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Abstract

In this dissertation, we present a framework for expressing, evaluating and execut-

ing dynamic schedules for FFT computation on hierarchical and shared memory

multiprocessor / multi-core architectures. The framework employs a two layered

optimization methodology to adapt the FFT computation to a given architecture

and dataset. At installation time, the code generator adapts to the microprocessor

architecture by generating highly optimized, arbitrary size micro-kernels using dy-

namic compilation with feedback. At run-time, the micro-kernels are assembled in

a DAG-like schedule to adapt the computation of large size FFT problems to the

memory system and the number of processors.

To deliver performance portability across different architectures, we have imple-

mented a concise language that provides specifications for dynamic construction of

FFT schedules. The context free grammar (CFG) rules of the language are imple-

mented in various optimized driver routines that compute parts of the whole trans-

form. By exploring the CFG rules, we were able to dynamically construct many of

the already known FFT algorithms without explicitly implementing and optimizing

them. To automate the construction of best schedule for computing an FFT on a

given platform, the framework provides multiple low cost run-time search schemes.

Our results indicate that the cost of search can be reduced drastically through accu-

rate prediction and estimation models.

With its implementation in the UHFFT, this dissertation provides a complete

methodology for the development of domain specific and portable libraries. To val-

idate our methodology, we compare the performance of the UHFFT with FFTW

v



and Intel’s MKL on recent architectures - Itanium 2, Xeon Clovertown and a sec-

ond generation Opteron. Our optimized implementations of various driver routines

compare favorably against the FFTW and MKL libraries. Our experiments show

that the UHFFT outperforms FFTW and MKL on most architectures for problems

too large to fit in cache. Moreover, our low-overhead multithreaded driver routines

deliver better performance on multi-core architectures.
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Chapter 1

Introduction

1.1 Motivation

The large gap between the speed of processors and main memory that has developed

over the last decade and the resulting increased complexity of memory systems to

ameliorate this gap has made it increasingly harder for compilers to optimize an

arbitrary code within an acceptable amount of time. Though issues of heat removal

have considerably slowed the rate of increase in processor clock frequencies, the in-

dustry response to continue delivering higher performance is chips with an increasing

number of processor ”cores” (multi-core chips), which further adds to the complex-

ity of code optimization. There is a need for the development of domain specific,

high performance frameworks that aid the compilers through generation of optimized

compute-intensive kernels for performance critical applications.

1



The fast Fourier transform is one such application that has gained importance in

many fields of science. In fact, the FFT algorithm is reported to be one of the top

ten algorithms of the century [19]. A considerable research effort has been devoted

to optimization of FFT codes over the past four decades. The algorithm presented

by Cooley and Tukey [17, 37], reduced the algorithm complexity of computing the

DFT from O(n2) to O(n logn), which is viewed as a turning point for applications

of the Fourier transform. For FFT to remain an effective computation tool, it is

important to have efficient implementations for modern computer systems. The

FFT continues to present serious challenges to high performance library developers

for every new generation of computer architectures due to its relatively low ratio of

computation per memory access and non-sequential memory access pattern. Due to

these unique features, scheduling FFT computation on modern platforms, given their

complex architectures, is a serious challenge compared to the simple data reference

and control structure of Basic Linear Algebra Subroutines (BLAS).

Current state-of-the art scientific codes use re-usable components and a layered

design to adapt to the computer architecture. At the lower level, the components

may use highly optimized sets of parameterized codes (micro kernels) that are au-

tomatically generated to adapt to microprocessor architecture. At the higher level,

the parameterization allows a search strategy to determine the optimal assembly

of kernels to make the most effective use of memory bandwidth for larger problem

sizes. A search scheme can be driven by a model or it can be empirical [65]. Most

auto-tuning libraries including ATLAS [18], FFTW [25] and SPIRAL [44] employ em-

pirical search favoring performance over one-time search cost. Although empirical
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search generally does a better job at finding the fastest code schedule for computing,

it may take orders of magnitude more time than the actual execution of code de-

pending on the number and size of tuning parameters. For FFT, search may require

enumerating and evaluating an exponential number of combinations of factorizations

and algorithms.

Although the FFT has been a well-studied topic since its publication in 1965,

its progress has been retarded by lack of a standard notation and API - to express

the FFT computation in a concise language that is easy to understand for computer

scientists. “The simplicity and intrinsic beauty of many FFT ideas is buried in

research papers that are rampant with vectors of subscripts, multiple summations,

and poorly specified recursions” [37]. Indeed, this has led to poor understanding of

the correlation between a FFT formula and its performance on modern architectures.

1.2 Contributions of the Dissertation

The goal of this dissertation is to address the challenges described above by devel-

oping a framework for expressing, evaluating and executing dynamic schedules for

FFT computation on hierarchical and shared-memory multiprocessor architectures.

To support this dissertation, we redesigned the UHFFT library [40, 39, 5, 7, 6] to

deliver higher performance across a range of modern architectures. The UHFFT

consists of four main components; a code generator, a formal language to express

and construct FFT algorithms, an FFT executor containing serial and parallel driver

routines and a scheduler that implements multiple run-time search and estimation
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methods to find the best schedule of execution. In the following, we list the main

contributions of this dissertation.

a. Code Generator

We have implemented an automatic empirical optimization mechanism in the FFT

code generator, which has been integrated in the UHFFT library. The code generator

was enhanced to automatically generate arbitrary size micro-kernels, including the

so called twiddle codelets, rotated PFA codelets, coupled in-place codelets and loop-

vectorized codelets. Additionally, the code generator also supports generations of

short vector (SIMD) variants of all the codelet types. To our knowledge this is the

only code generator that generates optimized, arbitrary size rotated codelets that can

be used as part of the prime factor algorithm (PFA). Moreover, unlike the approach

taken in the FFTW, our twiddle codelets multiply more twiddle factors per function

call resulting in fewer calls to the expensive twiddle codelets.

b. The FFT Schedule Specification Language

The code generated at installation time is assembled together at run-time to solve

large FFT problems. We have implemented a concise language based on simple con-

text free grammar rules for specifying a variety of FFT schedules and algorithms.

A similar effort has been implemented in the SPIRAL code generator system; their

signal processing language (SPL) provides a flexible encoding for manipulating the
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mathematical algorithms. The formula generated in SPL goes through multiple op-

timization stages to generate the best schedule for computing the given problem. On

the contrary, the FFT schedule specification language (FSSL) provides a dynamic

mechanism to express the schedule, including the formula and most importantly the

blocking of FFT computation. This makes FSSL particularly well-suited to hierar-

chical memory and multi-core architectures since it specifies both the schedule and

blocking of the computation. The language also helps in better understanding the

correlation between an FFT schedule (algorithm and factorization) and its perfor-

mance on the given architecture, which helps in the development of intuitive models

(heuristics) that can be implemented in run-time search schemes to avoid expensive

empirical analysis.

c. Serial and Parallel FFT Driver Routines

In the UHFFT, we have implemented efficient serial and parallel FFT driver routines

for each of the FSSL rules. Our implementations of various driver routines compare

favorably against the other popular FFT libraries - FFTW and Intel’s MKL. Unlike

the other two libraries, the UHFFT also implements prime factor algorithm (PFA)

driver routines, which perform particularly well on the non-powers-of-two sizes that

can be factorized in co-prime factors. Our experiments show that the UHFFT out-

performs FFTW and MKL on most architectures for problems too large to fit in

cache. Moreover, our low-overhead multithreaded driver routines deliver better per-

formance on multi-core architectures.
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d. Multiple Run-time Search Methods

The low cost search methods are particularly useful in libraries like the UHFFT

and FFTW, which perform run-time optimizations. Traditionally, the libraries have

performed such optimizations in a pre-computation stage that may take orders of

magnitude longer to find the best schedule (plan) than to execute it. In this disser-

tation we have implemented three low cost run-time search methods in the scheduler

to automate the process of constructing the best schedule. We show that the expen-

sive run-time empirical search can be avoided by generating domain specific models

(offline) without compromising the quality of schedules generated. Our preliminary

results indicate that the model driven search can be accurate in predicting the best

performing FFT schedule for a minimum cost of initialization.

e. Methodology for the Development of Domain Specific

Adaptive Libraries

The methodology of this dissertation has been validated by developing a set of tools,

a software library and by performing benchmarks on modern CPU architectures

including SMPs using our FFT package, the UHFFT. Although the tool pertains to

the FFT domain, the methodology presented in this dissertation may be employed

in the development of other domain specific and portable libraries.
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1.3 Dissertation Outline

This dissertation is organized as follows. In Chapter 2, we present background ma-

terial that discusses the current trends in architectures, compiler technology and

automatic tuning methodologies. Chapter 3 discusses the related work and presents

an overview of the fast Fourier transform. In Chapter 4, we present the design and

specifications of the UHFFT library. The chapter also describes the testbeds used

for benchmarking. Chapter 5 presents the automatic code generation and optimiza-

tion strategy implemented in the UHFFT library. We also evaluate the generated

code on a variety of architectures. Chapter 6 presents a formal language for the

construction of dynamic execution schedules for FFT computation on recent CPU

and shared-memory architectures. In Chapter 7, we describe the run-time search

strategies for finding the best computation schedule of a given FFT problem on the

target architecture. We also compare the performance results of the UHFFT with

that of other adaptive FFT libraries on various architectures. Finally in Chapter 8,

we outline the conclusions and contributions of this work and discuss future work.
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Chapter 2

Background

This chapter presents background material for the ideas presented in later chapters.

We present a survey of the trends in computer architectures, optimizing compilers

and automatic tuning methodologies. The purpose of this chapter is to refresh the

fundamental concepts in the above-mentioned topics. For a full treatment of these

topics, we refer the reader to two excellent books on computer architecture [43] and

optimizing compilers [35].

2.1 Modern Computer Architectures

We have seen tremendous growth in the processor speed since the inception of micro-

processor based computers in the late 1970s. The growth has been largely sustained

by the decreasing size of transistors, increased clock rates and our ability to put more

transistors on a chip. The increased number of transistors has in part been used to
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enhance flexibility and predicative execution capacities of processors. The resulting

complex architectures have evolved from scalar uniprocessors to superscalar multi-

core architectures capable of executing multiple instructions out-of-order on each

core.

2.1.1 Instruction-level Parallelism

Microprocessors in the early 1980s were relatively simple architectures called scalar

processors. The scalar architectures issued and executed one instruction at a time

on a single CPU. However, they were soon replaced by more complicated superscalar

processors with multiple pipelined functional units capable of issuing and executing

multiple instructions at a time as shown in Figure 2.1. This type of parallelism

cycles
IF ID EX WBMEM
IF ID EX WBMEM

IF ID EX WBMEM
IF ID EX WBMEM

Figure 2.1: Simplified view of a superscalar pipeline execution

is known as instruction-level parallelism (ILP). Most modern processors are super-

scalar processors with deep pipelines capable of executing multiple instruction per

machine cycle. However, dependences between instructions make it very difficult for

a processor to achieve its theoretical peak performance. Figure 2.2a shows a kind

of data dependence, which causes the pipeline to stall until a prior instruction is
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LD R1, 0(R2)

ADD R3, R1, R4

LD R5, 0(R6)

ADD R7, R5, R4

(a) Original sequence

LD R1, 0(R2)

LD R5, 0(R6)

ADD R3, R1, R4

ADD R7, R5, R4

(b) Optimized sequence

Figure 2.2: An example of instruction scheduling to avoid single pipeline stalls

complete. Notice that the ADD instruction can not execute until LD operation com-

pletes. In many cases, the independent instructions could be scheduled to avoid stalls

as shown in Figure 2.2b. Indeed, most superscalar processors rely on special hard-

ware to dynamically schedule instructions at run-time. Since the resulting execution

order of instructions is different from the actual schedule, it is also known as “out-of-

order” execution. Some modern processors, known as explicitly parallel instruction

computer (EPIC) employ static (compile time) scheduling to package independent

(parallel) instructions in packets called very long instruction words (VLIW).

SIMD: The single instruction single data (SISD) superscalar architectures exploit

ILP to perform multiple instructions in parallel. On the contrary, the single instruc-

tion multiple data (SIMD) is a form of data parallelism that is used to perform identi-

cal operations on multiple data. Most general purpose processors support some type

of SIMD extensions because of the performance benefit possible on well structured

data (stream), which is common in multimedia and image processing applications.

Compared to vector processors, today’s microprocessor architectures are constrained
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by such features as the length of vector registers, packing/unpacking of data and

vector memory access. Due to these difficulties, most compilers are only moderately

successful in generating optimized SIMD (“simdized”) code.
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Figure 2.3: Starting with 1980 as a baseline, the gap in the performance (inverse of

latency) of memory and processor has been growing with time[43]

2.1.2 Hierarchical Memory

Even though today’s processors can theoretically execute billions of instructions per

second, the main memory system is not capable of supplying (or receiving) data at

such a rate. While the speed of processors has been growing rapidly, the improve-

ment in memory latency and bandwidth has been much slower. The diverging rates

of improvement in the main memory and processing speeds as shown in Figure 2.3,
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have created a performance bottleneck in many scientific applications. This barrier,

commonly referred to as the memory wall, has continued to present serious challenges

to the high performance computing (HPC) community. In an effort to ameliorate

these latencies, memory systems are organized in a hierarchy on most modern day

computers as shown in Figure 2.4. The level of memory that is closest to the pro-

Microprocessor

TLB

Registers
CPU L1 

Cache
L2 

Cache

RAM

Figure 2.4: Memory hierarchy

cessor, is the fastest and also the smallest. This allows for the working dataset to

be fetched in faster levels of memory thus hiding the long latency to main memory.

This also improves the effective memory bandwidth for the dataset that is reused

from faster levels. As a consequence of deeper and complicated memory hierarchies,

depending entirely on compiler technology for optimization of code written without

regard to underlying architecture is often not realistic. Developers of high perfor-

mance software often need to produce “architecture aware” source code, for standard

compilers to produce high quality codes, or use special purpose compilers for criti-

cal functions. Fortunately, most programs exhibit locality of reference, i.e., recently

accessed items (data and instructions) are likely to be accessed again in the near

future (temporal locality) and items whose addresses are near one another tend to

be referenced close together (spatial locality). A typical hierarchical memory design
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consists of registers, two to three levels of cache and an address mapping structure

called translation lookaside buffer (TLB).

Register: In a typical RISC (reduced instruction set computer) architecture, regis-

ters act as a placeholder for operands before the operation can be executed. Registers

are closest to processor and a load/store operation typically takes one clock cycle.

Most modern processors have multiple data paths between the registers and the func-

tional units enabling concurrent loads and stores. There are separate registers for

floating point and general purpose instructions with total capacity generally in the

range of 1KB to 1MB.

Cache: In a hierarchical memory architecture, registers are backed by multiple

levels of cache, starting with on-chip cache called L1 (level one) cache. Cache memory

acts as a temporary storage for datasets brought in from slower levels of memory.

Most architectures have two levels of cache with sizes in the range of few MBs.

However, some high-end computers use upto three levels of cache with L3 size in

tens of MBs. When a processor references a memory location, it is first searched

in cache starting with the fastest (L1) to slowest level (L2/L3). If a data item is

found, the reference is called a cache hit and the memory access is completed in a few

clock cycles. However, if the data item is not present in any level of cache, a cache

miss occurs. The requested item is fetched from the main memory in a fixed size

block called cache line. This block not only contains the requested item but a few

adjacent items as well; thus maintaining spatial locality. The efficiency of a cache

design also depends on how the fetched block is mapped in the cache. Because when

13



a cached item is referenced, it needs to be located in the cache for retrieval. Most

caches implement a (n-way) set-associative design, which maps the block addresses

to restricted locations using modulo arithmetic:

(Block address) | (Number of sets in cache)

⇒ (Block address) | (Number of blocks in cache
associativity )

In a simple direct mapped cache (1-way set associative), the block can be mapped to

exactly one location. In a fully associative cache (n-way set) , the block can be placed

in any of the available n blocks, which makes the retrieval more expensive. Caches

are typically organized in a four and eight way set associative design. Apart from

the cache associativity, the write policy is also an important distinguishing factor

in the design of caches. There are two possible options when writing to the cache

[43]. In write through (WT) cache, when a write occurs, the data is written to both

cache and lower level memory. On the contrary, write back (WB) cache employs lazy

protocol, i.e, the modified cache block is written to main memory only when it is

replaced.

Translation Lookaside Buffer (TLB): Most architectures use virtual memory

to let multiple programs run in their own address space. Each process usually sees

more memory than the size of available physical memory. In such a scenario, an ad-

dress translation mechanism is provided through a page table that maps the virtual

addresses to physical memory. The page table resides in main memory so accessing

the page table for every memory reference can be quite expensive. Therefore, follow-

ing the principle of locality, address translations are kept (cached) in a special cache
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called translation lookaside buffer (TLB) as shown in Figure 2.4.
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Figure 2.5: Shared-memory multiprocessing

2.1.3 Shared-memory Parallel Architectures

Although uniprocessor technology continued to advance through the 90s, issues re-

lated to heat dissipation and power requirement grew worse in the early 21st century.

Significant improvement in processor speeds was no longer possible by increasing the

clock rate. Moreover, increased complexity of processors also adds to the power con-

sumption. This barrier is commonly known as the power wall. The industry response

to this problem has been multi-core chips, which has extended the life of “Moore’s

law”. Modern high performance computers contain hundreds to several thousands

of nodes. Each node is a symmetric shared-memory multiprocessor (SMP) board,
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typically containing two to four sockets, with each socket commonly containing up

to four processing cores (chip multiprocessors) as shown in Figure 2.5. In a shared-

memory multiprocessor architecture, tasks running on multiple cores or processors

are able to share their data and code. Such tasks are light weight processes called

threads. In order to produce correct results, threads tend to communicate, share and

synchronize during the execution of a parallel program. Consistency of shared data

is maintained in a transparent manner through implementation of cache coherence

protocols in the hardware. The term cache coherence means that any variable shared

among the processors should have consistent value. Two popular cache coherence

protocols are the snoopy protocol and the directory based protocol. In the snoopy

protocol, caches listen on the common bus (broadcast medium) and invalidate or

update their local copies when another processor writes to shared location. In the

directory based protocol, the state of the cache is maintained in a centralized data

structure (directory). The cost of a cache coherence conflict affects the overall per-

formance of a multithreaded application since the data may need to be fetched from

a remote processor’s cache.

Nonuniform Memory Access (NUMA): In a symmetric shared-memory sys-

tem all processors are symmetrically organized with respect to a single shared main

memory. These systems are also called uniform memory access (UMA) machines

because all processors have uniform access to main memory. In contrast to UMA,

there is another class of shared-memory architectures in which each processor has

its own private memory module that may or may not be shared by a remote pro-

cessor. Apart from that, there is a global shared memory that can be referenced

16



by all the processors. Since the two memories have different access latencies, these

architectures are called nonuniform memory access (NUMA) machines.

Chip Multiprocessors (Multi-cores): Multi-core technology is the semiconduc-

tor industry’s solution to continued adherence to “Moore’s law” scalability, while

preserving power consumption. Each core is capable of running one or more tasks

(threads or processes) concurrently, providing greater performance. On a typical

mutli-core chip, the cores share a single main memory and I/O bus. On some multi-

core processors, the highest level (L2 or L3) of cache is also shared among cores but

L1 cache is typically separate (private). Naturally, added cache complexity poses a

challenge to compilers and programmers. High-end application developers in partic-

ular need to be aware of the memory complexity and access schedule of the tasks

besides finding a load-balanced parallel implementation.

2.2 Compiler Optimization Technology

Compiler technology has made major strides since the early days when a compiler’s

main purpose was to translate programs written in high level language to executable

object code. Today, performance of compiled programs is a major criteria in the

use of compilers. In general, compilers implement multiple levels of optimization to

transform a source code to achieve higher performance. We will briefly discuss some

of the optimizations that are most important for scientific applications.
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2.2.1 Loop Transformations

In many scientific applications, the bulk of the execution time is spent in loops. Thus,

many compiler optimization techniques target loops to optimize the performance of

an application. Loop transformations play an important role in efficient use of the

memory hierarchy.

Loop Interchange: In this transformation, an inner loop is interchanged with an

outer loop in a nested structure. Loop interchange is a very useful transformation

that improves the cache locality of a code block. For example, consider the following

loop nest (left), which accesses a matrix of size M × N in a column-wise order.

Assuming that the matrix is stored in a row major order, the loop interchange

transformation (loop nest on the right) would improve spatial locality by accessing

the elements at a memory stride. In the following code block, the loop bounds are

represented in Matlab notation.

for j ∈ [1 : 1 : N ] do

for i ∈ [1 : 1 : M ] do

A(i, j) = K;

end

end

=⇒

for i ∈ [1 : 1 : M ] do

for j ∈ [1 : 1 : N ] do

A(i, j) = K;

end

end

Loop Interchange

Loop Tiling: Loop tiling or blocking is one of the most important optimizations

in scientific codes, particularly in the linear algebra domain. This transformation
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partitions long iteration spaces of nested loops in smaller chunks (blocks/tiles) to

maintain data locality. Loop blocking allows reuse of data by performing the com-

putation on blocks of data that fit in some level of cache. For many algorithms, their

block variants have been implemented to achieve higher performance on hierarchi-

cal memory as well as parallel architectures. An implementation of matrix-vector

multiplication and its blocked implementation is given below:

for i ∈ [1 : 1 : M ] do

for j ∈ [1 : 1 : N ] do

Y (i) = Y (i) + A(i, j) × X(j);

end

end

⇒

for i ∈ [1 : MB : M ] do

for j ∈ [1 : NB : N ] do

for i′ ∈ [i : 1 : MB] do

for j′ ∈ [j : 1 : NB] do

Y (i′) = Y (i′) + A(i′, j′) × X(j′);

end

end

end

end

Loop Blocking

Unroll-and-jam: Loop unroll-and-jam transformation improves efficiency of pipelined

functional units by unrolling the body of outer loop and fusing the resulting inner

loops together. As a result, the overhead of testing the loop condition and jump

instruction is decreased. Apart from that, efficient blocking of registers and scalar

replacement reduces the number of register loads and stores within the loop body.

Consider the original matrix-vector multiplication loop nest given above. Assuming
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the matrix contains an even number of rows, unrolling the outer loop by a factor of

two would result in the following code, which saves N
2 loop conditions and an equal

number of register loads.

for i ∈ [1 : 2 : M ] do

for j ∈ [1 : 1 : N ] do

R1 = X(j);

Y (i) = Y (i) + A(i, j) × R1;

Y (i + 1) = Y (i + 1) + A(i + 1, j) × R1;

end

end

Unroll-and-jam

2.2.2 Scalar Code Optimizations

Although loops are the main target of optimizations, many scientific codes con-

tain computational kernels that are straight-line blocks of code. Since these kernels

are often called inside a loop body, significant performance improvements can be

achieved by optimizing these blocks. Two of the most important optimizations that

are relevant to our discussion are briefly described below.

Instruction Scheduling: As discussed in Section 2.1, all modern architectures

have multiple pipelined functional units capable of executing multiple instructions.

In order to take full advantage of available resources, instructions need to be sched-

uled so that they can be executed in parallel without resource conflicts and pipeline
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bubbles. Moreover, the efficiency can be further improved by avoiding dependences

among instruction that lead to stalls. Most compilers perform this optimization by

creating a directed acyclic graph (DAG) of instructions in a basic block. The inde-

pendent instructions in a DAG can be reordered to obtain an optimized schedule of

execution.

Register Allocation: Most instructions need the operands to be loaded in regis-

ters before an operation can be performed. Multiple instructions executing in parallel

may cause register conflicts that can lead to stalls. Independent instructions using

the same registers may be rescheduled or they could be allocated different registers

to avoid such conflict. However, due to a limited number of available registers this

can easily lead to register spills. As a tradeoff, dependent instructions that reuse the

registers should be scheduled closer together to minimize the register spills.

2.2.3 Prefetching and Copying

Prefetching and memory copying are two important optimizations that improve ef-

fective memory bandwidth and latency. Unlike the transformations discussed in

previous sections, these optimizations do not change the schedule of computation.

Prefetching hides memory latency by predicting and fetching the data from main

memory to cache before it is referenced. The data is fetched in blocks, typically

equal to the cache line. When the data is referenced, the load instruction takes

fewer cycles to service it from the cache. Prefetching can significantly improve the

performance of programs that exhibit high spatial locality. However, if a program
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makes strided access to the input data, prefetching may decrease the effective mem-

ory bandwidth by loading unwanted elements in cache. Many scientific applications

use blocking algorithms to improve effective memory bandwidth. When the input

data is not stored in a favorable layout and sufficient reuse of data is guaranteed,

copying can be used to reorder data so that subsequent memory references can be

made at unit stride. Copying not only ameliorates cache conflict misses, it also

avoids TLB misses, which can be very expensive. However, one of the disadvantages

of these optimizations is that more instructions need to be executed as a result of

additional prefetching and copying instructions. Therefore, the profitability of these

optimizations must be carefully analyzed so that they are inserted only if the benefit

outweighs the execution overhead.

2.3 Automatic Performance Tuning

Compiler technology has made remarkable progress in the past few decades. But the

pace of development in computer architecture keeps making it hard for compilers to

optimize arbitrary pieces of code in palatable amount of time. For high-end applica-

tions, hand tuning of codes has generally delivered better performance than compiler

generated code, specially in the early years of new architectures. However, one of the

drawbacks of hand tuning is the lack of performance portability across architectures,

requiring re-implementation for every new generation of architectures. Over the past

decade, the high performance computing community has turned to automatic per-

formance tuning strategies for performance critical applications. Domain specific
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libraries and code generators have been developed that implement domain specific

optimizations successfully because of a priori knowledge of code function. Some opti-

mizations also adapt the code to various features of the underlying architecture. The

code generator systems generate parameterized code blocks (microkernels) that are

automatically tuned to the architecture. At run-time, the parameterization allows

for optimal scheduling of computations and data access patterns with respect to the

memory hierarchy.

2.3.1 Search

One of the major ingredients of a two-layered adaptation methodology is run-time

analysis and search schemes. Even in optimizing compilers and code generators,

search plays an important role. The main objective of search is to find the right

combination of values for optimization parameters that yield the best performance

in the generated code. Depending on the type of code, these parameters may include

loop tiling, unroll factor and register reuse distance. In signal processing codes, in-

cluding the fast Fourier transform, search may be performed over a large space of

formulas, which include different factorizations and algorithms. A search scheme

can be driven by a model or it can be empirical [65]. Empirical search generally

does a better job at finding the optimal code at the cost of additional search time.

Most auto-tuning libraries, i.e., ATLAS[18], FFTW[25] and SPIRAL[44] favor em-

pirical search scheme, preferring performance over one-time search cost. However,

depending on the complexity and structure of code, efficient performance models can

be generated that reduce the cost of search without severely impacting the quality
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of the generated code. Recent studies (Yotov et al. [64]) have shown that codes

generated through model driven search can match the performance of those that are

generated through empirical search.

2.3.2 Feedback-directed Tuning

Using static analysis and simple heuristics that minimize the number of operations

is not sufficient to generate highly efficient codes; especially on modern, complex

architectures. Among other factors, instruction schedule and pipelining play an

important role in the overall performance. Unfortunately, finding the optimal com-

bination of loop parameters and instruction schedules is not trivial [3]. To overcome

the limitations of static analysis, dynamic techniques, i.e. iterative compilation and

feedback-directed optimization have been studied [36, 28, 61, 15]. Feedback-directed

optimization automates much of the process of performance tuning by empirically

evaluating the transformed code to guide the optimization process. The iterative

empirical technique is known to yield significant performance improvement in linear

algebra kernels [61].

ATLAS: The automatically tuned linear algebra software (ATLAS) [18] is an adap-

tive system for generating highly tuned parameterized basic linear algebra subrou-

tines (BLAS). There are three levels of BLAS routines generated by ATLAS, i.e.

BLAS level 1-3, where the level reflects the number of nested loops. ATLAS is an

excellent example that effectively employs the iterative compilation technique. The

methodology called automatic empirical optimization of software (AEOS) [60], uses
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iterative empirical evaluation of many variants to choose the best performing BLAS

routines. Overall performance of the generated codes depends on a number of pa-

rameters including loop block size and unroll factor. The best combination of these

parameters are searched to generate code that is tuned to a given architecture.

2.3.3 Cache-oblivious Strategies

Two popular approaches have been researched for adapting performance critical

applications to the memory hierarchy of architectures. In the cache-oblivious ap-

proaches [27], code is optimized for memory hierarchy without knowing the architec-

ture parameters, such as cache capacity, block size or associativity; hence the name

cache-oblivious. “Cache-conscious” approaches use architecture parameters to guide

the optimization. The parameters are generally discovered automatically on a given

architecture by performing a global empirical search. The cache-oblivious scheme

relies on recursive divide-and-conquer restructuring of code. The basic idea is to

divide the problem in successively smaller subproblems so that it will eventually fit

in some level of the memory hierarchy. Such an implementation has asymptotically

optimal I/O complexity [33, 27] in a theoretical cache model. The cache-oblivious

strategy has been successfully employed in FFTW [25], which is a state-of-the-art

FFT computation library. However, since cache-oblivious strategies are implemented

using recursive codes, they inherit the performance problems associated with such

codes [66]. Since most compiler optimizations are performed on loops and inter-

procedural analysis is typically hard, there is very little opportunity for compilers to

perform optimizations on recursive codes. Apart from that, the calling overhead due

25



to recursive calls may degrade the performance further.
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Chapter 3

The Fast Fourier Transform

The fast Fourier transform (FFT) is a divide-and-conquer method for quick evalua-

tion of the discrete Fourier transform (DFT). The FFT is one of the most ubiquitous

algorithms in the modern world of high speed digital communications. It also has a

wide range of applications from digital signal processing to astronomy and weather

forecast. According to some, the modern world began in 1965 when Cooley and

Tukey published their famous paper[17, 37] on FFT, which reduced the complexity

of DFT computation from O(n2) to O(n log n). Since then a considerable research

effort has been devoted to the problem of optimizing the FFT algorithm on different

architectures. In the following, we briefly discuss the main algorithms for computing

the DFT. For a thorough treatment of the material and the notation used in our

discussion, we refer the reader to [37, 59].
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3.1 Algorithms

3.1.1 Discrete Fourier Transform

The discrete Fourier transform (DFT) of a complex vector of length n is the product

of input vector X with an n × n DFT matrix Wn:

yk =
n−1∑

j=0

ωj
n × xj , ∀k ∈ [0, n − 1]

Y = Wn × X

(3.1)

The inverse discrete Fourier transform (IDFT) is given by:

xj =
1

n

n−1∑

k=0

ω−j
n × yk, ∀j ∈ [0, n − 1]

X = W−1
n × Y

(3.2)

where ωn is the nth root of unity:

ωn = exp

(
−2πi

n

)

= cos (2π/n) − i sin (2π/n)

The DFT algorithm presented in equations (3.1-3.2) requires O (n2) arithmetic op-

erations to compute the transform. The coefficients in Wn, commonly known as the

twiddle factors, are generally precomputed and stored in memory for reuse.

3.1.2 General Radix Algorithms

The periodicity of ωn introduces an intricate structure in the DFT matrix Wn; many

coefficients of the matrix are either 1, −1, i, −i, or can be derived from each other
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using these factors:

W1 =
(
ω0

1

)
= (1)

W2 =




ω0

2 ω0
2

ω0
2 ω1

2



 =




1 1

1 −1





W4 = ω4̂





0 0 0 0

0 1 2 3

0 2 4 2

0 3 2 1





=





1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 −i





Taking advantage of the periodicity in Wn, it is possible to factorize the matrix into

a small number of sparse factors. This sparse factorization of the DFT matrix forms

the basis for the FFT idea. If n = r × m, we can write a two dimensional mapping

of X to Y by re-indexing input and output array indices as:

j = j1r + j2 0 ≤ j2, 0 ≤ j1

k = k1 + k2m k1 < m, k2 < r
(3.3)

such that xj = xj1r+j2 = xj1
j2 and yk = yk1+k2m = yk2

k1
. Then,

yk2
k1

=
r−1∑

j2=0

m−1∑

j1=0

ω(k1+k2m)(j1r+j2)
n × xj1

j2

=
r−1∑

j2=0

ωj2k2m
n ωj2k1

n

m−1∑

j1=0

ωj1k1r
n ωj1k2rm

n × xj1
j2

=
r−1∑

j2=0

ωj2k2

n/mω
j2k1
n

m−1∑

j1=0

ωj1k1

n/r ω
j1k2

n/rm × xj1
j2 (3.4)
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we know that ωn/rm = ωn/n = 1 and n/r = m and n/m = r. Therefore, Eq. (3.4)

can be written as:

y(k1+k2m) =
r−1∑

j2=0

((
m−1∑

j1=0

x(j1r+j2) × ωj1k1
m

)
ωj2k1

n

)
ωj2k2

r

Y = (Wr ⊗ Im) × T n
m × (Ir ⊗ Wm)P n

r × X (3.5)

The algorithm given in Eq. (3.5) is the “Kronecker Product” formulation of the

Cooley Tukey mixed-radix algorithm, where factors r and m are referred to as the

radix. Application of a single step of this splitting generates the output in transposed

order requiring an extra sorting step given by the mod-r sort permutation matrix

P n
r . In Eq. (3.5), T n

m is the diagonal “twiddle factor” matrix:

T n
m = diag

(
Im,Ωn,m, . . . ,Ωr−1

n,m

)
=





Im

Ωn,m

. . .

Ωr−1
n,m





,

where Ωn,m = diag (1,ωn, . . . ,ωm−1
n ).

To illustrate the Cooley Tukey algorithm given in Eq. (3.5), let us consider a

DFT of size n = 4. Using radix-2 factorization, i.e., r = 2, m = n
r = 2, we get:

Y = W4 × X

Y = (W2 ⊗ I2) × T 4
2 × (I2 ⊗ W2) P 4

2 × X

Y =




I2 I2

I2 −I2



 × T 4
2 ×




W2 0

0 W2



 P 4
2 × X
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Substituting the diagonal twiddle factor matrix T 4
2 :

T 4
2 = diag (I2,Ω4,2) =




I2

Ω4,2



 =





1

1

1

ω1
4





,

and the mod-2 sort permutation matrix P 4
2 :

P 4
2 × X =





1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1





×





x0

x1

x2

x3





=





x0

x2

x1

x3





,

we get:

Y =





1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1





×





1

1

1

ω1
4





×





1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1





×





x0

x2

x1

x3





In the Cooley Tukey mixed-radix algorithm (3.5), the permutation step is performed

on input data (time), this is known as decimation-in-time factorization. A similar

factorization can be obtained by performing the sorting on output data (frequency)

at the end of a transform, which results in decimation-in-frequency factorization.

The Gentleman-Sande algorithm [29] is an example of a DIF FFT, which is obtained

by transposing the Cooley Tukey factorization:

Y = Wn × X = W T
n × X

= P n
r × (Ir ⊗ Wm) × T n

m × (Wr ⊗ Im) × X (3.6)

31



Other efficient algorithms have also been developed that alternate between the DIT

and DIF to compute a FFT [42, 47].

In the following, we give the arithmetic complexity analysis of the Cooley Tukey

algorithm. To simplify the analysis, we assume radix-2 splitting, i.e., r = 2 and

that n is a power of 2:

Time complexity of DFT of size n = T (n)

T (n) = 2T (m) + O(n) + mT (2)

T (n) = 2T
(n

2

)
+ O(n) +

(n

2

)
T (2)

T (n) = 2T
(n

2

)
+ O(n)

Solving the recursion we get

T (n) = O(n logn) = Kn log n + O(n) (3.7)

In Eq. (3.7), constant K depends on radix of the algorithm. For example, radix-

2 factorization yields K = 5 and radix-4 and 8 yield K = 4.25 and K = 4.08

respectively. When size n is a power of 2, arithmetic operations can be further

reduced by splitting the problem in one m = n/2 DFT and two r = n/4 DFTs. This

idea, called the split-radix algorithm [63, 20, 49, 46], yields K = 4.

3.1.3 Prime Factor Algorithm

The prime factor algorithm (PFA), originally developed by Good and Thomas [30, 58]

and later by Winograd [62], works on sizes that can be split into two co-prime factors,

i.e., n = m × r where gcd(m, r) = 1. In the mixed-radix algorithm a non-trivial
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amount of computation is associated with the twiddle factor multiplication step.

The PFA algorithm given by:

Y = Γr,n × (Wr ⊗ Wm) ×ΥT
r,n × X (3.8)

avoids this step by mapping the one dimensional arrays to two dimensional arrays

using complex prime factor mappings (PFM)[37]. To illustrate this, let us consider a

DFT of size n = 6 with two co-prime factors, i.e., r = 3 and m = 2. We know that,

W6 = Γ3,6 × (W3 ⊗ W2) ×ΥT
3,6 = Γ3,6 × (W 2

6 ⊗ W 3
6 ) ×ΥT

3,6

ω6̂





0 0 0 0 0 0

0 1 2 3 4 5

0 2 4 0 2 4

0 3 0 3 0 3

0 4 2 0 4 2

0 5 4 3 2 1





= Γ3,6 × ω6̂





0 0 0 0 0 0

0 3 0 3 0 3

0 0 2 2 4 4

0 3 2 5 4 1

0 0 4 4 2 2

0 3 4 1 2 5





×ΥT
3,6

Notice that W3 ⊗ W2 is a row/column permutation of W6. Indeed, the ΥT
r,n per-

mutation is based on the Ruritanian mapping while the output permutation Γr,n is

based on the Chinese remainder theorem mapping as shown in Table 3.1. In general,

the Ruritanian map is given by:

j =< rj1 + mj2 >n (3.9)

where j1 =< α1j >m and j2 =< α2j >r and the CRT map is given by:

k =< α1rk1 + α2mk2 >n (3.10)
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Table 3.1: Prime factor index mappings for r = 3 and m = 2

j1

0 1

0 0 3

j2 1 2 5

2 4 1

(a) Ruritanian

k1

0 1

0 0 3

k2 1 4 1

2 2 5

(b) CRT

where k1 =< k >m, k2 =< k >r. The constants α1 and α2 are called rotations where

0 < α1, 0 < α2, such that

< α1r >m = 1 (3.11)

< α2m >r = 1 (3.12)

For example, if n = 6, r = 3 and m = 2, we get α1 = 1 and α2 = 2. To ensure an

in-place algorithm that is also self-sorting, Burrus [13] suggested using Ruritanian

mapping for both input and output permutation. However, Temperton [54] suggested

using CRT mappings, which simplifies the index computation by avoiding the modulo

operations. Once the indices have been properly initialized, the next row or column

of indices can be calculated by cyclically shifting positions in the previous row or

column followed by an increment [16]. An implication of using identical mappings

is that it requires special PFA (rotated) modules W (α2)
r and W (α1)

m [13, 55]. The

in-place in-order formulation of the PFA algorithm (3.8) can be written as:

Y = Γr,n × (W (α2)
r ⊗ W (α1)

m ) × ΓT
r,n × X (3.13)
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Further discussion on efficient implementations of the PFA algorithm can be found

in a series of papers by Burrus [13] and Temperton [54, 57].

3.1.4 Prime Size (Rader) Algorithm

For large prime size FFTs, Rader [45, 37] developed an algorithm that uses convolu-

tion to reduce a problem of prime size n to two non-prime size n−1 FFTs, for which

we may use any other algorithm. It uses a number theoretic permutation of Wn that

produces a skew-circulant submatrix of order n− 1. The Rader factorization can be

written as:

Wn = P T
n,r−1 ×




1 1T

n−1

1n−1 Sn−1



 × Pn,r (3.14)

where 1n−1 is a vector of all ones, Pn,r−1 and Pn,r are exponential permutations

associated with the primitive root r. If n is prime, then an integer r, with 2 ≤ r ≤

n − 1 such that

{2, 3, . . . , n − 1} =
{
< r >n, < r2 >n, . . . , < rn−2 >n

}

is called the primitive root of n. If 1 ≤ r ≤ n − 1, then there exists an inverse r−1,

with 1 ≤ r−1 ≤ n − 1 such that < r × r−1 >n= 1. If r is a primitive root of n then

the n × n permutation matrix Pn,r can be given by:

Z = Pn,r × X ,

Z (k) =






X (k) if k = 0, 1

X
(
< rk >n

)
if 2 ≤ k ≤ n − 1
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For example, if n = 5, then r = 2 and r−1 = 3, the permutations associated with

P5,2 and P5,3 are [0 1 2 4 3]T and [0 1 3 4 2]T respectively. In Eq. (3.14), Sn−1 is a

skew-circulant matrix, which is computed by performing two FFTs of size n−1, i.e.,

Sn−1 = Wn−1 × D × Wn−1

D = diag
(
W−1

n−1C
)

C =
[
ωn,ωr

n, . . . ,ω
n−2
n

]T

Notice that if multiple prime size vectors need to be transformed, the diagonal matrix

D can be precomputed and stored in memory for repeated use[2].

3.2 Data Flow Visualization

Before we discuss the variations (implementations) of FFT algorithms, we will present

an intuitive way to visualize the flow of data in the FFT. Many authors use a sig-

nal flow graph called the butterfly to visualize an FFT. For example a radix-2 DIT

FFT can be depicted as shown in Figure 3.1. In general, a butterfly diagram of any

mixed-radix FFT can be drawn by combining many small-radix butterflies. When

the size of the FFT is a power of two (n = 2i), there are n log(n)/2 radix-2 butterflies

arranged in a multi-level diagram. There are i levels in the butterfly diagram, which

are also referred to as dimension or rank. An example of a size n = 8 FFT butterfly

diagram is shown in Figure 3.2. In the diagram, there are n/r = 8/2 = 4 small but-

terflies in each of log(n) = log(8) = 3 ranks. Solid filled circles imply multiplication

with a twiddle factor. In an FFT computation, data flows from left (lower rank) to
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a

b



 =




1 ω2

1 −ω2



 ×




a

b





a

b

a + ωb

a − ωb×

ω

-

+

Figure 3.1: Radix-2 FFT butterfly

right (higher rank). Moreover, the computation may follow a breadth first (iterative)

or a depth first (recursive) flow. Iterative and recursive schedules are discussed in

the next section.

An alternative method to visualize the FFT is through multidimensional arrays

or meshes. Each level of splitting in a Mixed Radix splitting converts a one dimen-

sional FFT into a two dimensional FFT with the “twiddle factor” multiplication

sandwiched in the middle. If a radix r = 2 splitting is used, the diagram is referred

to as hypercube of i dimensions. As an example of a size n = 8 FFT hypercube

diagram is shown in Figure 3.3. In the diagram, there are twelve edges (four in

each dimension), each of which represents a single butterfly computation. Solid lines

indicate multiplication with twiddle factors.
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0 (000)

4 (100)

2 (010)

6 (110)

1 (001)

5 (101)

3 (011)

7 (111)

Rank 1 Rank 2 Rank 3
(000) 0

(001) 1

(010) 2

(011) 3

(100) 4

(101) 5

(110) 6

(111) 7

Figure 3.2: Butterfly diagram of 8-point DIT FFT with input in bit-reversed order

010 011

000 001

110 111

100 101

Figure 3.3: Hypercube diagram of 8-point DIT FFT with input in bit-reversed order

3.3 Schedules

Initial research efforts mentioned in Section 3.1 focused on the design of algorithms

that minimized the number of arithmetic operations. Although the FFT algorithm
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reduces asymptotic complexity of computing a DFT from O(n2) to O(n logn), it in-

troduces complex strided memory access patterns (Figure 3.2) that poses optimiza-

tion challenges on modern hierarchical memory architectures [12, 37, 25]. On these

architectures, the optimization goal has shifted toward extracting maximum mem-

ory locality through efficient scheduling of operations and memory accesses. Overall

performance of an FFT implementation is a complex function of many variables

including factorization tree, algorithm selection, ordering of small butterfly compu-

tations, availability of output and workspace buffers, and layout of precomputed

twiddle factor multipliers. At each level of splitting, there are numerous choices for

each of these variables, resulting in an exponential space of combinations, which we

refer to as the schedules. Considering the mixed-radix factorization alone there are

n/2 = O (n) different combinations (trees) that can be used to compute an FFT of

size n = 2i as shown in Figure 3.4. Note that actual computation takes place at

leaves (non-filled circle) of the factorization trees.

8

4

2 2

2

8

4 2

8

2 4

8

8

Figure 3.4: Mixed-radix factorization trees for 8-point FFT
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3.3.1 Iterative Schedules

Iterative implementations follow a breadth first (rank-wise) schedule of computa-

tions. Algorithm 4 is an iterative implementation of the radix-2 Cooley Tukey al-

gorithm [37]. The algorithm description specifies one of many possible schedules to

x ← Pnx; t ← log(n);

for q = 1 : t do

L ← 2q; r ← n/L; L∗ ← L/2;

for j = 0 : L∗ − 1 do

ω ← cos (2πj/L) − i sin (2πj/L);

for k = 0 : r − 1 do

τ ← ω.x (kL + j + L∗);

x (kL + j + L∗) ← x (kL + j) − τ ;

x (kL + j) ← x (kL + j) + τ

end

end

end

Algorithm 4: Iterative implementation of radix-2 Cooley Tukey algorithm

compute the FFT of size n = 2i. We can transpose the Cooley Tukey algorithm to

obtain another schedule of computation called the Pease framework[37]. It allows

the two inner loops to be fused into a single loop but uses additional workspace to

store intermediate data in transposed order. Due to the non-negligible cost of the

“bit-reversal” permutation[34, 67] involved in the Cooley Tukey algorithm, many im-

plementations exist that perform the unscrambling step inside the butterfly. Stock-

ham’s [37] autosort framework performs the ordering in each rank of the butterfly
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by copying intermediate data back and forth between a workspace array. There

are many variants of Stockham’s framework, which differ in the layout of data stor-

age in intermediate ranks and the order of inner loops (j and k). Indeed, the two

loops can be ordered (interchanged) to allow small stride access, which makes them

particularly suitable for vector computers [50, 9, 11]. The above-mentioned frame-

works are examples of iterative breadth first schedules. A breadth first or rank-wise

schedule makes at least logr n passes over the data, making no reuse of data within

ranks (temporal locality) when n is quite large. However, iterative schedules can be

implemented to preserve spatial locality.

3.3.2 Recursive Schedules

Due to lack of memory locality and non-trivial cost of copies, iterative breadth first

implementations are rarely used on modern architectures. Instead, recursive depth

first implementations are preferred [25, 6, 7] because of their cache optimality[33].

When an output vector is available (out-of-place FFT), the unscrambling step can be

performed at the leaves of the recursion tree, i.e. inside the first rank of the butterfly

network. Performing the computation “in-place”, i.e. without a separate output

vector or temporary array, poses a very difficult problem for self-sorting FFTs. For

some transform sizes, explicit data reordering is unavoidable in computing in-place

and in-order FFTs. However, for most sizes including powers-of-two, Singleton [48]

and later Burrus [14] and Temperton [56] developed an algorithm that is both self

sorting and in-place. The algorithm avoids explicit sorting by performing implicit

ordering inside the first
⌊

log n
2

⌋
ranks. A recursive formulation of the algorithm was
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later given by Hegland [31]. This formulation is suited to parallel and vector archi-

tectures. Indeed, the “divide and conquer” property of recursive implementations

makes them an attractive option on hierarchical and shared-memory multiprocessor

architectures.

3.4 Libraries

One of the early attempts to distribute a portable FFT code was done through the

popular FFTPACK [50] package by P.N. Swartzrauber. FFTPACK contains Fortran

code for complex-complex, real-complex, complex-real, sine and cosine transforms.

The Fortran FFT codes by Clive Temperton [57] and the Fortran Split-Radix FFT

code by H. Sorenson [49] were other popular public domain codes. The Sorenson code

computes real and complex transforms for sizes that are powers-of-two and uses the

Split Radix algorithm. The Temperton codes were designed for any powers of 2,3 and

5, i.e., for N = 2p3q5r and used the Prime Factor FFT algorithm. These codes were

designed to perform well on vector architectures, and for many years were the fastest

codes on such architectures. Takahashi’s FFTE [51, 52] is a more recent package to

compute Discrete Fourier Transforms of 1-, 2- and 3- dimensional sequences of length

N = 2p3q5r. The CWP numerical library by David Hale from the Center for Wave

Phenomena at the Colorado School of Mines was one of the first to use a microkernel

based approach to optimize the FFT over multiple platforms. This library has a fixed

number of codelets and works only on a limited set of array sizes. More recently,

the research focus has shifted to adaptive code generators and libraries that tune
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themselves with respect to performance on different architectures and for different

sizes of transforms. The main idea is to dynamically construct the factorization of

the DFT matrix using a combination of the above-mentioned algorithms, depending

on the size of the transform. In the following, we discuss two examples of current

adaptive FFT libraries and code generators in the public domain.

FFTW: FFTW (Fastest Fourier Transform in the West) [25, 24, 26] is a state-of-

the-art adaptive library for the efficient computation of FFT of real and complex data

of arbitrary dimensions and sizes on many architectures. It employs two-stage adap-

tation methodology to adapt to microprocessor architecture and memory hierarchy.

At the installation time, the code generator automatically generates highly optimized

small DFT code blocks called codelets. Apart from the regular DFT codelets, the

code generator also generates special non-leaf (twiddle) codelets, which multiply the

precomputed twiddle factors with the input vector before computing the DFT. As

discussed in Chapter 5, this approach is different from the one implemented in the

UHFFT. At run-time, the pre-generated codelets are assembled in a plan to compute

large FFT problems. The space representing various compositions of factorizations

and algorithms for a given size FFT is explored to find the best plan of execution.

The FFT plan in FFTW is expressed in terms of internal structures; I/O tensors

and dimensions. Although they offer a flexible design to solving a complex problem,

these representations do not provide sufficient abstraction to the mathematical and

implementation level details of FFT algorithms. FFTW planner considers a small

number of simple plans, which are used to compose larger FFT plans. The plan

initialization stage adds a one-time cost to the actual computation of the FFT. Once
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a tuned plan is generated it can be repeatedly used to compute FFTs of the same

size on the given architecture.

SPIRAL: SPIRAL (Signal Processing Algorithms Implementation Research for

Adaptive Libraries) [44, 23] is a code generator system for generating optimized

signal processing codes including the DFTs. Automatic tuning is performed in three

different levels. In the first level, the formula generator uses mathematical rules and

identities to expand and optimize the formula for a given transform. The various

signal processing algorithms, rules and formulas are expressed in terms of vectors,

matrices and tensors in a special purpose pseudo-mathematical language called SPL

(Signal Processing Language). In the second level, the optimized SPL formula is

translated into source code, which can be compiled by general purpose C or Fortran

compilers. At this level, various scalar and loop level optimizations are performed

to reorder the code for better efficiency. Moreover, for certain architectures that

support special instructions, such as short vector SIMD and FMA instructions, the

formula translator identifies and translates the segments that can be mapped to such

instructions. Finally, in the third level, the source code is compiled and evaluated.

The performance (evaluation) is interpreted by the “search and learning” module,

which controls the formula selection and optimization decisions made in the first two

levels. The central goal is to iteratively evaluate the different code variants for the

same transform and generate the best code by guiding the code generation process.

SPIRAL avoid exhaustive search through dynamic programming and evolutionary

search methods.
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Unlike FFTW and UHFFT, SPIRAL does not generate microkernels of codes;

instead the source code is generated for the whole transform. As a result, it takes

longer for SPIRAL to generate the target code and the code needs to be compiled and

linked before it can be used for the computation of an FFT. Moreover, the maximum

size of transform is also limited because of higher memory and time requirements

for generating the whole transform. In contrast, the standard distribution of FFTW

contains a large set of pre-generated codelets to be used at run-time as part of the

execution plan. Expert users, who wish to generate different codelets, need to write a

high-level mathematical description of the DFT algorithm in OCaml language, which

is used by the code generator (genfft) to generate optimized source code. Unlike

FFTW, the UHFFT code generator (fftgen) is capable of generating an optimized

arbitrary size codelet without any user intervention. Unfortunately, the codes gen-

erated by the three code generators do not use a standard interface. Therefore, it is

very difficult, for example, to use the codes generated by SPIRAL and FFTW within

UHFFT run-time framework.

Both FFTW and SPIRAL employ expensive optimization strategies to gener-

ate the best plan or code for computation of an FFT problem. In the UHFFT, we

attempt to avoid, as much as possible, the run-time empirical search. We have imple-

mented multiple low-cost search schemes that employ accurate performance models

and estimation techniques to search the best schedule of execution. Through better

understanding of the correlation between the schedules and their performance on

modern architectures, we have developed effective heuristics that result in a pruned
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search space. In order to help understand the data and control flow of FFT compu-

tations, we have developed a high level language that is exposed through the UHFFT

application programming interface (API). It allows to explore alternative schedules

and to construct novel implementations at run-time. Indeed, considerable effort has

been devoted in this dissertation to the design of consistent and flexible interface for

the computation of FFTs.

Apart from the publicly available open-source libraries, most hardware vendors

also offer mathematical libraries that include interfaces for computing the DFT.

Typically, these libraries are specifically tuned to the vendor’s architectures, e.g.

AMD’s Core Math Library (ACML) is tuned to AMD architectures. Intel’s Math

Kernel Library (MKL) is one of the fastest libraries for computing FFT on x86

and Intel architectures. MKL provides a comprehensive interface (DFTi [53]) for

computing DFTs of different size, dimension, and precision etc.
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Chapter 4

UHFFT: An Adaptive FFT

Library

The UHFFT [40, 39, 5, 7, 6] is an adaptive FFT library that maintains performance

portability across different architectures. Performance portability in FFT codes is

achieved by adapting the computation schedule to various features of the underlying

architecture, including memory hierarchy and processor level parallelism (SIMD and

multi-core). The UHFFT comprises of two main components, i.e., a code generator

and a run-time system, as shown in the block diagram of the UHFFT library (Figure

4.1). At installation time, the code generator produces microkernels of straight-line

parameterized DFT code blocks (codelets) in C. For each codelet size, a limited num-

ber of variants are generated on the basis of different tuning parameters, including

factorization tree, algorithm and register blocking. The variants are compiled and

empirically evaluated to select the best codelet. At run-time a user may input any
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Figure 4.1: The UHFFT library design overview

arbitrary size FFT problem through the DFTi API. Given an FFT problem descrip-

tor, a combination of parameterized codelets that has low computation time for the

FFT is dynamically searched. The current version (2.0.1) of the UHFFT[4] supports

the following features for computing an FFT of arbitrary size:

Data type complex to complex

Direction forward and inverse

Precision single and double

Placement in-place and out-of-place

Ordering ordered
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Dimensionality single and multi-dimensional

The two stage adaptation methodology of the UHFFT is similar to the one em-

ployed by FFTW. However, there are some differences that set the two libraries apart

as shown in Table 4.1.

Table 4.1: Differences between UHFFT and FFTW

UHFFT FFTW

Code generator

Implementation C Objective Caml

Specifying

Codelets

Any set of codelets can be

generated by simply speci-

fying them in a script file

Expert user needs to gener-

ate the code using OCaml

dialect

Adaptation

Methodology

Code is empirically opti-

mized through feedback di-

rected code generation

Tuning parameters and op-

timizations are hard coded

in the code generator

Run-time

API Intel’s DFTi Multiple interfaces

Search Multiple low cost search

schemes

Multiple search schemes

with varying cost

Specifying the

FFT schedule

FFT schedule specification

language allows bypassing

search

Plans encrypted in internal

data structures
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4.1 Installation

One of the main goals of the UHFFT library is to maintain portability across different

platforms. The run-time and code generator have been implemented in ANSI C,

which makes it easy to build the library on any platform that supports the standard

C compiler. Building the UHFFT on systems that support the GNU build system is

as simple as:

.\configure

make

make install

The sequence of commands given above, builds the UHFFT with default options. It

is also possible for the user to specify a different set of options through the configure

script. A list of installation options is given in Table 4.2. The UHFFT library has

been installed and tested on various platforms in order to validate its performance

portability. The performance benchmarks reported in this dissertation have been

performed on current microprocessors and high-end SMPs. The processor/SMP ar-

chitectures have been selected on the basis of their relevance and popularity as es-

tablished or emerging high performance computing platforms. In terms of software

architectures, the library has been built and tested on various operating systems

and compilers. The build system automatically selects the vendor compiler if it is

found on the target system; otherwise, the gcc compiler is used. The library can be

installed seamlessly on any flavor of Linux or Unix systems including cygwin so long

as it supports GNU build tools. In the following, we give detailed specifications of
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Table 4.2: UHFFT library installation options

Optional Features Default Description

--enable-float disabled Builds library in single precision

--enable-single disabled Same as --enable-float

--enable-simd disabled Generate code that supports SIMD ex-

tensions

--enable-aeos disabled Generate code using feedback directed

empirical optimization technique

--enable-threads disabled Use native threads for multithreaded

execution (default=OpenMP)

--disable-openmp enabled Use native threads for multithreading

instead of OpenMP

CC auto Compiler is automatically selected un-

less specified

CFLAGS auto Compiler optimization flags are auto-

matically selected unless specified

the testbeds selected for this dissertation.
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Table 4.3: Xeon Woodcrest 5100 Specification

Processors 2×dual CMP/SMP

CPU speed 2.66GHz

CPU Peak (DP,SP) 10.64Gflop/s, 21.28Gflop/s

FP Registers 16 (128bit)

Memory BW, Latency ≈10.6GB/s, 70-380 cycles

ICache 32K

L1 DCache 32K/core, 64B, 8way, WB, 3 cycles

L2 I+DCache 4M/dual, 64B, 16way, WB, 14 cycles

Primary Compiler icc-10.1

4.1.1 Intel Xeon Woodcrest 5100

The first testbed is one of the compute nodes in the Lonestar cluster at the Texas

Advanced Computing Center. Lonestar nodes contain two Xeon Woodcrest dual core

64-bit processors (4 cores in all) on a single board, as an SMP unit. Each core is

capable of executing four double precision floating point operations per cycle using

128 bit SIMD operation per add and multiply unit.

4.1.2 Intel Xeon Clovertown 5300

The Neolith cluster at the National Supercomputing Center in Linkoping Sweden

consists of Xeon Clovertown processors. Each node consists of two quad core Clover-

town processors. Xeon Clovertown is successor of the Woodcrest consisting of two

dual-core Woodcrest processors per chip.
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Table 4.4: Xeon Clovertown 5300 Specification

Processors 2×quad CMP/SMP

CPU speed 2.33GHz

CPU Peak (DP,SP) 9.32Gflop/s, 18.64Gflop/s

FP Registers 16 (128bit)

Memory BW, Latency ≈10.6GB/s, 80-280 cycles

ICache 32K

L1 DCache 32K/core, 64B, 8way, WB, 3 cycles

L2 I+DCache 8M/quad, 64B, 16way, WB, 14 cycles

Primary Compiler icc-10.1

4.1.3 Intel Itanium 2 (Madison)

The Itanium node of the Eldorado cluster at the Texas Learning and Computation

Center, used for benchmarking in this dissertation consists of four Itanium 2 proces-

sors in an SMP configuration. Itanium’s architecture is significantly different from

x86 based architectures (Pentium, Xeon, Opteron etc.). The Itanium 2 issues two

instructions per cycle as very long instruction words (VLIW), each of which encodes

three independent instructions. Unlike x86 based systems, the scheduling of instruc-

tions is not done dynamically by hardware rather it is performed by the compiler at

compile time. The Itanium 2 has two floating point units capable of executing fused

multiply and add (FMA) operations. Hence, given the perfect blend of instructions

the processor can achieve a throughput of four floating point arithmetic operations

per cycle.
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Table 4.5: Itanium 2 (Madison) Specification

Processors 4×(SMP)

CPU speed 1.50GHz

CPU Peak 6.0 Gflop/s

FP Registers 128 (FP)

Memory BW,Latency ≈6.4GB/s, 165 cycles

ICache 16K

L1 DCache (Integer data) 16K, 64B, 4way, WT, 1 cycle

L2 DCache 256K, 128B, 8way, WB, 6 cycles

L3 DCache 6M, 128B, 12way, WB, 13 cycles

Primary Compiler icc-10.1

4.1.4 AMD Opteron 285

The Opteron contains one add and one multiply unit working in a superscalar mode,

generating two floating point results per cycle. The 128-bit SIMD instructions are

implemented as two 64-bit operations that are internally pipelined. The SIMD in-

structions provide a theoretical single precision peak throughput of two additions and

two multiplications per clock cycle, whereas x87 instructions can only sustain one

addition and one multiplication per clock cycle. The SSE2 and x87 double-precision

peak throughput is the same, but SSE2 instructions provide better code density [8].
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Table 4.6: AMD Opteron 285 Specification

Processor 2×dual CMP/SMP

CPU speed 2.60 GHz

CPU Peak(DP,SP) 5.2 Gflop/s, 10.4 Gflop/s

FP Registers 16 (128bit)

Memory BW, Latency ≈6.4GB/s, ≈150 cycles

ICache 64K

L1 DCache 64K/core, 64B, 2way, WB, 3 cycles

L2 I+DCache 1M/core, 64B, 16way, WB, 12 cycles

Primary Compiler gcc-3.4.6

4.1.5 IBM Power5+

The IBM Power5+ nodes used for benchmarking form part of the Hydra cluster at

the Supercomputing facility of Texas A&M University. Each node consists of 8 dual

core Power5+ processors. Each core is capable of running two threads simultaneously

(SMT) to feed the pipeline. This results in increased efficiency provided the threads

do not compete for cache resources. Each core consists of two floating point units

that can perform fused multiply and adds, resulting in throughput of four floating

point operations per cycle if the code contains a perfect blend of instructions.
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Table 4.7: IBM Power5+ Specification

Processor 8×dual CMP/SMP

SMT 2 per core

CPU speed 1.90 GHz

CPU Peak 7.6 Gflop/s

FP Registers 120 (FP)

Memory BW, Latency ≈25 GB/s, 220 cycles

ICache 64K

L1 DCache 32K/core, 128B, 4way, WT, 2 cycles

L2 DCache 1.9M/dual, 128B, 10way, WB, 12 cycles

L3 DCache 36M/dual, 256B, 12way, WB, 80 cycles

Primary Compiler xlc-8

4.2 API

The run-time part of the UHFFT has been redesigned to support the DFT interface

(DFTi), which is implemented in the Intel Math Kernel Library (MKL). For a de-

tailed specification of the DFTi API and its usage, see [53]. Computing a DFT of an

input sequence typically involves three stages, i.e., problem description and setup,

actual computation, and finally the cleanup stage. The sequence of five steps for

computing a DFT using the DFTi API is as follows:

1. Initialize the problem (descriptor)

2. Optionally, set problem description parameters

3. Prepare and initialize schedule of execution
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4. Compute the DFT of input sequence

5. Clean up the descriptor

The first three steps are part of the setup stage. The fourth step performs the trans-

formation while the fifth step cleans up the data structures and buffers associated

with the problem descriptor. Note that fourth step can be called repeatedly on dif-

ferent data sets of the same size and description. In the following, we discuss the

DFTi calling interface associated with each of these steps. After completion, each of

the functions returns error status [53] or DFTI NO ERROR, if no error was encountered.

4.2.1 Initializing the DFT Descriptor

In the first step of the DFT computation, the user needs to create the problem

descriptor using the following interface in C.

long DftiCreateDescriptor(DFTI_DESCRIPTOR_HANDLE dfti_desc,

DFTI_CONFIG_PARAM precision, DFTI_CONFIG_PARAM domain,

long dimensions, void length)

The function call takes one output parameter, i.e., DFTI DESCRIPTOR HANDLE and

four essential input parameters, which include precision of the transform, domain of

FFT computation, number of dimensions and length of each dimension.

Precision The precision of the library is set at installation time through the configure
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script. Therefore, the precision parameter must be equal to the preselected set-

ting, i.e., DFTI SINGLE if --enable-float or --enable-single were turned

on, otherwise DFTI DOUBLE.

Domain In its current version, the UHFFT only support complex to complex FFTs.

Therefore this parameter should be set to DFTI COMPLEX.

Dimensions The dimension parameter may take any integer value greater than 0.

Length Depending on the number of dimensions, length may take a scalar or array

parameter. For a multidimensional transform, length is expected to be the

address of the array.

Note that the creation of the descriptor DFTI DESCRIPTOR HANDLE does not perform

any computation on the input sequence. Instead, it only allocates and initializes the

descriptor with default values corresponding to the four essential parameters.

4.2.2 Setting Configuration Parameters

The UHFFT is an ongoing project; although it supports the core functionality for

computing a DFT it does not support all the features of the DFTi specification.

However, the UHFFT offers some additional features outside the standard DFTi,

which have been implemented as extensions. Configuration options of a descriptor

can be set through the following interface:

long DftiSetValue(DFTI_DESCRIPTOR_HANDLE dfti_desc, DFTI_CONFIG_PARAM

param, void value)
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where dfti desc is the descriptor that has already been created and param is the

parameter that needs to be set. In the following, we discuss a few important config-

uration parameters supported by the UHFFT:

Placement The UHFFT supports both in-place (x ← F (x)) and out-of-place (y ←

F (x)) execution of the FFT. If the transformed result is required in a separate array,

the placement parameter DFTI PLACEMENT should be set to DFTI NOT INPLACE value;

otherwise, it should be set to DFTI INPLACE, which is the default setting when a

descriptor DFTI DESCRIPTOR HANDLE is created.

Search The search scheme can be selected by setting the DFTI INITIALIZATION

EFFORT parameter to one of three values, i.e., DFTI HIGH, DFTI MEDIUM or DFTI LOW.

DFTI HIGH takes longer than the other two search schemes because it empirically

evaluates most options for a given FFT computation. However, the other two search

schemes have been found to generate good schedules reasonably quickly, and thus

be preferable in many situations. A further discussion on search schemes is given in

Chapter 7.

Stride A user may want to transform the data that is stored in a non-contiguous

manner at strided memory locations. When the input or output data needs to be

accessed or stored in a strided fashion, the information can be provided by setting

the DFTI INPUT STRIDES or DFTI OUTPUT STRIDES parameters. In its current ver-

sion, the UHFFT supports integer values for the strides, i.e., when the number of

dimensions is greater than one, all dimensions need to have the same stride.
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4.2.3 Preparing Execution Schedule

Once a problem descriptor has been initialized, it needs to be committed so that

a computation schedule may be prepared. The following function call is used to

commit a descriptor that has already been created:

long DftiCommitDescriptor(DFTI_DESCRIPTOR_HANDLE dfti_desc)

During this step, the bulk of the time is spent in searching for the best combination of

factors and algorithms to compute the given DFT problem. The time taken usually

depends on the value of the DFTI INITIALIZATION EFFORT parameter.

4.2.4 Computing the Transform

A committed DFT descriptor is ready to be used for transforming input sequences.

The descriptor can be used repeatedly on any number of sequences as long as the

input sequences are of same size and description. The input sequence in of complex

data can be transformed from time domain to frequency domain or vice versa using

the following DFTi interface:

long DftiComputeForward or DftiComputeBackward

(DFTI_DESCRIPTOR_HANDLE dfti_desc, void *in, void *out)

The function writes the result in out sequence. If the result needs to be written

in-place, i.e., the DFTI INPLACE parameter is selected, then out needs to point to
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the same location as in. For architectures that support SIMD extensions, the per-

formance of the computation can be significantly improved by aligning the (start

of) the two arrays in and out in memory to appropriate boundaries (typically

16B). If the arrays are aligned, this information must be passed to the search en-

gine. A user may specify the alignment flag through the precision parameter of the

DftiCreateDescriptor interface, i.e., precision=precision|DFTI ALIGNED. The

UHFFT provides two interfaces for allocating aligned structures (scalar) or arrays

(vector) in memory:

scalar(void **var, long size_of_var)

vector(void **var, long length, long size_of_element)

4.2.5 Freeing the Descriptor

The following interface frees up all the memory associated with the descriptor:

long DftiFreeDescriptor (DFTI_DESCRIPTOR_HANDLE dfti_desc)

4.3 Benchmarking

Performance benchmarks reported in this dissertation are collected using an aux-

iliary utility bench that is installed with the UHFFT library. This utility can be

used to benchmark various types and sizes of the FFT on target architectures. The

utility allows reporting of performance in several metrics, i.e., time, “MFLOPS” and
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hardware counters. The “MFLOPS” (Million Floating Point Operations Per Second)

metric is calculated from execution time and commonly used arithmetic complexity

of the FFT,i.e.,

mflops = 5 × n log (n) /time(µs) (4.1)

where n is the size of the transform. Note that the mflops number is an inflated

count compared to the actual number of operations executed; the actual number of

operations is lower than 5×n log (n). Similarly, efficiency can be computed from the

performance in mflops as follows:

Efficiency = % of Theoretical Peak

=
mflops × 100

(FPU Throughput× ClockRate)
(4.2)

where “FPU Throughput” is the theoretical number of floating point operations

that can be retired per cycle and ClockRate is the CPU frequency in MHz. Note

that the peak performance is a theoretical number which can only be achieved if

the code contains an ideal mix of floating point instructions. These efficiency and

performance measures are useful in comparing the relative performance of FFTs.

Hardware counters data is collected through a popular third party tool - PAPI

[41]. The tool should already be installed on the system and its path needs to be set

using the UHFFT installation script configure as shown in Table 4.8. Besides PAPI,

the bench utility also works with FFTW and MKL. The advantage of integrating

the three FFT libraries in a single bench utility is that it brings consistency in the

performance comparison of the libraries. In the following, we briefly describe our
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Table 4.8: bench utility options

Third party tool Description

--with-fftw3=FFTW3 PATH Supports benchmarking of FFTW3 through

bench utility

--with-mkl=MKL PATH Supports benchmarking of MKL through

bench utility

--with-papi=PAPI PATH Allows collection of performance benchmarks

in terms of hardware counters

benchmarking methodology for collecting data on execution time and accuracy.

4.3.1 Speed

The speed of the DFT computation is given by the execution time or the “mflops”

metric, which can be calculated from the execution time of a DFT problem. However,

in order to collect stable samples of execution time, higher resolution clocks may

be required. Most operating systems provide timing routines with micro seconds

precision. To calculate execution time of routines that take shorter than one µs, the

execution must be repeated in a loop. In general, the sampling error is minimized

by executing a problem significantly longer than one µs. The bench utility uses

Algorithm 5 to generate a stable measurement of DFT execution time. Every

reading is performed for an execution time of at least 0.01 seconds. If the execution
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tfactor ← 1; tmin ← 0.01;

doiter ← 1; niter ← 1;

repeat

t1 ← get time();

for i=0 to niter do execute dft;

telapsed ← get time()-t1;

if telapsed = 0 then tfactor ← 100;

else tfactor ← min(100,max(1.1, tmin/telapsed));

niter ← tfactor × niter;

doiter ← doiter + 1;

until telapsed < tmin and doiter < maxdo ;

return telapsed/niter;

Algorithm 5: Benchmarking methodology for calculating the execution time

time is smaller than the clock resolution, the number of iterations is increased by a

factor of 100. Otherwise, if the elapsed time is smaller than the minimum execution

time (0.01), the number of iterations is increased by 10%.

4.3.2 Accuracy

“Accuracy is the degree of conformity of a measured or calculated quantity to its

actual (true) value”. The bench utility can be used to determine accuracy of the

result produced by the UHFFT compared with the true value. bench supports four

types of accuracy tests; constant, square, ramp and inverse. In each test case, the
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normalized error is calculated as follows:

Error =
‖Y − Ŷ ‖p

‖Ŷ ‖p

where Y is the computed solution and Ŷ is the true solution and ‖e‖p is known as

the Lp norm of e:

‖e‖p =
n−1∑

i=0

(|ei|p)1/p (4.3)

where p ≥ 1 and n is the size of transformed sequence. We use the L2 norm to

calculate the error between two sequences. In the following, we present the generating

functions of our test cases and their true solutions.

Constant In this accuracy test, the input sequence is generated by a constant

function, i.e.,

f(xj) = 1 + i ∀ 0 ≤ j < n

The true solution of the DFT of f is given by:

f̂(xj) =






n if j = 0

0 otherwise

Square In this accuracy test, the input sequence is generated by a square wave

function, i.e.,

f(xj) =






1 if j is even

−1 if j is odd
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The true solution of the DFT of f is given by:

f̂(xj) =






1 + i tan (πj/n) if n is even





n if j = (n + 1)/2

0 otherwise

if n is odd

Ramp In this accuracy test, the input sequence is generated by a ramp (step)

function, i.e.,

f(xj) = j/n

The true solution of the DFT of f is given by:

f̂(xj) =






(n − 1) /2 if j = 0

−0.5 + i (0.5/ tan (πj/n)) if j > 0

Inverse In this test case, the DFT problem is computed on a random sequence

in both forward and inverse direction and the result is compared with the original

input sequence, i.e,

y = F (x)

u = F−1(y)

Error =
‖u − x‖2

‖x‖2
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Chapter 5

Code Generation

5.1 Introduction

The UHFFT library is comprised of two layers, a code generator (fftgen) and a

run-time system. The code generator produces highly optimized straight-line “C”

code blocks called codelets at installation time. These codelets are parametrized

blocks (microkernels) that compute parts of a given FFT problem at run time. Any

standard “C” compiler can be used to compile these codelets, which ensures the

ultimate portability. The automatic code generation approach is used because hand

coding and tuning the FFT is a very tedious process for transforms larger than size

five. It also allows for easy evaluation of different algorithms and code schedules.

Because of the unique structure of FFT algorithms with output dependence between

successive ranks (columns), loop level optimizations are not as effective as in the case

of many other linear algebra codes. Choosing the best FFT formula (factorization
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and algorithm) is vital to minimizing the number of operations required to compute

the transform. However, using simple heuristics that minimize the number of opera-

tions is not always sufficient to generate the best performing FFT kernels; specially

on modern, complex architectures. Among other factors, instruction schedule and

register blocking play an important role in the overall performance. fftgen employs

an aggressive optimization approach (AEOS) by iteratively generating, compiling

and evaluating different variants. Apart from exploring the best FFT formula and

register blocking, we try a few instruction schedules, translation schemes to probe

and adapt to both microprocessor architecture and compiler. A user may disable the

empirical optimization approach to expedite the installation process. In that case,

default optimization parameters can be overridden by manually specifying them in

a script file.

5.2 Codelet Types

fftgen is a very flexible code generator, capable of generating many types of codelets

of arbitrary size. A simple script file can be used to specify the sets of codelets (types

and sizes) to generate. The codelet sizes should typically be limited by the size of

instruction cache and the number of registers on the target architecture. After the

set of desired codelet sizes is specified in the script file, the code generator does not

require any further user intervention to produce highly optimized micro-kernels of

codelets for the platform. As shown in Figure 4, each codelet is identified by an

identifier, which is a string of seven literals postfixed by the size. In the following,
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we describe each of these literals.

d f t y n m c N

d f n y v p c N r R

Double Forward TwiddleY=f(x) No 
Loop

Mixed 
radix Complex Size

Double Forward Non 
TwiddleY=f(x) Loop PFA Complex Size rRotation

Figure 5.1: Codelet identifier string

Precision: As the name implies, this literal specifies the precision of the target

codelet. It takes four possible values, ‘s’,‘d’,‘q’ and ‘z’. Literals ‘s’ and ‘d’

stand for single (SP) and double precision (DP) respectively, while literals ‘q’ and

‘z’ are applicable to architectures that support SIMD extensions and use vectors of

four SP or two DP elements as operands. SIMD-enabled codelets are discussed in

detail in Section 5.3.2.

Direction: Depending on the domain (time, frequency) of the input vector, a

codelet can compute the transform in forward ‘f’ or inverse ‘i’ direction, as indi-

cated by the second flag.

Twiddle: The Cooley-Tukey mixed-radix FFT algorithm involves multiplication

with a diagonal twiddle matrix between the two FFT factors. Similar to the approach
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in FFTW[25], we generate special “twiddle codelets”, which perform the twiddle mul-

tiplication inside the codelet to avoid extra loads. This flag takes two possible values,

‘t’ for twiddle and ‘n’ for non-twiddle. For a size n codelet, the n twiddle multipli-

ers are fused at the end; multiplication is applied to the output of the codelet. This

approach is different from the FFTW approach in which n − 1 multipliers are fused

at the beginning of a size n codelet. Note that the number of twiddle factor multipli-

cations in a given FFT remains the same for both approaches. However, the UHFFT

approach requires fewer twiddle codelet calls, which are more expensive than the non-

twiddle codelets. As an example, Figure 5.2 shows four radix-2 codelet calls (one

Figure 5.2: Difference between twiddle and non-twiddle codelets

for each radix-2 butterfly), one of which (in rank 1) requires twiddle multiplication

at the end, depicted by filled circles. Notice though, that the twiddle multiplication

can alternatively be deferred and be applied to the input of both codelets in rank 2.

Placement: This flag is also specific to the mixed-radix FFT algorithm. It specifies

whether the codelet is part of an in-place or out-of-place (not-in-place) algorithm.

As discussed in Section 5.3, the in-place algorithm requires partial transposes on
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square block DFTs. An in-place codelet performs n DFTs of size n and transposes

the result inside the codelet to avoid extra register loads. This flag takes two possible

values; ‘x’ for in-place (x = f(x)) and ‘y’ for out-of-place (y = f(x)) computation.

Vector-ffts: In most cases multiple equi-distanced vectors of the same size need

to be transformed. A codelet with the vector flag enabled performs multiple DFTs

of the same size in a loop. The codelet call takes two additional parameters to let

a user specify the strides (distance) between successive vectors and the number of

loops. This is also a Boolean flag; it takes two possible values; ‘v’ for vector codelets

and ‘n’ for straight-line codelets.

Algorithm: Different types of FFTs and algorithms may require different codelets.

Apart from the codelets used in mixed-radix algorithms, fftgen generates special

codelets that can be used in the PFA algorithm (Section 3.1.3) and trigonometric

transforms. The algorithm flag takes four possible values, i.e., ‘m’,‘p’,‘c’ and ‘s’

representing mixed-radix, PFA, cosine(DCT) and sine(DST) algorithms, respectively.

Data: Both real and complex data codelets can be generated depending on the

transform type. In this dissertation, we focus on complex data type codelets. The

flag takes ‘c’ for complex-to-complex type codelets and ‘r’ for real-to-complex data

codelets.

Rotation: This parameter is only applicable to rotated codelets that are used as

part of the PFA algorithm. Note that the PFA codelet with rotation of one is
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equivalent to a regular (non-PFA) codelet. Rotation is specified by appending ‘r’

and (rotation) at the end of the codelet identifier string, as shown in Figure 5.1.

5.2.1 Codelet Data Structure

The data structure used for a codelet is of type Module. Apart from specifying the

type, size and rotation of a codelet, Module also contains four function pointers to

each of the forward/inverse and twiddle/non-twiddle codelet calls as shown in Figure

5.3. When a codelet is generated, the corresponding Module structure is initialized

accordingly. Each library of codelets is defined by a global array of modules. The

codelet modules initialized at code generation time are immutable objects. Therefore,

when a module needs to be inserted in a schedule, the original codelet is cloned by

performing a deep copy. This ensures that same codelet can be used in different

contexts as part of different schedules. For example, a radix-2 schedule for an FFT

of size n = 2i could contain a list of i modules, each of them a clone of the same

codelet, i.e., of size 2. Although, each Module in the list will have the same type and

size, the stride, twiddle array and next pointers would have different values depending

on their position in the container schedule. Note that a “container schedule” itself is

also represented by the Module; its type depends on the algorithm that it implements.

Some schedules may contain a mix of different algorithms, in which case each sub-

schedule is represented by a branch called switch module. The switch module is used

to build schedules that are composed of different algorithms. For example, a PFA

sub-schedule may be embedded inside a mixed-radix schedule or in case of Rader’s

algorithm the FFT for size n − 1 needs to be embedded in the prime module of size
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n. Most of this will become clearer when we discuss implementation of schedules in

the next chapter.

5.3 Codelet Libraries

Although many codelet types may be constructed using different string combinations,

only a few are useful in the UHFFT run-time. Many string combinations (codelet

types) do not make sense; for example, the twiddle flag is not applicable to rotated

(PFA) codelets. Similarly, a PFA codelet does not need a separate inverse direction

codelet.

In the following discussion, we concentrate on double precision complex-to-complex

codelet libraries since the generated code is fundamentally the same for single preci-

sion. However, when the functionality is significantly different (as in case of SIMD

codelets), we will point that out.

5.3.1 Scalar Codelets

Scalar or non-SIMD codelet libraries are architecture independent kernels that are

generated in the “C” programming language. Although the codelets in this category

are portable, they are generally not the most efficient on architectures that support

SIMD extensions. That is because most compilers are not good at performing auto-

matic simdization (vectorization) of straight-line codes. In the following, we describe

four main codelet types used in the UHFFT library run-time.
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typedef struct module {

long n; /* The size of the module */

long type; /* Module type */

long rot; /* Module rotation */

long stride; /* Module stride */

long v; /* Reserved */

CPLEX * w; /* Twiddle factors */

long ws; /* Twiddle array stride */

Module * next; /* Next module */

PFV call; /* Forward routine */

PFV icall; /* Inverse routine */

PFV twcall; /* Forward twiddle routine */

PFV twicall; /* Inverse twiddle routine */

union advparams advParams; /* Switch module */

CPLEX * work; /* Scratch buffer */

} Module;

Figure 5.3: Module data structure
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DYNMC: This is the most basic type of straight-line complex-to-complex FFT

codelets used in a mixed-radix algorithm. For each size n, four codelets are generated;

forward non-twiddle (dfnynmc), inverse non-twiddle (dinynmc), forward twiddle

(dftnymc) and inverse twiddle (ditynmc). The calling interfaces of twiddle and

non-twiddle codelets of size 4, are:

d?nynmc4(CPLEX *X, CPLEX *Y, long is, long os)

d?tynmc4(CPLEX *X, CPLEX *Y, long is, long os, CPLEX *W)

X and Y are, respectively, the input and output arrays of structure (complex). The

output vector may point to the same location as the input vector, in which case the in-

put vector is overwritten. is and os are the input and output strides respectively. In

terms of Matlab vector notation, this codelet is equivalent to the following operation:

Y [0 : os : n × os] = fftn (X [0 : is : n × is])

For twiddle codelets, the twiddle factor array is accessed at unit stride.

DYVMC: This type of codelet is similar to the one discussed above, except that

it performs the same DFT on multiple equi-distanced vectors. In a large FFT prob-

lem, a codelet needs to be called multiple times inside a loop. This codelet pushes

that loop inside the subroutine to save the calling overhead. For each size n, four

codelets are generated for every combination of direction and twiddle flags. The

calling interfaces of twiddle and non-twiddle codelets of size 4, are:

d?nyvmc4(X, Y, is, os, long v, long vis, long vos)

d?tyvmc4(X, Y, is, os, long v, long vis, long vos, long vws, CPLEX *W)

75



The function call contains three additional parameters, which specify the number

of vectors (loop iterations) v, and the distance between successive input and output

vectors, vis and vos. In terms of functionality this codelet type is equivalent to the

following code segment:

for i = 0 to v do
ystart ← i × vos

xstart ← i × vis

dfnynmc4(X [xstart] , Y [ystart] , is, os)

end

Although the same DFT is performed on all v vectors, each vector is multiplied by

a different twiddle factor in twiddle codelets of this type. Contiguous twiddle factor

arrays are expected to be stored at vws distance.

DXVMC: This codelet type is used in mixed-radix in-place algorithms. Straight-

line code for this codelet type is not generated because multiple DFTs need to be

performed in most cases. For each size n, four types are generated for different

combinations of direction and twiddle flags. The calling interfaces of twiddle and

non-twiddle codelets of size 4, are:

d?nxvmc4(X, is, dist, v, vis)

d?txvmc4(X, is, dist, v, vis, ws, W)
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An in-place codelet performs n transforms of size n (non-contiguous 2D square

blocks) and transposes the result to overwrite the input vector. is is the inter-

element (row) stride in the vector (X), while dist is the distance between rows of the

square blocks (assuming row major order). When multiple square blocks need to be

transformed, v equals the number of iterations and vis specifies the stride between

the first elements of square blocks. In terms of functionality, this codelet type is

equivalent to the following code segment:

for i = 0 to v do
xstart ← i × vis

dfnyvmc4(X [xstart] , X [xstart] , is, is, 4, dist, dist)

/* transpose matrix is=horizontal & dist=vertical stride */

transpose(X [xstart] , is, dist)

end

For twiddle codelets, each row of a square block is multiplied with the same twiddle

array of size n, but multiple blocks (v> 1) may be multiplied by different twiddle

factor arrays, in which case a twiddle stride (vws> 0) can be specified.

DYVPC: This codelet type is used in the Prime Factor Algorithm (PFA) [58, 62,

30]. Recall from the introduction to PFA in Chapter 3 that the algorithm does not

require a twiddle multiplication step. Hence, a twiddle PFA codelet is not gener-

ated. Moreover, by taking advantage of special indexing, the PFA algorithm can

generate output that is both in-place and in-order [13, 54]. However, in order for

the algorithm to be more general, it requires special rotated codelets [54, 55]. The
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rotation parameter depends on the co-prime factors n1, n2 . . . ni of the FFT problem

N =
∏

ni. For each factor n, j unique codelets are generated for all rotations rj such

that 0 < rj < n and gcd(rj, n) = 1. For example, if n = 6, two rotated codelets,i.e.,

r1 = 1 and r2 = 5 are generated. Note that a codelet of rotation r = 1 is equivalent

to a regular mixed-radix codelet. The calling interfaces for PFA codelets of size 4,

are:

dfnyvpc4r1(X, Y, is, os, v, vs)

dfnyvpc4r3(X, Y, is, os, v, vs)

The straight-line version of this codelet type (dynpc), is not generated because a

single rotated DFT is not required in the PFA algorithm. Furthermore, no inverse

PFA codelet is generated because the direction of the PFA codelet is controlled

through the rotation, i.e., if rotation rf = 1 performs a forward rotated transform

then ri = n − rf = 3 will perform an inverse rotated transform.

5.3.2 SIMD Codelets

For architectures (ISAs) that support SIMD extensions, exploiting architecture spe-

cific SIMD intrinsics is known to achieve better performance than scalar (non-SIMD)

codes [32, 26, 22]. fftgen is capable of generating both single and double preci-

sion SIMD codelets. As per current microprocessor architecture trends, we generate

SIMD codes for relatively short vectors of 128 bits (16 bytes), i.e., two double preci-

sion (DP) floats or four single precision (SP) floats. Such architectures also require

that the data be aligned in memory at 16 byte boundaries for best performance.
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Even though SIMD operations can potentially achieve double the performance of

scalar operations, the code must exhibit the structure to enable paired arithmetic.

In case of double precision complex-to-complex codelets, each complex element can

be treated as a short vector and the SIMD operations can be performed on com-

plex elements instead of separate real and imaginary parts. However, such a pairing

may inhibit some of the arithmetic optimizations that could have been possible in

scalar code. For example, let us consider a vector addition y = u + i × v, where

i =
√
−1. Simple floating point (non-SIMD) code would require one addition and

one subtraction:

yr = ur − vi

yi = ui + vr

while the SIMD version might require more than one operation to produce the result:

v = CONJUGATE(v)

y = u + v

where CONJUGATE is generally implemented using shuffle followed by xor.

For single precision SIMD codelets, two butterflies (at stride one) must be paired

to perform the same operation on the two complex elements (four SP floats). fftgen’s

flexible and modular design makes it easy to generate codes for different SIMD exten-

sion types. In fact, new extensions can be added simply by updating the macros in a

header file. Some of these macros such as VLD, VST, VADD and VSUB map directly

to the intrinsics or assembly instructions while others such as complex multiplication
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(VZMUL) require multiple micro instructions to execute. Currently, fftgen gener-

ates optimized SIMD codes using SSE,SSE2 and SSE3 extensions for Intel and

AMD architectures and single precision SIMD, i.e., Altivec for Power architectures.

ZYNMC: This codelet type is the SIMD-enabled (simdized) version of dynmc.

Since only one butterfly is computed in dynmc, synmc and zynmc, there is no single

precision counterpart of zynmc, i.e., there is no qynmc type codelet library, which

requires paired butterfly computation. The calling interfaces of twiddle and non-

twiddle codelets of size 4, are:

z?nynmc4(CPLEX *X, CPLEX *Y, long is, long os)

z?tynmc4(CPLEX *X, CPLEX *Y, long is, long os, CPLEX *W)

In the twiddle codelet, twiddle factors are expected to be stored in the same unit

stride fashion as in dynmc. All other parameters also have the same interpretation

as in scalar codelets. Figure 5.4 gives the listing of code generated for zitynmc4

codelet.

ZYVMC: This codelet performs multiple transforms on equi-distanced vectors.

The zyvmc codelet performs the same function as its scalar double precision coun-

terpart. The calling interfaces of twiddle and non-twiddle codelets of size 4, are:

z?nyvmc4(X, Y, is, os, long v, long vis, long vos)

z?tyvmc4(X, Y, is, os, long v, long vis, long vos, long vws, CPLEX *W)
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The parameters have identical interpretation as for dyvmc. However, the single pre-

cision SIMD codelet qyvmc differs significantly from syvmc and zyvmc. A qyvmc

codelet call is equivalent to the following operations:

for i = 0 to v do
ystart ← i × vos

xstart ← i × vis

sfnynmc4(X [xstart] , Y [ystart] , is, os)

sfnynmc4(X [xstart + 1] , Y [ystart + 1] , is, os)

end

Two butterflies (odd and even) are computed together to fully utilize the length of

a SIMD vector. Note that for the qyvmc codelet, is,os,vis and vos can not take

odd values. Consider using syvmc instead if these restrictions can not be met. For

twiddle codelets, the twiddle array is stored at unit stride, as usual. Internally, each

twiddle load fetches both even and odd elements. For single precision SIMD calls,

the twiddle array must be packed such that adjacent (paired) twiddle calls get the

right set of twiddles.

ZXVMC: This codelet is used in the in-place in-order mixed-radix algorithms. It

performs transforms on square blocks followed by a transpose as discussed previously.

It is identical to dxvmc in terms of functionality and interface parameters. The calling

interfaces of twiddle and non-twiddle codelets of size 4, are:

z?nxvmc4(X, is, dist, v, vis)

z?txvmc4(X, is, dist, v, vis, vws, W)
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The single precision counterpart (qxvmc) of this codelet must meet the conditions as

described above. In this case is,dist,vis and vws can not take an odd value.

ZYVPC: This codelet is identical to dyvpc in terms of functionality and interface

parameters. It is used in the Prime Factor Algorithm, which requires special rotated

codelets as described above. The calling interfaces of PFA codelets of size 4, are:

zfnyvpc4r1(X, Y, is, os, v, vs)

zfnyvpc4r3(X, Y, is, os, v, vs)

The single precision counterpart qyvpc of this codelet must meet the conditions as

described above. In this case is,os can not take an odd value.

5.3.3 Direct Access to the Codelet Libraries

The codelet libraries generated at installation time are used in different driver rou-

tines of the UHFFT at run-time. The main user interface to the library is the DFTi

API, which uses those driver routines to compute an FFT problem. Nevertheless, a

user may bypass the DFTi API to access the codelets directly to solve a small FFT

problem or use them in another run-time algorithm. Each codelet library can be ac-

cessed as an array of Module pointers. The PFA codelet library is a two dimensional

array since each pointer points to an array of rotated modules of that size. There

are two ways a user can get direct access to the codelets, as given below:

Module **DftiExGetLib(int LIBTYPE);
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OR

extern Module *dynmcLib[]; /* SIMD and single precision

extern Module *dyvmcLib[]; codelets can be accessed

extern Module *dxvmcLib[]; in a similar manner */

extern Module **dyvpcLib[];
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void zitynmc4(CPLEX *x, CPLEX *y, INT is, INT os, CPLEX *w)

{

register V tmp0, tmp1, tmp2, tmp3, tmp4, tmp5,

tmp6, tmp7, tmp8, tmp9, tmp10, tmp11, tmp12;

tmp0 = VLD(&x[0]);

tmp1 = VLD(&x[is]);

tmp2 = VLD(&x[2*is]);

tmp3 = VLD(&x[3*is]);

tmp4 = VADD(tmp0, tmp2);

tmp5 = VSUB(tmp0, tmp2);

tmp6 = VADD(tmp1, tmp3);

tmp7 = VSUB(tmp1, tmp3);

tmp8 = VCONJ(tmp7);

tmp9 = VADD(tmp4, tmp6);

tmp10 = VSUB(tmp4, tmp6);

tmp11 = VADD(tmp5, tmp8);

tmp12 = VSUB(tmp5, tmp8);

VST(&y[0], VZMULI(tmp9, VLD(&w[0])));

VST(&y[os], VZMULI(tmp11, VLD(&w[1])));

VST(&y[2*os], VZMULI(tmp10, VLD(&w[2])));

VST(&y[3*os], VZMULI(tmp12, VLD(&w[3])));

}

Figure 5.4: zitynmc4 codelet
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5.4 Code Generation Methodology

The UHFFT code generator (fftgen) has been implemented in “C” and its design

allows it to be easily extended to other types of numerical codes. Apart from the

complex-to-complex, real-to-complex and complex-to-real FFT codelets, the code

generator was recently used to generate trigonometric transforms [5]. The formula

of target numerical code is specified through a routine that describes the algorithm

using scalar, vector or matrices of expressions. An expression can be one of seven

basic types:

• Sum

• Product

• Negation (Complement)

• Assignment

• Variable

• Constant

• Block

For most types, the expression can take one or more (sub)expressions as operands.

This allows recursive construction of expression lists using declarative style of pro-

gramming. As an example, consider the following segment that generates code for

an O(n2) DFT algorithm using matrix-vector multiplication.
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Figure 5.5: fftgen design diagram

ExprVec *out;

out = AssignExprVec( CPLEXOUTVAR,

MultExprMatVec( GetDFTExprMat(n, FORWARD),

GetExprVec( n, VAREXPR, CPLEXINVAR, 0)

)

);

The DFT matrix of rank n is multiplied with the input variable expression vector X

and the resulting vector is assigned to the output variable expression vector Y. Using

these built-in operators, a user may write driver routines to generate Basic Linear

Algebra Subroutines (BLAS).
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The code is generated in three main steps as shown in Figure 5.5. In each step,

the optimization is performed independently. This is particularly helpful when au-

tomatic empirical optimization (AEOS) is enabled --enable-aeos, since it reduces

the number of combinations that need to be evaluated. When the AEOS is disabled,

fftgen uses default optimization parameters that are known to generate good code

on most architectures.

5.4.1 Compiler Feedback Loop

The performance of generated codelets depends on many parameters that can be

tuned to the target platform. Instead of using global heuristics for all platforms, the

best optimization parameters can be discovered empirically by iteratively compil-

ing and evaluating generated variants. The evaluation component, benchmarks the

variants and tests the accuracy of generated code. In order to generate statistically

stable measurements, each codelet is executed repeatedly. Codelets are called with

non-unit strides keeping in view the context in which they are likely to be used as

part of a larger FFT problem. The average of the performance measurements for

different strides is used to represent the quality of a variant. The three main stages

used to generate optimized code are discussed below.

Stage 1: Formula Generation and Optimization

In the first stage, different FFT formulas are generated and evaluated to optimize

for floating-point operation count. This phase generates the butterfly computation,
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which is abstracted internally as a list of expressions. Simple arithmetic optimizations

are applied to the list of expressions to minimize the number of operations. Four

variants are generated depending on the factorization policy and Rader algorithm

implementation as listed in Table 5.1. An illustration of two factorization policies is

given in Figure 5.6.

Table 5.1: Stage 1 tuning parameters

Parameter Value

Prime size algorithm Partial or Full Skew Rader

Factorization policy Right or Left recursive

6

3

2

2

12

(a) Left recursive

6

3

2

2

12

(b) Right recursive

Figure 5.6: Factorization policies

The heuristics given in Figure 5.7 are used at each level of the factorization tree

to select the algorithm and factors. In the simplest case when n is equal to 2 or

when n is a prime number, the algorithm returns the size n as a factor, selecting an

appropriate algorithm.
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if n = 2 then algo ← dft and r ← 2

else if IsPrime(N) then algo ← rader and r ← n

else /* Use Heuristics */

k ← GetMaxFactor (n)

algo ← mr and r ← k

if gcd
(
k , n

k

)
= 1 then

algo ← pfa and r ← k

else if n > 8 & 4 | n then
algo ← sr and r ← 2

else if n > k3and k2 | n then
algo ← sr and r ← k

end

if FactorizationPolicy = RightRecursive then r ← n
r

Figure 5.7: FFT factorization and algorithm selection heuristics

Stage 2: Expression Scheduling

The second phase performs scheduling and blocking of expressions by generating

a directed acyclic graph (DAG). The main purpose of this scheduling is to mini-

mize register spills by performing a topological sort of instructions. Currently, only

instructions within the same block are permuted, i.e., instructions are not moved

outside the basic block scope even if it is safe to do so. However, larger basic blocks

may be chosen in order to enhance the scope of the DAG scheduler. A study [3]

conducted by the author revealed that even for very small straight-line codelets the

performance variation due to varying instruction schedules could be as much as 7%.
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The study also showed that different compilers responded differently to the same

high level instruction schedule. In keeping with those findings, three different block

sizes, 2,4 and 8, are tried as given by Table 5.2. In total, six different variants of

schedules are generated and the best is selected after empirical evaluation.

Table 5.2: Stage 2 tuning parameters

Parameter Value

Schedule Cache-oblivious or CO+Topological sort

Basic Block Size ∈ {2,4,8}

Stage 3: Unparsing

In the third stage, the sorted expression list is unparsed (translated) to the target

language. Although we generate code in “C”, the unparser can be easily extended

to output the code in other languages, including FORTRAN. Depending on the

type of codelet, SIMD or scalar, different unparsers are used. For SIMD codelets,

there is only one variant generated in this step. However, for scalar codelets six

different variants are tried. The scalar codelets compute complex FFT on the input

vectors, which are represented as arrays of structures. To generate code that results

in the best performance, we tried two different representations for input and output

vectors of complex type as given in Figure 5.8. In the first representation, input and

output vectors are accessed as arrays of structure (CPLEX). In the second scheme,

the complex vector is represented by two separate real and imaginary arrays of REAL

data type. Apart from the two array translation schemes for complex type codelets,
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two more variants are tried for all types of codelets, as given in Table 5.3. For

some compilers, gcc-3.4 for example, we noticed that an explicit step of replacing

I/O vector elements in temporary scalar registers performed better in most cases.

However, it did increase the total size of code in terms of lines of “C” code.

Table 5.3: Stage 3 tuning parameters

Parameter Value

Scalar replacement On or Off

I/O Data type CPLEX or REAL

X → 0 real

imag

1 real

imag

(a) CPLEX *X

Xr → 0 real

Xi → 0 imag

2 real

2 imag

(b) REAL *Xr,*Xi

Figure 5.8: I/O data structure access
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5.5 Results

In this section, we analyze the performance of generated codelets on some of the most

recent architectures. For a complete list and specifications of the platforms, please

refer to Section 4.1. The benchmarks are collected by running a codelet multiple

times and taking the average as representative time of execution. Note that the tim-

ing results are expected to contain some error, especially for very small size codelets,

where function call and loop iteration overhead could be significant compared to the

actual floating point code. A detailed discussion on the benchmarking methodology

is given in Section 4.3.

5.5.1 Selecting the Maximum Size of Codelets to Generate

In the first set of results, we benchmarked codelets of powers-of-two sizes for all tar-

get architectures. In each case, input and output blocks of memory equal to the size

of 128 double precision complex elements were allocated to execute the maximum

codelet size using unit stride. The plots in Figure 5.9 show that the performance of

codelets increases with the size of the transform and then starts deteriorating once

the code size becomes too big to fit in the instruction cache and registers. The perfor-

mance increase is due to the fact that larger size codelets contain a sufficient number

of arithmetic instructions to neutralize the overhead of a function call. Moreover,

the codelets of size 2 and 4 do not contain any multiplication instruction, thus, only

the addition functional unit(s) are utilized. Interestingly, the performance decline

on the Opteron processor was not as sharp as found on other architectures. We
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believe that it is due to the bigger instruction cache on the Opteron (64K) compared

to the Itanium 2 (16K) and Xeons (32K). At installation time, appropriate sets of

codelets can be selected by paying attention to the size of the instruction cache and

the number of floating point registers. In the default set of codelets, size 64 is the

largest codelet generated.
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(a) Non-SIMD codelets
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Figure 5.9: Performance of powers-of-two size codelets (unit stride)

5.5.2 Performance of Single and Double Precision Codelets

In this section, we compare the performance of single and double precision codelets.

When the architecture supports SIMD extensions, we present the performance of

both SIMD and non-SIMD variants. We have selected only powers-of-two sizes be-

cause they are the most commonly used codelets. The benchmarking results are

reported in pseudo-“MFlops”, which is derived from the execution time and the

standard floating-point complexity of radix-2 FFT algorithms, i.e., 5n log(n). Note
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that the actual number of operations is generally lower than the standard complexity.

Table 5.4: Single and double precision codelets performance (MFlops) on Xeon

Codelet double single

Size dyvmc zyvmc syvmc qyvmc

2 3483 7783 3482 17673

4 6034 9987 6570 17126

8 5059 9185 5309 15389

16 4861 7075 5266 14032

32 4155 6776 5105 12527

64 3400 4408 4614 7175

128 1220 3865 1200 6618

(a) Woodcrest 2.66GHz

Codelet double single

Size dyvmc zyvmc syvmc qyvmc

2 3046 6848 3049 15467

4 5392 8604 5147 14951

8 4284 8664 4149 15061

16 4006 7367 4335 12327

32 3759 5624 4220 10563

64 3978 3910 4175 6292

128 954 3530 1015 5759

(b) Clovertown 2.33GHz

Intel Xeon Woodcrest

Each core of the Xeon Woodcrest is capable of executing two 128-bit floating point

operations (flops) each cycle, i.e, four double precision or eight single precision flops

can be executed in parallel if the right blend of SIMD instructions is available. How-

ever, as discussed in previous chapters, achieving theoretical peak performance is

generally not possible even though the compiler may be able to simdize some part

of the “C” code. Table 5.4 gives the performance results of both single and double

precision codelets of powers-of-two sizes, where dyvmc and zyvmc refer to double
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precision floating point and SIMD codelets respectively. Similarly, syvmc and qyvmc

refer to single precision variants. As shown in the table, the scalar (non-SIMD) code

is considerably slower than the SIMD code, which computes an operation on the full

vector length, potentially doubling the performance. Note that single precision float-

ing point (non-SIMD) code does not achieve any meaningful speedup over its double

precision counterpart. As the size of the codelets increase, so does the register pres-

sure, which impacts the performance of both SIMD and non-SIMD codelets. Also

note that as the size of the codelets increase, the performance benefit of SIMD code

over the non-SIMD variant decreases except for size 128 codelets. The reduction in

performance benefit is due to the fact that operating on SIMD vectors sometimes

inhibits the performance optimizations that would otherwise be possible in scalar

(non-SIMD) code as discussed in Section 5.3.2. This results in higher than the ideal

(half) number of operations in SIMD code. On the other hand, the performance of

a very large size codelet (dfnyvmc128 contains approximately 3K line of “C” code),

improves drastically due to better density found in the simdized codes.

AMD Opteron 285

Compared to the Xeon Woodcrest, the second generation Opteron did not achieve

significant performance improvement due to the simdization of codelets, as shown

in Table 5.5. This behavior is expected and has been explained in Section 4.1.

According to the AMD64 manual [8], the double precision SIMD code is not likely

to achieve any improvement because the instruction is internally broken into scalar

operations. As a matter of fact, the double precision SIMD code turned out to
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Table 5.5: Single and double precision codelets performance (MFlops) on the Opteron

Codelet double single

Size dyvmc zyvmc syvmc qyvmc

2 3238 3238 2507 6476

4 4449 4710 3813 8813

8 4178 2615 3644 4534

16 3483 2187 3200 4054

32 3451 1933 3182 3650

64 3413 1811 2950 3449

128 3257 1735 2864 3158

be slower than the (non-SIMD) double precision scalar code. As explained in the

previous sections, the slowdown is due to missed optimization opportunities as a

result of vector operations. This behavior is somewhat evident in Table 5.10, which

shows that the number of measured floating point operations of the SIMD code is

higher than that of the scalar code. Also notice that the SIMD code contains lower

number of instructions than the scalar code. It is not clear why the number of

operations in the “C” code and the “PAPI” measured counts are different for the

Opteron.

Itanium 2 (Madison)

In Table 5.6, we compare the performance of single and double precision code gener-

ated on the Itanium 2. Notice that the performance is almost identical in both cases,

which is expected since each register can hold a single floating point element; there
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Table 5.6: Single and double precision codelets performance (MFlops) on Itanium 2

Codelet Size dyvmc syvmc

2 1543 1216

4 3519 3741

8 4491 4490

16 5044 5042

32 4734 4676

64 1738 1811

128 1135 1126

is no SIMD floating point unit. However, the Itanium 2 supports fused multiply and

add (FMA) operations. Hence, the efficiency of code depends on the instruction mix

and compiler’s ability to generate FMA instructions from straight-line code.

IBM Power5+

The Power5+ architecture also contains two FMA units each capable of performing

two arithmetic operations per cycle. As expected, there is no significant performance

improvement in single precision code compared to double precision as shown in Table

5.7.
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Table 5.7: Single and double precision codelets performance (MFlops) on Power5+

Codelet Size dyvmc syvmc

2 3210 3210

4 4465 4470

8 5553 6331

16 4047 4221

32 3675 3708

64 3501 3488

5.5.3 Performance Impact of Empirical Optimization (AEOS)

In Section 5.4.1, we discussed the code generation methodology implemented in

fftgen. The methodology employs aggressive empirical optimization technique us-

ing a compiler feedback loop to adapt to both the architecture and the compiler.

In this section, we evaluate the effectiveness of this approach versus using hard-

coded (default) values for tuning parameters. Note that when AEOS is enabled

(--enable-aeos), the optimization starts with the default values for the parame-

ters as given in Table 5.8. The default values have been selected based on testing

of various parameter combinations. Figure 5.10 shows the variation in performance

in each optimization stage for codelets of size 16 on the Opteron 285 processor.

First, notice that gcc-3.4.6 performs better than both gcc-4.2.2 and icc-10.1

compilers on the Opteron 285 processor. Also note that the performance variation

due to the compiler feedback loop in the SIMD codelets is lower than for the scalar

codelets. This is expected because SIMD codelets are generated using architecture
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intrinsics, which translate directly into assembly, obviating the need for extensive

compiler optimization. Since the empirical optimizations include all combination of

Table 5.8: Tuning parameter values for the codelet dfnyvmc16

Stage # Factor. Rader Instruction Block Scalar I/O

Policy Algorithm Schedule Size Repl. Array

1 0 RRF SkewP CO+TS 2 Off Cplex

1 1 LRF SkewP CO+TS 2 Off Cplex

2 2 LRF SkewP CO 2 Off Cplex

2 3 LRF SkewP CO+TS 2 Off Cplex

2 4 LRF SkewP CO 4 Off Cplex

2 5 LRF SkewP CO+TS 4 Off Cplex

2 6 LRF SkewP CO 8 Off Cplex

2 7 LRF SkewP CO+TS 8 Off Cplex

3 8 LRF SkewP CO+TS 2 Off Cplex

3 9 LRF SkewP CO+TS 2 Off Real

3 10 LRF SkewP CO+TS 2 On Cplex

3 11 LRF SkewP CO+TS 2 On Real

tuning parameters (including default values), we expected the performance to be at

least as good as that with hard-coded values. Figure 5.20 shows that to be true in

most cases; however, in some cases the empirical optimization did not select the best

combination of parameters. On most clusters, the compilers and build tools are only

available on the login node(s), which are shared by all users of the system. Since

the code is generated at installation time on login nodes, the timing results are not

expected to be accurate in all cases. In the future, we plan to use the median of the
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(b) SIMD codelet

Figure 5.10: Performance variation in the codelet dfnyvmc16 due to compiler feed-

back. The experiment was performed on the Opteron 285 using three compilers

execution times instead of the mean to avoid the statistical noise in benchmarks.

5.5.4 Codelets Performance Models

A large size FFT problem is composed of many small codelets, which access the

input and output memory at non-unit stride. Therefore, it is important to evaluate

the codelets’ performance for a range of input and output strides. For all platforms

considered, the performance decreases considerably for large data strides. If two or

more data elements required by a particular codelet are mapped to the same physical

block in cache, then loading one element results in the expulsion of the other from

the cache. This phenomenon known as cache thrashing occurs most frequently for

strides of data that are powers-of-two because data that are at such strides apart are

mapped to the same physical blocks in cache depending on the type of cache that is
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used by the architecture. On a typical machine with simple cache design, thrashing

occurs for each level of cache when:

stride × sizedatapoint × sizecodelet

sizeblock
> setscache

stride × sizedatapoint × sizecodelet

sizeblock
>

blockscache

associativity
stride × sizedatapoint × sizecodelet

sizeblock
>

sizecache

sizeblock × associativity

stride >
sizecache

associativity × sizedatapoint × sizecodelet

(5.1)

where sizecache is the size of cache, associativity is the cache associativity, sizedatapoint

is the size of each element in the vector; for double precision, complex type, the

sizedatapoint is equal to 16 bytes. The main objective of this experiment was to

develop performance models that can help in the selection of factors at various levels

of the factorization tree.

Intel Xeon Woodcrest

Both the Xeon Woodcrest and Clovertown possess similar cache hierarchy, i.e., two

levels of cache, where the L1 cache size and associativity is 32K and 8 respectively.

The L2 cache size for Woodcrest and Clovertown is 4M per dual and 8M per quad

respectively, while the associativity is 16 for both Xeons. Figures 5.11 and 5.12

show the performance variation of three codelets as a function of input and output

strides. Only SIMD codelets have been selected because scalar codelets are signif-

icantly slower on Xeons. Note that input and output vectors are separate arrays.

Both architectures exhibit similar behavior as a function of strides, which is expected
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because Clovertown is based on the Woodcrest architecture. Observe that the per-

formance of codelets exhibits a plateau-like pattern, which indicates cache thrashing

at multiple levels of the cache hierarchy. For smaller codelets, we also observed that

when input and output strides were equal, the performance dropped dramatically

as indicated by the diagonal pattern for the codelet of size 4. We believe that this

behavior is due to conflict between input and output vectors. Since both are aligned

to 128-bit boundaries in the main memory, it is likely that the vectors get mapped

to same addresses in the cache causing cache misses.

Figure 5.13 shows the performance of powers-of-two size codelets for various

strides. In this experiment, the input and output strides are equal and both vectors

point to the same location. Given a power of two size FFT, the size N = 2i can be

factorized using any mix of factors shown in the surface plot. In a greedy algorithm,

the most efficient codelet (size 8 in Figure 5.13) can be selected as long as it divides

the size of the transform.
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Figure 5.11: The Xeon Woodcrest 5100 performance model for a range of strides
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Figure 5.12: Xeon Clovertown 5300 performance model for a range of strides
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Figure 5.13: Xeon: Performance variation of powers-of-two size codelets as a function

of stride (input = output)

Intel Itanium 2

Itanium 2 contains three levels of cache, but only the second and third levels are used

for floating point data. Both the L2 and L3 caches are bigger that the L1 and L2

caches of Xeon. As shown in Figure 5.14, this results in wider performance plateaus.

Due to the larger size of the register file, the best performing codelets are bigger
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than for the Xeons. As shown in Figure 5.15, the peak for the Itanium 2 is for the

codelets of size 16 and 32, whereas for the Xeon this peak occurs for size 8.
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Figure 5.14: Itanium 2 cache performance model for a range of strides
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Figure 5.15: Itanium 2: Performance variation of powers-of-two size codelets as a

function of stride (input = output)
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AMD Opteron 285

The cache performance on Opteron was observed to be more predictable than for

the other architectures. Indeed, the model given in Eq. (5.1), can be used to predict

the stride boundaries of each level of cache, as shown in Figure 5.16. Similarly, the

performance model given in the surface plot (Figure 5.17), shows that as we increase

the size of codelets by a factor of 2, the boundary (given by stride) recedes by the

same factor. Observe that the best performing codelet for the Opteron 285 processor

is the same as for the Xeon (size 8), which is expected because both architectures

have the same size of the register file. Unlike for other architectures, larger codelets

do not suffer major performance degradation for the Opteron 285 processor, as shown

in Figure 5.17. This could be because of the larger size of the instruction cache.
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Figure 5.16: Opteron 285 cache performance model for a range of strides

IBM Power5+

The Power5+ not only contains a bigger register file compared to both the Opteron

and Xeon, it also contains bigger instruction cache (64K). This is indicated in Figure
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Figure 5.17: Opteron 285: Performance variation of powers-of-two size codelets as a

function of stride (input = output)

5.19 by a slightly flatter surface as we increase the size of the codelets. One of

the most striking differences in the performance of the Power5+ compared to the

other architectures can be witnessed in Figure 5.18. Notice that the performance

difference due to increase in input and output stride is not identical. Increasing the

input stride causes a performance decrease but increasing the output stride does not

create a performance decrease. We believe this is due to the fact that the Power5+

implements a write-through cache unlike other architectures discussed here. When

the output is generated, it is written directly to memory.

In the discussion above, we investigated the performance of various codelets as a

function of strides. When the stride is sufficiently small, the input memory block fits

in the higher levels of cache, resulting in good efficiency. However, for larger strides

cache conflicts cause thrashing resulting in a dramatic decrease in performance. In

order to avoid thrashing, a data reordering step (transpose) may be performed. As
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Figure 5.18: Power5+ cache performance model for a range of strides
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Figure 5.19: Power5+: Performance variation of powers-of-two size codelets as a

function of stride (input = output)

long as it amortizes the cost associated with the cache misses, a performance benefit

can be achieved. We also observed that complex cache architectures make it hard to

come up with a unified model for predicting the cache performance as a function of

stride, codelet size and limited cache parameters. Thus, instead of relying on cache

parameters, we will record the stride parameters (for all levels of cache) directly for

each architecture through one-time empirical analysis.
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For each architecture, some codelets are more efficient than others. The codelets

of medium size generally performed best because they contained sufficient workload

to amortize the calling overhead. The larger size codelets utilize both addition and

multiplication units because they contain a mix of both operations unlike codelets

of size 2 and 4. By selecting the best performing (factor) codelet in a greedy fashion

followed by fast transpose, we can find the best combination of codelets to solve

a larger size FFT. However, due to the high cost of data movement on modern

architectures, such reordering rarely achieves much performance benefit. When an

efficient transpose is not available, a greedy algorithm may be used for larger strides

as well. In the surface plots, it can be observed that when the stride becomes

sufficiently large to fit in any level of cache, the fastest codelet is typically equal to

the associativity of the fastest cache, i.e., size 8 for Xeons and Itanium, size 2 for

Opteron and size 4 for Power5+. This is because when the size of a codelet is smaller

than or equal to the cache associativity, the conflicts are unlikely to occur because

every element fits in the set. This behavior will be revisited in Chapter 7.
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Figure 5.20: Performance improvement due to AEOS
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Table 5.9: Instruction Counts on Xeon

Codelet “C” Code Instr. Count “PAPI” Counts (Measured)

Size FP FP FP Scalar Code SIMD Code

Adds Mults Total OPS INS OPS INS

2 4 0 4 4 4 2 2

3 12 4 16 16 16 8 8

4 16 0 16 16 16 8 8

5 32 12 44 44 44 22 22

6 36 8 44 44 44 22 22

7 60 36 96 96 96 48 48

8 52 4 56 56 56 30 30

9 80 40 120 120 120 60 60

10 84 24 108 108 108 54 54

11 140 100 240 240 240 120 120

12 96 16 112 114 114 58 58

13 216 76 292 294 294 148 148

14 148 72 220 224 224 114 114

15 156 56 212 216 216 110 110

16 144 24 168 172 172 92 92

32 372 84 456 476 476 258 258

64 912 248 1160 1220 1220 668 668

128 2164 660 2824 2990 2990 1630 1630
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Table 5.10: Instruction Counts on Opteron

Codelet “C” Code Instr. Count “PAPI” Counts (Measured)

Size FP FP FP Scalar Code SIMD Code

Adds Mults Total OPS INS OPS INS

2 4 0 4 6 14 6 7

3 12 4 16 21 34 27 19

4 16 0 16 24 40 29 22

5 32 12 44 61 86 72 47

6 36 8 44 61 86 72 50

7 60 36 96 122 179 151 95

8 52 4 56 78 124 120 102

9 80 40 120 162 221 224 174

10 84 24 108 146 216 174 111

11 140 100 240 271 447 444 435

12 96 16 112 155 229 195 125

13 216 76 292 373 568 556 390

14 148 72 220 285 439 470 369

15 156 56 212 283 412 351 221

16 144 24 168 222 360 341 313

32 372 84 456 573 955 908 856

64 912 248 1160 1410 2440 2300 2200

128 2164 660 2824 3320 5970 5550 5250
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Chapter 6

Dynamic Code Schedules for FFT

Computation

6.1 Introduction

The UHFFT employs a two layered methodology to adapt FFT computations to a

given architecture and dataset. The previous chapter described the generation of

FFT microkernels, which are optimized for microprocessor architectures by reducing

the number of floating point operations as well as register spills. At run-time, codes

generated by fftgen are assembled into a schedule to compute FFTs of sizes larger

than generated by fftgen. An FFT problem (descriptor) can be computed in several

different ways due to the recursive, divide and conquer nature of FFT algorithms.

Apart from the factorization trees and algorithms, placement and ordering of input

and output data vectors play an important role in the selection of schedules. Before
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we discuss the mechanics of FFT schedules, we devise a strategy to express the FFT

schedules in a compact representation. “Unfortunately, the simplicity and intrinsic

beauty of many FFT ideas is buried in research papers that are rampant with vectors

of subscripts, multiple summations, and poorly specified recursions. The poor math-

ematical and algorithmic notation has retarded progress and has led to a literature of

duplicated results” [37]. The most commonly used, “Kronecker product” formulation

of FFT is an efficient way to express sparse matrix operations. SPIRAL [44] gener-

ates optimized DSP codes using a pseudo-mathematical representation that is based

on the Kronecker product formulation. FFTW [25] uses an internal representation

of DFT problems using various data structures such as, I/O tensors and I/O dimen-

sions etc. Although they offer an efficient design to solving a complex problem, these

representations do not provide sufficient abstraction to the mathematical and imple-

mentation level details of FFT algorithms. One of the standard ways to visualize

an FFT computation is through a signal flow diagram called the “butterfly” repre-

sentation. This representation has been adopted universally by various disciplines of

science. Though such graphical representation can help the understanding of con-

trol and data flow for small problems, a formal description is necessary for machine

manipulation, optimization and code generation. The UHFFT run-time system im-

plements a limited set of rules that can be used to express a wide range of serial

and parallel FFT schedules. In order to express those schedules, we have designed

a language called FFT schedule specification language (FSSL), which is generated

from a set of context free grammar (CFG) productions. The grammar provides a

direct and compact translation of the FFT butterfly representation and is easy to
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understand for computer scientists. It also facilitates the machine manipulation of

expressions, optimizations and code generation.

6.2 The FFT Schedule Specification Language

An execution schedule determines the codelets that will be used for the computation

and also the order (schedule) in which they will be executed. An FFT schedule

is described concisely using the grammar given in Table 6.1. It allows different

algorithms to be mixed together to generate a high performance execution schedule

based on properties of the I/O vector including the size and its factors. Indeed, by

implementing a minimal set of rules, dynamic schedules can be constructed that suit

different types of architectures.

6.3 One-dimensional Serial FFT Schedules

The UHFFT supports both unordered and in-order computation of the FFT, i.e.,

the output can be generated in a bit-reversed or sorted order. Computation of FFT

in scrambled order derives naturally from the mixed-radix algorithm. We focus our

attention on the in-order FFTs because that is the most prevalent form of FFT

computation.
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Table 6.1: FFT Schedule Specification Language grammar

# CFG Rules

1-2 root → multidfft | parallelfft

3-4 multidfft → [ ndfft, fft ] | fft

5-6 ndfft → ndfft, fft | fft

7 parallelfft → ( mrpP, multidfft )N

8-9 fft → fft mr module | module

10-12 module → ( raderN, module )

| orderedfft | codelet

13-15 orderedfft → (outplaceN, fft)

| ( inplaceN, fft )

| ( pfaN, pfamodule pfa codelet′ )

16-17 pfamodule → pfamodule pfa codelet′ | codelet′)

18 codelet → n

19 codelet′ → nrot

6.3.1 Out-of-place In-order Mixed-radix FFT

Recall from Chapter 3 that the mixed-radix FFT algorithm requires an explicit digit

reversal step to bring the output “in order”. When a separate output vector is

available (DFTI PLACEMENT = DFTI NOT INPLACE), the permutation can be fused in

the first rank of FFT computation as shown in Figure 6.1. Notice that the ranks 2

through log(n) are computed in-place with the same I/O vectors and strides. Typi-

cally, these in-place ranks are small codelets pre-generated at the installation time.

However, it is possible to use any module production in the grammar shown in Table

115



0

1

2

3

4

5

6

7

0

4

2

6

ω0

ω0

1

5

3

7

ω2

ω2

ω0

ω1

ω2

ω3

X Y Y Y
0

4

2

6

1

5

3

7

Figure 6.1: Butterfly diagram of 8-point out-of-place in-order FFT

6.1, which generates an ordered output using output or temporary workspace. Notice

that an “out-of-place in-order” schedule may contain other schedules that implement

a different algorithm. In fact, an outplace micro-schedule may be embedded inside

a larger outplace schedule. To illustrate that, let us consider an example of size 8

out-of-place in-order FFT. The schedule depicted by Figure 6.1 can be expressed in

FSSL as follows:

Schedule 0: (outplace8,2mr2mr2)

The same schedule can also be expressed as:

Schedule 1: (outplace8,(outplace4,2mr2)mr2)

116



DFT20
4

0
1

DFT22
6

2
3

DFT21
5

4
5

DFT23
7

6
7

DFT20
2

0
2

DFT21
3

1
3

DFT24
6

4
6

DFT25
7

5
7

DFT20
4

0
4

DFT21
5

1
5

DFT22
6

2
6

DFT23
7

3
7

Figure 6.2: Codelet call pattern for (outplace8,(outplace4,2mr2)mr2)
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Figure 6.3: Codelet call pattern for (outplace8,2mr(outplace4,2mr2))

which uses the same call pattern to perform the FFT as shown in Figure 6.2.

However, the following schedule computes the same FFT but uses a different ac-

cess pattern and indeed results in different number of floating point operations:

Schedule 2: (outplace8,2mr(outplace4,2mr2))

The codelet call pattern for this schedule is shown in Figure 6.3. Although both

schedules consist of the same number of codelet calls, the second schedule requires five
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twiddle codelet calls compared to four calls in the first schedule. Moreover, the first

schedule uses a depth first schedule, which results in better cache locality compared

to the second schedule, which computes the first rank completely before moving to

the next rank. Note also that the second schedule requires a temporary workspace to

store intermediate result for computing (outplace4,2mr2). Due to these drawbacks,

the second schedule is likely to perform poorer than the first schedule. Nonetheless,

embedded outplace schedules (also called replace schedules) may be unavoidable in

the computation of “in-place in-order” FFTs.

Twiddle Factors Array Layout

The mixed-radix FFT algorithm requires multiplication by a diagonal matrix of

twiddle factors. The array of twiddle factors is generally precomputed and stored in

a table to be reused during the butterfly computation. As shown in Figure 6.1, the set

of twiddle factors required by lower ranks is a subset of the factors required by higher

ranks of the butterfly. Sharing of twiddle factors between ranks results in smaller

memory footprint but introduces strided access in the precomputed twiddle table.

As a tradeoff, copies of the twiddle factors may be stored at unit stride at the expense

of additional memory. For example, let us consider a radix-4 FFT of size 64 given by

(outplace64,4mr4mr4). The butterfly of this schedule requires, (4 − 1) × 16 = 48

twiddle multipliers between the second and third ranks and (4− 1)× 4 = 12 twiddle

multipliers between the first and second ranks (for size 16 sub-FFT). The access

pattern of the twiddle factors in the two ranks is given in Figure 6.4. The figure shows

exponents of the twiddle factor ω64 reordered to enable unit stride access. Notice
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that the twiddles in the 2nd rank may be reused in the first rank at a vector stride

of 16. We evaluated the impact of compressed and replicated twiddle factor arrays

on the performance of the FFT execution. As shown in Figure 6.5, three different

size FFTs were evaluated on two architectures. In each case only size 4 codelets were

used. The amount of twiddle factors sharing is given by horizontal axes. Notice that,

using replicated twiddle factors results in better performance because each rank owns

its own copy of twiddles that can be accessed at unit stride. In the UHFFT, we have

disabled sharing of twiddle factors between ranks to maximize the performance.

0 4 8 12

0 8 16 24

0 12 24 36

(a) 1st Rank

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

0 8 16 24

2 10 18 26

4 12 20 28

6 14 22 30

0 12 24 36

3 15 27 39

6 18 30 42

9 21 33 45

(b) 2nd Rank

Figure 6.4: Access pattern of twiddle factors in a radix-4 FFT of size 64. The twiddle

codelets are executed in ranks 1 and 2
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Figure 6.5: Performance variation due to memory layout of twiddle factors

6.3.2 In-place In-order Mixed-radix FFT

Performing the computation “in-place”, i.e. without a separate output vector or

temporary array, poses a very difficult problem for self-sorting FFTs. For most

transform sizes, data reordering is unavoidable in computing in-place and in-order

FFTs due to lack of a separate workspace. For sizes N that can be factorized in

a “palindrome”, i.e., N = r × m × r or N = r × r, in-place in-order FFT can

be computed by performing partial digit-reversal in each of the first . log(n)
2 / ranks

as shown in Figure 6.6. In the UHFFT, specialized codelets (xvmc) are generated

that perform this reordering inside the codelet by computing the DFT on a square

block followed by a transpose. This scheme saves loads and stores since the result is

written to the proper location (input vector) inside the codelet. This saving can only

be made if the required codelet has been pre-generated. If a factor r has not been

generated, it needs to be dynamically constructed using one of the production rules
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Figure 6.6: Butterfly diagram of 8-point in-place in-order FFT

(10-15) of the FSSL grammar (Table 6.1), in which case, the transpose is performed

as a separate step. Like the outplace schedules, inplace schedules can be embedded

within larger (container) schedules.

For a given transform size, many palindrome factorizations exist. Figure 6.7 il-

lustrates two factorization schemes for a transform of size 48 (assuming only codelets

of size 2 and 3 have been generated). Even though the two factorizations ultimately

use the same factors (codelets), the index mapping or data access pattern is signifi-

cantly different. Moreover, the number of twiddle multiplications required in the two

schedules is also different, i.e., 124 for the schedule given in Figure 6.7(a) and 116

complex twiddle multiplications for the schedule given in Figure 6.7(b). Notice that

scheme (a) recurses outward by first selecting the largest square factors, while scheme
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Figure 6.7: Factorization schemes for in-place in-order FFT of size 48,

that form a palindrome. (a) (inplace48,2mr(inplace12,2mr3mr2)mr2), (b)

(inplace48,(inplace4,2mr2)mr3mr(inplace4,2mr2))

(b) recurses inward by choosing the largest factor in the middle of two small factors.

The outward recursion generates larger blocks that can be executed independently

or in large vectors at unit strides. However, in order to maintain spatial locality,

the blocks will need to be executed in a breadth first fashion thereby reducing the

potential for temporal locality between successive ranks. On the other hand, the

inward recursion allows better blocking that maintains both temporal and spatial

locality in a cache-oblivious manner. In the UHFFT, the planner uses the inward

recursion strategy to factorize and execute self-sorting in-place algorithms.

6.3.3 The Four Step FFT

David Bailey’s four step algorithm [10] is a popular algorithm for computing FFT

requiring external memories. The algorithm follows recursively by dividing the size

N problem in two equal (close to
√

N) factors. In the first step, the first rank is

computed, followed by the second step, where twiddle factors are multiplied. In the
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third step the data is transposed. And finally, the last rank is computed. Although,

the four step algorithm is not specifically implemented in the UHFFT, it can be

constructed using a combination of inplace and outplace (replace) schedules. To

illustrate this, let us consider an example of size 16 FFT, where r =
√

N = 4.

Assuming only codelet of size 2 is available, the four step algorithm can be given by

following schedule:

(inplace16,(outplace4,2mr2)mr(outplace4,2mr2))

The schedule computes four out-of-place (replace) in-order FFTs of size four and

multiplies the result with twiddle factors. The inplace schedule performs a trans-

pose in the middle followed by another vector execution of an outplace schedule of

size 4. The schedule requires a buffer to compute both replace (outplace) schedules,

however, extra workspace can be avoided by using the following schedule:

(inplace16,(inplace4,2mr2)mr(inplace4,2mr2))

Square Transpose

The in-place in-order FFT algorithm described above uses square (sub-matrix) trans-

poses in the first . log(n)
2 / ranks to compute ordered FFT. fftgen generates specialized

codelets that perform the transpose in registers. However, if the required codelet has

not been pre-generated or the factor is too large (usually the case in the four step

algorithm), then the transpose needs to be performed as a separate step. Depending

on the rank where the transpose is performed, the sub-matrix may be accessed at
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non-unit stride. We implemented and evaluated three different algorithms to perform

square transposition. The naive algorithm transposes strided data in a sub-matrix

(a) Naive Transpose

In-register

In
 C

ac
he

(b) Block Transpose

Figure 6.8: Iterative square transpose algorithms

by iterating element-wise using two loops as shown in Figure 6.8(a). The naive iter-

ative algorithm can be improved using multilevel blocking as shown in Figure 6.8(b).

The block implementation contains four loops, where the outer two loops iterate

over blocks and inner two loops iterate inside the blocks. Moreover, internal loops

are unrolled by a factor of two (each) to improve register blocking and reduce the

number of loop condition checks. A more detailed account of transpose optimiza-

tion can be found in [38], which uses three level blocking, including optimization for

TLB. Both naive and block iterative implementations can be used to transpose sparse

square matrices (strided sub-matrices). A third implementation based on Eklundh’s

algorithm [21] uses recursive implementation to transpose square matrices. The algo-

rithm uses memcpy based swaps and requires the data to be contiguous. We include

a performance comparison of the three algorithms, although only the first two have

been included in the UHFFT library. Figures 6.9 and 6.10 show the performance
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of the three algorithms for various square matrix sizes on two architectures. The

block algorithm was evaluated for three different block sizes. We observed that the

naive iterative algorithm performed slightly better for small matrices while the block

algorithm (block size=32) performed best for big matrices. The recursive algorithm

did not perform well for large sizes because it touches non-diagonal elements multi-

ple times. Notice that the performance variation for odd size matrices is relatively

smaller. This is because the cache conflict misses are fewer since the column stride

(size of row) is a non-power of two.
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Figure 6.9: Performance of square matrix transpose on Xeon Clovertown

6.3.4 Prime Factor (PFA) FFT

The mixed-radix algorithm relies on the splitting of size N FFT into two smaller

FFTs n1 and n2 where N = n1 × n2. In this splitting a non-trivial fraction of
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Figure 6.10: Performance of square matrix transpose on Opteron 285

computation involves multiplication with twiddle factors. The prime factor algorithm

also relies on a similar splitting but it works on sizes that can be split into two co-

prime factors, i.e., gcd(n1, n2) = 1. The prime factor algorithm avoids the twiddle

factor multiplication by mapping one dimensional arrays to two dimensional arrays

using complex prime factor mappings (PFM)[37] as discussed in Section 3.1.3. Using

special rotated codelets, the PFA algorithm generates the result in-place and in-

order. These properties make a PFA schedule a particularly attractive alternative to

the mixed-radix schedules described in previous sections. Even though the algorithm

is only applicable to a limited set of sizes that have co-prime factors, it can still be

useful when embedded inside a larger outplace or inplace schedule. For example,

let us consider a schedule for an in-place in-order FFT of size 60. Assuming that a

size 15 codelet has not been generated, N = 60 can not be factored in a palindrome

of codelet factors. Therefore, we need to use a replace schedule of size 15, which
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requires a workspace to hold intermediate results:

(inplace60,2mr(outplace15,5mr3)mr2)

Alternatively, we can use an embedded PFA schedule:

(inplace60,2mr(pfa15,5pfa3)mr2)

which is likely to perform better since it avoids both workspace and twiddle multi-

plication. A performance comparison between the mixed-radix (outplace schedule)

and the PFA algorithms is given in Tables 6.2(a-b).

Table 6.2: Performance (MFlops) comparison of outplace and pfa schedules

Size outplace pfa

24 3300 3070

63 3310 3290

520 3100 3100

1008 3590 3920

2288 2960 3050

32760 3090 3120

65520 3090 3210

240240 2350 2720

720720 1880 1870

(a) Xeon Clovertown

Size outplace pfa

24 2130 2410

63 1840 2090

520 1790 2230

1008 1980 2430

2288 1500 1820

32760 1160 1370

65520 1320 1490

240240 936 1120

720720 860 1140

(b) Opteron 285
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6.3.5 Prime Size (Rader) FFT

The schedule types discussed above depend on the condition that the problem can

be factorized in smaller factors recursively to the point where a codelet is available.

In order to solve a problem of prime size, a strategy is needed for computing the

FFT using sparse factorization. Such a strategy was suggested by Rader that pro-

posed recursive FFT computations for size N − 1. The rader schedule contains an

embedded module of size N − 1 and requires a work-buffer of size N . For further

details on the mathematical framework of Rader’s algorithm, see Section 3.1.4. In

the following, we present the execution steps of the algorithm:

1. Permute the input vector X is using rader’s permutation (Eq. 3.15), which is

generated during the descriptor setup step.

2. Apply an embedded FFT of size N − 1 to the permuted vector elements 1

through N − 1.

3. Compute the skew circulant matrix using the diagonal matrix D in Eq (3.15),

and multiply it with the result of step 2. Note that D is precomputed during

the descriptor setup step.

4. Apply an embedded FFT of size N − 1 to the vector elements 1 through N − 1

of step 3.

5. Un-permute the vector using the array that was used to permute the input

vector in step 1.
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6.4 Multidimensional Serial FFT Schedules

Multidimensional FFT schedules are very similar to the mixed-radix schedules. In

a mixed-radix algorithm, each splitting step turns a one dimensional FFT of size N

into a two dimensional r ×m FFT with twiddle factor multiplication sandwiched in

the middle. A two-dimensional FFT of size n1 × n2, performs n1 row FFTs of size

n2 followed by n2 column FFTs of size n1. In a naive implementation, dimensions

are completely transformed in increasing or decreasing order analogous to a breadth

first implementation of the mixed-radix algorithm. For a general d-dimensional FFT

of size N = n1 × n2 × n3 × · · · × nd, a naive implementation will compute
d∏

i=2
(ni)

row FFTs of size n1 before computing the next dimensions. On the contrary, a

depth first implementation would recursively divide the d-dimensional problem into

set of FFTs of fewer dimensions to the point that a single dimension needs to be

transformed. Such an implementation is analogous to a depth first mixed-radix

schedule, which results in better cache blocking. As discussed later in this section,

even better scheduling may be achieved by alternating between multiple dimensions

before completing a dimension. The UHFFT supports both depth first schedules

for computing a multidimensional FFT; selection of either schedules depends on the

dfti placement parameter of the FFT problem dfti descriptor, i.e., whether

or not memory for a separate output vector is available.
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6.4.1 Case 1: In-place Multidimensional FFT Computation

The in-place multidimensional FFT schedule uses a depth first recursive implemen-

tation of what is sometimes referred to as the row-column method. Assuming an

FFT of d dimensions, Algorithm 6 computes the multidimensional FFT in-place in

a recursive fashion. Each dimension ni of the problem N = n1 × n2 × n3 × · · ·× nd

void ndfft inplace(in,out,is,os,d,N)

begin

m ← N/nd;

mis ← m ∗ is; mos ← m ∗ os;

if m=nd then
fft(in,out,is,os,nd,mis,mos);

else

for i = 0 to nd do
ndfft(in+i*mis,out+i*mos,is,os,d-1,m);

end

fft(out,out,mos,mos,m,os,os);
end

Algorithm 6: Recursive implementation of multidimensional FFT

is computed using the one dimensional schedules discussed in the previous sections.

However, since the computation needs to be performed in-place, the embedded sched-

ules may use work-buffers as in the case of outplace and rader schedules. In order

to minimize the workspace, the buffer is reused by the one dimensional FFTs that

need a work-buffer.
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6.4.2 Case 2: Out-of-place Multidimensional Computation

Algorithm 6 is a simple and efficient solution to computing a multidimensional FFT.

Not only does it preserve the data locality but the indexing scheme and recursion

overhead is minimal as well. Note that it can be used for out-of-place computations

by passing different input and output arrays. However, when a separate output array

is available, the cache locality can be enhanced by using a slightly different schedule,

which alternates between dimensions. In this method, the lower dimension planes

or meshes are projected onto the last dimension. The algorithm starts with the last

dimension d and breaks the problem using the mixed-radix algorithm. At the leaves

of the butterfly (rank 1), the algorithm switches to dimension d − 1 and continues

recursively until dimension d = 1. At that point, an FFT of size n1 is computed

followed by rank 1 of butterfly, i.e., for dimension d = 2. This algorithm results in

a slightly complex indexing scheme in the multidimensional array and also contains

some calling overhead due to a deeper call tree, as shown in Figure 6.11. To illustrate

the two schedules, let us consider a 3-dimensional FFT of size N = 64 = 4 × 4 × 4:

[(outplace4,2mr2),(outplace4,2mr2),(outplace4,2mr2)]

As shown in Figure 6.13, there are 16 rows of size 4 consisting of contiguous data

along the x axis. The columns along the y axis consists of data at stride 4 and

the vectors along the third dimension consists of data at stride 16. In the first case

(in-place), the algorithm transforms four rows followed by four columns. Similarly,

the remaining three xy planes are transformed before transforming the third dimen-

sion (16 vectors of size 4). Note that the 16 vectors have a vector-stride of 1 (along
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Figure 6.11: Multidimensional codelet call recursion tree

rows). In the second case (out-of-place), the butterfly computation starts along the

z dimension by projecting the xy planes onto the z axis. At the leaves of butter-

fly network, the projected xy planes are transformed before computing the codelets

in rank 1 of FFTs along the z axis. In the example under consideration, planes

0 and 2 are transformed followed by 16 codelets of size 2. Similarly, planes 1 and

3 are transformed followed by 16 twiddle codelets of size 2. In the final step, 32

vectors of size 2 (rank 2 butterfly along the z axis) are transformed. Figure 6.12

shows a performance comparison of the two implementations on the Xeon Clover-

town CPU. We evaluated three dimensional FFTs of powers-of-two dimensions of

the same size, i.e., N = 2i × 2i × 2i, for 1 ≤ i ≤ 9. For both implementations,

identical factors and algorithms were selected for each dimension. Notice that for

large sizes, the performance of the out-of-place implementation is better than the

in-place implementation. As discussed above, this is due to better cache locality of

the out-of-place multidimensional FFT implementation.
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Figure 6.12: Performance comparison of 3D FFTs using the two implementations on

Xeon Clovertown

6.5 Parallel FFT Schedules

The main performance issue of serial (single node) FFTs has largely been the effec-

tive memory bandwidth and vectorization; achieving super-linear speedup on SMPs

is possible because of larger effective cache size. Parallel algorithms for FFT can

be broadly divided into two categories, i.e., those that perform explicit reordering

of data using transposes [1, 10] and those that do not perform any movement of

data. Computing an FFT on distributed data is not possible without movement of

data. But, parallel FFT can be computed without remapping of data on architec-

tures with shared address space. In general, explicit scheduling may perform better

depending on the cost of data communication among processors. The performance

of multithreaded execution depends on that of the serial code. Once an FFT prob-

lem is divided among threads, each of them executes part of the serial schedule. In
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the mixed-radix formulation of the FFT (Eq. 3.5), a problem of size N is divided

into two factors r and m, where N = r × m. It allows r row FFTs of size m, i.e,

(Ir ⊗ Wm) to be executed independently followed by “twiddle” multiplication and

m independent column FFTs of size r, i.e., (Wr ⊗ Im). Both, the permutation step

and the “twiddle” multiplication step can be fused inside the first FFT subproblem,

while still maintaining the data parallelism. Let us consider the example shown in

Figure 6.2. Notice that the problem can be easily distributed between two proces-

sors by assigning upper and lower subtrees that compute the row FFTs of size 4.

Similarly, the last rank can be parallelized by distributing four column FFTs of size

2 among available processors. Before computing the last rank and after finishing the

second to last rank, threads need to be synchronized at a rendezvous point called

barrier. Synchronization of threads adds to the overhead of multithreaded execution

and causes major performance degradation if proper load-balancing is not employed.
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In general, even distribution of work is possible when P divides
√

N , i.e., (P |
√

N).

6.5.1 Row/Column Blocking

The communication cost on shared-memory multiprocessor systems with uniform

memory access (UMA) does not play a major role in the overall performance. How-

ever, different computation distributions have an impact on the performance of mem-

ory systems on some architectures. Figure 6.14 shows the block execution distribu-
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Figure 6.14: Distribution of parallel FFT

tion of two ranks of a parallel schedule for an out-of-place in-order FFT of size 16,

i.e., (mrp2,(outplace16,4mr4))16. Notice that execution of the rows and columns

can alternatively be distributed in a block cyclic manner. However, such a distri-

bution of columns is likely to result in poorer performance because of false sharing

of boundary elements among processors. This was verified through an experiment

on a four processor SMP machine. As shown in Figure 6.15, larger block distri-

bution results in significant performance improvement over smaller blocks. This is

mainly due to the cache coherence conflicts and false sharing [43], which are caused

by the elements, at the column boundaries, falling in same cache line but different
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Figure 6.15: Performance impact due to data distribution on Itanium 2 (Quad)

processors. As a rule of thumb, choosing maximum blocks of columns works best.

In general, the blocks should be at least sizecacheline/sizedatapoint elements apart.

6.5.2 Multithreading Model

Most compilers support native multithreaded programming APIs. The Posix thread

(PThread) library routines are flexible but offer limited portability across different

architectures. OpenMP provide a portable and scalable interface for developing

multithreaded applications. Two types of multithreaded programming models are

commonly used; the fork/join model and the thread pooling model. Posix thread is

an example of fork/join threading model. Nevertheless, thread pooling can be built

on top of fork/join threading. Most OpenMP implementations use thread pools

to avoid the overhead of creating and destroying threads after each parallel region.

These threads exist for the duration of the program execution. Implementation of

parallel FFT using OpenMP is relatively straightforward given an efficient parallel
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plan. The two loops around the row and column FFTs are decorated with omp

directives and they are distributed in contiguous chunks (blocks). In our PThreads

implementation, we use a thread pooling technique to avoid the overhead of creating

threads. The pool of peer threads, as shown in Figure 6.16, is created when the

dfti descriptor is submitted and after the best plan is selected. The pool is

destroyed when the descriptor is freed. To reduce the cost of synchronization, we

implemented a low latency barrier (with sense-reversal) using an atomic decrement

instruction as listed in the code segment (Algorithm 7). In addition to that, we

used busy wait when the plan was perfectly load balanced. Contrary to waiting

on events, this technique avoids the overhead of system calls and thread scheduling

through the operating system. In Figure 6.17, we give a performance comparison

of a multithreaded implementation using pooling and a customized barrier with an

implementation that used a fork/join model and native synchronization primitives.

In general, we observed that thread pooling was a major factor in the performance

improvement for relatively small sizes. But, for larger sizes, the busy wait resulted in

slightly lower performance. In another experiment, we compared the performance of
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Figure 6.17: Performance improvement due to pooling and busy wait techniques on

Xeon5100 (four cores), using scalar codelets

the two parallel FFT implementations, i.e., OpenMP and PThreads on a quad SMP

Itanium 2 machine. Our PThreads implementation uses thread pooling and busy wait

techniques, which are common in most OpenMP flavors. In both implementations,

we favor allocating the execution of contiguous chunks (blocks) of rows and columns

to each core/processor. Considering all these similarities, it is not surprising that

the performance of both implementations is almost identical as shown in Figure 6.18.

Since the UHFFT run-time scheduler performs the scheduling (load distribution) in

the precomputation stage, the role of an OpenMP compiler is generally limited to

providing portable thread management and a synchronization mechanism rather than

providing efficient load-balanced loop distribution. In Figure 6.18, notice that for

FFTs of small sizes, serial execution performs better than multithreaded execution.

In the discussion above, we focused on the parallelization of out-of-place in-order

FFT computations. The implementation of multidimensional schedules is fundamen-

tally the same, whereby the execution distribution takes place along the last (dth)
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Figure 6.18: Performance Comparison of two multithreaded implementations on

Itanium 2 quad SMP

dimension. This ensures that there is only a single point of synchronization. In-place

in-order FFT schedules, however, require two points of synchronization, i.e., after the

1st rank and after the (log(n) − 1)th rank.

6.5.3 Thread Affinity

Both the Xeon Woodcrest and the Opteron 275 architectures have identical number

of cores but their cache configuration is quite different. The two cores on the Xeon

have a shared L2 cache while the cores on the Opteron have private caches similar

to a conventional SMP machine. Although the shared cache configuration has its

benefits in certain scenarios, it can pose some scheduling problems. On the Xeon,

we observed inconsistent performance for small sizes (that fit in cache) when only

two threads were spawned. This phenomenon is shown in Figure 6.19; notice the

extent of performance variation on the Xeon compared to the Opteron. Although
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void barrier()

begin
local sense ← ¬local sense;

AtomicDecrement(global count);

if global count=0 then
global count ← num threads;

global sense ← local sense;

else

while global sense!=local sense do
if count > MAXCOUNT then count←0; SLEEP;

count++;

end

end

Algorithm 7: Customized barrier implementation using busy wait

the scheduler in the Linux kernel 2.6 tries to schedule tasks on different sockets

when the system is lightly loaded, there is no guarantee that the scheduler will get

it right the first time. The performance drops when the two threads are scheduled

on different cores on the same socket, which may result in data evictions due to

conflicts in the shared cache. This problem can be resolved by setting the thread

affinity to CPUs such that threads are placed properly. In the UHFFT, the threads

are explicitly bound to cores on different sockets if the number of threads spawned

is smaller than the available cores on a node.
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Figure 6.19: Performance variation on two multicores with different cache configu-

rations (Shared L2 Cache vs Separate L2 Cache)
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Chapter 7

Run-time Search

Run-time search and analysis is one of the main ingredients of the two-layered adap-

tation methodology. An FFT is identified by the DFTi descriptor, which describes

various characteristics of the problem including size, precision, input and output data

type and number of threads. Given the parameters of a problem, the initialization

routine attempts to select a plan that minimizes the execution time on the given

architecture. The best schedule, thus selected, may be used repeatedly to compute

the transforms of the same size. In general, the search scheme can be driven by a

model or it can be empirical[65]. Empirical search generally does a better job at

finding the best performing code at an additional cost in terms of the search time.

Most auto-tuning libraries such as ATLAS[18], FFTW[25] and SPIRAL[44] favor an

empirical search scheme, giving preference to FFT execution performance over one

time plan search cost. For FFT, empirical search can take orders of magnitude more

time than the actual execution of code due to an exponential space of algorithm and
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factorization trees. But, the cost of empirical search schemes can be minimized by

pruning the search space and reusing the cached empirical performance models. In

the UHFFT, we have implemented multiple search methods with varying costs, which

allow users to select the search scheme according to their needs. Our results indi-

cate that expensive run-time empirical search can be avoided by generating domain

specific models (offline) without compromising the quality of schedules generated.

7.1 Search Space

The space of FFT schedules consists of algorithms and their factorizations. The

UHFFT search engine (planner) selects the best schedule in two stages. In the first

stage, a pruned library of codelets and sub-schedules is constructed using heuristics.

For example, given an FFT of size N = n1 × n2 × · · ·× ni × p1 × p2 × · · ·× pj that

contains some co-prime factors, p1, p2, . . . , pj, we can pre-select a pfa sub-schedule

of size S1 = p1 × p2 × · · · × pj . This results in a pruned search space consisting

of fewer factors, i.e., N = n1 × n2 × · · · × ni × S1. Similarly, the sub-schedules

for large prime factors are also constructed in this stage. This stage produces a

trimmed library of modules (codelets and sub-schedules), which we refer to as the

ad hoc library. In the second stage, the best mixed-radix factorization is searched

from the set of modules (in the ad hoc library) for the given FFT. The search space

for mixed-radix factorizations of an FFT of size 16 is shown in Figure 7.1. Each

of the eight branches (sequences) of the tree represents a possible factorization for

computing the size 16 FFT. Note that the size of the search space depends on the
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Figure 7.1: Search space for mixed-radix FFT of size 16

number of codelets present in the library. For a power of two size (N = 2i) FFT, the

search space can be pruned by getting rid of less efficient codelets. In Figure 7.2, we

show the performance of 248 mixed-radix factorizations for a size 512 FFT. The left

end of the plot starts with the smallest codelet, i.e., size 2 and recursively factorizes

the subtrees in a pattern shown in Figure 7.1. Notice that the best factorizations

are clustered at the right end of the graph, which tend to use larger power-of-two

size codelets. Performance of the best factorization is almost an order of magnitude

better than the worst performing schedule. In the UHFFT, we have implemented

three search schemes of varying costs, which are discussed in the next sections.

7.2 Empirical Search

In a naive empirical search scheme, the best schedule is selected after executing

all possible factorizations for the given size. The schedule thus selected, will have

the smallest execution time out of all the possible factorizations. But, the time
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Figure 7.2: Performance of 248 different factorizations for mixed-radix FFT of size

512

required to exhaustively search an exponential space of factorizations may be quite

large. Furthermore, the exhaustive search scheme is also costly in terms of the

workspace requirement. To avoid the drawbacks of an exhaustive search scheme, we

use the memoization technique. Using dynamic programming, the tree of mixed-

radix factorizations is evaluated in a bottom up fashion.

7.2.1 Context Sensitive Empirical Search

The first approach called the context sensitive empirical search (dfti high), empir-

ically evaluates the sub-schedules in a bottom up fashion using dynamic program-

ming. We take advantage of the recursive structure of the FFT to avoid re-evaluating

common subsequences (branches with identical strides) in the factorization tree. As
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shown in Figure 7.1, some factorizations contain identical subsequences, i.e., same

codelets are used with identical I/O strides. We minimize the number of empirical

evaluations by memoizing the cost of each subsequence in a bottom up fashion. To

formulate the problem in a recursion, we consider an FFT of size N , which consists

of small factors, i.e, N = n1 × n2 × n3 × · · · × nj . Assume that the ad-hoc library

contains modules of sizes, r1, r2, . . . , rk, where rk =
∏

q∈{1,2,...,j}
nq. When j = 1 i.e.,

N = n1, the best factorization can be found by selecting the module that yields the

minimum execution time Cmin(N) for computing the FFT. However, when j > 1,

we can use the optimal substructure of the problem to characterize it in a recursion,

given by:

Cmin(N) =






0 if N = 1

min (Cmin(N/r1) + C(r1), . . . , Cmin(N/ri) + C(ri)) ∀ ri|N

The cost of a module or codelet C(ri) is represented by its execution time with

appropriate input and output strides. The costs of evaluated subsequences for specific

strides are stored in a lookup table. Each time a subsequence is not found in the

table, the sub-schedule must be executed to compute its cost. The sub-schedule is

executed completely to get an accurate measure of the cost; it ensures that the state

of the cache (context) is representative of the actual execution of the schedule. A

pseudo code of the search scheme is given in Algorithm 8.
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void DPSearch(N,is,os)

begin

if S ← TableLookup(N, is, os) then return S;

S ← ∅; mincost ← maxint;

foreach ri ∈ {module library} do
if ri = N then S ← ri;

else S ← DPSearch(N/ri, is, os) + ri;

cost ←Evaluate(S);

if cost=mincost then

TableInsert(S, N, is, os, cost);

mincost ← cost;

end

end

return TableLookup(N, is, os);
end

Algorithm 8: Search for the best FFT schedule using dynamic programming

7.2.2 Context Free Empirical Search

One of the drawbacks of the context sensitive search scheme is that it requires empir-

ical evaluation of full sub-schedules to evaluate the total cost. The context free search

scheme (dfti medium) is a hybrid of the empirical and estimation techniques. In

this scheme, the cumulative performance of a schedule is estimated by empirically

evaluating the building blocks (modules) independently, hence the name context free.

In this scheme, the cost of a subsequence is estimated by empirically evaluating only

the codelet that is encountered in a bottom up traversal. The expected execution
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time is derived from the type of codelets (twiddle/non-twiddle) being used in the

schedule, the number of calls to each codelet, and the codelet performance table

generated at run-time for various input and output strides. This approach is much

faster than the first search strategy. But, the quality of the execution schedule may

suffer since it relies on the assumption that codelet timings can be used to predict

the execution time of complete schedule.

7.3 Model Driven Search

The context free empirical search uses an estimation technique to calculate the per-

formance of a subsequence from the execution time of codelets, which makes it sig-

nificantly faster. However, it is still expensive since it enumerates all the possible

factorizations and relies on run-time empirical evaluation. The run-time empirical

evaluation can be easily replaced with a database of codelets’ performance. Instead

of generating the database at installation time, we use a lazy protocol; the models

are generated if and when needed and reused repeatedly. The models are cached

in a persistent file, which stores the list of strides and the sequence of codelets in

descending order of performance for each stride. The model driven search scheme

(dfti low) employs a greedy algorithm (shown in 9) to select the best codelet (fac-

tor) in each rank, starting at rank 1 (stride = 1). To keep the database compact,

we only store strides that are powers-of-two. Furthermore, the codelets use identical

stride for input and output vectors since they are executed in-place, i.e., the input

and output vectors point to the same location. In order to estimate the performance
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of a codelet of size r for a non-power of two stride, such that 2i < stride < 2i+1, we

use the performance data represented by stride = 2i.

void GreedySearch(N,is,os)

begin
m ← N ; stride = os;

while m > 1 do

logs ← log2(stride) + ε;

for i ← 0 to num codelets do

r ← perfmodel [logs] [i];

if m%r = 0 then break;

end

InsertInSchedule(GetModule(r));

stride ← stride × r;

m ← m/r;

end

end

Algorithm 9: Model driven search using greedy algorithm

7.4 Performance Comparison of Search Methods

One of the main goals of this dissertation is to minimize the cost of search through

development of efficient performance models and search schemes. Both the UHFFT

and FFTW implement multiple run-time search schemes to select the best sched-

ule (plan) of execution for a given DFT problem. In our analysis, we include the
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three search schemes implemented in the UHFFT, i.e., dfti high, dfti medium

and dfti low. For the FFTW library, we have selected two search schemes, i.e.,

fftw measure and fftw estimate. We do not include the MKL’s search schemes

in our analysis because the recent versions of MKL do not perform any run-time

search in the dfti descriptor initialization step. We use two metrics to evaluate

the efficiency of a search scheme for selecting the best schedule (plan) of execution.

The cost of a search scheme is given by the amount of time (seconds) it takes

to initialize the FFT computation schedule. In the dfti interface, the initialization

is performed by DftiCommitDescriptor function. The second metric used to rank

the search schemes is the accuracy in finding the best schedule. We compare five

search schemes implemented in the most recent versions of the UHFFT and FFTW

for three sets of FFTs, i.e, powers-of-two, non-powers-of-two and prime sizes, given

in Table 7.1.
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Figure 7.3: Comparison of various search schemes for powers-of-two size FFTs exe-

cuted on Itanium 2
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7.4.1 Powers-of-two Size FFTs

In Figure 7.3, we show a comparison of the search schemes for out-of-place complex

to complex FFTs of powers-of-two sizes. Graph 7.3(a) compares the search costs

for each FFT size. Graph 7.3(b) compares the performance of the best schedule

generated by each search scheme. Notice that the FFTW’s empirical search scheme

(fftw measure) is an order of magnitude slower than the UHFFT’s most expen-

sive search scheme (dfti high). In general, if the schedule is not likely to be used

many times (e.g., in one-dimensional FFTs), it is better to use low cost estimation

schemes. The fftw estimate method is faster than the dfti low search scheme

but also generates significantly slower schedules. In terms of effectiveness (accuracy)

of scheduling, the three search schemes implemented in the UHFFT generated sched-

ules that were very close to each other in performance, indicating higher effectiveness

(accuracy) of our model driven and hybrid search schemes.

7.4.2 Non-powers-of-two Size FFTs

In Figure 7.4, we compare the search schemes for non-powers-of-two size FFTs.

For non-powers-of-two sizes, the UHFFT employs heuristics so that the faster PFA

algorithm may be used for co-prime factors. This results in a pruned search space

since the co-prime and large prime factors are replaced by their schedules using

heuristics. Therefore, the search schemes in the UHFFT are significantly faster than

the FFTW’s empirical search scheme. The current implementation of the dfti low
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Figure 7.4: Comparison of various search schemes for non-powers-of-two size FFTs

executed on Itanium 2

search scheme does not use PFA schedules, which may result in generation of sub-

optimal schedules. Notice that the cost of search does not increase exponentially

as it did for powers-of-two sizes. As discussed previously, the cost of the empirical

search depends on the number of factors it needs to evaluate. When the number of

factorizations is limited, as is the case for many non-powers-of-two sizes, the search

space is dramatically reduced. Moreover, as the number of factors increase, so does

the size of the pre-computed twiddle table. The cost of the twiddle table set up

forms a major component in the search methods implemented in the UHFFT.

7.4.3 Large Prime Size FFTs

In the UHFFT, large prime size FFTs are computed using Rader’s algorithm [45],

which uses a couple of N − 1 size transforms (convolution). The cost of search in
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Figure 7.5: Comparison of various search schemes for large prime size FFTs executed

on Itanium 2

prime size FFTs is the amount of time spent in searching for the best schedule for

an N − 1 size FFT and in initialization of data structures for a rader schedule. In

Figure 7.5, we show a comparison of cost and accuracy of search schemes for various

prime sizes. Notice that both the search schemes implemented in the UHFFT take

almost the same amount of time and produce identical schedules. For certain sizes

that contain large prime factors, recursive application of Rader’s algorithm results in

slower schedules in the UHFFT; e.g., prime sizes 509, 1021, 2053 and 4093 (between

28 and 212) use large prime factors. The FFTW avoids recursive execution of Rader

by implementing a zero-padded variant.
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7.5 Performance Comparison of FFT Libraries

In this section, we compare the performance of FFTs of various sizes and dimensions

on multiple architectures using the UHFFT and FFTW libraries. On Intel and

AMD architectures, we also compare the FFT performance with Intel’s Math Kernel

Library (MKL). We evaluate the FFT libraries on the basis of their performance in

four categories:

1. Efficiency of micro-kernels (codelets)

2. Performance of in-cache sizes

3. Performance of out-of-cache sizes

4. Speedup gain due to multithreaded execution

7.5.1 One-dimensional Data

The powers-of-two size FFTs are frequently used in comparisons of different FFT

implementations. We have selected a range of powers-of-two sizes (21 ≤ N ≤ 223) to

compare out-of-place and in-place complex to complex FFT performance on Itanium

2, Xeon Clovertown and Opteron 285. For each architecture, we executed the best

schedule in serial (on single core) and using all available processors.
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Out-of-place In-order FFTs

Figures 7.6, 7.7 and 7.8, show the performance of out-of-place execution using the

UHFFT, the FFTW and the MKL libraries. It is not surprising that Intel’s vendor

library (MKL) performs best on the Itanium and Xeon for small and medium size

FFTs. Observe that for large (out-of-cache) sizes, the UHFFT performs better than

the other two libraries except on Opteron, which has a small cache size with very

low degree of associativity d = 2. On architectures that have a small degree of asso-

ciativity d, the UHFFT search engine is likely to choose small size codelets (n ≤ d)

for higher (large stride) ranks. Recall from the analysis of performance models in

Chapter 5, that size 2 codelets are not as efficient as the larger codelets. The FFTW

employs transposes to reorder the data access pattern to avoid large strides on the

Opteron. Both the UHFFT and FFTW generate SIMD codelets on Xeon, but, un-

like FFTW, the UHFFT does not perform extensive code optimizations on SIMD

codelets. That is why the performance of the UHFFT for in-cache and codelet size

FFTs is lower than the other two libraries. However, the UHFFT performs better for

very large sizes because it manages the cache better, especially in dealing with the

twiddle multipliers as discussed in previous chapters. As far as multithreaded perfor-

mance is concerned, the UHFFT consistently out-performs the other two libraries.

This is owing to the design of the multithreaded run-time support of the UHFFT,

which uses customized low cost synchronization mechanism and thread pooling as

discussed in Section 6.5.2. The UHFFT search engine uses estimation techniques to

distribute the tasks equally among the threads.
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Figure 7.6: Itanium 2 - performance comparison of out-of-place complex to complex

FFTs of powers-of-two sizes
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Figure 7.7: Xeon Clovertown - performance comparison of out-of-place complex to

complex FFTs of powers-of-two sizes
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Figure 7.8: Opteron 285 - performance comparison of out-of-place complex to com-

plex FFTs of powers-of-two sizes
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In-place In-order FFTs

In-place FFTs replace the input vector with the results of the transform. The in-

place FFT can be computed without using any temporary buffers by employing an

algorithm that performs partial transposes. In order to achieve that, the size N must

be factorized in a palindrome of factors. The UHFFT does not use any buffers in

computing the in-place in-order FFT. On the contrary, the FFTW allocates and uses

additional buffers to achieve better performance, especially for small sizes. As shown

in Figures 7.9(a), 7.10(a) and 7.11(a), the FFTW performs better than UHFFT for

medium size in-place FFTs.
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Figure 7.9: Itanium 2 - performance comparison of in-place complex to complex

FFTs of powers-of-two sizes
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Figure 7.10: Xeon Clovertown - performance comparison of in-place complex to

complex FFTs of powers-of-two sizes
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Figure 7.11: Opteron 285 - performance comparison of in-place complex to complex

FFTs of powers-of-two sizes
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Non-powers-of-two Size FFTs

The UHFFT implements PFA driver routines for computing the transforms where

the size N can be factorized in co-prime factors. On the other hand, the FFTW is

best at handling sizes of the form 2a × 3b × 5c × 7d × 11e × 13f . In fact, the sizes

included in our analysis are of the form that is suited to the FFTW. Nevertheless,

as shown in Figures 7.12(a), 7.13(a) and 7.14(a), the performance of UHFFT is very

competitive with that of FFTW. As far as multithreaded performance is concerned,

the UHFFT performs better than the other two libraries in most cases.
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Figure 7.12: Itanium 2 - performance comparison of out-of-place complex to complex

FFTs of non-powers-of-two sizes
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Figure 7.13: Xeon Clovertown - performance comparison of out-of-place complex to

complex FFTs of non-powers-of-two sizes
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Figure 7.14: Opteron 285 - performance comparison of out-of-place complex to com-

plex FFTs of non-powers-of-two sizes
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7.5.2 Multidimensional Data

In this section, we compare the performance of the libraries for two-dimensional

and three-dimensional out-of-place FFTs. Although, the UHFFT is quite efficient

at computing arbitrary size, multidimensional FFTs, we discuss only powers-of-two

size multidimensional FFTs. For each size, we compare the performance of both

serial and parallel (multithreaded) execution. In the UHFFT, the search engine

selects the schedule for each dimension separately (with corresponding strides) before

combining them together in a multidimensional schedule. Even when the dimensions

are of equal size, a separate schedule is searched to take into account the effects of

different strides along each dimension. The multithreaded schedules are estimated

in a straightforward fashion by dividing the problem along the last dimension.

Two-dimensional FFTs

Figures 7.15, 7.16 and 7.17, show the performance of two-dimensional out-of-place

FFTs on the Itanium 2, Xeon Clovertown and Opteron 285 architectures. For most

sizes, the UHFFT compares favorably with the other two libraries for both serial and

parallel execution.
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Figure 7.15: Itanium 2 - performance comparison of out-of-place complex to complex

two-dimensional FFTs
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Figure 7.16: Xeon Clovertown - performance comparison of out-of-place complex to

complex two-dimensional FFTs
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Figure 7.17: Opteron 285 - performance comparison of out-of-place complex to com-

plex two-dimensional FFTs
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Three-dimensional FFTs

Figures 7.18, 7.19 and 7.20, show the performance of three-dimensional FFTs on the

Itanium 2, Xeon Clovertown and Opteron 285 architectures. Like two-dimensional

FFT, the UHFFT compares favorably with the other two libraries for both serial

and parallel execution.
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Figure 7.18: Itanium 2 - performance comparison of out-of-place complex to complex

three-dimensional FFTs
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Figure 7.19: Xeon Clovertown - performance comparison of out-of-place complex to

complex three-dimensional FFTs
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Figure 7.20: Opteron 285 - performance comparison of out-of-place complex to com-

plex three-dimensional FFTs
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Table 7.1: Three representative sets of FFT sizes included in the benchmarking

No Powers-of-two Non-powers-of-two Prime

1 2 6 17

2 4 9 31

3 8 12 61

4 16 15 127

5 32 18 257

6 64 24 509

7 128 36 1021

8 256 80 2053

9 512 108 4093

10 1024 210 8191

11 2048 504 16381

12 4096 1000 32771

13 8192 1960 65537

14 16384 4725 131071

15 32768 10368 262147

16 65536 27000 524287

17 131072 75600 1048573

18 262144 165375

19 524288 720720

20 1048576

21 2097152

22 4194304

23 8388608
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Chapter 8

Conclusions

In this dissertation, we developed and evaluated a framework for constructing and ex-

ecuting dynamic schedules for FFT computation on hierarchical and shared-memory

multiprocessor architectures. We presented the design of the UHFFT library that

consists of four main components; a code generator, a formal language to express

and construct the FFT schedules, an executor containing driver routines for serial

and parallel computation of the FFT and a scheduler that implements the run-time

search and estimation mechanism to find the best schedule of execution. To vali-

date our methodology, we also presented performance comparisons of the UHFFT

with FFTW and Intel’s Math Kernel Library (MKL) on the Itanium 2, the Xeon

Clovertown and a second generation Opteron. The results show that our implemen-

tations of various driver routines compare favorably against the FFTW and MKL

libraries. We have shown that the UHFFT outperforms FFTW and MKL for most

architectures on problems too large to fit in cache. Moreover, our low-overhead
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multithreaded driver routines deliver better performance on multi-core and shared-

memory multiprocessor architectures. We also presented a comparison of the various

run-time search schemes implemented in the UHFFT and FFTW. Our results indi-

cate that the model driven search can be accurate in predicting the best performing

FFT schedule for a minimum cost of initialization. In the following, we list the main

contributions of this dissertation.

8.1 Contributions

a. Code Generator

As part of this dissertation, we implemented an automatic empirical optimization

mechanism in the FFT code generator, which has been integrated in the UHFFT

library. The code generator was enhanced to automatically generate so called twid-

dle codelets, rotated PFA codelets, coupled in-place codelets and loop-vectorized

codelets. Furthermore, the code generator also generates short vector (SIMD) vari-

ants of all the codelet types.

b. The FFT Schedule Specification Language

The code generated at installation time is assembled together at run-time to solve

large FFT problems. We implemented a concise language based on simple context

free grammar rules for specifying a variety of FFT schedules and algorithms. The

FFT schedule specification language (FSSL) is particularly suited to hierarchical
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memory and multi-core architectures since it specifies both schedule and blocking of

the computation. The language also helps in better understanding of the correlation

between an FFT schedule (algorithm and factorization) and its performance on the

given architecture, which helps in the development of intuitive models (heuristics)

that can be implemented in run-time search schemes to avoid expensive empirical

analysis.

c. Serial and Parallel FFT Driver Routines

In the UHFFT, we have implemented efficient serial and parallel FFT driver routines

for each of the FSSL rules. Our implementations of various driver routines compare

favorably against the FFTW and Intel’s MKL library. Our experiments show that the

UHFFT outperforms FFTW and MKL for most architectures on problems too large

to fit in cache. Moreover, our low-overhead multithreaded driver routines deliver

better performance on multi-core architectures.

d. Multiple Run-time Search Methods

We have implemented three different run-time search methods in the scheduler, in-

cluding a model-driven search that avoids run-time empirical analysis. Our prelim-

inary results show that the model driven search can be accurate in predicting the

best performing FFT schedule for a minimum cost of initialization.
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e. Methodology for the Development of Domain Specific

Adaptive Libraries

In general, this dissertation provides a complete recipe for developing adaptive do-

main specific libraries. Based on our experiences in the development of the UHFFT,

following are the nine important ingredients of the recipe:

1. Automatic generation of compute intensive kernels that maximize the utiliza-

tion of functional pipelines and available registers.

2. A specification of parameterized interfaces for the microkernels including the

variants that may be optimized for special scenarios.

3. Optionally, a compiler feedback mechanism may be included that evaluates

the versions of the same code type and selects the best version based on the

empirical evaluation.

4. High resolution and accurate timers (or performance counters). The timers

form an integral part of the adaptive libraries because the accuracy of the

performance models and code scheduling decisions depends on the accuracy of

high resolution timers.

5. A flexible and robust user interface to access the functionality of the library.

The functionality should be accessible through a consistent user interface.

6. A simple language to specify the mathematical algorithms (driver routines)

implemented in the library. The language not only provides an abstraction
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layer for complex algorithms, it also ensures that the library can be easily

extended for future generations of architectures. The language may also be

useful in generating performance models, as it describes the data and control

flow of the computation on a given architecture.

7. Various driver routines for serial and parallel execution of algorithms. The

driver routines must have consistent interfaces so that they can be integrated

seamlessly within the framework.

8. Multiple search schemes of varying costs. Ideally, the search methods should in-

clude a constant time search scheme and an empirical search scheme to provide

the options of accuracy and speed.

9. Auxiliary tools that help in benchmarking and comparison of alternative im-

plementations.

8.2 Limitations and Future Work

The UHFFT is a robust library for computing the DFT while maintaining perfor-

mance portability across different architectures. However, it is an ongoing research

work and is far from complete. Our future work will involve work on the current

limitations of the library, which are given below:

• At the code generator level, the scalar optimizations should be applied to the

DAG. For SIMD codelets in particular, the arithmetic simplifications may result

in better overall performance.
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• The code generator is fully capable of generating real and trigonometric trans-

forms. In the future, we plan to integrate the generation of real, sine and cosine

codelets in the UHFFT library.

• At run-time, data reordering may improve performance for certain architec-

tures that have a small cache with a low degree of associativity, e.g., second

generation Opteron processor. For those architectures, fast transposes may im-

prove performance for very large sizes. Moreover, contiguous temporary buffers

may be used as workspaces so that very large strides can be avoided.

• The model driven search does not include the prime factor algorithm (PFA) in

its search space, which may result in lower performance for some non-powers-

of-two sizes. In the future, we plan to extend the dfti low search method to

include all the algorithms.

• Large prime sizes are computed using Rader’s algorithm, which may not be

the best option for relatively small prime sizes. Furthermore, some large prime

sizes may need recursive application of Rader’s algorithm, which should be

avoided using the zero-padding technique employed by the FFTW.

• Current implementation of the multidimensional in-place FFT is not as efficient

as the out-of-place FFT because it uses a different schedule due to the absence

of the output array. Using temporary buffers may improve the performance of

in-place FFTs of single or multiple dimensions.
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