies a small time duration lower than a minimal

predetermined value, then all jobs requested will use the minimal time value in-

stead. The portal enforces a minimal time for using a CPU to avoid inefficient

resource usage. In general, using a CPU for a very short time period does not

allow the solver enough time to make progress in solving the problem it is as-

178

Chapter 6. GridSAT Portal Design and Implementation

signed. Hence, a minimal duration for each job is enforced to avoid wasteful use

of resources.

Effectively, the GridSAT scheduler tries to satisfy the user requests within

the constraints of the resources available. If it is not possible then the scheduler

submits a series of smaller jobs with equivalent total computational budget in

CPU*Hours. The scheduler keeps count of how much of the budget has been

consumed by the application. The remaining portion of the initial budget is

decremented continuously as processes are executing on behalf of the application.

When a job terminates, the scheduler uses the remaining budget and resource

specific parameters to submit a new job.

179

Chapter 7

Related Work

The GridSAT application and portal share commonalities with two main re-

search fields. The first area includes satisfiability solvers both sequential and

parallel. The second area includes many aspects of computational grid computing

such as programming models and scheduling. In this chapter, we present related

work in these areas and draw comparisons with GridSAT.

7.1 Satisfiability Research

7.1.1 Sequential Solvers

There has been extensive research efforts focused on the development of effi-

cient satisfiability solvers [70, 48, 53, 19]. Traditionally, problems from practical

domains [96] were solved using other tools such as Binary Decision Diagrams

180

Chapter 7. Related Work

(BDD) [54]. But since satisfiability based solvers have become more efficient they

have replaced older tools.

SAT solvers solvers use different techniques and heuristics to explore the entire

search space. The most efficient of these solvers use optimizations which permit

parts of the search space to be discarded or “pruned” during execution. However,

because the general problem is NP-complete, there is no theoretical framework

for comparing solvers or evaluating which solver is best suited to a particular

problem or problem class. The solvers and the techniques they implement are

evaluated based on empirical results by comparing the speed with which they

can solve a diverse set of benchmarks and/or the number of complex or “hard”

problems they can solve. Thus while the general problem remains theoretically

intractable, heuristic-based approaches have yielded SAT solvers that serve as

valuable verification tools in many disciplines.

Most modern solvers [70, 48, 53, 19] are sequential and employ heuristic im-

provements to one of a small set of fundamental search algorithms. Fewer parallel

solvers such as [28, 58, 97, 41] exist, and even fewer of those parallel solvers use a

heretofore sequential optimization termed learning. Learning (discussed in detail

in chapter 2) improves solver speed by adding propositions that the algorithm

deduces to an internal database that is global to the solver. These additional

181

Chapter 7. Related Work

“learned” propositions improve the efficiency of SAT solvers substantially, but

they make the problem of parallelizing and/or distributing a solver daunting. The

global clause database must be searched and updated frequently as the algorithm

progresses making an efficient large-scale parallel or distributed implementation

difficult. As a result, the best known solvers (in terms of speed and solution

power) have until recently been sequential.

Since SAT problems can be expressed in a standard format then they can be

submitted to any solver. Modern solvers and algorithms, however, are targeted

by design to solve faster certain types of SAT instances. This affinity for cer-

tain problems derives sometimes form the algorithm adopted by a given solver.

For example, implementation of Iwama’s [55] algorithm are faster for random in-

stances with comparatively many solutions but slower for those instance with few

solutions. Solvers using simple backtracking, however, are slow on problems with

many solutions and fast for instances with few solutions.

In some cases experimental results are used to differentiate the performance

of SAT solvers with respect to certain categories of SAT instances. According

to the SAT competition different solvers perform differently depending on the

problem category. Some of the problem categories include industrial benchmarks,

randomly generated, satisfiable and unsatisfiable instances. The SAT competition

182

Chapter 7. Related Work

declares winners for each of these categories those solvers which solver the most

problems using least time duration.

GridSAT can be abstracted as a set of collaborating sequential solvers. These

collaborating solvers are not required to be homogeneous. In fact, GridSAT can in-

corporate many sequential solvers. This can be accomplished by deploying clients

with different sequential solvers at their core. Any existing or new sequential

solvers may be modified to cooperate with the rest of the clients in order to en-

hance performance. As a first step it is possible to deploy these solvers without

modification. This is possible my formulating sub-problems as separate satisfia-

bility problems. Such a task can be simply implemented by adding all variables

in the first decision level as unit clauses. Therefore GridSAT can take advantage

of developments in sequential solver research with little or no extra effort.

7.1.2 Parallel Solvers

Many research efforts exploited parallelism to speedup procedures used in SAT

solvers. Generally, two approaches were used. The first approach exploits a soft-

ware architecture to mediate the cooperation of many CPUs in order to provide

more computational power. The second approach studies inefficiencies in the im-

183

Chapter 7. Related Work

plementation of conventional processors and proposes a new hardware architecture

which is better suited for solving SAT problems.

Existing deployments of parallel solvers use limited resources [58, 97, 41, 21].

Actually, most reported experiments deal with problems of short durations (i.e.

less than a minute). Therefore, more difficult problems which require larger sets

of resources for extended periods of time were not investigated. Using such large

collection of resources is a perfect fit for computational grids. The parallel solver,

however, has to explicitly adapt to this environment in order to improve perfor-

mance and enable new results.

GridSAT can also make use of other parallel solvers in a similar fashion to the

way it can incorporate sequential SAT solvers. Other parallel solvers can be as-

signed parts of the search space in the form of a CNF SAT instance just like their

sequential counterparts. Parallel solvers, however, represent an additional chal-

lenge because of the many resources they can use simultaneously. Some heuristics

need to be developed to select the size of resources a given parallel solver is allowed

to execute on.

184

Chapter 7. Related Work

Software Based Solvers

Most parallel solvers [58, 97, 41, 21] use a software approach. Also the majority

of these solvers evolved from a sequential solver. PSATO [122], for example, is

based on the sequential solver SATO [121]. PSATO is concentrated on solving

3-SAT and open quasi-group problems. An other solver is Parallel SATZ [58]

which is the parallel implementation of SATZ [64]. Unlike GridSAT, both solvers

only use a set of workstations connected by a fast local area network. This setup

results in low communication overhead. PSATO and Parallel Satz do not include

clause exchange. PaSAT [97] implements a different algorithm for clause sharing.

In addition, PaSAT uses a global lemma(clause) store whereas GridSAT shares

clauses globally as soon as they are generated.

A different approach is presented by NAGSAT [41]. Instead of search space

partitioning, NAGSAT uses nagging to enable asynchronous parallel searching.

Nagging uses a master node which proceeds as a complete sequential solver.

The clients or naggers request a search subtree and apply a problem transfor-

mation function. The master incorporates any valuable information returned by

the clients. This solver was only applied to a set of randomly generated 3-SAT

instances.

185

Chapter 7. Related Work

MASSAT [119] is representative of incomplete solver. It is based on a dis-

tributed multi-agent approach which uses local search method [92, 91]. MASSAT

divides the SAT variables in to groups. Each group is in turn assigned to an agent.

Each agent lives in an environment represented by the local search space. Agents

navigate their respective environments based on some reactive rules. These rules

define the next move an agent will make in its environment. Moves are eval-

uated based on heuristic functions which give different weights to clauses. At

each iteration, agents communicate with each other to exchange state informa-

tion. This information includes the variable settings within each agent. Using

this information in combination with the specified reactive rules an agent changes

the values assigned to its set of variables to move closer to finding a solution. The

solver terminates when a solution is encountered or a pre-specified time limit is

reached. A solution is the combination of all agent states or positions within their

environments.

Another parallel solver is ZetaSAT [21] which targets the zetagrid [112] desktop

grid platform. Unlike GridSAT ZetaSAT is not capable of using batch controlled

systems which can provide substantially larger computational power compared

to desktop machines. Also ZetaSAT does not employ sharing of clauses which

permits faster pruning of the search space.

186

Chapter 7. Related Work

ZetaSAT maintains a pool of sub-problems so that work can be assigned to

idle resources for load-balancing. The sub-problems in this pool are pre-generated

in anticipation of new and/or idle resources becoming available. In GridSAT,

however, clients generate new work only after idle resources become available.

This approach ensures that splitting is only performed when new resources are

available to help solve the current SAT instance. Also, the splitting process in

GridSAT uses peer-to-peer communication bypassing the coordinator (also called

master) for large messages. GridSAT also provides newly split clients with a large

set of learned clauses which increases overall efficiency.

satinsat

Hardware Based Solvers

Hardware solvers deploy novel arrangements of processing elements to speedup

critical procedures of the SAT solvers [98, 99, 77, 33]. These solvers use the same

high level DPLL based algorithms used by their software counterparts. Since

BCP accounts for a large portion of the runtime, hardware implementations focus

on reducing BCP overhead. These solvers implement faster BCP using parallel

processing of clauses during this step. The techniques used by these solvers range

from connecting multiple chips together to redesigning circuit layout of processor

187

Chapter 7. Related Work

units to target a specific SAT instance. In the following we present two example

solvers.

A parallel scheme based on a multiprocessor implementation is presented in

MPSAT [125]. The configurable processor core was augmented with new instruc-

tions to enhance performance. Like typical hardware solvers data parallelism is

used to speed-up execution of common functions in the DPLL algorithm. This

solver however, uses standard FPGA circuits to implement the desired optimiza-

tions.

Easily-Loaded Variable Implication Solver (ELVIS) [23] uses an instance spe-

cific layout of processing elements. In this case the placement and routing of pro-

cessing elements are designed to provide greater speedup based on a priori SAT

instance analysis. ELVIS provides an automatic layout scheme which reduces the

overall latency in the final chip design.

Unlike GridSAT and other software based solvers, the hardware approach relies

on specialized processing elements which has higher cost and is not easily available

to many potential users of SAT solvers.

188

Chapter 7. Related Work

7.1.3 Related Problems

There are many other problems which can be parallelized in a similar fashion

to the satisfiability problem. Most of these problems are formulated as search

problems. They are characterized by vast search spaces which can be divided to

allow the exploitation of many hosts in parallel.

Some of these problems derive directly from SAT. Some examples include find-

ing SAT solutions with specific criteria such as the ones discussed in section 3.4.

Other problems are from the more general class of Constraint Satisfaction Prob-

lems (CSPs). For these problems new algorithms need to be developed to enable

large scale parallelization.

Also some other problems derive from preprocessing techniques to reduce the

search space of SAT instances. One such technique is symmetry breaking [39].

This procedure adds new clauses to the initial SAT problem to remove redundant

variable combinations. Finding these clauses involves finding isomorphisms in a

graphical representation of the SAT problem. The solutions to the isomorphism

problem are time consuming and may be parallelized to improve their perfor-

mance.

In addition there are more theoretical problems such as Rieman’s hypothe-

sis [81] and Ramsey numbers [79]. These problems currently have no theoretical

189

Chapter 7. Related Work

solutions and software can be used to prove or refute certain results. In some cases

the software developed is used to help expand knowledge about these problems.

7.2 Computational Grid Computing

There has been extensive research aimed at facilitating the computational

grid vision. Some of the problems faced by grid computing are shared by other

fields. Such fields include traditional fields such as parallel programming and

newer research areas such as peer-to-peer [46, 85, 82, 124] and Web-based com-

puting [93, 63, 108]. Since they share common problems, techniques developed in

one field can be applicable to other areas. For example, peer-to-peer systems have

developed methods for reliable access to stored data that can be used by compu-

tational grid application [49]. This may eventually lead to these fields converging

since they are seen to be solving closely related problems. In computational grid

computing research efforts can be classified into three different groups:basic ser-

vices, applications and development environments.

190

Chapter 7. Related Work

7.2.1 Services

A typical simplified view of a computational grid application is shown in fig-

ure 1.1. Since many applications have common needs before deployment, initial

research has identified and developed certain basic services. These basic services

include communication, resource management, resource monitoring and security.

Communication

There exists many commercial technologies such as CORBA [74], JRMI [24]

and DCOM [52]. These technologies [76] provide high level abstractions, platform

independence and and code reuse. These features are very important. However,

these models hide essential information in order to achieve a simplified view of the

computational environment. Information that is essential for grid applications to

extract high performance from a given resource. For example, a grid application

can tune its code based on the available hardware to achieve better performance.

A grid application would also need detailed information about the entire resource

pool in order to select the set of resources which would increase efficiency and

reduce overhead.

Because a grid application aims to coordinate the use of many distributed

resources, efficient and reliable communication between all components of a grid

191

Chapter 7. Related Work

application is very important. There are many alternative communication layers

for a grid application. Some layers are part of a more comprehensive set of tools

such as in Globus project [42]. Other tools are devoted to the single task of

providing a portable communication library such as EveryWare [114].

Resource Discovery

Another important service deemed necessary for grid applications is resource

discovery. The purpose of this service is to provide up to date detailed information

about the software and hardware characteristics of the entire collection of available

resource in a computational grid. The Globus Metacomputing Directory Service

(MDS) [31] is such an example. The Globus MDS relies on a set of protocols to

query and update resource specific attributes.

Resource Monitoring

Because grid applications run in a dynamic environment, resources do not

have static performance characteristics. Therefore, monitoring different aspects

of the computational environment such as CPU and memory usage, disc space

available and network connectivity. There are many monitoring systems [117, 66,

38] which can be used by an application. These systems are usually deployed

192

Chapter 7. Related Work

independent of the resource monitoring system since they provide dynamic data

which changes frequently. In some case, monitoring systems are incorporated into

resource management systems.

Execution Systems

An important service is provided by execution systems which allow applications

to remotely execute programs on a pool of resources. Such a systems is the Globus

Resource Access Manager (GRAM) [32] and Condor [104]. These systems provide

remote job instantiation using specific languages. Also these systems also include

some security mechanisms to protect users and resource providers.

7.2.2 Applications

Another important research effort in grid computing is to enable applica-

tions to execute in a dynamic heterogeneous environment. The applications

deployed in computational grids thus far can be divided into two main cate-

gories:embarrassingly parallel applications and fixed granularity applications.

Embarrassingly parallel applications [10, 100, 26] require large computational

power but they can be divided into many smaller jobs. These jobs can usually

be assigned to a single CPU resource and can be solved in relatively short time

193

Chapter 7. Related Work

periods. Each job executes the same program using a different set of inputs.

Also, the individual jobs are independent so that the execution of one job does

not depend on results from another one. Therefore, these type of applications

adapt well to a computational grid environment. In a typical execution of such

applications, all the jobs are generated and then assigned to available resources

using a master-worker topology. The most famous of these applications are pa-

rameter sweep applications [10, 26]. A parameter sweep application, divides each

parameter space of an application into intervals. Each tuple of parameter values

produced by the cross product of the parameter sets defines a sub-task. There has

been extensive research into grid implementations for such applications as groups

of tasks [10, 26].

Since these applications have common features, they can be automated using

a development environment. Nimord [10] and APST [26] are two such examples.

Nimrod provides a flexible userinterface used to generate a job list according to pa-

rameter lists and values. The tasks are automatically scheduled and monitored.

Nimrod/G incorporates Globus services and the scheduler is aimed at meeting

userspecified deadline using budget constraints. The AppLeS Parameter Sweep

Template (APST) is a middleware based on AppLeS [100]. The goal is to mini-

mize the application makespan. The architecture of APST allows for the plugin

194

Chapter 7. Related Work

of other schedulers conforming to the scheduling API. APST consists of the fol-

lowing modules: scheduler, controller, actuator and MetaData Bookeeper. The

controller interfaces the scheduler and the client. The actuator controls access to

Grid resources. The Bookkeeper is responsible for getting forecasts and saving

application generated measurements.

Another set of applications which has been deployed in the context of com-

putational grids are fixed granularity applications. These applications involves

high performance tightly coupled components. The general execution model in

these instances is that each component alternates between small intervals of com-

munication and computation. Usually communication and computation intervals

intersperse the execution time and do not overlap. The communication intervals

are used to perform synchronization and updates of common data. These synchro-

nizations may be global or pertinent to smaller groups of components depending

on the scope of data being shared. Most of these applications are MPI-based [69]

scientific applications.

The performance of fixed granularity applications is highly sensitive to het-

erogeneity of the underlying resources and to network delays. The reason is that

these applications are tightly coupled and require frequent communication. Thus,

all the components will wait idly if one of them is delayed because of degradation

195

Chapter 7. Related Work

in computational or network performance. As such these applications are not

deployed in highly variable environments. Instead the schedulers of these appli-

cation query the grid environment for sub-grids which are semi-homogenous in

computational performance and network connectivity.

The Grid Application Development Software project (GrADS) [18] and its

successor the Virtual Grid Application Development Software are two research

project which aims at enabling is a comprehensive set of tools and production

testbed for developing grid applications. There are many applications [109, 83]

which were deployed to validate the GrADS concepts. The scheduling problem in

these applications was devoted to selecting amongst a set of available clusters.

These two application categories represent many applications. These two ap-

plication types, however, represent two extremes of the spectrum of applications.

One requires no sharing of information between the sub-tasks, while the other has

stringent frequent synchronization. There are many other applications categories

which have not yet been investigated in the context of computational grids. For

example, a set of applications with intermediate characteristics can also benefit

from a computational grid deployment. Such malleable applications can adjust

the amount of communication and computation based on their cost in a dynamic

196

Chapter 7. Related Work

environment. Further, research is needed to identify and explore new applications

which may require new programming models.

7.2.3 Grid Computing Environments and Portals

There is a proliferation of grid computing environments. These environments

present simple interfaces to powerful tools and applications that are made available

to non-expert users. The user is usually presented with a web portal or a simple

command shell.

In current practice, grid computing environments are built using a stack of

technologies. At the bottom are the capabilities of the resources which makeup

the computational gird. The second layer is composed of the basic tools providing

the basic services described above. The Globus tool kit is often used to imple-

ment this layer and provide access to grid resources. In the third layer, these

basic services are wrapped in commodity technology to make them available to

programmers familiar with these technologies. The Java Commodity Grid (CoG)

Kit [111] is such an example which wraps Globus capabilities in a familiar java

framework. Such technologies are themselves presented as a middleware such

JPDK [72]. Finally, a Problem Solving Environment (PSE) targeting a single or

a fmaily of application is built based on these middleware packages.

197

Chapter 7. Related Work

Portals have become the main vehicle for giving common and non-expert users

access to sophisticated grid applications. In the next section we discuss in detail

portal development tools and the GridSAT portal.

Portals and Portal Development tools

In general, there exist two classes of portals. The first class is user portals

which provide an interface for grid infrastructure to users. An example user

portal is the NPACI portal [6]. The other class of portals is application portals.

These portals provide a simplified, easy-to-use interface to start, stop, manage

and monitor complex applications in a specific field. The GridSAT portal belongs

to the latter category.

Since user portals provide a set of standard services, some tools such as

GPDK [72] have been developed to streamline the development of these portals.

Application portals, however, are more specific because each application solves a

different problem and therefore provides different services. In spite of this, there

have been attempts at building tools for such portals. There are two approaches

adopted by tools used in building application portals. In the first approach, a

set of small components are provided which can be composed and customized to

create the portal. Such projects include GridSphere [3] and JetSpeed [16]. The

198

Chapter 7. Related Work

small components are called portlets. Portlets are usually small software modules

aimed at providing a specific functionality. Portlets make portal development easy

because developers can reuse existing standard portlets. There are many stan-

dard portlets which can be readily used to provide basic functionality common

to most portals. For example, there exist standard portlets for user registration

and security. Portals developers can also deploy customized versions of existing

portlets or develop new ones.

The second approach provides a complete mechanism for building the portal.

These tools are only suitable for a certain class of portals which provide a standard

set of features which can be easily abstracted. For example, GridSpeed [102]

abstracts portals into a mechanism for specifying parameters and a predefined set

of templates for task execution. Under this abstraction, the purpose of the portal

is to initiate commands on remote systems. This model is useful for many legacy

applications or in certain cases where only a binary is available. In both cases, it

is difficult to transform the application into a grid application.

The GridSAT portal is different from most existing portals in two main as-

pects. First, it is the GridSAT application that is responsible for launching and

monitoring the tasks on the remote resources. In most other portals, the portal is

intimately involved in resource scheduling. Second, for each problem launched by

199

Chapter 7. Related Work

the GridSAT portal the number of tasks, the number of resources and duration

of each task is not predefined. This differs from other portals where each problem

is assigned a priori a set of resources and the expected execution time is known.

The GridSAT scheduler, however, dynamically chooses the next job characteris-

tics (i.e. location, size and duration) depending on the observed resource load and

problem behavior from previous jobs.

Therefore, the GridSAT portal cannot be built using the second approach as

it does not fit a simple abstraction. On the other hand, portlets can be adapted

for this portal. Some of the standard portlets could be used to provide basic

feature such as user registration. But new portlets are needed to provide GridSAT

specific functionality. Because of the programming effort and time constraints we

were not able to use portlets in the current version. Currently, we are using an

APACHE [15] web server with PHP [8] and MySQL [5] database to deploy the

portal.

200

Chapter 8

Conclusion and Future Work

In this thesis, we have presented a new computational grid application. The

application solves boolean satisfiability problems which have many practical ap-

plications in many scientific and engineering fields. This application is GridSAT

– a distributed large scale satisfiability solver.

The solver was successful at many levels. First, it was able to solve faster

those problems that could previously be solved by existing sequential solvers. Our

solver also provides increased solving capability by solving additional problems

that were previously left unsolved by other solvers. In addition, the solver was

able to simultaneously execute on a large collection of resources for extended time

periods in spite of the dynamic nature of the computational environment in terms

of performance and composition.

201

Chapter 8. Conclusion and Future Work

The success of the GridSAT solver comes from two aspects. First the par-

allelizing approach allowed incremental division of the problem. This results in

an approach which decreases communication overhead for both easy and hard

satisfiability problems. Also, the ability to share information between the paral-

lel components enabled additional solver efficiency. Second, the implementation

and design of the application resulted in the ability to use all available resources.

These resource included single desktop machines, small scale clusters and several

national super-computers. The ability to tailor the solvers memory use to all these

resource was instrumental in making the application components portable.

8.1 Future Work

The work described in this thesis can be expanded further in four main direc-

tions. The first direction explores more efficient algorithms specific to satisfiabil-

ity solvers in both sequential and distributed form. The second direction explores

other challenging applications which have similar characteristics to GridSAT. The

third area of future research is the investigation of different schedulers. Finally,

all the experience learned can be provided in as programming tools to simplify

the deployment of future grid applications.

202

Chapter 8. Conclusion and Future Work

8.1.1 Algorithmic improvements and resource specific im-

plementations

In the future, the application components could be further ported to new

resources with different hardware and programming models. For example the

BlueGene [107] architecture presents a large number of compute nodes with local

memory. Another example, is the Cray MTA [14] and Eldorado [40] machines are

shared memory machines with a large number of hardware level threads named

streams. Algorithmic innovations are needed to make efficient use of these innova-

tive architectures. Once the GridSAT components are ported to these machines

they can be seamlessly integrated to the overall application using the existing

design.

8.1.2 New applications

There are many other problems which could be deployed in a computational

grid environment such as those described in section 7.1.3. Some of these problems

belong a large class of Branch-and bound problems. Others, involve large data-

sets and are compute intensive. once these applications are developed they can

be made available using a portal for general use. Also these applications can

203

Chapter 8. Conclusion and Future Work

provide a web-service interface so that they can be automatically included in

larger workflows.

8.1.3 New Schedulers

There are further improvements that can be applied to the GridSAT scheduler.

The scheduler could make use of resource prediction research [25] to make more

efficient resource selection. Such a scheme would allow the application to acquire

the most computing power in a given time period.

Another area that can researched further is using different types of schedulers

for the GridSAT application. One possible approach is to use economic based

schedulers for resource evaluation and selection. In this approach, resources are

evaluated based on their cost to the user as a function of a pricing mechanism

adopted by a computational grid. Economic based schedulers represent a different

challenge because the application has to evaluate resources not only based on their

computational merit but also on their value within an economy.

8.1.4 Generalized Tools

The lessons learned from and the programming techniques used in developing

a few of these applications can be generalized as a programming model for other

204

Chapter 8. Conclusion and Future Work

applications which share common features. The final tools for programming this

class of applications can be expressed as either libraries, programming languages

or middleware. As a result, many more applications can be easily deployed on

computational grids. Thus, bringing the vision of easy and simple grid computing

closer to realization.

205

Bibliography

[1] GeneGrid Portal. http://www.qub.ac.uk/escience/projects/genegrid/.

[2] GEON Portal. http://www.geongrid.org.

[3] The GridSphere web site. http://www.gridsphere.org.

[4] Lattice Portal. http://lqcd.jlab.org.

[5] MySQL. http://www.mysql.com.

[6] NPACI HotPage. https://hotpage.npaci.edu/.

[7] NRC Grid Portal. http://www.grid.nrc.ca.

[8] PHP. http://www.php.net.

[9] Theoretical Physics Portal. http://www.aus-vo.org.

[10] High performance parametric modeling with nimrod/g: Killer application
for the global grid? In IPDPS ’00: Proceedings of the 14th International
Symposium on Parallel and Distributed Processing, page 520, Washington,
DC, USA, 2000. IEEE Computer Society.

[11] Solving the Round Robin Problem Using Propositional Logic. AAAI Press /
The MIT Press, 2000.

[12] G. Allen, D. Angulo, I. Foster, G. Lanfermann, C. Liu, T. Radke, E. Seidel,
and J. Shalf. The Cactus Worm: Experiments with dynamic resource dis-
covery and allocation in a Grid environment. The International Journal of
High Performance Computing Applications, 15(4):345–358, 2001.

206

Bibliography

[13] G. Allen, T. Goodale, T. Radke, M. Russell, E. Seidel, K. Davis, K. N.
Dolkas, N. D. Doulamis, T. Kielmann, A. Merzky, J. Nabrzyski, J. Pukacki,
J. Shalf, and I. Taylor. Enabling Applications on the Grid: A Gridlab
Overview. International Journal of High Performance Computing Applica-
tions, 17(4):449–466, 2003.

[14] W. Anderson, P. Briggs, C. S. Hellberg, D. W. Hess, A. Khokhlov, M. Lan-
zagorta, and R. Rosenberg. Early Experience with Scientific Programs on
the Cray MTA-2. In Proceedings of the 2003 ACM/IEEE conference on Su-
percomputing (SC2003)(published electronically), page 46, Washington, DC,
USA, 2003. IEEE Computer Society.

[15] Apache Software Foundation. APACHE Web Server.
http://www.apache.org.

[16] Apache Software Foundation. JetSpeed.
http://portals.apache.org/jetspeed-1/.

[17] A. Armando and L. Compagna. Abstraction-driven SAT-based Analysis of
Security Protocols. In E. Giunchiglia and A. Tacchella, editors, Theory and
Applications of Satisfiability Testing, LNCS 2919, pages 257–271. Springer-
Verlag, 2004.

[18] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, L. J. Dennis Gan-
non, K. Kennedy, C. Kesselman, D. Reed, L. Torczon, , and R. Wolski.
The GrADS project: Software support for high-level grid application de-
velopment. International Journal of High Performance Computing Appli-
cations, 15(4), Winter 2001. available from "http://hipersoft.cs.rice.

edu/grads/publications_reports.htm".

[19] A. Biere. http://www.inf.ethz.ch/personal/biere/projects/limmat/.

[20] F. S. Bing Li, Chao Wang. Abstraction refinement in symbolic model check-
ing using satisfiability as the only decision procedure. International Jour-
nal on Software Tools for Technology Transfer (STTT), 7(2):143–155, April
2005.

[21] W. Blochinger, W. Westje, W. Küchlin, and S. Wedeniwski. ZetaSAT –
Boolean satisfiability solving on desktop grids. In Proc. of the IEEEInter-
national Symposium on Cluster Computing and the Grid (CCGrid 2005),
volume 2, pages 1079–1086, Cardiff, UK, 2005.

207

Bibliography

[22] BlueHorizon. http://www.npaci.edu/BlueHorizon/.

[23] M. Boyd and T. Larrabee. A scalable, loadable custom programmable
logic device for solving boolean satisfiability problems. IEEE Symposium
on Field-Programmable Custom Computing Machines, pages 13–21, 2000.

[24] F. Breg, S. Diwan, J. Villacis, J. Balasubramanian, E. Akman, and D. Gan-
non. Java RMI performance and object model interoperability: experiments
with Java/HPC++. Concurrency: Practice and Experience, 10(11–13):941–
955, 1998.

[25] J. Brevik, D. Nurmi, and R. Wolski. Predicting bounds on queuing delay
for batch-scheduled parallel machines. In PPoPP ’06: Proceedings of the
eleventh ACM SIGPLAN symposium on Principles and practice of parallel
programming, pages 110–118, New York, NY, USA, 2006. ACM Press.

[26] H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The AppLeS Param-
eter Sweep Template: User-Level Middleware for the Grid. In Proceedings
of SuperComputing 2000 (SC’00), page 60, November 2000.

[27] W. Chrabakh and R. Wolski. GrADSAT: A Parallel SAT Solver for the
Grid. Technical Report 2003-05, UCSB, March 2003.

[28] W. Chrabakh and R. Wolski. GridSAT: A chaff-based Distributed SAT
solver for the Grid. In Supercomputing Conference, Phoenix, AZ, page 37.
ACM, November 2003.

[29] Condor home page – http://www.cs.wisc.edu/condor/.

[30] S. A. Cook. The complexity of theorem-proving procedures. In STOC ’71:
Proceedings of the third annual ACM symposium on Theory of computing,
pages 151–158, New York, NY, USA, 1971. ACM Press.

[31] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid informa-
tion services for distributed resource sharing. In HPDC ’01: Proceedings of
the 10th IEEE International Symposium on High Performance Distributed
Computing (HPDC-10’01), page 181, Washington, DC, USA, 2001. IEEE
Computer Society.

208

Bibliography

[32] K. Czajkowski, I. T. Foster, N. T. Karonis, C. Kesselman, S. Martin,
W. Smith, and S. Tuecke. A resource management architecture for meta-
computing systems. In IPPS/SPDP ’98: Proceedings of the Workshop on
Job Scheduling Strategies for Parallel Processing, pages 62–82, London, UK,
1998. Springer-Verlag.

[33] A. Dandalis and V. K. Prasanna. Run-time performance optimization of an
FPGA-based deduction engine for SAT solvers. ACM Trans. Des. Autom.
Electron. Syst., 7(4):547–562, 2002.

[34] Data Star. http://www.npaci.edu/DataStar/.

[35] S. G. David A. Plaisted. A structure-preserving clause form translation.
Source Journal of Symbolic Computation archive, 2(3):293 – 304, September
1986.

[36] M. Davis, G. Logeman, and D. Loveland. A machine program for theory
proving. In Communications of the ACM, volume 5, pages 394–397, 1962.

[37] M. Davis and H. Putnam. A Computing Procedure for Quantification The-
ory. Journal of the ACM, pages 201–215, 1960.

[38] M. den Burger, T. Kielmann, and H. E. Bal. TOPOMON: A monitoring tool
for grid network topology. In International Conference on Computational
Science (2), pages 558–567, 2002.

[39] K. A. S. Fadi A. Aloul, Igor L. Markov. Shatter: Efficient symmetry-
breaking for boolean satisfiability. In Design Automation Conference, pages
836–839. ACM/IEEE, June 2003.

[40] J. Feo, D. Harper, S. Kahan, and P. Konecny. ELDORADO. In CF ’05:
Proceedings of the 2nd conference on Computing frontiers, pages 28–34, New
York, NY, USA, 2005. ACM Press.

[41] S. L. Forman and A. M. Segre. NAGSAT: A Randomized, Complete, Parallel
Solver for 3-SAT. In Fifth International Symposium on the Theory and
Applications of Satisfiability Testing (SAT2002), pages 236–243, 2002.

[42] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure
toolkit. Intl J. Supercomputer Applications, 11(2):115–128, 1997.

209

Bibliography

[43] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers, Inc., 1998.

[44] I. Foster, C. Kesselman, C. Lee, B. Lindell, K. Nahrstedt, and A. Roy. A
distributed resource management architecture that supports advanced reser-
vation and co-allocation. In International Workshop on Quality of Service,
1999.

[45] G. F. Francine Berman and T. Hey. Grid Computing: Making the Global
Infrastructure a Reality. John Wiley & Sons Inc., 2003.

[46] Gnutella. http://www.gnutellanews.com, 2001.

[47] E. Goldberg and Y. Novikov. BerkMin: A Fast and Robust SAT-Solver. In
DATE, pages 142–149. IEEE Computer Society, 2002.

[48] E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT-solver. In
Design, Automation, and Test in Europe (DATE ’02), pages 142–149, March
2002.

[49] P. Grace, G. Coulson, G. Blair, L. Mathy, W. Yeung, W. Cai, D. Duce,
and C. Cooper. Gridkit: Pluggable overlay networks for grid computing.
In Proceedings Distributed Objects and Applications (DOA’04), pages 1463–
1481, October 2004.

[50] S. Graham and B. Murray. http://docs.oasis-open.org/wsn/2004/06/wsn-
ws-basenotification-1.2-draft-03.pdf, 2004.

[51] Grid Application Development Software (GrADS). http://hipersoft.cs.
rice.edu/grads.

[52] H. E. Guy Eddon. Inside Distributed COM. Microsoft Press, 1998.

[53] E. A. Hirsch and A. Kojevnikov. UnitWalk: A new SAT solver that uses
local search guided by unit clause elimination. In PDMI preprint 9/2001,
Steklov Institute of Mathematics at St.Petersburg, 2001.

[54] S. ichi Minato. Binary decision diagrams and applications for VLSI CAD.
Kluwer Academic Publishers, Norwell, MA, USA, 1996.

[55] K. Iwama. Cnf satisfiability test by counting and polynomial average time.
SIAM Journal on Computing, 18(2):385–391, 1989.

210

Bibliography

[56] D. Jackson and M. Vaziri. Finding bugs with a constraint solver. In ISSTA
’00: Proceedings of the 2000 ACM SIGSOFT international symposium on
Software testing and analysis, pages 14–25, New York, NY, USA, 2000. ACM
Press.

[57] P. James-Roxby, P. Schumacher, and C. Ross. A single program mul-
tiple data parallel processing platform for fpgas. Symposium on Field-
Programmable Custom Computing Machines (FCCM’04), 00:302–303, 2004.

[58] B. Jurkowiak, C. M. Li, and G. Utard. Parallelizing Satz Using Dynamic
Workload Balancing. In Proceedings of Workshop on Theory and Applica-
tions of Satisfiability Testing (SAT’2001), pages 205–211, June 2001.

[59] H. Kautz and B. Selman. Planning as satisfiability. In ECAI ’92: Proceedings
of the 10th European conference on Artificial intelligence, pages 359–363,
New York, NY, USA, 1992. John Wiley & Sons, Inc.

[60] W. Kunz and D. Stoffel. Reasoning in Boolean Networks: Logic Synthesis
and Verification Using Techniques. Kluwer Academic Publishers, Boston,
1997.

[61] T. Larrabee. Efficient generation of test patterns using boolean difference. In
Proceedings International Test Conference, pages 795–802. IEEE Computer
Society, August 1989.

[62] T. Larrabee. Test pattern generation using boolean satisfiability. In IEEE
Transactions on Computer-Aided Design, pages 4–15, January 1992.

[63] S. Larson, C. Snow, M. Shirts, and V. Pande. Folding@Home and
Genome@Home: Using distributed computing to tackle previously in-
tractable problems in computational biology. Computational Genomics,
2002.

[64] C. M. LI. A constrained-based approach to narrow search trees for satisfia-
bility. In Information processing letters 71, pages 75–80, 1999.

[65] M. W. M. Lintao Zhang, Conor F. Madigan and S. Malik. Efficient Conflict
Driven Learning in Boolean Satisfiability Solver. In International Conference
on Computer Aided Design (ICCAD), pages 279–285, 2001.

211

Bibliography

[66] B. Lowekamp, N. Miller, D. Sutherland, T. Gross, P. Steenkiste, and
J. Subhlok. A resource query interface for network-aware applications. In
HPDC ’98: Proceedings of the The Seventh IEEE International Symposium
on High Performance Distributed Computing, page 189, Washington, DC,
USA, 1998. IEEE Computer Society.

[67] M. Moskewicz. http://www.ee.princeton.edu/~chaff/index1.html.

[68] B. D. Martino, J. Dongarra, A. Hoisie, L. T. Yang, and H. Zima. Engineering
The Grid: Status and Perspective. American Scientific Publishers, 2006.

[69] Message Passing Interface Forum. MPI: A message-passing interface stan-
dard. Technical Report CS-94-230, University of Tennessee, Knoxville, 1994.

[70] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
engineering an efficient sat solver. In DAC ’01: Proceedings of the 38th
conference on Design automation, pages 530–535, New York, NY, USA,
2001. ACM Press.

[71] G.-J. Nam, F. Aloul, K. Sakallah, and R. Rutenbar. A comparative study
of two boolean formulations of fpga detailed routing constraints. In ISPD
’01: Proceedings of the 2001 international symposium on Physical design,
pages 222–227, New York, NY, USA, 2001. ACM Press.

[72] J. Novotny. The grid portal development kit. Concurrency and Computa-
tion: Practice and Experience, 14(13-15):1129–1144, 2002.

[73] OASIS. Web services reosurce framework (wsrf) tc. http://www.oasis-
open.org/committees/tc home.php?wg abbrev=wsrf, 2003.

[74] ”OMG”. The complete formal/98-07-01: The corba/iiop 2.2 specification,
1998.

[75] J. Plank, M. Beck, and W. Elwasif. IBP: The internet backplane protocol.
Technical Report UT-CS-99-426, University of Tennessee, 1999.

[76] F. Plasil and M. Stal. An architectural view of distributed objects and
components in CORBA, Java RMI, and COM/DCOM. Software-Concepts
& Tools, 19(3):14–28, 1998.

212

Bibliography

[77] C. Plessl and M. Platzner. Instance-Specific Accelerators for Minimum Cov-
ering. J. Supercomput., 26(2):109–129, 2003.

[78] P. Prosser. Hybrid algorithms for the constraint satisfaction problem. Com-
putational Intelligence, 9(3):268–299, 1993.

[79] S. Radziszowski. Small Ramsey Numbers. Electronic Journal of Combina-
torics, Dynamic Survey DS1, page 28, 1994.

[80] S. Reda and A. Salem. Combinational equivalence checking using boolean
satisfiability and binary decision diagrams. In Proceedings of the conference
on Design, automation and test in Europe, pages 122–126. IEEE Press, 2001.

[81] G. F. B. Riemann. ber die Anzahl der Primzahlen unter einer gegebe-
nen Grsse. Monatsber. Knigl. Preuss. Akad. Wiss. Berlin, pages 671–680,
November 1859.

[82] M. Ripeanu and I. T. Foster. Mapping the gnutella network: Macroscopic
properties of large-scale peer-to-peer systems. In IPTPS ’01: Revised Papers
from the First International Workshop on Peer-to-Peer Systems, pages 85–
93, London, UK, 2002. Springer-Verlag.

[83] M. Ripeanu, A. Iamnitchi, and I. Foster. Performance predictions for a
numerical relativity package in grid environments. Int. J. High Perform.
Comput. Appl., 15(4):375–387, 2001.

[84] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pren-
tice Hall, 2002.

[85] S. Saroiu, P. Gummadi, and S. Gribble. A Measurement Study of Peer-to-
Peer File Sharing Systems. In Proceedings of Multimedia Computing and
Networking (MMCN), pages 156–170, 2002.

[86] SAT 2002 benchmarks. http://www.satlive.org/SATCompetition/2002/
submittedbenchs.html.

[87] SAT 2002 challenge benchmark. http://www.ececs.uc.edu/sat2002/

sat2002-challenges.tar.gz.

[88] SAT 2002 Competition. http://www.satlive.org/SATCompetition/.

213

Bibliography

[89] SAT Competition. http://satlive.org/SATCompetition/.

[90] M. H. Schulz and E. Auth. Improved Deterministic Test Pattern Generation
with Applications to Redundancy Identification. IEEE Transactions on
ComputerAided Design, 8(7):811816, July 1989.

[91] D. Schuurmans and F. Southey. Local search characteristics of incomplete
sat procedures. Artif. Intell., 132(2):121–150, 2001.

[92] B. Selman, H. A. Kautz, and B. Cohen. Noise strategies for improving
local search. In AAAI ’94: Proceedings of the twelfth national conference on
Artificial intelligence (vol. 1), pages 337–343, Menlo Park, CA, USA, 1994.
American Association for Artificial Intelligence.

[93] SETI@home. http://setiathome.ssl.berkeley.edu, March 2001.

[94] M. Siekkinen, G. Urvoy-Keller, E. W. Biersack, and T. En-Najjary. Root
cause analysis for long-lived tcp connections. In CoNEXT’05: Proceedings of
the 2005 ACM conference on Emerging network experiment and technology,
pages 200–210, New York, NY, USA, 2005. ACM Press.

[95] J. M. Silva and K. Sakallah. Grasp - a new search algorithm for satisfiability.
ICCAD. IEEE Computer Society Press, 1996.

[96] J. P. M. Silva. Search Algorithms for Satisfiability Problems in Combina-
tional Switching Circuits. Ph.D. Thesis, The University of Michigan, 1995.

[97] C. Sinz, W. Blochinger, and W. Kuchlin. PaSAT - Parallel SAT-Checking
with Lemma Exchange: Implementation and Applications. In Proceedings
of SAT2001, pages 212–217, 2001.

[98] I. Skliarova. Reconfigurable hardware sat solvers: A survey of systems.
IEEE Trans. Comput., 53(11):1449–1461, 2004. Member-Antonio de Brito
Ferrari.

[99] I. Skliarova and A. B. Ferrari. A software/reconfigurable hardware SAT
solver. IEEE Trans. Very Large Scale Integr. Syst., 12(4):408–419, 2004.

[100] N. Spring and R. Wolski. Application level scheduling of gene sequence
comparison on metacomputers. In ICS ’98: Proceedings of the 12th interna-
tional conference on Supercomputing, pages 141–148, New York, NY, USA,
1998. ACM Press.

214

Bibliography

[101] L. L. Steve Tuecke and S. Meder. http://docs.oasis-
open.org/wsrf/2005/03/wsrf-ws-basefaults-1.2-draft-04.pdf, 2005.

[102] T. Suzumura, S. Matsuoka, H. Nakada, and H. Casanova. Gridspeed: A
web-based grid portal generation server. In HPCASIA ’04: Proceedings of
the High Performance Computing and Grid in Asia Pacific Region, Seventh
International Conference on (HPCAsia’04), pages 26–33, Washington, DC,
USA, 2004. IEEE Computer Society.

[103] M. Swany and R. Wolski. Building performance topologies for computational
grids. Int. J. High Perform. Comput. Appl., 18(2):255–265, 2004.

[104] T. Tannenbaum and M. Litzkow. The condor distributed processing system.
Dr. Dobbs Journal, February 1995.

[105] The TeraGrid Home Page. http://www.teragrid.org.

[106] TeraGrid. http://www.teragrid.org/.

[107] The BlueGene/L Team. An overview of the BlueGene/L Supercomputer.
In IEEE conference on supercomputing (SC2002), pages 1–22, 2002.

[108] The Great Internet Mersene Prime Search (GIMPS). http://www.

mersenne.org/, 2001.

[109] S. S. Vadhiyar and J. J. Dongarra. Gradsolve: a grid-based rpc system
for parallel computing with application-level scheduling. J. Parallel Distrib.
Comput., 64(6):774–783, 2004.

[110] L. G. Valiant. A bridging model for parallel computation. Commun. ACM,
33(8):103–111, 1990.

[111] G. von Laszewski, I. Foster, J. Gawor, and P. Lane. A Java commodity grid
kit. Concurrency and Computation: Practice and Experience, 13(8–9):645–
662, /2001.

[112] Z. Website. http://www.zetagrid.net/, 2006.

[113] J. Widmer, C. Boutremans, and J.-Y. L. Boudec. End-to-end congestion
control for tcp-friendly flows with variable packet size. SIGCOMM Comput.
Commun. Rev., 34(2):137–151, 2004.

215

Bibliography

[114] R. Wolski, J. Brevik, C. Krintz, G. Obertelli, N. Spring, and A. Su. Running
everyware on the computational grid. In Supercomputing ’99: Proceedings
of the 1999 ACM/IEEE conference on Supercomputing (CDROM), page 6,
New York, NY, USA, 1999. ACM Press.

[115] R. Wolski, J. Brevik, G. Obertelli, N. Spring, and A. Su. Writing programs
that run everyware on the computational grid. IEEE Trans. Parallel Distrib.
Syst., 12(10):1066–1080, 2001.

[116] R. Wolski, N. Spring, and J. Hayes. Predicting the cpu availability of time-
shared unix systems on the computational grid. In HPDC ’99: Proceedings
of the The Eighth IEEE International Symposium on High Performance Dis-
tributed Computing, page 12, Washington, DC, USA, 1999. IEEE Computer
Society.

[117] R. Wolski, N. T. Spring, and J. Hayes. The network weather service: a dis-
tributed resource performance forecasting service for metacomputing. Future
Generation Computer Systems, 15(5-6):757–768, 1999.

[118] T. W. W. S. A. working group. public draft.
http://www.w3.org/TR/2003/WD-ws-arch-20030808/, August 2003.

[119] J. L. XL Jin. Multiagent SAT (MASSAT): Autonomous Pattern Search in
Constrained Domains. In H. Y. et. al, editor, Third International Conference
on Intelligent Data Engineering and Automated Learning (IDEAL2002),
pages 318–328, Manchester, UK, August 2002.

[120] The zChaff Satisfiability Solver. http://ee.princeton.edu/~chaff/

zchaff.php.

[121] H. Zhang. SATO: An Efficient Propositional Prover. In CADE-14: Proceed-
ings of the 14th International Conference on Automated Deduction, pages
272–275, London, UK, 1997. Springer-Verlag.

[122] H. Zhang and M. Bonacina. Cumulating search in a distributed computing
environment: A case study in parallel satisfiability. In Proceedings of the
First International Symposium on Parallel Symbolic Computation (PASCO-
94), pages 422–431, September 1994.

216

Bibliography

[123] L. Zhang and S. Malik. The quest for efficient boolean satisfiability solvers.
In CADE-18: Proceedings of the 18th International Conference on Auto-
mated Deduction, pages 295–313, London, UK, 2002. Springer-Verlag.

[124] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J. Kubiatowicz.
Tapestry: A resilient global-scale overlay for service deployment. In IEEE
Journal on Selected Areas in Communications, volume 22, pages 41– 53,
2003.

[125] Y. Zhao, S. Malik, M. Moskewicz, and C. Madigan. Accelerating boolean
satisfiability through application specific processing. In ISSS ’01: Proceed-
ings of the 14th international symposium on Systems synthesis, pages 244–
249, New York, NY, USA, 2001. ACM Press.

217

