

Evaluation of Rate-based Transport Protocols for Lambda-Grids

Xinran (Ryan) Wu and Andrew A. Chien
Department of Computer Science and Engineering

University of California, San Diego
{xwu, achien}@ucsd.edu

Abstract

Lambda-Grids are richly interconnected collections of
plentiful, geographically-distributed computing and
storage resources. This rich connectivity is enabled by
dedicated dense wavelength division multiplexing
(DWDM) optical paths. With abundant bandwidth in the
center of the network (many DWDM links), contention
and sharing bottlenecks move from the network core to
end systems. In such networks, traditional TCP is
insufficient to provide acceptable performance. We
identify the key communication characteristics of this
radically different network, introducing a new multipoint-
to-point communication pattern for data-intensive
application. We evaluate several promising rate-based
data transport protocols (RBUDP, SABUL/UDT and GTP)
for lambda-Grids under a range of communication
patterns (single stream, multiple parallel streams,
converging streams, and rapid transitions). Our
experiments use a range of performance metrics,
including sustained throughput and loss rate, inter- and
intra-protocol fairness, protocol overhead, and rate
adaptation speed to flow transitions. The results provide
insights into the capabilities of these three protocols and
also for improvements in design and implementation of
rate-based protocols.

1. Introduction

 Continuing advances in optical networking are
producing increases in bandwidth which exceed the rapid
geometric increases in semiconductor chip capacity as
predicted by Moore’s Law. Recently, Dense Wavelength
Division Multiplexing (DWDM) has emerged as an
efficient technique to exploit terabit fiber bandwidths,
multiplexing large numbers of wavelengths (lambdas)
onto a single fiber. Exploiting this trend, a wide range of
research in systems and applications is being pursued to
develop the lambda-Grid (sometimes called a Distributed
Virtual Computer or DVC) [1, 2]. In the lambda-Grid,
distributed grid [3] resources, including computing
clusters, petabyte data repositories and high-resolution
scientific instruments, can be tightly coupled by dedicated
optical connections. In lambda-Grids, the central

architectural element is optical networking instead of end
systems. The OptIPuter project [4] and other efforts such
as CANARIE [5] are exploring new opportunities and
challenges from applications to system design [6-8] which
arise from dedicated optical connections. The work
described in this paper is part of the OptIPuter project.

 Compared to traditional IP networks which have
millions of endpoints, shared links, and are packet-
switched, lambda-Grids are characterized by fewer
endpoints (e.g. 103, not 108), dedicated high speed links
(1Gbps, 10Gbps, etc.), and optical packet switching or
circuit switching. These differences effectively mean that
lambda-Grids have no internal network congestion. Since
end-to-end dedicated link bandwidth matches or exceeds
processing speeds in end systems, contention and sharing
bottlenecks are pushed to the end systems. In grids
generally, applications are rapidly evolving from a point-
to-point model (e.g. data transfer from single server to a
client) to a collection of clients and distributed servers of
large data sets. Such applications exhibit communication
patterns with multipoint-to-point (e.g. fetching large
quantity of data from distinct servers to feed local
computation or visualization) and multipoint-to-
multipoint structure. In the lambda-Grid, these structures
are combined with extremely high speed. Together, these
differences imply a radically different set of
communication challenges in lambda-Grids than in
traditional IP networks [9].

 Even for point-to-point communication in high
bandwidth-delay product links, high performance bulk
data transfer has been a long standing research challenge.
Traditional TCP [10] was designed for shared low-
bandwidth networks, and its performance is strongly
dependent on the bandwidth-delay product of the
network[11]. TCP’s slow start and its Additive Increase
Multiplicative Decrease (AIMD) congestion control
balance non-aggressive competition and end-to-end
performance. However, on high speed paths, slow start
causes TCP to take a long time both to reach full
bandwidth and to recover from packet loss when round
trip time (RTT) is large. A number of TCP variants (e.g.
[12-17]) have been developed to improve performance for
shared, packet switched networks.

Recently, the Grid and high performance computing
community has proposed a number of high performance

data transport protocols (e.g. [18-22]) based on UDP.
These protocols are rate-based, enabling them to fill high
bandwidth-delay product networks, using explicitly
specified or negotiated transmission rates. These protocols
also provide reliable transport services. We consider
three representatives of these protocols, RBUDP, SABUL,
and our GTP.

Each of these three protocols is different both in the
intended environment of use and performance
characteristics. Among them, Reliable Blast UDP
(RBUDP) [19] targets fast, fixed-rate reliable data transfer
on dedicated or QoS-enabled high speed links. It requires
users to explicit configure (and reconfigure) the protocol
based on link capacity. Simple Available Bandwidth
Utilization Library (SABUL) [18] is designed for a shared
network and conducts application level congestion and
rate control over UDP. The newest version of SABUL,
UDT[23], employs a delay-based rate adjustment scheme
to improve the performance. Tsunami [21] targets at
efficient file transfer over high speed links, the
performance of which is limited by the I/O processing
(and disk speed) of two ends. Recent work on the Group
Transport Protocol (GTP) [22] focuses on the challenge
of achieving high performance with a more complex
multipoint-to-point communication pattern in lambda-
Grids. GTP is a receiver–driven transport protocol which
exploits information across multiple flows to manage
receiver contention and fairness.

In this paper, we formulate the key communication
problems for lambda-Grids, distilling them to four
exemplar communication patterns (point-to-point single
flow and parallel flows, multipoint-to-point converging
flows, and rapid flow speed transitions). With these
workloads, we study a range of rate-based protocols using
Dummynet [24] emulation and measurements on the
TeraGrid [25]. The primary contributions of this paper
are summarized below.

• Definition of the key communication challenges for
lambda-Grids captured in four model communication
patterns: high-speed single and parallel flows,
multipoint-to-point, multipoint-to-multipoint, and
high speed transitions.

• Evaluation of three rate-based protocols (RBUDP,
SABUL, GTP) for converging multipoint-to-point
flows: all achieve high bandwidth, but vary widely
(as much as 1000x) in packet loss rate with GTP
achieving by far the lowest loss rate.

• Evaluation of three rate-based protocols on intra-
protocol fairness which shows all exhibit good intra-
protocol fairness for parallel flows. For converging
flows only GTP maintains fairness that is
independent on the difference of RTT’s of flows.

• Evaluation of three rate-based protocols on inter-
protocol fairness, which shows UDT is more TCP
friendly than the other two, and

• Evaluation for workloads with rapid flow changes
which shows that RBUDP and SABUL do not
capture the available bandwidth efficiently. GTP
manages rapid flow transitions better, efficiently
exploiting the available bandwidth and maintaining
low loss rates through a range of transitions.

Our results suggest that managing receiver
contention for new multipoint-to-point communication
pattern in lambda-Grids is a challenging problem. Our
experiments show that receiver-based approach, of which
GTP is an exemplar, is a promising direction and deserve
further investigation for the new networking environment
of lambda-Grids.

The remainder of the paper is organized as follows.
In Section 2, we describe the communication problem and
challenges in lambda-Grids. We provide an overview and
comparison of the three rate-based protocols in Section 3.
In Section 4, we present evaluation experiment results,
followed by a summary of our results, and a discussion of
future research directions.

2. Data Communication in Lambda-Grids

2.1 Modeling Lambda-Grid Communications

A lambda-Grid is a set of distributed resources
directly connected with DWDM links (with 1-10Gbps per
wavelength (lambda), and hundreds of lambdas per
optical fiber). Lambda-grids are distinguished from
traditional shared packet-switched IP networks by their
dynamic configuration and dramatically higher
performance and quality of service. The key
distinguishing characteristics of lambda-Grid networks
are:

(a) High speed (1Gbps, 10Gbps, etc.) dedicated links
using one or multiple lambdas connecting a small
numbers of endpoints (e.g. 103, not 108), and possibly
with long delays (e.g. 60ms RTT from SDSC to NCSA)
between sites. Switching and edge structure as described
above. The dedicated lambdas have better QoS than
shared internet (little jitter, low loss on fiber).

(b) End-to-end network bandwidth that matches or
exceeds the data processing capabilities (computing/IO
processing) of attached systems. The abundant network
resources create a relative scarcity of end-system
resources, pushing the congestion from internal network
links to the endpoints.

(c) Network congestion occurs primarily at the end
systems (e.g. data buffer overflow) or at the “last switch”
where multiple high speed streams converge (e.g. two
flows sharing the same receiver).

In a lambda-Grid, one can view the optical
connections between end systems as fast, dedicated
connections, in contrast to shared links which are packet-
switched by IP routers. We illustrate this in Figure 1,

showing that internal network contention shifts from
internal links to endpoints (or their access links, where
multiple dedicated optical connections terminate).

Figure 1: The connection view of receiver R with
three senders. (a) Shared IP connection: senders
connect with receiver via shared links and
intermediate nodes. (b) Dedicated lambda
connections: dedicated capacity between each
sender/receiver pair.

2.2 Multipoint-to-point Communication Pattern

The advent of large-scale computation and data
sharing in wide-area Grids and peer-to-peer applications
is driving an evolution in communication patterns from
point-to-point connections to multipoint-to-point and
multipoint-to-multipoint structures. One example is P2P
Content Delivery Networks (CDNs) such as Kazaa [26]
and BitTorrent [27], where multiple replicated sites and
accessed simultaneously to retrieve data as fast as possible.

The change in communication structure is even more
rapid in lambda-Grids where high-speed dedicated
wavelength connections are used to access large
distributed data collections (which may be 100’s of
petabytes). In this architecture, applications fetch data
from multiple sites concurrently and operate on that data
locally. Novel to lambda-Grids, there is plentiful
network bandwidth in the network core, so when multiple
dedicated lambda connections converge, their aggregate
capacity far exceeds the data handling speed of the end
system. In short, the critical contention occurs at
endpoints, not within the network.

2.3 Communication Challenges in Lambda-Grids

Data transport protocols for lambda-Grids are subject
to a range of performance considerations for design and
implementation. More complex communication patterns
such as multipoint-to-point and multipoint-to-multipoint
share traditional challenges of point-to-point high
bandwidth-delay product transmission such as achieving
high aggregate throughput while keeping loss rate low,
but introduce several new challenges.

High Throughput Low-Loss Transmission for Parallel
Flows With many projects utilizing multiple flows (e.g.
parallel flows between two ends, and multipoint-to-point),
the communication solution to lambda-Grids should be
aggressive enough to employ all of the receiver’s
communication capacity with multiple connections,

achieving high throughput and still maintaining low
average loss rate.

Intra and Inter Protocol Fairness Among Flows An
important design goal for multi-flow communication is to
provide predictable performance to flows. This requires
the rate allocation (or bandwidth sharing) of multiple
flows to meet certain fairness criteria, such as Max-min
fairness [28], proportional fairness[29], etc. Intra-
protocol fairness assures all flows following the same
protocol receive the same level of the service. Inter-
protocol fairness addresses fair competition among traffic
flows from multiple protocols, including the interaction
between rate-based protocols with TCP (the notion of
“TCP friendliness”[30]).

Quick Response to Flow Dynamics An ideal solution
would react quickly to flows joining and departing,
efficiently utilizing the available network capacity and
maintaining low loss rates. Smooth and efficient
transitions would approach the maximum feasible
network performance.

3. Protocols

In this section we give a brief overview of three rate-
based protocols: RBUDP[19], SABUL/UDT[23] and
GTP[22]. A summary of the key characteristics of these
protocols can be found in Table 1.

3.1 RBUDP

RBUDP [19] is a point-to-point data transfer
protocol, intended for dedicated (e.g. dedicated
wavelength) or Quality-of-Service (QoS) enabled network
environment. The RBUDP sender starts by transmitting
all data blocks over UDP at a fixed speed, which is
specified by the user (or NIC speed). The receiver
maintains a bitmap to keep track of received/lost data
blocks. After the sender finishes sending all the data, the
receiver sends the updated bitmap back to the sender
through TCP (TCP is used for the purpose of reliable
transmission). The sender then resends the lost data
blocks according to the bitmap in the next round. The
above procedure repeats until receiver successfully
receives all the data blocks. RBUDP does not perform any
rate adaptation, so in order to avoid network congestion, it
requires explicit control by the protocol user (for example
running Iperf [31]). Thus, dynamic rate scenarios are
beyond the scope of the protocol (must include external
control). Protocol overhead includes the delay between
each round of transmission due to the bitmap transmission,
which becomes expensive when the number of rounds of
the transmission increases (due to heavy network
congestion). We expect this problem to be solved in their
upcoming streaming version of RBUDP.

S1

S2

S1

S3 S2
S3

R R (a) (b)

Table 1: Summary Comparison of Three Rate-based Protocols

3.2 SABUL/UDT

SABUL [23] (Simple available bandwidth utilization

library [18]) is designed for data-intensive applications in
high bandwidth-delay product networks with user level
implementation and control. The newest version of
SABUL, UDT [23], combines rate-based, window-based
and delay-based control mechanisms to deliver high
throughput and low loss data transmission. UDT
implements slow start and AIMD control scheme for flow
control (which makes it to be more TCP friendly than
other rate-based protocols) and window-based control for
controlling the number of outstanding packets in flight.
UDT also deploys rate adjustment based on delay
monitoring, providing improved performance over
common AIMD control laws. However this also makes
UDT sensitive to network and end system conditions.
Therefore UDT maximizes its performance on dedicated
connections. Since the control scheme in UDT is
combined from several different control mechanisms, it
would be interesting to provide thorough theoretical
analysis of its congestion control mechanisms to further
illustrate its behavior.

3.3 GTP

GTP [22] is a receiver–driven request-response
transport protocol designed for efficient multipoint-to-
point data transmission. GTP implements two levels of
flow control. For each individual flow, the receiver
explicitly controls the sender’s transmission rate. This
allows the flow’s rate to be adjusted quickly in response
to packet loss (detected at the receiver side). Across the
incoming flows at each receiver, there is a scheduler.
This structure exploits the insight that in lambda-Grids,
congestion usually occurs at the end systems, especially

the receivers. The scheduler at the receiver manages
across multiple flows, dealing with any congestion or
contention and performing max-min rate amongst them.
The receiver actively measures per-flow throughput, loss
rate, and uses it to estimate bandwidth capacity. It then
allocates the available receiver capacity (can be limited by
resource or the final link) across flows. This allocation is
done once for each control interval in Max-min fair
manner. Correspondingly, the senders adjust to transmit
at the revised rates. This receiver-driven centralized rate
allocation scheme enables GTP to significantly reduce
receiver side packet loss and respond quickly to
transitions (flows join or terminate).

4. Protocol Evaluation

4.1 Methodology

We compare RBUDP, SABUL, GTP, and standard

untuned TCP (PSockets[16] is used to generate parallel
TCP streams). Throughout our experiments we use the
latest available versions of the protocols (RBUDP v0.2,
SABUL/UDT 1.1, and GTP prototype) and use
emulations with Dummynet [24] delay router, and
measurements on TeraGrid [25] with two end points at
SDSC (San Diego Supercomputer Center) and NCSA
(National Center for Supercomputing Applications) to
model a broad range of network structure. The end-to-end
bandwidth between SDSC and NCSA of each connection
is 1Gbps (NIC speed limit). Dummynet is used to
introduce a range of various round trip delays to the
experiments performed in local cluster environment (see
Figure 2).

 RBUDP SABUL/UDT GTP
Initial Rate Specified by the

User or NIC speed
Slow start, exponential
increment

Negotiated by the sender and receiver

Reliable Transmission Yes Yes Yes
Multipoint-to-point No. No. Yes.
Rate Adaptation No Rate-based with delay

compensation
Rate adaptation and estimation

Intra-protocol Fairness Not Considered To some extent Max-min fairness among flows at the
receiver side

TCP Friendliness No Yes No. (could be extended to manage TCP
flows together with GTP flows [22])

Transition Management No Rate adaptation
according to its AIMD
law

Explicit transition management to flow
changes, and the ability of quick
exploring available bandwidth.

Implementation User level User level User level

Figure 2: Experiment environment on a local
cluster (dual 2.2GHz Intel Xeon processors, 2
Gigabit NICs and 2GB memory). A Dummynet
router is installed to introduce various round trip
delays.

 We consider several communication patterns for our
experiments. These are chosen to model our point-to-
point and multi-point-to-point applications’ expected
behaviors. They include:

- Point-to-point with single flow (Figure 3a);
- Point-to-point parallel flows (Figure 3b);
- Converging flows (multiple senders and single

receiver) with varied delay and bandwidth for each
link (Figure 3c);

- Flow dynamics where new flows join or existing
flows terminate.

Figure 3: Three data transmission patterns. (a)
point-to-point, single flow; (b) point-to-point,
parallel flows; (c) Multipoint-to-point, converging
flows.

Considering the requirements of high-performance
data-centric e-science applications which are the focus of
much of the work in grids and lambda-Grids, we have
defined a representative set of performance metrics which
we use. These metrics include:

- Sustained throughput and loss ratio for a 10GB data
transfer (Point-to-point and multipoint-to-point);

- Intra-protocol fairness (the ratio of minimum to
maximum flow throughput);

- Inter-protocol fairness, and their interaction with TCP
(the ratio of TCP throughput with and without
without rate-based protocol);

- Loss ratio in the first 50 RTT after flow arrival and
throughput in first 50 RTT after flow departure.

 These metrics measure throughput, fairness in several
forms, and dynamic response of the protocols. We
present the results of our evaluation in the following
subsections.

4.2 Throughput and Loss Measurements

To provide a performance baseline, we present an

evaluation of the performance of rate-based protocols
with two general metrics, sustained throughput and loss
ratio. In particular, we summarize for the three data
transmission patterns (see Figure 3) on the TeraGrid and
present the results in Table 2. For all three scenarios we
measure the sustained throughput of transferring 10GB
data between SDSC and NCSA. The bandwidth on each
single point-to-point link is 1Gbps, and the round trip
delay is approximately 58ms.

Table 2: Throughput and loss measurements
made on the TeraGrid. (a) Single flow between
NCSA and SDSC. (b) Parallel flows between the
same sender and receiver from SDSC to NCSA.
(c) Converging flow with three senders (two at
NCSA and one at SDSC) to one receiver at SDSC.

Our results show that for single flows, the three rate-
based protocols achieve much higher throughput than
traditional TCP while maintaining a low-loss ratio. All
three rate-based protocols also perform well when there
are parallel flows between the same sender and receiver.
While RBUDP and UDT achieve slightly higher
throughput than GTP with their aggressiveness, it incurs
the expense of a much higher loss ratio. GTP’s receiver-
based control scheme provides high throughput and a low
loss ratio. For converging flows, all three rate-based
protocols achieve high throughput, but loss rates vary
over a range of 1000x, and GTP has the lowest loss rate
by a large margin.

1 We are not able to measure instant TCP loss rate, due to the
lack of root privileges on TeraGrid.
2 Aggregate rate and loss rate vary for RBUDP and SABUL, and
numbers listed are the average values of several measurements.

 TCP RBUDP UDT GTP
Average

Throughput
(Mbps)

4.88 881 898 896
(a)

Single
flow Avg.

Loss
unknown1 0.07% 0.01% 0.02%

Aggregate
Rate

(Mbps)

14.5 931 912 904
(b)

Parallel
flows Avg. Loss unknown 2.1% 0.1% 0.03%

Aggregate
Rate2

(Mbps)

677 443 811 865 (c)
Convergent

flows
Avg. Loss unknown 53.3% 8.7% 0.06%

S R S R

S1

SN

R
. . .

(a) (b) (c)

Dummynet
Router R

S1

S2

Sn

…

Note that throughout all the experiments (in this and
following subsections) RBUDP is configured with a
capacity estimate for each flow of 1Gbps (their network
interface speed), which is reasonable and close to the
achievable bandwidth measured by Iperf [31] for the case
of single connection on a dedicated link. While it may be
argued that other fixed settings would produce lower
packet loss rate, RBUDP provide no assistance in
choosing such settings. This is because unlike mode
transport protocols, RBUDP includes no mechanisms for
capacity estimatation or rate adaptation.

4.3 Intra-protocol Fairness

Providing stable and predictable data transmission

service requires high speed protocols share resources
stably amongst competing flows. We first consider
sharing amongst flows based on the same rate-based
protocol, and use equal allocation (fairness) of the
bandwidth on the link as the metric. We use the following
definition for fairness: Given a set of N flow with rate
allocation R = {r1, r2, …, rN}, where rmax and rmin are the
maximum and minimum rates of those flows, we define
the fairness index fR of flow rate allocation R as

fR = rmin / rmax.

 All of the protocols achieve good fairness for a single
link with 4 and 8 parallel flows (see Figure 4).

0

0.2

0.4

0.6

0.8

1

R
at

io

4 Parallel Flows
8 Parallel Flows

TCP RBUDP UDT GTP

Figure 4: Fairness index of 4 and 8 parallel flows
on a single link.

It is a longstanding research challenge (e.g. [32], [33])
to get converging flows using the same protocol, but with
different RTT’s to achieve a fair rate allocation. Consider
a scenario with two converging flows as shown in Figure
3c. We fix one flow’s RTT at 50ms, and vary the other
flow’s RTT from 5ms to 50ms using Dummynet. Figure
5 plots the achieved fairness index for each of the rate-
based protocols.

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RTT (ms)

R
at

io

GTP
UDT
RBUDP
TCP

Figure 5: Fairness index of GTP, UDT, RBUDP,
TCP with two converging flows, where flow 1 has
a fixed RTT=50ms and RTT of flow 2 varies from
5ms to 50ms.

TCP is well-known to deliver throughput inversely

proportional to the RTT [34, 35], so the fairness index of
TCP increases with RTT. For UDT and RBUDP, a
difference in RTT has a similar, but less pronounced
effect, reducing the achieved fairness index. For UDT this
is because a flow with shorter RTT adapts faster and thus
increases its rate more quickly. For RBUDP, both flows
will have the same sending rate, but the one with smaller
RTT transfers retransmission bitmaps back more quickly,
reducing the protocol overhead. In contrast, GTP
maintains a better fairness index (close to 1), across a
range of RTT differences. This is because GTP explicitly
allocates receiver bandwidth to flows at the receiver,
enabling each flow to achieve a fair share of the
throughput.

4.4 Inter-Protocol Fairness

Because applications and networks may employ many
protocols, we consider inter-protocol fairness of these
flows (and TCP) from two perspectives. First, we study
how the three rate-based protocols interact with each other.
Second, we study the interaction of each of these
protocols with TCP. All of these experiments are
performed using Dummynet.

Scenario 1: Rate-based protocols on a single link. We
start single RBUDP, UDT and GTP flows staggered in
time as parallel flows on a single link (as in Figure 3b).
First, UDT and GTP share the bandwidth efficiently,
dividing it equally (see Figure 4). When RBUDP is
introduced, it captures less than an equal share while UDT
and GTP continue to share the remaining bandwidth
equally. All three rate-based protocols are thus able to co-
exist as parallel flows. This also shows that UDT and
GTP have more aggressive implementations than RBUDP.

0 1 2 3 4 5
0

100

200

300

400

500

600

700

800

900

1000

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

UDT
GTP
RBUDP

Figure 6: Three flows sharing the same sender
and receiver. GTP and RBUDP start at time 1.8s
and 3.5s, respectively.

Scenario 2: Rate-based protocols with converging
flows. We initiate the three flows staggered in time and
originating from distinct senders to a single receiver (the
scenario in Figure 3c). Our results show that in this case,
RBUDP takes bandwidth with GTP and UDT being largely
shut out (see Figure 7). This result can be explained by
how the congestion at the end system (receiver) is resolved.
Both GTP and UDT detect the congestion and reduce their
flow rates in response to loss, while RBUDP continues to
transmit at high rates, eventually driving GTP and UDT
traffic to close to zero.

0 2 4 6 8 10 12
0

500

1000

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

0 2 4 6 8 10 12
0

500

1000

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

0 2 4 6 8 10 12
0

500

1000

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

RBUDP

GTP

UDT

Figure 7: Three contending flows from three
senders terminating at one receiver. GTP and
UDT start at time 3s and 6s, respectively.

 This also illustrates that to be fair to other flows,
RBUDP needs to be modified to adapt its rate. Again,
such rate adaptation is intentionally not addressed in the
design of RBUDP, as it is intended for other environments.

Scenario 3: Rate-based protocols and TCP. We study
how the operation of these rate-based protocols affects

traditional TCP flows. Since web services and a widely-
used grid data transfer tool GridFTP [36] are based on
single or multiple TCP flows, our study also provides
some insight to how these protocols will interact. We
measure TCP throughput in the presence of each of the
rate-based protocols and compare to TCP running alone.
An ideal ratio is 50% (equal sharing), with lower ratios
indicating that the TCP traffic is suffering.

Experiments with parallel TCP and rate-based protocol
flows show good sharing properties (see Table 3) in local
cluster environment. On high bandwidth-delay product
networks, the situation is different (see Table 4). In the
presence of RBUDP and GTP, TCP is not able to achieve
the same level of the throughput. This is because RBUDP
and GTP are aggressive. TCP is only able to obtain an
equal share of the network capacity with UDT because it
employs a similar increase/decrease flow control
mechanism as in TCP.

Rate-based and TCP

Rate-based TCP

Single TCP

Throughput

Influence

Ratio

RBUDP 467Mbps 450Mbps 912Mbps 49.3%

UDT 552Mbps 380Mbps 912Mbps 41.6%

GTP 612Mbps 328Mbps 912Mbps 35.9%

Table 3: RBUDP, UDT, GTP each runs with a
single TCP flow, point-to-point on a 1Gbps link
on the cluster.

Rate-based and TCP

Rate-based TCP

Single TCP

Throughput

Influence

Ratio

RBUDP 771Mbps 2.1Mbps 24.3 Mbps 8.6%

UDT 751Mbps 23.6Mbps 24.3Mbps 97.2%

GTP 760Mbps 9.7Mbps 24.3Mbps 40.0%

Table 4: RBUDP, UDT, GTP each runs with a
single TCP flow, point-to-point on a simulated
800Mbps Dummynet link with 30ms RTT.

4.5 Transition Management

 The ability to respond quickly and stably to rapid flow
transitions (begin or end) is an important capability for
transport protocols in high speed networks whose goal is
to provide the maximum physical bandwidth to large
flows. However, achieving maximum throughput, stable
behavior, and rapid transitions is challenging. For
example, how to respond to the beginning and end of a
multi-gigabit flow when the network is operating at 100%
capacity? We use a three-stage scenario to evaluate the
three rate-based protocols. We begin with a single flow
(flow 1), and a second flow (flow 2) with 40ms RTT
begins around 5 seconds later. Flow 2 ends about 5
seconds after beginning. The trajectories for each flow’s

throughput are depicted in Figures 10-12. The network
link speed to the receiver is 800Mbps in the experiments.

0 5 10 15 20
0

200

400

600

800

1000

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

0 5 10 15 20
0

200

400

600

800

1000

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s) RBUDP Flow 2 (40ms RTT)

RBUDP Flow 1(20ms RTT)

Figure 10: Two RBUDP flows share the same
receiver but from different senders. Flow 2 joins
at 5 seconds, and terminates more than 5
seconds later.

0 5 10 15 20
0

200

400

600

800

1000

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

0 5 10 15 20
0

200

400

600

800

1000

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

UDT Flow 1 (20ms RTT)

UDT Flow 2 (40msRTT)

Figure 11: Two UDT flows share the same
receiver but from different senders. Flow 2
begins at about 5 seconds and ends 6 seconds
later..

0 5 10 15 20
0

200

400

600

800

1000

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

0 5 10 15 20
0

200

400

600

800

1000

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s) GTP Flow 2 (40ms RTT)

GTP Flow 1 (20ms RTT)

Figure 12: Two GTP flows share the same
receiver but from different senders. Flow 2
begins at around t=5, and terminates about 7
seconds later.

Of the three protocols, GTP achieves smooth
transitions, but RBUDP and UDT both give erratic
behavior. RBUDP gives rapid transition at a flow
beginning, but incurs high (30%) packet loss due to its
lack or rate control. UDT’s sensitivity to packet loss and
delay produces rate oscillations in our Dummynet
environment and slower recovery speed after flow 2
terminates. Because Dummynet is an emulation tool, there
is the possibility that its behavior is not true to real
networks. For example, better transition and fairness
results are reported in [37], where the link rate used for
real measurement is low (100Mbps). GTP performance is
the best amongst the three, producing clean transition and
quick rate adaptation to flow changes. GTP has a
fundamental advantage in its centralized receiver-based
rate allocation scheme, providing a global perspective
across flows, and thereby enabling dramatically better
network performance.

 To quantify the response to flow transitions, we define
two additional performance metrics. First, we use the loss
ratio in the first 1 second (50 RTTs) after flow 2 begins to
characterize each protocol’s response to new flows.
Second, we calculate the throughput of flow 1 during the
first 1 second (50 RTTs) after flow 2 ends, and its long-
term sustained throughput without flow 2, and utilize the
ratio of these two throughputs to characterize the
protocol’s ability to return bandwidth to flow 1. These
performance metrics are shown in Table 6.

 RBUDP UDT GTP

M1 Loss Ratio 29.3% 17.7% 0.7%
Throughput
after flow 2
leaves

740Mbps 359Mbps 687Mbps

Sustained
Throughput

793Mbps 787Mbps 773Mbps

M2

Ratio 0.93 0.45 0.88
Table 6: RBUBP, UDT, GTP each runs with a
single TCP flow, point-to-point on a simulated
800Mbps Dummynet link with 30ms RTT.

GTP achieves good results for both metrics. RBUDP
does not adjust its transmission rate, so huge losses are
incurred when flow 2 begins, and flow 1 fills the
bandwidth fast when flow 2 ends. We see oscillations of
UDT along with the introduction of flow 2 in our
Dummynet environment.

5 Summary and Future Work

 Lambda-Grids involve a new set of communication
challenges where networks have plentiful bandwidth but
limited end-system capacity. This change moves
congestion from the internals of the network to the
endpoints and makes new communication patterns such as
multipoint-to-point and multipoint-to-multipoint
important. We study the performance of three promising

rate-based protocols (RBUDP, UDT, and GTP) in a wide
range of different circumstances. Our results show that all
three rate-based protocols can achieve high performance
for point-to-point connection with single or parallel flows.
However, when converging flows are considered, the
situation is quite different. With its receiver-driven
architecture and rate allocation across flows, GTP
outperforms RBUDP and UDT providing lower loss,
higher throughput, lower CPU overhead, and rapid, stable
transitions as flows begin and end. These results suggest
that receiver-driven architectures should be more broadly
studied for lambda-Grid transport protocols.

Future Work Major challenges remain for rate-based
protocols in lambda-Grid environment. First, we need to
explore more techniques for end system contention
management which is critical when networks are fast
enough to move congestion to the end systems. Second,
implementation techniques which are efficient and incur
low CPU overhead are needed to make these new
transport protocols usable. Third, a wide range of
challenges remain in achieving fast and clean transition
in response to network changes, and inter-protocol and
intra-protocol fairness (especially TCP friendliness).
Fourth, we will explore integrating TCP traffic estimation
and management into the frame work of GTP, reserving a
bandwidth share for TCP, so as to provide a satisfactory
level of quality of service. Finally, it is a critical and
challenging research topic to model these rate-based
protocols analytically, including a formal proof of their
properties (e.g. convergence, fairness, TCP friendliness,
etc.).

Acknowledgements

This work is supported in part by the National Science
Foundation under awards NSF EIA-99-75020 Grads and
NSF Cooperative Agreement ANI-0225642 (OptIPuter),
NSF CCR-0331645 (VGrADS), NSF NGS-0305390, and
NSF Research Infrastructure Grant EIA-0303622. Support
from Hewlett-Packard, BigBangwidth, Microsoft, and
Intel is also gratefully acknowledged.

6. References

[1] N. Taesombut and A.A. Chien, Distributed Virtual

Computer (DVC): Simplifying the Development of High
Performance Grid Applications. In Proceedings of the
Workshop on Grids and Advanced Networks (GAN 04),
Aprial 2004.

[2] T. DeFanti, C.d. Laat, J. Mambretti, K. Neggers and B.S.
Arnaud, TransLight: a Global-scale LambdaGrid for e-
Science. Communications of the Association for
Computing Machinery (CACM), 47(11), November 2003.

[3] I. Foster and C. Kesselman, The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, 1999.

[4] L. Smarr, A. Chien, T. DeFanti, J. Leigh and P.
Papadopoulos, The OptIPuter. Communications of the
Association for Computing Machinery 47(11), November
2003.

[5] CANARIE. http://www.canarie.ca.
[6] H.B. Newman, M.H. Ellisman and J.A. Orcutt, Data-

intensive e-Science Frontier Research. Communications of
the Association for Computing Machinery (CACM), 47(11),
November 2003.

[7] I. Foster and R.L. Grossman, Data Integration in a
Bandwidth-rich World. Communications of the Association
for Computing Machinery (CACM), 47(11), November
2003.

[8] T.A. DeFanti, J. Leigh, M.D. Brown, D.J. Sandin, O. Yu, C.
Zhang, R. Singh, E. He, Alimohideen, N.K. Krishnaprasad,
R. Grossman, M. Mazzucco, L. Smarr, M. Ellisman, P.
Papadopoulos, A. Chien and J. Orcutt, Teleimmersion and
Visualization with the OptIPuter. Proceedings of the 12th
International Conference on Artificial Reality and
Telexistence (ICAT 2002), The University of Tokyo, Japan,
December 3-6, 2002.

[9] A. Falk, T. Faber, J. Bannister, A. Chien, R. Grossman and
J. Leigh, Transport Protocols for High Performance.
Communications of the Association for Computing
Machinery (CACM), 47(11), November 2003.

[10] J.B. Poster, Transmission Control Protocol. RFC 793, Sep
1981.

[11] Braden Jacobson, TCP Extensions for High Performance.
RFC 1323, May 1992.

[12] S. Floyd, HighSpeed TCP for Large Congestion Windows.
Internet draft.

[13] C. Jin, D.X. Wei and S.H. Low, FAST TCP: Motivation,
Architecture, Algorithms, and Performance. in Proceedings
of IEEE INFOCOM 2004, Hong Kong, March 2004.

[14] D. Katabi, M. Handley and C. Rohrs, Internet Congestion
Control for High Bandwidth Delay Product Network. in
Proceedings of ACM SIGCOMM 2002, Pittsburgh, Aug
2002.

[15] T. Kelly, Scalable TCP: Improving Performance in
Highspeed Wide Area Networks. Submitted for publication,
December 2002.

[16] H. Sivakumar, S. Bailey and R.L. Grossman, PSockets: The
Case for Application-level Network Striping for Data
Intensive Applications using High Speed Wide Area
Networks. In Proceedings of Supercomputing 2000.

[17] S.H. Low, L. Peterson and L. Wang, Understanding Vegas:
A Duality Model. Journal of ACM, 49(2):207-235, March
2002.

[18] H. Sivakumar, R. Grossman, M. Mazzucco, Y. Pan and Q.
Zhang, Simple Available Bandwidth Utilization Library for
High-Speed Wide Area Networks. Submitted for publication.

[19] E. He, J. Leigh, O. Yu and T. DeFanti, Reliable Blast UDP:
Predictable High Performance Bulk Data Transfer. IEEE
Cluster Computing, 2002: p. 317.

[20] P. Dickens, FOBS: A Lightweight Communication Protocol
for Grid Computing. in proceedings of Euro-Par 2003.

[21] Tsunami. http://www.indiana.edu/~anml/anmlresearch.html.
[22] R.X. Wu and A.A. Chien, GTP: Group Transport Protocol

for Lambda-Grids. In Proceedings of the 4th IEEE/ACM
International Symposium on Cluster Computing and the
Grid, Aprial 2004.

[23]Y. Gu, X. Hong, M. Mazzucco and R.L. Grossman, SABUL:
A High Performance Data Transfer Protocol. Submitted
for publication.

[24] L. Rizzo, Dummynet: a Simple Approach to the Evaluation
of Network Protocols. Computer Communication Review,
27, January 1997.

[25] D.A. Reed, Grids, the TeraGrid, and Beyond. IEEE
Computer, 36(1) 62-68, 2003.

[26] Kazaa. http://www.kazaa.com.
[27] BitTorrent. http://bitconjurer.org/BitTorrent/.
[28] D.P. Bertsekas and R. Gallager, Data Networks, Second

Edition. Prentice-Hall, Englewood-Cliffs, New Jersey,
1992.

[29] F. Kelly, A. Maulloo and D. Tan, Rate Control for
Communication Networks: Shadow Prices, Proportional
Fairness and Stability. Journal of the Operational Research
Society, 49, pp. 237-252.

[30] J. Mahdavi and S. Floyd, TCP-Friendly Unicast Rate-
Based Flow Control. Technical note sent to the end2end-
interest mailing list, Jan 1997.
http://www.psc.edu/networking/papers/tcpfriendly.html.

[31] Iperf Tool. http://dast.nlanr.net/Projects/Iperf/.
[32] T. Henderson, E. Sahouria, S. McCanne and R. Katz, On

Improving the Fairness of TCP Congestion Avoidance. In
Proc. IEEE Globecom '98, volume 1, pp. 539--44, Sydney,
Australia, November 1998.

[33] J. Mo and J. Walrand, Fair end-to-end window-based
congestion control. IEEE/ACM Transactions on
Networking 8, 556--567.

[34] S. Floyd, Connections with Multiple Congested Gateways
in PacketSwitched Networks Part 1: One-way traffic.
Computer Communication Review, Vol. 21, No. 5, pp. 30-
47, October 1991.

[35] J. Padhye, V. Firoiu, D. Towsley and J. Kurose, Modelling
TCP Throughput: A Simple Model and its Empirical
Validation. EEE/ACM Trans. on Networking, vol. 8, No. 2.
Apr. 2000.

[36] B. Allcock, J. Bester, J. Bresnahan, A.L. Chervenak, I.
Foster, C. Kesselman, S. Meder, V. Nefedova, D. Quesnel
and S. Tuecke, Data Management and Transfer in High-
performance Computational Grid Environments. Journal of
Parallel Computing, 28(5) 749-771, May 2002.

[37] Y. Gu and R.L. Grossman, End-to-End Congestion Control
for High Performance Data Transfer. Submitted for
publication.

