
Scheduling FFT Computation on SMP and Multicore
Systems

Ayaz Ali
Dept. of Computer Science

University of Houston
Houston, TX 77204, USA

ayaz@cs.uh.edu

Lennart Johnsson
Dept. of Computer Science

University of Houston
Houston, TX 77204, USA
johnsson@tlc2.uh.edu

Jaspal Subhlok
Dept. of Computer Science

University of Houston
Houston, TX 77204, USA

jaspal@uh.edu

ABSTRACT
Increased complexity of memory systems to ameliorate the
gap between the speed of processors and memory has made
it increasingly harder for compilers to optimize an arbitrary
code within a palatable amount of time. With the emer-
gence of multicore (CMP), multiprocessor (SMP) and hybrid
shared memory multiprocessor architectures, achieving high
efficiency is becoming even more challenging. To address the
challenge to achieve high efficiency in performance critical
applications, domain specific frameworks have been devel-
oped that aid the compilers in scheduling the computations.
We have developed a portable framework for the Fast Fourier
Transform (FFT) that achieves high efficiency by automat-
ically adapting to various architectural features. Adapting
to parallel architectures by searching through all the combi-
nations of schedules (plans) is an expensive task, even when
the search is conducted in parallel. In this paper, we de-
velop heuristics to simplify the generation of better sched-
ules for parallel FFT computations on CMP/SMP systems.
We evaluate the performance of OpenMP and PThreads im-
plementations of FFT on a number of latest architectures.
The performance of parallel FFT schedules is compared with
that of the best plan generated for sequential FFT and the
speedup for different number of processors is reported. In
the end, we also present a performance comparison between
the UHFFT and FFTW implementations.

Categories and Subject Descriptors
F.2.1 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithms and Problems; D.1.3 [Programming
Techniques]: Concurrent Programming; G.4 [Mathematical
Software]: Parallel and vector implementations

General Terms
Performance, Design, Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’07, June 18–20, 2007, Seattle, WA, USA.
Copyright 2007 ACM 978-1-59593-768-1/07/0006 ...$5.00.

Keywords
Automatic Performance Tuning, Fast Fourier Transform,
Automatic Parallelization, Multicore, Shared memory

1. INTRODUCTION
The large gap in the speed of processors and main mem-

ory that has developed over the last decade and the resulting
increased complexity of memory systems introduced to ame-
liorate this gap has made it increasingly harder for compilers
to optimize an arbitrary code within palatable amount of
time. Though issues of heat removal recently have consider-
ably slowed the rate of increase in processor clock frequen-
cies, the industry response to seek continued exponential
performance growth in the spirit of “Moore’s law” is multi-
core chips, or heterogeneous architectures, such as the Cell
Broadband Engine, which further adds to the complexity of
code optimization. To address the challenge to achieve high
efficiency in performance critical functions, domain specific
tools and compilers have been developed, which aid the com-
pilers in scheduling the computations to adapt to underlying
architecture.

The Fast Fourier Transform (FFT) is one of the most
widely used algorithms in many fields of science and engi-
neering, especially in the field of signal processing. Since
1965, various algorithms have been proposed for computing
DFTs efficiently. However, the FFT is only a good starting
point if an efficient implementation exists for the architec-
ture at hand. Scheduling operations and memory accesses
for the FFT for modern platforms, given their complex ar-
chitectures, is a serious challenge compared to BLAS-like
functions. It continues to present serious challenges to com-
piler writers and high performance library developers for
every new generation of computer architectures due to its
relatively low ratio of computation per memory access and
non-sequential memory access pattern. FFTW[7, 6], SPI-
RAL[12, 5] and UHFFT[10, 9, 2] are three current efforts
addressing machine optimization of algorithm selection and
code optimization for FFTs.

In UHFFT, run-time optimization is performed by search-
ing the best schedule (plan) from among an exponential
number of combinations of factorizations and algorithms.
For a given FFT problem, search adds some cost to the to-
tal execution time. However the performance gain could be
significant, especially when the same size problem is repeat-
edly used, as in multidimensional FFTs.

In this paper, we have extended our adaptive approach
for single processor to shared memory multiprocessor archi-
tectures. On parallel architectures (CMP/SMP), additional

parameters such as processor count and their layout need
to be considered if the absolute best performance is desired.
However, additional parameters could potentially multiply
the cost of search for the optimal parallel plan. Intelligent
heuristics need to be developed that could make the selec-
tion process of the optimal execution strategy more efficient.
We evaluate the performance of two parallel FFT imple-
mentations using OpenMP and PThreads on a number of
latest CMP/SMP architectures and discuss the differences
between the two programming models. The performance of
parallel FFT schedules is compared to that of the best plan
generated for sequential FFT and the speedup for differ-
ent number of processors is reported. For moderately large
problem sizes, we were able to achieve super linear speedup
on all the architectures.

2. BACKGROUND

2.1 FFT
The Fast Fourier Transform (FFT) is a divide and con-

quer algorithm for quick evaluation of the Discrete Fourier
Transform (DFT). For completeness, we briefly discuss the
famous Cooley Tukey algorithm, which is one of the main
algorithms used in the UHFFT library. We refer the reader
to [8, 4, 14, 15] for the detailed description of the algorithms.
In particular, the notation we use here mostly coincides with
the notation in [8].

Discrete Fourier Transform (DFT) of a complex vector is
a matrix vector product defined by:

Xl =
N−1∑

j=0

ωlj
N xj (1)

Xl = WN .x (2)

where ωN is an Nth root of unity: e− 2πi
N . The periodicity

of ωN , introduces an intricate structure into the WN DFT
matrix , which makes possible the factorization of WN into
a small number of sparse factors. For example, it can be
shown that when N = r × m, WN can be written as:

X = (Wr ⊗ Im)T N
m (Ir ⊗ Wm)ΠN,rx (3)

where T N
m is a diagonal “twiddle factor” matrix and ΠN,ris a

mod-r sort permutation matrix. This is the heart of the FFT
idea, and the formulation in Eq.3 is the well known Cooley
Tukey Mixed Radix splitting algorithm[4]. The algorithm
not only reduces the complexity from O(n2) to O(n log n),
but offers a recursive divide and conquer structure that is
most suited to uniprocessor as well as multiprocessor archi-
tectures with deep memory hierarchy.

Parallel FFT
The “Kronecker product” formulation of FFT is an efficient
way to express sparse matrix operations. It also exposes the
data parallelism that is inherent in the Mixed Radix FFT
algorithm. In the above formulation, r (called radix) sub-
problems of size m FFT (Ir⊗Wm) can be executed indepen-
dently followed by “twiddle” multiplication and m indepen-
dent FFTs of size r, i.e., (Wr ⊗ Im). Both, the permutation
step and the“twiddle”multiplication step can be fused inside
the first FFT subproblem, while still maintaining the data

Single
CPU

Best FFT
Descriptor

Plan

DFTi API

Input FFT
Problem

UHFFT Run-Time

FSSL Grammar

FFT
Codelet
Library

UHFFT Code
Generator

Executor
M

ixed Radix

Split R
adix

Prim
e Factor

Rader’s

SMP Layer

CPUSMP

Planner
Select

CodeletCh
oo

se

Al
go

rith
m

Evaluate
Performance

Timers

Figure 1: Block Diagram of UHFFT Run-time

parallelism. Loan[8] provides a good discussion of parallel
FFT algorithms including the implementations for shared
memory parallel machines. Parallel algorithms for FFT can
be broadly divided in two categories, i.e., the algorithms
that perform explicit reordering of data using transposes[1,
3] and the algorithms that do not perform any movement
of data. Computing a FFT on distributed data is not pos-
sible without movement of data. But, parallel FFT can be
computed without remapping of data on architectures with
shared address space. In general, explicit scheduling may
perform better depending on the cost of data communica-
tion among processors. Recently, the SPIRAL team has pre-
sented an approach to automatic generation of parallel FFT
code for SMP and multicore architectures[5]. In their paper,
they evaluate the performance of parallel FFT code using
OpenMP as well as PThreads on a number of CMP/SMP
architectures. They also compare the performance of their
implementations with that of FFTW.

2.2 UHFFT
The UHFFT system comprises of two layers: the code gen-

erator (fftgen) and the run-time framework. The code gen-
erator generates highly optimized small DFT, straight line
“C” code blocks called codelets at installation time. These
codelets are combined by the run-time framework to solve
large FFT problems on Real and Complex data. Block dia-
gram of UHFFT run-time is given in Figure 1.

2.2.1 Code Generator
The FFT library contains a number of codelets, which

are generated at installation time. Each codelet sequentially
computes a part of the transform and overall efficiency of
the code depends strongly on the efficiency of these codelets.
Therefore, it is essential to have a highly optimized set of
DFT codelets in the library. The Code generator adapts
to the platform, i.e., compiler and hardware architecture by
empirically tuning the codelets using iterative compilation
and feedback [2].

2.2.2 Plan Specification
An execution plan determines the codelets that will be

Table 1: Subset of FSSL grammar
CFG Rules
1-3 root−→fft | smpfft | module
4 fft−→(outplaceZ, fft mr module)
5 smpfft−→(mr pZ block , fft)Z

6-7 module−→codelet | (raderZ, fft)
8 block−→b Z : Z
9 codelet−→n ∈generated set of codelets

used for that FFT size and also the order (schedule) in which
they will be executed. An FFT plan is described in con-
cise FFT Schedule Specification Language (FSSL), which
is generated from a set of context free grammar produc-
tions given in Table 1. It allows different algorithms to be
mixed together to generate a high performance execution
plan based on properties of the input vector and its factors.
Additionally, parallel execution plan provides an option of
explicitly specifying the data distribution scheme on mul-
tiple processes. Indeed, by implementing a minimal set of
rules, adaptive schedules could be constructed that suit dif-
ferent types of architectures.

2.2.3 Planner
Each FFT problem is identified by a DFTi descriptor

[13], which describes various characteristics of the problem
including size, precision, input and output data type and
number of threads. Once the descriptor is submitted, plan-
ner selects the best plan, which may be used repeatedly
to compute the transforms of same size. Our current im-
plementation supports two strategies for searching the best
plan. Both strategies use dynamic programming to search
the space of possible factorizations and algorithms, given by
a tree as shown in Figure 2. The first approach called Con-
text Sensitive Empirical Search, empirically evaluates the
sub-plans. To avoid re-evaluation of identical sub-plans, a
lookup table is maintained to store their performance. In
the second approach, called Context Free Hybrid Search, the
cost of search is significantly reduced at the expense of plan
quality. In this scheme, the cost of a subplan is estimated by
empirically evaluating only the codelet that is encountered
in a bottom up traversal. In this paper, we use the first ap-
proach because it generates good quality plans at reasonable
cost of search.

























 

























Figure 2: Search Space for Size 16 FFT. There are
a total of 8 possible plans. Codelets are called with
different input and output strides at different levels
of tree (recursion) also known as ranks.

!"

!"

!#

!$

!%

!&

!'

!(

!)

!#!" !$

!& !(

!# !%

!' !)

!#!"

!" !#

!$!%

$%&'(

!& !'

!(!)

!" !#

$%&')

Figure 3: Parallel FFT plan for N = 8 and P = 2:
(mrp2, (outplace8, 4mr2))8. Parallelization is per-
formed on the two dimensional formulation of 1D
FFT.

!

"

#

$

%

&

'

(

!

%

#

'

"

&

$

(

!

%

#

'

"

&

$

(

) * * *

Figure 4: Butterfly representation of Parallel FFT
plan for N = 8 and P = 2: (mrp2, (outplace8, 4mr2))8.
The computation is distributed at the first level
of recursion, i.e., between log nth and the previous
rank.

3. PARALLEL FFT PLAN
Performance of a multithreaded execution depends on that

of the serial code. Once a FFT plan is divided among
threads, each of them executes part of the serial plan in
parallel. In a straightforward implementation using Cooley
Tukey factorization, the problem is recursively broken into
smaller FFT sub-problems in a multidimensional formula-
tion[1]. An example of the multidimensional representation
of size 8 FFT plan is given in Figure 3. In general, a FFT
(when N = ri) can be formulated as a logr N dimensional
FFT problem using radix r factorizations. The butterfly
representation of same parallel FFT plan is given in Figure
4. These representations are particularly useful in under-
standing the distribution of data and access pattern that is
vital in parallelization of any algorithm.

Notice that the parallelization is performed at the first
level of recursion, i.e., on the two dimensional formulation
of FFT. Contrary to nested parallelism, this ensures there is
only one point (barrier) where all threads have to synchro-
nize before executing the deeper ranks or stages of recur-
sion. Synchronizing threads adds to the overhead of multi-
threaded execution and causes major performance degrada-
tion if proper load-balancing is not employed. In general,
even distribution of work is possible when P divides

√
N ,

i.e., (P |
√

N).

3.1 Row/Column Blocking
The communication cost on shared memory multiproces-

0 2 4 6 8 10
2000

2200

2400

2600

2800

3000

3200

3400

ColBlock (Log2)

M
Fl

O
PS

b8:$Col

Figure 5: Performance trend
(on Itanium 2 Quad SMP) for
plan:(mrp2, (outplace65536, 16mr16mr16mr16))65536,
due to varying sizes of blocks along columns .
Performance is measured using mflops or Mil-
lion Floating Point Operations Per Second and is
calculated from the execution time and standard
algorithm complexity for FFT i.e. 5N log N .

sor systems with uniform memory access (UMA) does not
play a major role in the performance. However, different
data distributions have an impact on the performance of
memory systems on some architectures. In Figures 3 and
4, we have shown the block distribution of workload with
strided data along row dimension and contiguous data along
columns. The example given in the Figures 3 and 4 has only
one possible distribution along rows since there are only two
rows and two processors. Based on the results of our ex-
periments for larger data sizes on SMP/CMP machines, we
found that there was no performance difference in how the
rows were distributed as long as each processor worked on a
full row (of strided data). However, different distributions of
columns had some performance variation as shown in Figure
5. This is mainly due to the cache coherence conflicts and
false sharing [11], which are caused by the elements at the
column boundaries falling in same cache line but different
processors. As a rule of thumb, choosing maximum blocks
of columns works best as indicated in the graph in Figure 5.

3.2 Plan Selection
In general, the sequential plan generated by one of the

search schemes in the planner could be selected for parallel
execution. However, the plan thus selected is not guaranteed
to be optimal as shown in Figure 6 . In the graph, one of
the plans (annotated by an arrow) represents the parallel
execution of sequential plan selected by our existing search
scheme. Notice that the execution results in sub-optimal
performance. A better search scheme needs to take into
account a limited number of parallel plans in order to select
the best parallel plan for the target architecture.

Algorithm 1, selects the best parallel plan ρparallel for a
FFT of size N using P cores/processors. It uses UHFFT’s
search scheme for sequential plan selection to find the best
serial plan ρserial for size N FFT. Since UHFFT uses dy-
namic programming and maintains a table of performance
numbers for sub-problems, all iterations inside the loop incur

2048mr64 4096mr32 8192mr16 16384mr8 32768mr4 65536mr2
1

2

3

4

5

6

7

8

 ¬

 ¬

 ¬

Plans

Sp
ee

du
p

2PThread
4PThread
8PThread

Figure 6: Speedup of different parallel plans for FFT
of size 128K on Opteron 8-way SMP Machine.

Algorithm 1 Selecting Parallel FFT Plan

Search best sequential plan ρserial for N
perfserial = Evaluate ρserial

perfmax = 0
while r = {i × P ∈ codelet library ∀i ∈ {1, 2, 3 · · · }

if r |N
Lookup best sequential plan ρ for N

r
perf = Evaluate (mrpP, ρ mr r)N
if max(perf , perfmax) (= perfmax

ρparallel = (mrp P, ρ mr r)N
perfmax = perf

if max(perfserial , perfmax) (= perfmax

Return ρserial

Return ρparallel

constant cost of table lookup and evaluation. The algorithm
evaluates a limited number of parallel plans to find the best
two dimensional (parallel) formulation of a given 1D FFT
problem. Each formulation consists of rows of length N

r and
columns of length (radix) r.

4. IMPLEMENTATION
Most compilers support native multithreaded program-

ming APIs. Posix thread (PThreads) library routines are
flexible but offer limited portability across different architec-
tures. OpenMP is a portable, scalable model. It provides a
simple interface for developing multithreaded applications.
Two types of multithreaded programming models are com-
monly used, i.e., fork/join model and thread pooling model.
Posix Thread is an example of fork/join threading model.
Nevertheless, thread pooling can be built on top of fork/join
threading. Most OpenMP implementations use thread pools
to avoid the overhead of creating and destroying threads af-
ter each parallel region. These threads exist for the duration
of program execution.

Implementation of parallel FFT using OpenMP is rela-
tively straightforward given an efficient parallel plan. The
two loops around the row and column FFTs are decorated
with omp directives and they are distributed in contiguous
chunks (blocks). In our Posix Threads implementation, we
use thread pooling technique to avoid the overhead of creat-
ing threads. The pool of peer threads, as shown in Figure 7,

!"##$%&'()*$+%"*

,-$%

)"#+.%'

/"%$01

!"#+.%'

!""#

Figure 7: Thread Pool Model

8 10 12 14 16 18 20 22 24 26
0

1000

2000

3000

4000

5000

6000

7000

Size (Log2)

M
Fl

O
PS

w/Pool
wo/Pool

Figure 8: Performance Comparison of two multi-
threaded implementations on Xeon 2×Dual (four)
cores. Current implementation uses thread pools
and busy wait. The old implementation creates
threads as needed and uses condition variables and
mutex for synchronization.

is created when the DFTi descriptor is submitted and after
the best plan is selected. The pool is destroyed when the de-
scriptor is freed. To reduce the cost of synchronization, we
implemented a low latency barrier using atomic decrement
instruction. In addition to that, we used busy wait when
the plan was perfectly load balanced. Contrary to waiting
on events, this technique avoids the overhead of system calls
and thread scheduling. In Figure 8, we give the performance
comparison of our preferred multithreaded implementation
using pooling and customized barrier with our old implemen-
tation that used fork/join model and native synchronization
primitives. In general, we observed that thread pooling was
a major factor in the performance improvement for relatively
small sizes. But, for larger sizes, using busy wait resulted in
slightly lower performance.

5. RESULTS
Performance benchmarking of the OpenMP and PThreads

parallel implementations was performed on a number of re-
cent SMP/CMP architectures listed in Table 2. Both Ita-
nium 2 and Opteron 846 are traditional SMP machines where
each processor has separate caches and shared main mem-
ory. The Xeon Woodcrest node consists of two dual cores
arranged in a SMP setting; the two cores in a dual share
L2 cache. The Opteron 275 node also consists of two dual
cores; each core having separate L1/L2 cache. In this paper,

8 10 12 14 16 18 20 22 24 26
0

1000

2000

3000

4000

5000

6000

7000

8000

Size (Log2)

M
Fl

O
PS

1
2OpenMP
4OpenMP
2PThread
4PThread

Figure 9: Performance of Complex FFT prob-
lems for powers of two sizes. The plots compare
the OpenMP and PThreads implementations and
speedup gained for varying number of threads on
Xeon Woodcrest 2×Dual CMP/SMP Machine. For
all sizes the performance of sequential FFT execu-
tion is also given.

the performance numbers are derived from the total execu-
tion time of a FFT problem. The performance measure,
Million Floating Point Operations Per Second (mflops), is
calculated from the execution time and commonly used al-
gorithm complexity of FFT, i.e., 5N log N . All the results
were collected on double precision complex FFT of powers
of two sizes. In each case, the benchmarking was performed
using varying number (powers of two) of available CPUs.

5.1 OpenMP vs PThreads
In the first set of results, we compared the performance

of the two parallel FFT implementations, i.e., OpenMP and
PThreads on three different architectures. Our PThreads
implementation uses thread pooling technique, which is com-
mon in most OpenMP flavors. Similar to OpenMP, we also
employ busy wait to implement barrier synchronization. We
found that this worked better than using operating system
assisted synchronization primitives such as semaphores or
condition variables. In both implementations, we favor al-
locating contiguous chunks (blocks) of rows and columns
to each core/processor. Considering all these similarities,
it is not surprising that the performance of both the im-
plementations is almost identical as shown in Figures 9 &
10. Although both the compilers, i.e. Intel and Pathscale,
have good implementations of OpenMP, distributing loops
efficiently among worker threads should be straightforward
for most parallelizing compilers because the parallel plans
generated by UHFFT are sufficiently load balanced.

5.2 Number of Processing Units (Threads)
Due to the synchronization overhead of multithreaded ex-

ecution, small size FFT problems show a slowdown in per-
formance as shown in graphs in Figures 9 & 10. An intelli-
gent plan selection scheme, as given in Algorithm 1, would
ensure that a parallel plan is selected only when it is effec-
tive. For all the architectures, the break even points occur
after sizes 211 − 212, which is equal to the first level cache
capacity. Due to low computation to I/O ratio, scalability

Table 2: Architecture Specifications
Itanium 2 Opteron 846 Xeon Woodcrest Opteron 275

Configuration 4 Processor SMP 8 Processor SMP 2×Dual Core CMP/SMP 2×Dual Core CMP/SMP
CPU Speed 1.5 GHz 2.0 GHz 2.66 GHz 2.2 GHz
Data Cache 16K,256K,6M 64K,1M 32K/Core,4MB/Duo 64K/Core,1MB/Core
Line Size 64B,128B,128B 64B,64B 64B,64B 64B,64B

Associativity 4,8,12 way 2,16 way 8,16 way 2,16 way
Theoretical Peak 24 gflops 32 gflops 42.56 gflops 17.6 gflops

Compilers icc9.1 pathcc2.5 icc9.1 gcc4.1

8 10 12 14 16 18 20 22 24 26
0

1000

2000

3000

4000

5000

6000

Size (Log2)

M
Fl

O
PS

1
2OpenMP
4OpenMP
2PThread
4PThread

8 10 12 14 16 18 20 22 24
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Size (Log2)
M

Fl
O

PS

1
2OpenMP
4OpenMP
8OpenMP
2PThread
4PThread
8PThread

Figure 10: Performance of Complex FFT problems for powers of two sizes. The plots compare the OpenMP
and PThreads implementations and speedup gained for varying number of threads on Itanium 2 Quad SMP
Machine (left) and Opteron 8-way SMP Machine (right). For both machines, the performance of sequential
FFT execution is also shown.

of the FFT algorithm depends on the memory bandwidth
for significantly large sizes. However, for moderately large
sizes, we were able to achieve super linear speedup on SMP
machines due to the increase in effective size of cache. This
pattern is evident in Figures 9 & 10.

5.3 Cache Architecture
Both Xeon and Opteron 275 architectures have identical

number of cores but their cache configuration is quite dif-
ferent. The two dual cores on Xeon have shared L2 cache
while the cores on Opteron have private caches similar to
a conventional SMP machine. Although the shared cache
configuration has its benefits in certain scenarios, the non-
uniformity can pose some scheduling problems. On Xeon,
we observed inconsistent performance for small sizes (that
fit in cache) when only two threads were spawned. This
phenomenon is shown in Figure 11; notice the extent of per-
formance variation on the Xeon compared to the Opteron.
Although the scheduler in linux kernel 2.6 tries to schedule
tasks on different physical packages (sockets) when the sys-
tem is lightly loaded, there is no guarantee that the scheduler
will get it right the first time. The performance drops when
the two threads are scheduled on the same dual, which may
result in evictions due to conflicts in shared cache. This
problem can be resolved by setting the affinity of CPUs to
place the threads properly. In UHFFT the planner schedules
the threads to different sockets (duals) if only two threads
are spawned.

5.4 UHFFT vs FFTW

FFTW recently released a new version with improved mul-
tithreaded FFT implementation that uses thread pooling. In
the final set of results, given in Figures 12 & 13, we com-
pare the multithreaded performance of UHFFT with that of
FFTW on three architectures. UHFFT employs the search
algorithm presented earlier in the paper, to select the best
plan with appropriate number of threads. In case of FFTW,
it appears that the multithreaded execution is employed for
sizes 256 and larger, as shown in Figures 12 & 13. The per-
formance of UHFFT is quite competitive with that of FFTW
for most sizes on all the architectures. On the two multi-
core machines (Xeon Woodcrest and Opteron 275), FFTW
performs significantly better for very large sizes. We believe
that it could be due to the fact that FFTW generates ar-
chitecture specific codelets that exploit simd instructions on
those two architectures. Unfortunately, UHFFT currently
does not support simd enabled codelets, which is why per-
forming a comparison strictly on the basis of parallel imple-
mentation of the two libraries is not possible. Nevertheless,
these plots establish the parallel FFT performance bench-
marks on the latest CMP/SMP systems.

6. DISCUSSION
One of the key objectives of this paper has been to eval-

uate the performance of parallel FFT implementations on
the emerging multicore/manycore architectures. There are
many factors affecting the speedup and efficiency of a paral-
lel FFT besides load balancing. FFT is a highly data paral-
lel algorithm due to its divide and conquer structure. The-

8 10 12 14 16 18 20 22 24 26
0

1000

2000

3000

4000

5000

6000

7000

8000

Size (Log2)

M
Fl

O
PS

2
4

8 10 12 14 16 18 20 22 24 26
500

1000

1500

2000

2500

3000

3500

Size (Log2)

M
Fl

O
PS

2
4

Figure 11: Performance variation on the two multicores with different cache configurations (Shared L2 Cache
vs Separate L2 Cache). On Xeon Woodcrest (left), the two cores per dual share L2 cache. On Opteron 275
(right), the cores have private L2 cache. For each size, the same plan was executed 10 times and the mean
performance was plotted along with the variation (given by error bars).

1 3 5 7 9 11 13 15 17 19 21 23
0

500

1000

1500

2000

2500

3000

3500

4000

Size (Log2)

M
Fl

O
PS

UHFFT−P1
UHFFT−P4
FFTW−P1
FFTW−P4

1 3 5 7 9 11 13 15 17 19 21 23
0

1000

2000

3000

4000

5000

6000

Size (Log2)

M
Fl

O
PS

UHFFT−P1
UHFFT−P4
FFTW−P1
FFTW−P4

Figure 13: Performance comparison of UHFFT-2.0.1beta and FFTW-3.2alpha on Opteron 275, 2×Dual
CMP/SMP (left) and Xeon Woodcrest, 2×Dual CMP/SMP (right).

1 3 5 7 9 11 13 15 17 19 21 23
0

1000

2000

3000

4000

5000

6000

Size (Log2)

M
Fl

O
PS

UHFFT−P1
UHFFT−P4
FFTW−P1
FFTW−P4

Figure 12: Performance comparison of UHFFT-
2.0.1beta and FFTW-3.2alpha on Itanium 2 Quad
SMP

oretically, achieving super-linear speedup is quite possible
(N = 218 in Figure 12) because of larger effective cache size
on shared memory multiprocessor and multicore systems.
For example on Itanium 2 Quad SMP, we were able to get
speedup of 3 for most sizes. However, the speedup on the
two multicore machines, i.e., Xeon Woodcrest and Opteron
275 was not as good. On Xeon, the best speedup for both
UHFFT and FFTW was between 1.5 and 2.5 using all the
four cores. Similarly, the best efficiency was also observed
on Itanium 2 Quad SMP, where UHFFT was able to get 25%
of the peak for in-cache sizes; the efficiency drops further to
12% of the peak for very large sizes. On Opteron 275, which
has private cache per core, the performance was similar, i.e.,
22% and 15% of the theoretical peak for in-cache and out-of-
cache sizes respectively. The efficiency on Xeon Woodcrest
was the lowest: 14% for moderately large sizes and 9% for
very large sizes. The performance potential of shared cache
multicore architectures is realized when the two threads can
potentially share some section of data. In FFTs, all the pro-
cessors may share the read-only twiddle factor array. It is
likely that one of the two threads sharing the cache would
save twiddle array cache misses. However, the potential gain
is over-shadowed by the conflicts related to cache associativ-
ity; as the stride increases, the two threads start competing
for a smaller (localized) portion of the cache, resulting in
lower effective bandwidth. Given that the main bottleneck
in the performance of FFTs has largely been the effective
memory bandwidth; the speedup and efficiency is always
going to be determined by such factors as the cache associa-
tivity and cumulative cache size instead of the computation
power of cores.

7. CONCLUSION
With the emergence of multicore and hybrid shared mem-

ory multiprocessor machines, performance scalability can
not be guaranteed without careful partitioning of workload.
In UHFFT, this is achieved by searching the plan that will
yield the best parallel performance on available processors.
We presented a simple algorithm based on our existing search
schemes, which selects the best multithreaded plan. Differ-

ent plans result in different distributions of data. The best
distribution and factorization is selected through empirical
evaluation of a limited number of parallel plans. We eval-
uated the performance of two multithreading models, i.e.,
thread pooling and fork/join models. In general, thread
pooling performs better because it avoids the overhead of
creating and destroying threads. Synchronization is another
source of overhead in a load balanced FFT plan. For rela-
tively smaller sizes, the performance of a parallel plan de-
pends on the availability of efficient synchronization mech-
anisms that can bypass system calls and thread scheduler.
For larger sizes, the computation to synchronization ratio
minimizes, resulting in better speedup. In order to com-
pare the efficacy of parallelizing compilers, we implemented
parallel FFT using two multithreaded programming mod-
els, i.e., OpenMP and PThreads. The performance numbers
indicate that if the loops are carefully structured, OpenMP
can achieve the performance that is as good as that of na-
tive threads. We also presented a head-to-head performance
comparison of the most recent versions of UHFFT and FFTW.
To our knowledge this is the first such study comparing the
performance of different parallel FFT implementations on
most recent multicore/manycore architecture using different
compilers.

8. REFERENCES
[1] Agarwal, R. C., Gustavson, F. G., and Zubair,

M. A high performance parallel algorithm for 1-d fft.
In Supercomputing ’94: Proceedings of the 1994
conference on Supercomputing (Los Alamitos, CA,
USA, 1994), IEEE Computer Society Press, pp. 34–40.

[2] Ali, A., Johnsson, L., and Mirkovic, D. Empirical
Auto-tuning Code Generator for FFT and
Trignometric Transforms. In ODES: 5th Workshop on
Optimizations for DSP and Embedded Systems, in
conjunction with International Symposium on Code
Generation and Optimization (CGO) (San Jose, CA,
March 2007).

[3] Bailey, D. H. Ffts in external or hierarchical
memory. J. Supercomput. 4, 1 (1990), 23–35.

[4] Cooley, J., and Tukey, J. An algorithm for the
machine computation of complex fourier series.
Mathematics of Computation 19 (1965), 297–301.

[5] Franchetti, F., Voronenko, Y., and Püschel,
M. FFT program generation for shared memory: SMP
and multicore. In SC ’06: Proceedings of the 2006
ACM/IEEE conference on Supercomputing (New
York, NY, USA, 2006), ACM Press, p. 115.

[6] Frigo, M. A fast Fourier transform compiler. In
PLDI ’99: Proceedings of the ACM SIGPLAN 1999
conference on Programming language design and
implementation (New York, NY, USA, 1999), ACM
Press, pp. 169–180.

[7] Frigo, M., and Johnson, S. G. The design and
implementation of FFTW3. Proceedings of the IEEE
93, 2 (2005), 216–231. special issue on ”Program
Generation, Optimization, and Platform Adaptation”.

[8] Loan, C. V. Computational frameworks for the fast
Fourier transform. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 1992.

[9] Mirkovic, D., and Johnsson, S. L. Automatic
Performance Tuning in the UHFFT Library. In ICCS

’01: Proceedings of the International Conference on
Computational Sciences-Part I (London, UK, 2001),
Springer-Verlag, pp. 71–80.

[10] Mirkovic, D., Mahasoom, R., and Johnsson,
S. L. An adaptive software library for fast Fourier
transforms. In International Conference on
Supercomputing (2000), pp. 215–224.

[11] Patterson, D. A., and Hennesy, J. L. Computer
Architecture: A Quantitative Approach. Morgan
Kaufmann Publishers, Inc., 2002.

[12] Püschel, M., Moura, J. M. F., Johnson, J.,
Padua, D., Veloso, M., Singer, B. W., Xiong, J.,
Franchetti, F., Gačić, A., Voronenko, Y., Chen,
K., Johnson, R. W., and Rizzolo, N. SPIRAL:
Code generation for DSP transforms. Proceedings of
the IEEE, special issue on ”Program Generation,
Optimization, and Adaptation” 93, 2 (2005), 232–275.

[13] Tang, P. T. P. DFTI – A New Interface for Fast
Fourier Transform Libraries. ACM Transactions on
Mathematical Software 31, 4 (Dec. 2005), 475–507.

[14] Temperton, C. Self-Sorting Mixed-Radix Fast
Fourier Transforms. Journal of Computational Physics
52 (1983), 1–23.

[15] Tolimieri, R., An, M., and Lu, C. Algorithms for
discrete fourier transform and convolution.
Springer-Verlag, 1997.

