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Abstract

Since the publication of the famous Cooley Tukey algorithm for the Fast Fourier
Transform (FFT), many algorithms have been introduced for computing DFTs effi-
ciently. While some of the algorithms had lower operation count for certain transform
sizes others were just the rescheduling (implementations) adapted to target architec-
tures through optimization of memory access pattern. A naive implementation of the
recursive Mixed Radix algorithm would require an additional sorting step to bring the
output back "in-order". Various algorithms have been suggested that perform this
sorting (digit-reversal) inside the FFT "butterfly” using the output vector. Perform-
ing the computation "in-place", i.e. without a separate output vector or temporary
array, can be useful when the input vector needs to be overwritten with the result.
It also makes the computation of larger size transforms feasible when the memory is
limited. But computing "in-place and in-order" FFT poses a very difficult problem
on hierarchical memory architectures where data movement can seriously degrade the
performance. In this paper we present the recursive formulation of self sorting in-place
FFT algorithm that adapts to the target architecture. When an efficient in-place, in-
order execution is not possible, we show how efficient schedules can be constructed that
use minimum work-space to perform the computation. To express and construct the

FFT schedules, we present the Context Free Grammar that generates a language called



FFT Schedule Specification Language. We conclude by comparing the performance of
our in-place in-order FFT implementation with that of other well known FF'T libraries.
We also present a performance analysis of the performance difference between the cache

oblivious execution of out-of-place and in-place FFTs.

1 Introduction

The Fast Fourier Transform (FFT) is one of the most widely used algorithms in many fields
of science and engineering, especially in the field of signal processing. Since 1965, various
algorithms have been proposed for computing DFTs efficiently. However, the FFT is only
a good starting point if an efficient implementation exists for the architecture at hand.
Scheduling operations and memory accesses for the FFT for modern platforms, given their
complex architectures, is a serious challenge compared to BLAS-like functions. It continues
to present serious challenges to compiler writers and high performance library developers for
every new generation of computer architectures due to its relatively low ratio of computation
per memory access and non-sequential memory access pattern.

FFTW[8, 7], SPIRAL[13, 6] and UHFFT[12, 11, 1, 2] are three current efforts addressing
machine optimization of algorithm selection and code optimization for FFTs. SPIRAL is
a code generator system that generates optimized codes for specific size transforms. Both
UHFFT and FFTW generate highly optimized straight-line FFT code blocks (micro-kernels)
called codelets, at installation time. These parametrized code blocks adapt to microprocessor
architecture and serve as building blocks in the computation of a larger size transform. The
final optimization, specific to a FFT problem, is performed at run-time by searching the
best schedule (plan) from among an exponential number of factorizations.

Once the factors are determined, the FFT computation can be carried out in a recursive
cache oblivious fashion, which derives naturally from the Cooley Tukey Mixed Radix Algo-
rithm [5]. For an input vector x of size N, where N = r x m, the recursive Cooley Tukey

formulation of FFT can be written as:



X = (W, @ L) TN (I, ® W, )y, x

where TYis a diagonal “twiddle factor” matrix and Iy ,is a mod — r sort permutation
matrix. Although these algorithms reduce the complexity of DFT computation from O(n?)
to O(nlogn), the resulting vector is in “digit-reversed” order, requiring non-trivial amount
of work to bring the output back in order. Stockham’s Autosort framework[10] performs the
sorting inside the FFT “butterfly”, thereby avoiding an explicit reordering. Recognizing the
matrix multiplication properties, the permutations can be pushed at the start of computation

[16], which can be performed within the first rank of butterfly if additional work-space or

output vector is available, as illustrated in Figure 1. This is the most commonly used
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Figure 1: Butterfly showing the execution of Self-sorting out-of-place FFT of size N = 8.
The transform is stored to output array in “digit-reversed” order in the first rank.

algorithm for the self sorting out-of-place FFT computations in both FFTW and UHFFT.
Performing the computation "in-place", i.e. without a separate output vector or temporary
array, poses a very difficult problem for self-sorting FFTs. For most transform sizes, data
reordering is unavoidable in computing in-place and in-order FFTs due to lack of a separate
work-space. For sizes that can be factorized in co-prime numbers, Prime Factor Algorithm

(PFA) performs the computation that is both self sorting and in-place [3, 18, 17], without



requiring an additional work-space, using special rotated DFT modules (PFA codelets). For

more prevalent sizes such as powers of two, [14] and later [19, 4] developed the algorithm

that was both self sorting and in-place. The algorithm avoids an explicit sorting of the data
logn

by performing implicit ordering inside the first {TJ ranks of FFT butterfly computation

as shown in Figure 2. However this algorithm works only if the factorization of N is a
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Figure 2: Butterfly showing the execution of Self-sorting in-place FFT of size N = 8. The
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result is ordered in the first { J = 1 ranks by performing partial transposed codelet

transforms on square blocks[19, 4].

“palindrome”; i.e., N = rxm xr or N = r xr, which is always possible for powers of 2 sizes.
The algorithm was later formulated by [9] in a recursive fashion that is suited to parallel and
vector architectures. In this paper, we present the recursive formulation of the algorithm
that is suited to hierarchical memory architectures because it maintains both temporal as
well as spatial locality. We discuss the efficiency of our implementation by comparing it with
an alternate factorization strategy. In fact, many different schedules could be constructed to
adapt to different architectures. In order to ensure performance portability and adaptability,
we have implemented many alternative algorithms in UHFFT. To that end we have designed
a language that is used to construct these schedules at run-time without having to write

specific implementations for different FFT sizes.



Expressing the FFT Schedules

Before we discuss the various solutions to the computation of in-place and in-order FFTs,
we need to be able to express them in a compact representation. “ Unfortunately, the sim-
plicity and intrinsic beauty of many FFT ideas is buried in research papers that are rampant
with vectors of subscripts, multiple summations, and poorly specified recursions. The poor
mathematical and algorithmic notation has retarded progress and has led to a literature of
duplicated results”[10]. The most commonly used, “Kronecker product” formulation of FFT
is an efficient way to express sparse matrix operations. SPIRAL[13], generates optimized
DSP codes using a pseudo-mathematical representation that is based on the Kronecker
product formulation. FFTW [8], uses an internal representation of DFT problems using
various data structures, i.e., I/O tensors and I/O dimensions etc. Although they offer an
efficient design to solving a complex problem, these representations do not provide sufficient
abstraction to the mathematical and implementation level details of FFT algorithms. One
of the standard ways to visualize a FF'T problem is through a signal flow diagram called the
“butterfly” representation. This representation has been adopted across the board by various
disciplines of science. However, visualizing large FF'T problems through the butterfly is not
practical. In this paper we present a language called FFT Schedule Specification Language
(FSSL), which is generated from a set of context free grammar productions. The grammar
provides a direct and compact translation of the FFT butterfly representation and is easy
to understand for computer scientists.

The grammar of FSSL is given in Section 2; where we briefly mention the design overview
of UHFFT. We discuss our cache oblivious factorization of self-sorting in-place FFT algo-
rithm in Section 3. And in Section 4, we compare the performance results of our imple-
mentation in UHFFT with that of FFTW and Intel’s MKL library. Both these libraries are

known to perform well on hierarchical memory architectures.



2 UHFFT

The UHFFT system comprises of two layers, i.e., the code generator (FFTGEN) and the run-
time framework. The code generator generates highly optimized small DFT, straight line
“C” code blocks called codelets at installation time. These codelets are combined together
by the run-time framework to solve large FFT problems on Real and Complex data. Block

diagram of UHFFT run-time is given in Figure 3.
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Figure 3: UHFFT2 Block Diagram. Codelets specified by user are generated at installation
time. At run-time the code blocks are used by planner to compose best FFT computation
schedules. UHFFT?2 supports Intel’s DET APT [15] with some extensions.

Code Generator

The FFT library contains a number of codelets, which are generated at installation time.
Each codelet sequentially computes a part of the transform and overall efficiency of the
code depends strongly on the efficiency of these codelets. Therefore, it is essential to have a
highly optimized set of DFT codelets in the library. Apart from the normal DFT codelets, we
have implemented a few specialized sets of codelets that are used in the FF'T computation at

various stages of the algorithm. Two types of such codelets that are relevant to our discussion



of self-sorting in-place algorithms are: the “coupled transposed codelets” and the “rotated
PFA codelets”. The code generator adapts to the platform, i.e., compiler and hardware

architecture by empirically tuning the codelets using iterative compilation and feedback [1].

Planner

Each FFT problem is identified by a DFTi descriptor [15], which describes various charac-
teristics of the problem, i.e., size, precision, placement, input and output data type, number
of threads etc. Once the descriptor is submitted, planner selects the best plan, which may
be used repeatedly to compute the transforms of same size. Our current implementation
supports two strategies for searching the best plan. Both strategies use the dynamic pro-
gramming to search the space of possible factorizations and algorithms, given by a tree as
shown in Figure 4. The first approach called Context Sensitive Empirical Search, empiri-
cally evaluates the sub-plans. To avoid re-evaluation of identical sub-plans, a lookup table is
maintained to store their performance. In the second approach, called Context Free Hybrid
Search, the cost of search is significantly reduced at the expense of quality of plan. In this
scheme, the cost of a subplan is estimated by empirically evaluating only the codelet that
is encountered in a bottom up traversal. In this paper, we use the first approach because it

generates good quality plans at reasonable cost of search.

Figure 4: Search Space for Size 16 FFT (out-of-place). There are a total of 8 possible plans
shown here. Codelets are called with different input and output strides at different levels of
tree (recursion) also known as ranks.



FFT Schedule Specification Language (FSSL)

An execution plan determines the codelets that will be used for the computation and also
the order (schedule) in which they will be executed. A FFT plan is described in concise
language using the grammar given in Table 1. It allows different algorithms to be mixed
together to generate a high performance execution plan based on properties of the input
vector and its factors. Indeed, by implementing a minimal set of rules, adaptive schedules

could be constructed that suit different types of architectures.

Table 1: FFT Schedule Specification Language grammar rules.
# CFG Rules
ROOT—MULTID_FFT | SMPFFT
MULTID_FFT—FFT | [ NDFFT , FFT ]
NDFFT——NDFFT , FFT | FFT

7 SMPFFT— ( mr pZ BLOCK , MULTID_FFT ) Z
8-9 FFT—FFT mr MODULE | MODULE
10-11 | MODULE——CODELET | ORDERED_FFT

1-
3-
5-

D N

12 | [ rader , FFT 1 7Z

13 ORDERED_FFT—( inplaceZ, FFT )

14 | C outplaceZ, FFT )

15 | ( pfaZ, PFAFFT pfa ROT_CODELET)

16 CODELET—n € DFT codelets
17 ROT_CODELET—n € Rotated DFT codelets
18 BLOCK—b Z : Z

3 Self Sorting In-Place FFT Implementation

Our implementation of self-sorting in-place FFTs is based on the algorithms given in [19, 4].
These algorithms factorize the given FFT of size N in a palindrome to couple the sorting
step with the butterfly computation. However, many alternative factorizations exist for
a given transform size that fulfill this requirement. Figure 5 illustrates two factorization
schemes for an example of size 48 transform. Even though the two factorizations ultimately
use the same factors (codelets), their index mapping or data access pattern is quite different.
An illustration of the memory blocking resulting from the two schedules is given in Figure 6.

Notice that the scheme (a) recurses outward by first selecting the largest square factors, while
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Figure 5: Two factorization schemes that form a palindrome. Factoriza-
tion  scheme (a)  (inplace48, (inplace4, 2mr2)mr3mr(inplace4, 2mr2)) and  (b)
(inplace48, 2mr(inplacel2, 2mr3mr2)mr2). Assuming, only two codelets have been

generated in the library, namely {2, 3}.

(inpl[aociéﬁlmﬁ) | (inplace4,2mr2) (inplace12,2mr3mr2)
4: [0:4:44] [0:1:11]
(inplace4,2mr2) | (inplace4,2mr2) 4 (inplace12,2mr3mr2)

[1:4:45] 2/ Radix 3 o [1:4:45] Radix 2 [12:1:23] Radix 2

- adix J Radix

- 2] [0:1:47] ) 0:1:47 7 [0:1:47
(inplaced,2mr2) |/ &\ J (inplaces,2mr2) OTA4TT /8 [ inplace12,2mr3mr2) [0:1:47]

[2:4:46] [2:4:46] [24:1:35]
(inplace4,2mr2) ! \| (inplace4,2mr2) (inplace12,2mr3mr2)

[3:4:47] [3:4:47] [36:1:47]

(a) (b)

Figure 6: Data Access pattern using the two factorization schemes shown in Figure 5. Each
block shows the vector indices accessed in Matlab vector representation.



scheme (b) recurses inward by choosing the largest factor to be in the middle of two small
factors. The outward recursion generates larger blocks that can be executed independently
or in large vectors at unit strides. However, in order to maintain spatial locality, the blocks
will need to be executed in a breadth first fashion thereby reducing the potential for temporal
locality between successive ranks. On the other hand the inward recursion allows better
blocking that maintains both temporal and spatial locality in a cache oblivious manner. In
UHFFT, the planner uses inward recursion strategy to factorize and execute the self-sorting
in-place algorithm after finding the odd factors to put in the middle rank. Following, we
give the simple steps that the planner follows to select the best palindrome factorization of

size N:
1. Find the factors with odd exponent to construct the middle rank.

(a) Factorize size N in powers of prime factors, i.e., N = [[ p;*, where all the factors
=0

p; are co-prime and r; is the exponent.

(b) Based on the above factorization, divide the size N = ¢ X s in two sets ¢ = H p;
and s = A]_[Opfi, where ¢e; is even and o; is either 0 or 1. =

i

(c) Construct the largest possible PFA plan p,,:q for middle rank of size n,;q, from
all factors of s and optionally only pfx'jfactors of q.

(d) If all the factors of s were not used (rotated codelets are not generated for all
prime factors), then the middle rank will be solved using extra buffers.

(e) If (c) is true then construct the best out-of-place planp,,;q using one of the search

schemes.

N
Nmid

2. Finally, construct the rest of the in-place plan of size by recursively factorizing

it inwards:

N = mo X NMymid X Mo

= N =179 X M1 X Nypig X M1 X Tg
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3. The search methods implemented in UHFFT can be used to find the best inplace plan:

p = (inplace N, romrrimr . .. mr p,,;qmr . . . Mrr{mrro)

In the above algorithm we start by finding the odd factor to fit in the middle of palindrome.
Since PFA algorithm is both self sorting and in-place, we try to construct the middle rank
from co-prime factors. In case, there are remaining factors that do not have even exponent,
we will need to use a self-sorting out-of-place algorithm that would use a work-space equal
to the size of middle rank. Once the middle rank is factored, rest of the factorization follows
recursively in a straightforward manner. To illustrate the algorithm, lets take an example of
size N = 48. If the library contains rotated codelet of size 16, then the largest PFA plan p =
(inplaced8, (pfad8, 3pfal6)) of size 48 is constructed which is both self sorting and in-place.
Assuming that the rotated codelet for size 16 was not generated at installation time. In that
case, the plan will use the middle rank of size 12: p = (inplace48, 2mr(pfal2, 3pfad)mr2).
In the above discussion, we have omitted the details of twiddle factors multiplication,
which is performed after each rank. In UHFFT, we have implemented specialized codelets
that perform the twiddle factor multiplication inside the codelets thereby avoiding the ex-
tra loads and stores. The loads and stores are further reduced by implementing “coupled
codelets”[19] that perform r small DFTs of size 7. These square blocks r? are then transposed
using registers and written back to the input vector. Notice that this kind of optimization
is not possible if outward recursion is used because for a large size N = m X r X m, square

matrix m x m will be too large to fit in the registers.

4 Results

We performed the benchmarking of our self-sorting in-place FFT implementation in UHFFT
on Itanium 2 machine to compare its performance with FFTW and Intel’s Math Kernel

Library (MKL). The specification of the experimental setup is given in Table 2. The perfor-
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Table 2: Experimental Setup
Feature Description
Architecture | Itanium 2 1.5 Ghz, Cache: 16K /256K /6M, FP Registers=128
CacheLine: 64B/128B/128B, Associativity: 4/8/12

Compiler Intel C Compiler icc 9.1, Flags=-03
Libraries UHFFT-2.0.1beta, FF'TW-3.2alpha, MKL-9.1
Data Sets Powers of 2, Small Co-prime factor sizes, Mixed

mance numbers, in this paper, are derived from the total execution time of the FFT problem.
The performance measure, Million Floating Point Operations Per Second (MFLOPS), is cal-
culated from the execution time and commonly used algorithm complexity of FFT, i.e.,
5N log N. The results were collected on double precision complex FFT of three sets of sizes

ranging from 2 to 16M.

UHFFT vs FFTW vs MKL

UHFFT and FFTW are open source adaptive libraries for computing FFTs efficiently. In-
tel’s MKL is the vendor library that is particularly tuned to Intel’s architectures. All the
three libraries support both in-place and out-of-place executions of FFT. Since MKL is
a vendor library, it wasn’t possible for us to find out how the in-place FFTs were being
executed internally. Hence, on most occasions we can not provide a detailed analysis of
their performance. Figure 7 gives the performance comparison of our implementation of
self sorting in-place FFT computation with that of FFTW and MKL for transform sizes
that are powers of two. For very small sizes (2 — 2°) the FFT is performed within registers
using optimized codelets, which is why all the three libraries perform equally well. One of
the main differences between our strategy in UHFFT and the other two libraries is that
FFTW (and quite possibly MKL) would trade memory for performance; extra buffers can
be used for improving the performance of code. On the other hand, UHFFT uses buffers
only when an in-place in-order plan does not exist. Notice that for sizes larger than Level 2
cache capacity, i.e., 24, UHFFT performs better than FFTW. Indeed, for data (N = 218)

that do not fit in any level of cache, our implementation performs consistently better be-
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Figure 7: Powers of 2 Sizes. Complex In-place In-order FFT Computation. UHFFT does not
use any extra buffers (except the input vector and twiddle factors) in the in-place execution
of powers of 2 sizes.

cause of superior cache management. Another advantage that UHFFT has over the other
two libraries is its support for fast execution of sizes that have co-prime factors. Prime
Factor Algorithms are known to have lower complexity and produce ordered transforms. In
Figure 8, we computed the in-place FFT of sizes that have co-prime factors. Both FFTW
and MKL, do not support Prime Factor Algorithm and hence they have relatively lower
performance on sizes with co-prime factors. In Figure 9, we compared the performance of
the three libraries on randomly sampled sizes that have both powers of 2 and prime factors.
These results show that UHFFT is equally good at performing in-place self-sorting FFT on

non-powers of two sizes, which are less straightforward to factorize in a palindrome.

In-place vs Out-of-place FFT performance

We compared the performance of our in-place implementation of self sorting FFT schedules
with that of out-of-place execution. Even though in-place schedules perform many small
transposes, overall their performance is quite similar to out-of-place executions as shown in

Figures 10 & 11. The reason that there is no drastic degradation of performance in in-place
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Figure 8: Sizes with small co-prime factors. Complex In-place In-order FFT. UHFFT uses
PFA algorithm, which is known to have lower complexity and produces ordered results.
FFTW and MKL are not tuned for the sizes that have co-prime factors.

execution is that the transposes are performed inside the codelets, using registers only. This
avoids the extra cost of loads and stores when the re-ordering is done out of cache. The
performance of out-of-place schedules starts falling slightly earlier than in-place schedules
around the L3 cache size mark (2'®), because of its extra bandwidth requirement (both

input and output vector are brought in the cache).

5 Conclusion

Computing self-sorting in-place FFTs poses a challenge when the execution needs to be
carried out without use of additional work-space. The re-ordering performed inside the but-
terfly can seriously degrade the performance on current hierarchical memory architectures if
the problem is not carefully factorized. In this paper we presented a recursive cache oblivi-
ous formulation of self-sorting in-place FFT algorithm that is suited to hierarchical memory
architectures. Despite requiring the re-orderings to be performed in-place, the performance

of self sorting in-place FFT was shown to be at par with out-of-place FFT. This is achieved
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Figure 9: Sizes with prime as well as powers of two factors. Complex In-place In-order FFT
Computation. Not all the sizes presented here result in palindrome of factors, which means
that small buffers may be required to compute in-place in-order FFT efficiently.

through careful factorization of the problem such that the partial ordering can be performed
in registers when the data has already been loaded for butterfly computation; this avoids
extra loads and stores. To express the several FFT algorithms and factorizations, we pre-
sented a language, FFT Schedule Specification Language (FSSL), that defines the schedules
in compact representation. To evaluate and validate the efficacy of our recursive strategy,
we compared the performance of our implementation with the in-place in-order FFT perfor-
mance of FFTW and Intel’s MKL on Itanium 2. For Powers of two sizes, UHFFT performs
competitively against FFTW, without using any extra buffers. For Non-Powers of two sizes,
the performance is much better than that of the other two libraries because UHFFT planner

adaptively selects PFA algorithm for sizes that have co-prime factors.
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