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Abstract 

Lambda-Grids are richly interconnected collections of 
plentiful, geographically-distributed computing and 
storage resources.  This rich connectivity is enabled by 
dedicated dense wavelength division multiplexing 
(DWDM) optical paths. With abundant bandwidth in the 
center of the network (many DWDM links), contention 
and sharing bottlenecks move from the network core to 
end systems. In such networks, traditional TCP is 
insufficient to provide acceptable performance. We 
identify the key communication characteristics of this 
radically different network, introducing a new multipoint-
to-point communication pattern for data-intensive 
application. We evaluate several promising rate-based 
data transport protocols (RBUDP, SABUL/UDT and GTP) 
for lambda-Grids under a range of communication 
patterns (single stream, multiple parallel streams, 
converging streams, and rapid transitions).  Our 
experiments use a range of performance metrics, 
including sustained throughput and loss rate, inter- and 
intra-protocol fairness, protocol overhead, and rate 
adaptation speed to flow transitions. The results provide 
insights into the capabilities of these three protocols and 
also for improvements in design and implementation of 
rate-based protocols. 

  

1. Introduction 
 

 Continuing advances in optical networking are 
producing increases in bandwidth which exceed the rapid 
geometric increases in semiconductor chip capacity as 
predicted by Moore’s Law. Recently, Dense Wavelength 
Division Multiplexing (DWDM) has emerged as an 
efficient technique to exploit terabit fiber bandwidths, 
multiplexing large numbers of wavelengths (lambdas) 
onto a single fiber.  Exploiting this trend, a wide range of 
research in systems and applications is being pursued to 
develop the lambda-Grid (sometimes called a Distributed 
Virtual Computer or DVC) [1, 2].  In the lambda-Grid, 
distributed grid [3] resources, including computing 
clusters, petabyte data repositories and high-resolution 
scientific instruments, can be tightly coupled by dedicated 
optical connections. In lambda-Grids, the central 

architectural element is optical networking instead of end 
systems. The OptIPuter project [4] and other efforts such 
as CANARIE [5] are exploring new opportunities and 
challenges from applications to system design [6-8] which 
arise from dedicated optical connections.  The work 
described in this paper is part of the OptIPuter project.  

    Compared to traditional IP networks which have 
millions of endpoints, shared links, and are packet-
switched, lambda-Grids are characterized by fewer 
endpoints (e.g. 103, not 108), dedicated high speed links 
(1Gbps, 10Gbps, etc.), and optical packet switching or 
circuit switching.  These differences effectively mean that 
lambda-Grids have no internal network congestion. Since 
end-to-end dedicated link bandwidth matches or exceeds 
processing speeds in end systems, contention and sharing 
bottlenecks are pushed to the end systems.  In grids 
generally, applications are rapidly evolving from a point-
to-point model (e.g. data transfer from single server to a 
client) to a collection of clients and distributed servers of 
large data sets.  Such applications exhibit communication 
patterns with multipoint-to-point (e.g. fetching large 
quantity of data from distinct servers to feed local 
computation or visualization) and multipoint-to-
multipoint structure.  In the lambda-Grid, these structures 
are combined with extremely high speed. Together, these 
differences imply a radically different set of 
communication challenges in lambda-Grids than in 
traditional IP networks [9]. 

     Even for point-to-point communication in high 
bandwidth-delay product links, high performance bulk 
data transfer has been a long standing research challenge. 
Traditional TCP [10] was designed for shared low-
bandwidth networks, and its performance is strongly 
dependent on the bandwidth-delay product of the 
network[11].  TCP’s slow start and its Additive Increase 
Multiplicative Decrease (AIMD) congestion control 
balance non-aggressive competition and end-to-end 
performance. However, on high speed paths, slow start 
causes TCP to take a long time both to reach full 
bandwidth and to recover from packet loss when round 
trip time (RTT) is large. A number of TCP variants (e.g. 
[12-17]) have been developed to improve performance for 
shared, packet switched networks.   

Recently, the Grid and high performance computing 
community has proposed a number of high performance 



data transport protocols (e.g. [18-22]) based on UDP. 
These protocols are rate-based, enabling them to fill high 
bandwidth-delay product networks, using explicitly 
specified or negotiated transmission rates. These protocols 
also provide reliable transport services.   We consider 
three representatives of these protocols, RBUDP, SABUL, 
and our GTP.   

Each of these three protocols is different both in the 
intended environment of use and performance 
characteristics.  Among them, Reliable Blast UDP 
(RBUDP) [19] targets fast, fixed-rate reliable data transfer 
on dedicated or QoS-enabled high speed links. It requires 
users to explicit configure (and reconfigure) the protocol 
based on link capacity. Simple Available Bandwidth 
Utilization Library (SABUL) [18] is designed for a shared 
network and conducts application level congestion and 
rate control over UDP. The newest version of SABUL, 
UDT[23], employs a delay-based rate adjustment scheme 
to improve the performance. Tsunami [21] targets at 
efficient file transfer over high speed links, the 
performance of which is limited by the I/O processing 
(and disk speed) of two ends. Recent work on the Group 
Transport Protocol (GTP) [22] focuses on the challenge 
of achieving high performance with a more complex 
multipoint-to-point communication pattern in lambda-
Grids. GTP is a receiver–driven transport protocol which 
exploits information across multiple flows to manage 
receiver contention and fairness. 

In this paper, we formulate the key communication 
problems for lambda-Grids, distilling them to four 
exemplar communication patterns (point-to-point single 
flow and parallel flows, multipoint-to-point converging 
flows, and rapid flow speed transitions).  With these 
workloads, we study a range of rate-based protocols using 
Dummynet [24] emulation and measurements on the 
TeraGrid [25].  The primary contributions of this paper 
are summarized below.  

• Definition of the key communication challenges for 
lambda-Grids captured in four model communication 
patterns: high-speed single and parallel flows, 
multipoint-to-point, multipoint-to-multipoint, and 
high speed transitions. 

• Evaluation of three rate-based protocols (RBUDP, 
SABUL, GTP) for converging multipoint-to-point 
flows: all achieve high bandwidth, but vary widely 
(as much as 1000x) in packet loss rate with GTP 
achieving by far the lowest loss rate.  

• Evaluation of three rate-based protocols on intra-
protocol fairness which shows all exhibit good intra-
protocol fairness for parallel flows. For converging 
flows only GTP maintains fairness that is 
independent on the difference of RTT’s of flows. 

• Evaluation of three rate-based protocols on inter-
protocol fairness, which shows UDT is more TCP 
friendly than the other two,  and 

• Evaluation for workloads with rapid flow changes 
which shows that RBUDP and SABUL do not 
capture the available bandwidth efficiently.  GTP 
manages rapid flow transitions better, efficiently 
exploiting the available bandwidth and maintaining 
low loss rates through a range of transitions.  

Our results suggest that managing receiver 
contention for new multipoint-to-point communication 
pattern in lambda-Grids is a challenging problem.  Our 
experiments show that receiver-based approach, of which 
GTP is an exemplar, is a promising direction and deserve 
further investigation for the new networking environment 
of lambda-Grids.  

The remainder of the paper is organized as follows. 
In Section 2, we describe the communication problem and 
challenges in lambda-Grids. We provide an overview and 
comparison of the three rate-based protocols in Section 3.  
In Section 4, we present evaluation experiment results, 
followed by a summary of our results, and a discussion of 
future research directions. 

 
2. Data Communication in Lambda-Grids 
 
2.1 Modeling Lambda-Grid Communications 
 

A lambda-Grid is a set of distributed resources 
directly connected with DWDM links (with 1-10Gbps per 
wavelength (lambda), and hundreds of lambdas per 
optical fiber). Lambda-grids are distinguished from 
traditional shared packet-switched IP networks by their 
dynamic configuration and dramatically higher 
performance and quality of service. The key 
distinguishing characteristics of lambda-Grid networks 
are: 

(a) High speed (1Gbps, 10Gbps, etc.) dedicated links 
using one or multiple lambdas connecting a small 
numbers of endpoints (e.g. 103, not 108), and possibly 
with long delays (e.g. 60ms RTT from SDSC to NCSA) 
between sites. Switching and edge structure as described 
above.  The dedicated lambdas have better QoS than 
shared internet (little jitter, low loss on fiber).  

(b) End-to-end network bandwidth that matches or 
exceeds the data processing capabilities (computing/IO 
processing) of attached systems.  The abundant network 
resources create a relative scarcity of end-system 
resources, pushing the congestion from internal network 
links to the endpoints.  

(c) Network congestion occurs primarily at the end 
systems (e.g. data buffer overflow) or at the “last switch” 
where multiple high speed streams converge (e.g. two 
flows sharing the same receiver).  

In a lambda-Grid, one can view the optical 
connections between end systems as fast, dedicated 
connections, in contrast to shared links which are packet-
switched by IP routers. We illustrate this in Figure 1, 



showing that internal network contention shifts from 
internal links to endpoints (or their access links, where 
multiple dedicated optical connections terminate).  

 
Figure 1: The connection view of receiver R with 
three senders. (a) Shared IP connection: senders 
connect with receiver via shared links and 
intermediate nodes. (b) Dedicated lambda 
connections: dedicated capacity between each 
sender/receiver pair.  
 
2.2 Multipoint-to-point Communication Pattern 
 

The advent of large-scale computation and data 
sharing in wide-area Grids and peer-to-peer applications 
is driving an evolution in communication patterns from 
point-to-point connections to multipoint-to-point and 
multipoint-to-multipoint structures.   One example is P2P 
Content Delivery Networks (CDNs) such as Kazaa [26] 
and BitTorrent [27], where multiple replicated sites and 
accessed simultaneously to retrieve data as fast as possible. 

The change in communication structure is even more 
rapid in lambda-Grids where high-speed dedicated 
wavelength connections are used to access large 
distributed data collections (which may be 100’s of 
petabytes).  In this architecture, applications fetch data 
from multiple sites concurrently and operate on that data 
locally.   Novel to lambda-Grids, there is plentiful 
network bandwidth in the network core, so when multiple 
dedicated lambda connections converge, their aggregate 
capacity far exceeds the data handling speed of the end 
system.  In short, the critical contention occurs at 
endpoints, not within the network.  
 

2.3 Communication Challenges in Lambda-Grids 
 

Data transport protocols for lambda-Grids are subject 
to a range of performance considerations for design and 
implementation. More complex communication patterns 
such as multipoint-to-point and multipoint-to-multipoint 
share traditional challenges of point-to-point high 
bandwidth-delay product transmission such as achieving 
high aggregate throughput while keeping loss rate low, 
but introduce several new challenges.  

High Throughput Low-Loss Transmission for Parallel 
Flows  With many projects utilizing multiple flows (e.g. 
parallel flows between two ends, and multipoint-to-point), 
the communication solution to lambda-Grids should be 
aggressive enough to employ all of the receiver’s 
communication capacity with multiple connections, 

achieving high throughput and still maintaining low 
average loss rate.  

Intra and Inter Protocol Fairness Among Flows   An 
important design goal for multi-flow communication is to 
provide predictable performance to flows. This requires 
the rate allocation (or bandwidth sharing) of multiple 
flows to meet certain fairness criteria, such as Max-min 
fairness [28], proportional fairness[29], etc.  Intra-
protocol fairness assures all flows following the same 
protocol receive the same level of the service. Inter-
protocol fairness addresses fair competition among traffic 
flows from multiple protocols, including the interaction 
between rate-based protocols with TCP (the notion of 
“TCP friendliness”[30]).  

Quick Response to Flow Dynamics An ideal solution 
would react quickly to flows joining and departing, 
efficiently utilizing the available network capacity and 
maintaining low loss rates.  Smooth and efficient 
transitions would approach the maximum feasible 
network performance.  

 
3. Protocols 
 
 

In this section we give a brief overview of three rate-
based protocols:  RBUDP[19], SABUL/UDT[23] and 
GTP[22].  A summary of the key characteristics of these 
protocols can be found in Table 1. 

 
3.1 RBUDP 
 

RBUDP [19] is a point-to-point data transfer 
protocol, intended for dedicated (e.g. dedicated 
wavelength) or Quality-of-Service (QoS) enabled network 
environment. The RBUDP sender starts by transmitting 
all data blocks over UDP at a fixed speed, which is 
specified by the user (or NIC speed). The receiver 
maintains a bitmap to keep track of received/lost data 
blocks. After the sender finishes sending all the data, the 
receiver sends the updated bitmap back to the sender 
through TCP (TCP is used for the purpose of reliable 
transmission). The sender then resends the lost data 
blocks according to the bitmap in the next round. The 
above procedure repeats until receiver successfully 
receives all the data blocks. RBUDP does not perform any 
rate adaptation, so in order to avoid network congestion, it 
requires explicit control by the protocol user (for example 
running Iperf [31]).  Thus, dynamic rate scenarios are 
beyond the scope of the protocol (must include external 
control). Protocol overhead includes the delay between 
each round of transmission due to the bitmap transmission, 
which becomes expensive when the number of rounds of 
the transmission increases (due to heavy network 
congestion). We expect this problem to be solved in their 
upcoming streaming version of RBUDP.  
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Table 1: Summary Comparison of Three Rate-based Protocols 

 
 

3.2 SABUL/UDT  
 

 
SABUL [23] (Simple available bandwidth utilization 

library [18] ) is designed for data-intensive applications in 
high bandwidth-delay product networks with user level 
implementation and control.  The newest version of 
SABUL, UDT [23], combines rate-based, window-based 
and delay-based control mechanisms to deliver high 
throughput and low loss data transmission. UDT 
implements slow start and AIMD control scheme for flow 
control (which makes it to be more TCP friendly than 
other rate-based protocols) and window-based control for 
controlling the number of outstanding packets in flight. 
UDT also deploys rate adjustment based on delay 
monitoring, providing improved performance over 
common AIMD control laws.  However this also makes 
UDT sensitive to network and end system conditions. 
Therefore UDT maximizes its performance on dedicated 
connections. Since the control scheme in UDT is 
combined from several different control mechanisms, it 
would be interesting to provide thorough theoretical 
analysis of its congestion control mechanisms to further 
illustrate its behavior.  
 
3.3 GTP 
 

GTP [22] is a receiver–driven request-response 
transport protocol designed for efficient multipoint-to-
point data transmission.  GTP implements two levels of 
flow control. For each individual flow, the receiver 
explicitly controls the sender’s transmission rate. This 
allows the flow’s rate to be adjusted quickly in response 
to packet loss (detected at the receiver side). Across the 
incoming flows at each receiver, there is a scheduler.  
This structure exploits the insight that in lambda-Grids, 
congestion usually occurs at the end systems, especially 

the receivers.  The scheduler at the receiver manages 
across multiple flows, dealing with any congestion or 
contention and performing max-min rate amongst them. 
The receiver actively measures per-flow throughput, loss 
rate, and uses it to estimate bandwidth capacity.  It then 
allocates the available receiver capacity (can be limited by 
resource or the final link) across flows.  This allocation is 
done once for each control interval in Max-min fair 
manner.  Correspondingly, the senders adjust to transmit 
at the revised rates. This receiver-driven centralized rate 
allocation scheme enables GTP to significantly reduce 
receiver side packet loss and respond quickly to 
transitions (flows join or terminate).  

 
4. Protocol Evaluation 
 
 

4.1 Methodology 
 
We compare RBUDP, SABUL, GTP, and standard 

untuned TCP (PSockets[16] is used to generate parallel 
TCP streams). Throughout our experiments we use the 
latest available versions of the protocols (RBUDP v0.2, 
SABUL/UDT 1.1, and GTP prototype) and use 
emulations with Dummynet [24] delay router,  and 
measurements on TeraGrid [25] with two end points at 
SDSC (San Diego Supercomputer Center) and NCSA 
(National Center for Supercomputing Applications) to 
model a broad range of network structure.  The end-to-end 
bandwidth between SDSC and NCSA of each connection 
is 1Gbps (NIC speed limit).  Dummynet is used to 
introduce a range of various round trip delays to the 
experiments performed in local cluster environment (see 
Figure 2).   

 

 RBUDP SABUL/UDT GTP 
Initial Rate Specified by the 

User or NIC speed 
Slow start, exponential 
increment 

Negotiated by the sender and receiver 

Reliable Transmission Yes Yes Yes 
Multipoint-to-point No. No. Yes. 
Rate Adaptation No Rate-based with delay 

compensation  
Rate adaptation and estimation 

Intra-protocol Fairness Not Considered To some extent Max-min fairness among flows at the 
receiver side 

TCP Friendliness No Yes No. (could be extended to manage TCP 
flows together with GTP flows [22]) 

Transition Management No  Rate adaptation 
according to its AIMD 
law  

Explicit transition management to flow 
changes, and the ability of quick 
exploring available bandwidth. 

Implementation User level User level User level 



 
Figure 2: Experiment environment on a local 
cluster (dual 2.2GHz Intel Xeon processors, 2 
Gigabit NICs and 2GB memory). A Dummynet 
router is installed to introduce various round trip 
delays.  
 
     We consider several communication patterns for our 
experiments.  These are chosen to model our point-to-
point and multi-point-to-point applications’ expected 
behaviors.  They include:  
 

- Point-to-point with single flow (Figure 3a); 
- Point-to-point parallel flows (Figure 3b); 
- Converging flows (multiple senders and single 

receiver) with varied delay and bandwidth for each 
link (Figure 3c); 

- Flow dynamics where new flows join or existing 
flows terminate.  

 

 
Figure 3: Three data transmission patterns. (a) 
point-to-point, single flow; (b) point-to-point, 
parallel flows; (c) Multipoint-to-point, converging 
flows.  
 

Considering the requirements of high-performance 
data-centric e-science applications which are the focus of 
much of the work in grids and lambda-Grids, we have 
defined a representative set of performance metrics which 
we use. These metrics include:  

 

- Sustained throughput and loss ratio for a 10GB data 
transfer (Point-to-point and multipoint-to-point); 

- Intra-protocol fairness (the ratio of minimum to 
maximum flow throughput); 

- Inter-protocol fairness, and their interaction with TCP 
(the ratio of TCP throughput with and without 
without rate-based protocol); 

- Loss ratio in the first 50 RTT after flow arrival and 
throughput in first 50 RTT after flow departure. 

 

    These metrics measure throughput, fairness in several 
forms, and dynamic response of the protocols.  We 
present the results of our evaluation in the following 
subsections.  
 
4.2 Throughput and Loss Measurements 

 
To provide a performance baseline, we present an 

evaluation of the performance of rate-based protocols 
with two general metrics, sustained throughput and loss 
ratio.  In particular, we summarize for the three data 
transmission patterns (see Figure 3) on the TeraGrid and 
present the results in Table 2.  For all three scenarios we 
measure the sustained throughput of transferring 10GB 
data between SDSC and NCSA. The bandwidth on each 
single point-to-point link is 1Gbps, and the round trip 
delay is approximately 58ms.  

 
 

Table 2: Throughput and loss measurements 
made on the TeraGrid. (a) Single flow between 
NCSA and SDSC. (b) Parallel flows between the 
same sender and receiver from SDSC to NCSA. 
(c) Converging flow with three senders (two at 
NCSA and one at SDSC) to one receiver at SDSC.  
 

Our results show that for single flows, the three rate-
based protocols achieve much higher throughput than 
traditional TCP while maintaining a low-loss ratio. All 
three rate-based protocols also perform well when there 
are parallel flows between the same sender and receiver. 
While RBUDP and UDT achieve slightly higher 
throughput than GTP with their aggressiveness, it incurs 
the expense of a much higher loss ratio. GTP’s receiver-
based control scheme provides high throughput and a low 
loss ratio. For converging flows, all three rate-based 
protocols achieve high throughput, but loss rates vary 
over a range of 1000x, and GTP has the lowest loss rate 
by a large margin.  

 

                                                 
1 We are not able to measure instant TCP loss rate, due to the 
lack of root privileges on TeraGrid. 
2 Aggregate rate and loss rate vary for RBUDP and SABUL, and 
numbers listed are the average values of several measurements. 

  TCP RBUDP UDT GTP 
Average 

Throughput 
(Mbps) 

4.88 881 898 896  
(a) 

Single 
flow Avg. 

Loss 
unknown1 0.07% 0.01% 0.02% 

Aggregate 
Rate 

(Mbps) 

14.5 931 912 904  
(b) 

Parallel 
flows Avg. Loss unknown 2.1% 0.1% 0.03% 

Aggregate 
Rate2 

(Mbps) 

677 443 811 865 (c) 
Convergent 

flows 
Avg. Loss unknown 53.3% 8.7% 0.06% 

S R S R 

S1 

SN 

R 
. . .  
 

(a) (b) (c) 

Dummynet 
Router R 

S1 

S2 

Sn 

…  



Note that throughout all the experiments (in this and 
following subsections) RBUDP is configured with a 
capacity estimate for each flow of 1Gbps (their network 
interface speed), which is reasonable and close to the 
achievable bandwidth measured by Iperf [31] for the case 
of single connection on a dedicated link. While it may be 
argued that other fixed settings would produce lower 
packet loss rate, RBUDP provide no assistance in 
choosing such settings.  This is because unlike mode 
transport protocols, RBUDP includes no mechanisms for 
capacity estimatation or rate adaptation.   
 
4.3 Intra-protocol Fairness 

 
Providing stable and predictable data transmission 

service requires high speed protocols share resources 
stably amongst competing flows.  We first consider 
sharing amongst flows based on the same rate-based 
protocol, and use equal allocation (fairness) of the 
bandwidth on the link as the metric.  We use the following 
definition for fairness:  Given a set of N flow with rate 
allocation R = {r1, r2, …, rN}, where rmax and rmin are the 
maximum and minimum rates of those flows, we define 
the fairness index fR of flow rate allocation R as  

 

fR = rmin / rmax. 
 

       All of the protocols achieve good fairness for a single 
link with 4 and 8 parallel flows (see Figure 4).  
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Figure 4: Fairness index of 4 and 8 parallel flows 
on a single link.  
 

It is a longstanding research challenge (e.g. [32], [33]) 
to get converging flows using the same protocol, but with 
different RTT’s to achieve a fair rate allocation. Consider 
a scenario with two converging flows as shown in Figure 
3c.  We fix one flow’s RTT at 50ms, and vary the other 
flow’s RTT from 5ms to 50ms using Dummynet.  Figure 
5 plots the achieved fairness index for each of the rate-
based protocols.  
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Figure 5: Fairness index of GTP, UDT, RBUDP, 
TCP with two converging flows, where flow 1 has 
a fixed RTT=50ms and RTT of flow 2 varies from 
5ms to 50ms.  

 
TCP is well-known to deliver throughput inversely 

proportional to the RTT [34, 35], so the fairness index of 
TCP increases with RTT.  For UDT and RBUDP, a 
difference in RTT has a similar, but less pronounced 
effect, reducing the achieved fairness index. For UDT this 
is because a flow with shorter RTT adapts faster and thus 
increases its rate more quickly. For RBUDP, both flows 
will have the same sending rate, but the one with smaller 
RTT transfers retransmission bitmaps back more quickly, 
reducing the protocol overhead.  In contrast, GTP 
maintains a better fairness index (close to 1), across a 
range of RTT differences. This is because GTP explicitly 
allocates receiver bandwidth to flows at the receiver, 
enabling each flow to achieve a fair share of the 
throughput. 

 

4.4 Inter-Protocol Fairness 
 

Because applications and networks may employ many 
protocols, we consider inter-protocol fairness of these 
flows (and TCP) from two perspectives.  First, we study 
how the three rate-based protocols interact with each other. 
Second, we study the interaction of each of these 
protocols with TCP.   All of these experiments are 
performed using Dummynet. 

Scenario 1: Rate-based protocols on a single link. We 
start single RBUDP, UDT and GTP flows staggered in 
time as parallel flows on a single link (as in Figure 3b). 
First, UDT and GTP share the bandwidth efficiently, 
dividing it equally (see Figure 4).  When RBUDP is 
introduced, it captures less than an equal share while UDT 
and GTP continue to share the remaining bandwidth 
equally. All three rate-based protocols are thus able to co-
exist as parallel flows. This also shows that UDT and 
GTP have more aggressive implementations than RBUDP.  
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Figure 6: Three flows sharing the same sender 
and receiver. GTP and RBUDP start at time 1.8s 
and 3.5s, respectively. 
 

Scenario 2: Rate-based protocols with converging 
flows.  We initiate the three flows staggered in time and 
originating from distinct senders to a single receiver (the 
scenario in Figure 3c). Our results show that in this case, 
RBUDP takes bandwidth with GTP and UDT being largely 
shut out (see Figure 7).  This result can be explained by 
how the congestion at the end system (receiver) is resolved.  
Both GTP and UDT detect the congestion and reduce their 
flow rates in response to loss, while RBUDP continues to 
transmit at high rates, eventually driving GTP and UDT 
traffic to close to zero. 

0 2 4 6 8 10 12
0

500

1000

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

0 2 4 6 8 10 12
0

500

1000

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

0 2 4 6 8 10 12
0

500

1000

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

RBUDP

GTP

UDT

 
Figure 7: Three contending flows from three 
senders terminating at one receiver. GTP and 
UDT start at time 3s and 6s, respectively. 
 
   This also illustrates that to be fair to other flows, 
RBUDP needs to be modified to adapt its rate.  Again, 
such rate adaptation is intentionally not addressed in the 
design of RBUDP, as it is intended for other environments.  
 

Scenario 3: Rate-based protocols and TCP. We study 
how the operation of these rate-based protocols affects 

traditional TCP flows. Since web services and a widely-
used grid data transfer tool GridFTP [36]  are based on 
single or multiple TCP flows, our study also provides 
some insight to how these protocols will interact.  We 
measure TCP throughput in the presence of each of the 
rate-based protocols and compare to TCP running alone. 
An ideal ratio is 50% (equal sharing), with lower ratios 
indicating that the TCP traffic is suffering.   

Experiments with parallel TCP and rate-based protocol 
flows show good sharing properties (see Table 3) in local 
cluster environment.   On high bandwidth-delay product 
networks, the situation is different (see Table 4).  In the 
presence of RBUDP and GTP, TCP is not able to achieve 
the same level of the throughput.  This is because RBUDP 
and GTP are aggressive. TCP is only able to obtain an 
equal share of the network capacity with UDT because it 
employs a similar increase/decrease flow control 
mechanism as in TCP.  

Rate-based and TCP  

Rate-based TCP 

Single TCP 

Throughput 

Influence 

Ratio 

RBUDP 467Mbps 450Mbps 912Mbps 49.3% 

UDT 552Mbps 380Mbps 912Mbps 41.6% 

GTP 612Mbps 328Mbps 912Mbps 35.9% 

Table 3: RBUDP, UDT, GTP each runs with a 
single TCP flow, point-to-point on a 1Gbps link 
on the cluster.  
 
 

Rate-based and TCP  

Rate-based TCP 

Single TCP 

Throughput 

Influence 

Ratio 

RBUDP 771Mbps 2.1Mbps 24.3 Mbps 8.6% 

UDT 751Mbps 23.6Mbps 24.3Mbps 97.2% 

GTP 760Mbps 9.7Mbps 24.3Mbps 40.0% 

Table 4: RBUDP, UDT, GTP each runs with a 
single TCP flow, point-to-point on a simulated 
800Mbps Dummynet link with 30ms RTT.  
 
 

4.5 Transition Management 
 
     The ability to respond quickly and stably to rapid flow 
transitions (begin or end) is an important capability for 
transport protocols in high speed networks whose goal is 
to provide the maximum physical bandwidth to large 
flows. However, achieving maximum throughput, stable 
behavior, and rapid transitions is challenging.  For 
example, how to respond to the beginning and end of a 
multi-gigabit flow when the network is operating at 100% 
capacity? We use a three-stage scenario to evaluate the 
three rate-based protocols. We begin with a single flow 
(flow 1), and a second flow (flow 2) with 40ms RTT 
begins around 5 seconds later.  Flow 2 ends about 5 
seconds after beginning. The trajectories for each flow’s 



throughput are depicted in Figures 10-12.  The network 
link speed to the receiver is 800Mbps in the experiments. 
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Figure 10: Two RBUDP flows share the same 
receiver but from different senders. Flow 2 joins 
at 5 seconds, and terminates more than 5 
seconds later.  
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Figure 11: Two UDT flows share the same 
receiver but from different senders. Flow 2 
begins at about 5 seconds and ends 6 seconds 
later..  
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Figure 12: Two GTP flows share the same 
receiver but from different senders. Flow 2 
begins at around t=5, and terminates about 7 
seconds later.  
 

Of the three protocols, GTP achieves smooth 
transitions, but RBUDP and UDT both give erratic 
behavior.  RBUDP gives rapid transition at a flow 
beginning, but incurs high (30%) packet loss due to its 
lack or rate control. UDT’s sensitivity to packet loss and 
delay produces rate oscillations in our Dummynet 
environment and slower recovery speed after flow 2 
terminates. Because Dummynet is an emulation tool, there 
is the possibility that its behavior is not true to real 
networks.  For example, better transition and fairness 
results are reported in [37], where the link rate used for 
real measurement is low (100Mbps). GTP performance is 
the best amongst the three, producing clean transition and 
quick rate adaptation to flow changes. GTP has a 
fundamental advantage in its centralized receiver-based 
rate allocation scheme, providing a global perspective 
across flows, and thereby enabling dramatically better 
network performance.  

  To quantify the response to flow transitions, we define 
two additional performance metrics. First, we use the loss 
ratio in the first 1 second (50 RTTs) after flow 2 begins to 
characterize each protocol’s response to new flows. 
Second, we calculate the throughput of flow 1 during the 
first 1 second (50 RTTs) after flow 2 ends, and its long-
term sustained throughput without flow 2, and utilize the 
ratio of these two throughputs to characterize the 
protocol’s ability to return bandwidth to flow 1.  These 
performance metrics are shown in Table 6.   

 
  RBUDP UDT GTP 

M1 Loss Ratio 29.3% 17.7% 0.7% 
Throughput 
after flow 2 
leaves 

740Mbps 359Mbps 687Mbps 

Sustained 
Throughput 

793Mbps 787Mbps 773Mbps 

 
M2 

Ratio 0.93 0.45 0.88 
Table 6: RBUBP, UDT, GTP each runs with a 
single TCP flow, point-to-point on a simulated 
800Mbps Dummynet link with 30ms RTT.  
 

GTP achieves good results for both metrics. RBUDP 
does not adjust its transmission rate, so huge losses are 
incurred when flow 2 begins, and flow 1 fills the 
bandwidth fast when flow 2 ends. We see oscillations of 
UDT along with the introduction of flow 2 in our 
Dummynet environment.  
 
5 Summary and Future Work 
 
    Lambda-Grids involve a new set of communication 
challenges where networks have plentiful bandwidth but 
limited end-system capacity. This change moves 
congestion from the internals of the network to the 
endpoints and makes new communication patterns such as 
multipoint-to-point and multipoint-to-multipoint 
important.  We study the performance of three promising 



rate-based protocols (RBUDP, UDT, and GTP) in a wide 
range of different circumstances. Our results show that all 
three rate-based protocols can achieve high performance 
for point-to-point connection with single or parallel flows.  
However, when converging flows are considered, the 
situation is quite different. With its receiver-driven 
architecture and rate allocation across flows, GTP 
outperforms RBUDP and UDT providing lower loss, 
higher throughput, lower CPU overhead, and rapid, stable 
transitions as flows begin and end.  These results suggest 
that receiver-driven architectures should be more broadly 
studied for lambda-Grid transport protocols. 
 
Future Work Major challenges remain for rate-based 
protocols in lambda-Grid environment. First, we need to 
explore more techniques for end system contention 
management which is critical when networks are fast 
enough to move congestion to the end systems.   Second, 
implementation techniques which are efficient and incur 
low CPU overhead are needed to make these new 
transport protocols usable.  Third, a wide range of 
challenges remain in achieving  fast and clean transition 
in response to network changes, and inter-protocol and 
intra-protocol fairness (especially TCP friendliness). 
Fourth, we will explore integrating TCP traffic estimation 
and management into the frame work of GTP, reserving a 
bandwidth share for TCP, so as to provide a satisfactory 
level of quality of service.  Finally, it is a critical and 
challenging research topic to model these rate-based 
protocols analytically, including a formal proof of their 
properties (e.g. convergence, fairness, TCP friendliness, 
etc.). 
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