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Abstract

Statistical Methods for Mitigating Resource Provisioning

Dynamism in Large-Scale Batch-Scheduled Systems

Daniel C. Nurmi

Users of high performance computing (HPC) systems generally rely on con-

currency to achieve performance. Modern users have the ability to draw from a

vast array of distributed resources due to the ever increasing quality of connecting

software and networks. However, as the pool of resources available to users grows,

so does the level of resource heterogeneity and performance response dynamism.

Historically, users request access to a super-computer’s resources by submitting

their work and waiting until the system has enough free resources to satisfy the

user’s request. However, few facilities exist that cater to the substantial class of

users who require that their work is completed by a specific time, who require

that their resources are available during a specific time interval, or who require

simultaneous access to multiple systems.

In this dissertation, we discuss new statistical methodologies to manage re-

source performance dynamism, and abstractions that build upon these method-

ologies to hide resource heterogeneity. In particular, we will show how we have

successfully developed the methodologies and abstractions necessary to manage

and hide provisioning delay of HPC resources.
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Chapter 1

Introduction

Computational scientists from all disciplines depend on large-scale, high per-

formance computing (HPC) and data storage resources to further their science.

Modern scientific applications vary in structure, but for the most part share in

common the need for a variety of resources, including large collections of com-

pute resources connected via high performance networks, complex data storage

and movement facilities, specialized rendering and visualization systems, and spe-

cial purpose scientific instruments. While many applications require one or few

general types of resources to execute, an increasing number draw from as many

available resources as possible, during the lifetime of the application, in order to

achieve high performance.

Typically, high performance resources are provisioned and controlled by in-

dividual organizations located at top class Universities, National Laboratories,

and other Government funded organizations. While many of these organizations
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Chapter 1. Introduction

promote an open policy when it comes to granting access of the resources to the

scientific community, they typically each manage and configure local resources

independently, without adhering to any centralized policies or resource manage-

ment schemes. There are many reasons why HPC resources are managed in this

way. First, the hardware and software advances that today comprise HPC sys-

tems changes so rapidly that maintaining a centralized management scheme would

hobble the ability to keep our high performance systems up-to-date, since keeping

independently managed, distributed HPC resources homogeneous is infeasible.

Second, there is significant anecdotal evidence that resource heterogeneity pro-

motes experimentation and discovery (the successful transition from HPC centers

primarily hosting specialized super-computing resources to HPC systems com-

posed of large collections of commodity components being a good example).

As the number of high performance resources has increased and interconnecting

networks improved dramatically in speed, computational scientists and systems

engineers alike became increasingly interested in using multiple distributed high

performance resources simultaneously but, due to the lack of central management,

this task proved to place a substantial burden on users. Thus, in the mid-to-late

1990s, the concept of Meta-computing (later termed Grid-computing) was intro-

duced, based around the idea that individual resources would remain individually

managed as long as standardized interfaces existed between them, allowing global
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Chapter 1. Introduction

entities, be they users or centralized resource managers, to control large-scale, fed-

erated collections of high performance resources. The vision of Grid-computing, if

realized, allows a computational scientist to easily develop an application and then

draw computational and data power from the “computational grid” just as our

day-to-day appliances draw electrical power from the “power grid”. There have

been significant strides made toward achieving this goal, but many challenges still

remain before the vision can be truly realized.

In this dissertation, we identify and provide a solution to a significant problem

that, although stated as a first class requirement in principle Grid-computing lit-

erature [10], has remained unsolved for over a decade; methodologies for providing

time sensitive resource provisioning services. Most HPC sites today require scien-

tists to formulate requests for resources in the form of a job, where the specifics

of required resources are specified along with instructions for how to execute the

scientist’s application. Due to the fact that HPC resources are commonly over-

committed, these job requests are often queued until the requested resources be-

come available. We observe that the amount of time that passes between when

a job is queued and when it is executed is a highly variable and can be a sub-

stantial fraction of the overall turnaround time of the job (queue time plus the

actual application run time). Job queue delay uncertainty blocks scientists from

effectively planning their experiments, and is a major obstacle to users who need

3



Chapter 1. Introduction

to place strict time requirements on the execution of their applications. Thus, the

question that we address in this dissertation is;

Is it possible to predict and hide, through abstraction, provisioning delay vari-

ability in large scale HPC systems?

Our approach to this problem is to first gather and analyze historical data

of observed job queue delays, use this data to make predictions on the future

queue delay of individual jobs, and to finally create abstractions that are famil-

iar to scientists that use these predictions in order to provide two services that

are currently unavailable to the general HPC community. We have developed a

methodology for predicting, in real time, bounds on future job delay that has

been implemented as a general prediction service. Atop this service, we have built

an abstraction for provisioning resources at a single HPC site during a specified

time interval, and another abstraction for provisioning resources at multiple sites

simultaneously. Thus, the main contributions of this work are as follows;

• We provide a new statistical methodology for predicting probabilistic up-

per bounds on resource provisioning delay, which plays a significant role in

determining overall HPC application turnaround time.

4



Chapter 1. Introduction

• Using the methodology, we provide two new abstractions that provide HPC

users and tools with probabilistic services for provisioning resources with

strict time constraints.

In the next Chapter 2, we concretely define the problem that this dissertation

will address. In Chapter 3, we describe our general approach to the problem.

Chapter 4 details our prediction methodology and results, followed by Chapters 5

and 6, which describe two new abstractions and experimental verification of

their effectiveness on HPC systems in operation today. Finally, we conclude in

Chapter 8 and discuss related literature in Chapter 7.

5



Chapter 2

Problem Statment

Most production HPC centers serving the scientific and engineering research

communities use space-sharing [19] to manage the allocation of compute and data

resources to user programs. Users run their programs on a given HPC machine by

submitting them to a “batch scheduler” as textual representations, each specifying

a program to be run and its particular resource requirements. When executed,

each program (termed a “job”) is given exclusive access to a partition of the

machine for its execution duration. Thus jobs share the space of available proces-

sors within a machine, but each processor is not time-shared among competing

programs submitted by multiple users.

Space sharing (as opposed to time sharing) maximizes the efficiency of re-

source usage when a parallel program is executing [28, 36, 16, 26]. However, to be

granted exclusive access to a resource partition, user jobs are managed in batch

mode. That is, they are submitted to a batch scheduler and then held in a queue
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Chapter 2. Problem Statment

until a sufficient number of processors become available to run the job at the head

of the queue. The queue-scheduling discipline implemented in a production set-

ting is rarely, if ever, as simple as first-come-first-served (FCFS). Instead, system

administrators control scheduling priority through a policy interface, specifying

how jobs waiting for execution should be chosen when sufficient resources within

the machine become available. These policy specifications, in practice, are quite

complex, site-specific, and dynamic, since they must balance user experience (job

turnaround time, fairness) with changing site priorities (project demonstrations,

paper deadlines for important users, etc.) while at the same time keeping over-

all resource utilization high. Moreover, even when there is an attempt to make

site management software loosely globally synchronized, each machine has its own

distinct runtime scheduler algorithm and set of ever-changing policies. That is,

the administrative mechanisms governing these systems are as heterogeneous and

dynamic as the workload experienced by the systems themselves.

In most of these settings, each user (represented by a unique per-site user

identifier) is associated with one or more accounts each funded with an allocation

of per-node occupancy time. When a user submits a job to the local batch sched-

uler, they must specify which account to charge when the program is eventually

allocated machine resources for execution (on some systems, the scheduler may

choose a default for the user if none is specified). There is no charge made to the

7



Chapter 2. Problem Statment

account while the job is waiting in queue, nor is any form of refund or compen-

sation granted for jobs that wait for overly long periods. It is only the execution

occupancy time that is decremented from the account once the program begins

executing. If the account is exhausted, the currently executing jobs charging the

account are terminated. Note that in most settings the “aspect ratio” of a parallel

job submitted by a user is specifically not considered in the accounting subsystem.

That is, a 1-node job executing for 100 hours decrements the user’s account by

the same quantity that a 100 node job executing for 1 hour does: 100 node-hours.

Typically, site administrators configure their batch systems to employ a simple

fundamental scheduling policy based on techniques such as first-come-first-serve

(FCFS), and then perform further tuning, taking into consideration specific job

and/or user priority goals that are unique to each site. A nice overview of current

parallel job scheduling techniques is provided in [21] and a more comprehensive

survey for past methods is provided in [17]. In particular, most sites currently use

some form of backfilling [34, 40, 45] to maintain utilization in the presence of large

resource requests without introducing starvation. Utilization, in this context, is

measured in terms of node occupancy. Once a user’s job is allocated a set of

nodes, the system does not (and almost certainly cannot) determine whether the

work done by the program is useful – only that an account should be charged

for the occupancy. To simplify this accounting process, and also to ensure that a

8



Chapter 2. Problem Statment

scientist’s application is not being effected by other work in the system, queuing

policies do not allow job pre-emption (once a job is granted access to resources, no

other job can interrupt that job) or a general facility for application checkpointing

(jobs that start typically expect to run to completion).

If large node counts are needed by a job, the machine must “drain” until

a sufficient number of nodes become available (recall that pre-emption and/or

checkpointing is typically not available). To avoid the potential loss of utilization

that results during a drain, each job can specify a maximum execution time,

past which it is willing to be terminated. A backfilling scheduler will use these

execution limits to schedule jobs from farther down in the queue onto draining

nodes such that they do not prolong the waiting time of a job causing the drain

that is ahead of them.

To give users some measure of predictability and control, many centers config-

ure different queues with partially described scheduling priorities to allow users to

make some form priority-motivated decision. For example, a “short” queue may

accept jobs that have maximum run times no greater than 15 minutes which are

given preference during backfilling. Users can use this information to gain faster

turn-around for small amounts of work, but the exact degree of preference is typi-

cally not revealed, and local administrators change the specific policy parameters

without announcement (sometimes frequently).

9
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For these reasons, but also because large-scale parallel programs have widely

varying execution times [8, 29] and also because HPC resources in research settings

tend to be extremely overcommitted, user jobs experience highly variable queuing

delays [4, 11, 12, 60]. At present, for example, queuing delay for jobs submitted

at many production HPC centers may vary by several orders of magnitude 1.

This degree of variability is often of great concern to the general user population.

Indeed, the queue delay experienced by a job may exceed (by several orders of

magnitude in some cases) its execution time. As a result, users with very efficient

and highly tuned programs may experience unexpectedly long turnaround times

because their jobs had to wait in queue.

The degree of variability found in queue delay is the root cause of a number

of significant problems that users face when attempting to plan and provision

resources for application execution cycles. For instance, if a user has immediate

access to a small number of local resources and access to much larger batch re-

sources, it is not immediately clear which system would be able to complete the

application faster from submit time to execution completion time. Even through

the larger system will process the application much faster than the local resource

once the resources are provisioned, the delay imposed by batch queues can out-

weigh the benefits of running on the larger, faster machine. Further, if the user

1For evidence, see Feitelson’s workload archive at http://www.cs.huji.ac.il/labs/
parallel/workload.

10



Chapter 2. Problem Statment

imposes a hard deadline by which their application must complete, variability in

batch queue delay makes it implausible to assert, with any useful certainty, that a

job will complete before a deadline. Another obstacle that batch queue delay cre-

ates becomes apparent when a user requires access to resources during a specific

time interval. This occurs when applications are tied to some real-time event like

gathering data from weather stations, when visualization resources must be uti-

lized to steer an application during it’s execution, or in any other case where the

user must plan in advance the availability of resources as part of their application.

Finally, batch queue delay prevents users from co-allocating, or provisioning mul-

tiple sets of resources at different sites. Indeed, in [10], which outlines basic tech-

nical requirements that need to be addressed before the vision of Grid-computing

is fully realized, the authors point out that a resource co-allocation service must

exist, but for over a decade such a service has remained unavailable to the general

HPC community.

Predicting the time an individual job will wait in a given queue when it is

submitted has been the subject of previous research [11, 12, 60] but reliable and

accurate predictions of the delays experienced by individual jobs (until recently)

have remained elusive. Thus users of applications that depend upon specific time

constraints currently find it difficult or impossible to plan effectively to meet ap-

plication deadlines. Specifically, what is needed is a methodology that allows users

11
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to reason about job queuing delay (queue delay prediction), a technique for ensur-

ing that they can acquire resources at a specific time in the future for a specific

duration (advanced reservations), and a technique that allows the simultaneous

provisioning of resources across sites (resource co-allocation).

12



Chapter 3

Approach

The need for a methodology that allows scientists to plan ahead is at the

core of the problems discussed in the previous Chapter. Currently, scientists

cannot plan ahead due to the large amount of variability in resource provisioning

delay that they experience when trying to run applications at major HPC sites.

Our approach seeks to first find a way to predict the amount of time that a

future resource provisioning request will wait before the resources become available

for use. While making an exact prediction on this time is desirable, previous

efforts [11, 12, 60] indicate that providing a prediction of future expected delay

(typically phrased as a prediction of the mean/average provisioning delay) results

in a good summary prediction for all resource provisioning requests, but is not as

useful as a prediction for individual requests. We observe that when a scientist

has an application to execute, they are less interested in the provisioning delay of

all jobs than they are for the delay their individual job will experience. However,

13



Chapter 3. Approach

due to the highly variable nature of observed individual job delays, combined

with imperfect knowledge of the underlying sources of this variance, making exact

predictions on individual jobs remains extremely difficult. However, we observe

that the ability to predict an accurate upper bound on the amount of time a job

will be delayed is sufficient information for the scientists to plan ahead. While

defining an absolute upper bound prediction is straightforward (say, the age of

the universe), it is not useful to do so. We propose that assigning a probability to

an upper bound prediction would allow a scientist to decide how likely it is that

an upper bound prediction is correct. Our general approach, then, is to make a

probabilistic upper bound prediction on the amount of time an individual job will

wait in queue before execution.

For a given HPC site, we consider individual job delay times to be a random

variable from a population with an unknown distribution. As jobs leave the batch

queue, we can record experienced job delay times as observations from this pop-

ulation as a time series. Figure 3.1 is an example time series gathered from the

University of Chicago/Argonne National Laboratory’s TeraGrid super-computer

over a one month time period. Each individual graph feature represents the time

that a single job waited in queue before it began execution.

Our general approach is to use these observations to estimate the value from

the population that is greater than all other values with some probability q. In

14
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Figure 3.1: One month of batch job delay measurements from the UC/ANL Ter-
aGrid system (ucteragrid). Each graph feature represents the number of seconds
that a job waited in queue before it began execution.

other words, we seek to estimate given population’s q quantile and use it as a

probabilistic bound prediction for future observations drawn from the population.

For example, if we knew the 0.50 quantile (median) value of the population from

which the observations shown in Figure 3.1 were drawn, we could accurately pre-

dict that the next job will be delayed at most the median amount of time, 50% of

the time (the other 50% of the time, the job would wait more than that amount of

time). This would give us an upper bound delay prediction with a 0.50 probability

of being correct. If we required a more certain upper bound prediction, we could

15



Chapter 3. Approach

use higher quantiles (0.90, 0.95, etc.). Our challenge is to find a technique that,

given a historical trace of job delay observations and quantile of interest, allows us

to accurately estimate the population quantile of interest for use as a predictor.

Our methodology depends on our ability to gather, in near real-time, histor-

ical traces of batch queue delay times as jobs are processed. Using empirical

observations from these traces, we provide a prediction methodology that effec-

tively makes probabilistic upper bound predictions on the future queue delay of

individual jobs. Building on this technique, we present two novel abstractions

(Advance Reservation and Resource Co-allocation services) that are implemented

as probabilistic services.

This layered approach implements functionality that has been previously sought-

after in production settings but heretofore has remained largely unrealized. For

example, at present, among NSF HPC centers supporting users in production,

only the San Diego Supercomputer Center (SDSC) supports user-settable ad-

vanced reservations. Even so, at the time of this writing, it does so only on a

few of its machines, and only on an experimental basis, after approximately 14

years of internal evaluation and development. Our abstractions implement these

services in an entirely new way that does not require modification of local schedul-

ing policies or implementations. That is, this new functionality overlays existing

batch-scheduling infrastructure and does not require the cooperation of the local

16



Chapter 3. Approach

site administration to function. Indeed, local administrators cannot determine

whether a specific user is using our system or is going through the normal local

mechanisms for job submission.

Our approach makes it possible for each site to retain complete local control

over its systems. Our methods automatically sense changes in local policy and

adapt to the new regime shortly after it is implemented. Thus, the impact on the

local administration and software base is virtually nonexistent. This low-impact

approach is important because implementing software and policy changes across

the sites uniformly has proved labor-intensive, time consuming and error-prone.

At the center of this approach is a new non-parametric time-series analysis

method we developed to make predictions, with confidence intervals, that are

meaningful even when based on a relatively small number of measurements and

in the presence of such autocorrelation structures as are typical in batch queues.

Our prediction method further uses an automatic change-point detection mech-

anism and model-based statistical clustering to sense and adapt to changing lo-

cal conditions (e.g., scheduling policy). Using this predictive capability, we can

adaptively schedule the submission of user jobs to arbitrary queues so that they

execute in specific time slots (advanced reservations) on one, or more machines

simultaneously (co-allocations).

17
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Additionally, our approach addresses one of the major impediments to the

development of advanced reservation and co-allocation facilities, namely their po-

tential impact on machine utilization. It is not technically difficult to provide

users with either advanced reservation or co-allocation reservation mechanisms

by modifying the local scheduling policies. Rather, the problem is that reserv-

ing resources, even in conjunction with efficiency-enhancing scheduling techniques

such as back-filling [34, 40, 45] or pre-emption and/or OS checkpointing [15], may

lead to a significant loss of resource utilization. HPC centers often use resource

utilization as a measure of user utility and thus also a measure of the degree to

which the “up-front” cost associated with siting a machine has been amortized.

For each solution we propose in this dissertation, we discuss the potential impact

the techniques may have on machine utilization and find that, unlike the situation

with “hard” reservations, this impact is minimal.

In the following Chapters, we discuss in detail our prediction methodology and

two abstractions that have each been implemented as generally available services,

as follows:

• Queue Bounds Estimation from Time Series (QBETS) is an on-line pre-

diction technique and implementation that forecasts bounds batch queue

delay experienced by individual jobs in real time.

18
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• Virtual Advanced Reservations for Queues (VARQ) is an advanced reser-

vation system that uses QBETS to make predictions of queue delay which

it then uses to schedule job submissions so that they meet user-specified

deadlines.

• Finally, CO-VARQ is a co-allocation service that uses VARQ to make

simultaneous reservations on multiple systems to enable cross-site execution.

In the next section, we briefly discuss the nature of the historical batch queue

delay traces that we use to make bound predictions.

3.1 Data

Over the course of several years, we have obtained 11 archival batch-queue

logs from different high-performance production computing settings covering a

variety of machine generations and time periods. Table 3.1 displays summary

information about each resource, along with a shorthand tag (listed in the Machine

column of the table) that we use to refer to traces from that machine throughout

this dissertation. Typically, HPC site administrators define several “queues” to

which users can choose to submit a job. For all systems except the ASCI Blue

Pacific system at Lawrence Livermore National Laboratory (LLNL), each queue

determines, in part, the priority of the jobs submitted to it.
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Machine Processors Batch Software Description
datastar 2176 Load Leveler SDSC IBM PowerPC

Production Compute Cluster
ucteragrid 316 Torque/Maui UC/ANL IBM/Intel Compute

Viz Linux TeraGrid Cluster
dante 35 Torque/Maui RENCI Intel Xeon Research

Linux Cluster
cnsidell 256 Torque/Maui UCSB NanoScience Research

Linux Cluster
ncsateragrid 1744 Torque/Maui NCSA IBM/Intel Compute

Linux TeraGrid Cluster
iuteragrid 32 PBS IU AVIDD Compute Linux

Cluster
ornlteragrid 56 Torque ORNL IA64 Compute Linux

Cluster
lonestar 5840 LSF TACC Dell Linux Cluster
sdscteragrid 524 Torque/Maui SDSC IBM/Intel Compute

Linux TeraGrid Cluster
tsubame 10368 SGE Tokyo Institute of Technology

AMD Compute Cluster
ctc 430 Unknown Cornell Theory Center SP-2
llnl 336 Unknown Lawrence Livermore National

Laboratory SP2
sdscblue 1152 Unknown SDSC Blue Horizon

Table 3.1: HPC machines from which data was gathered for trace-based simula-
tion and empirical experiments.
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Site/Machine Job Count Avg. Delay Median Delay Std. Deviation

iuteragrid 8055 3858 2 21125
cnsidell 12446 85190 172 193946
ornlteragrid 25920 568 1 9221
tsubame 45054 5722 5 65786
llnl 56028 19625 2001 49997
sdscteragrid 62426 34795 207 112305
dante 65203 7956 57 16126
ncsateragrid 67391 33235 1631 107449
ctc 77216 25541 2197 93617
datastar 102584 43764 1048 137098
lonestar 137577 8365 10 51378
sdscblue 149633 47716 2019 139789
ucteragrid 218366 5707 19 31323

Table 3.2: Batch job delay trace data. The units for the mean, median and
standard deviation measurements are seconds.

For each site that is still in existance at the time of this writing, we have de-

ployed a sensor that uses the Network Weather Service (NWS) [67] infrastructure

to gather, in real time, new job data as workload continues to be processed at

each site. Collectively, the data comprises 4.6 million job submissions spanning

approximately a 12-year period.

Within each log, each job is represented uniquely by five values: the queue

to which the job was submitted, the submission time, the queue wait time, the

number of nodes requested, and the maximum number of execution seconds re-

quested. In Table 3.2, we show summary statistics for each of the job traces used

in this dissertation. We discovered that, although each of these systems falls un-
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der the general definition of a “super-computer”, and many are architecturally

similar in nature, the variability found in the amount of time jobs wait in queue

before executing is quite high within each machine, and quite different between

machines. While many attempts have been made to predict batch queue job wait

time based upon summary statistics like those presented in Table 3.2, when we

look at the statistics together, we note very quickly that while these statistics

can be used to accurately summarize a large set of batch queue wait times, they

are not necessarily accurate predictors for individual jobs. Five of the traces, for

instance, exhibit a standard deviation over 100000 seconds (more than a day),

indicating that real queue wait time will deviate far from the mean. This obser-

vation helps to explain why, to date, users and meta-schedulers find the problem

of deterministically provisioning HPC resources a daunting task.

In Figure 3.1, we show an example of observed queue delays from a single

machine/queue. Here, we show the actual number of seconds that jobs waited

in queue on the UC/ANL TeraGrid machines (ucteragrid) during the month of

January, 2008. Note that while many jobs waited in queue for a very short time

(between 1 and 10 seconds), another significant set of jobs waited 100000 seconds

or more (over a day) before they began execution. We find this high level vari-

ability in wait time to be a common characteristic in most of the job traces we’ve

gathered over multiple time scales (days to years).
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Batch Queue Delay Prediction

4.1 Introduction

In this Chapter, we present a method for automatically predicting bounds,

with quantitative confidence levels, on the amount of time an individual job will

wait in queue before it is initiated for execution on a production “batch scheduled”,

space-shared resource. The method consists of three interacting but essentially

independent components: a percentile estimator, a change-point detector, and

a clustering procedure. At a high level, clustering is used to identify jobs of

similar characteristics. Within each cluster, job submissions are treated as a time

series and the change-point detector delineates periods of stationarity. Finally, the

percentile estimator computes a quantile that serves as a bound on future wait

time based only on history from the most recent stationary region in each cluster.

All three components can be implemented efficiently so that on-line, real-time
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predictions are possible. Thus, for each job submission, our method can generate

a predicted bound on its delay using a stationary history of previous jobs having

similar quantitative characteristics. In addition, as jobs complete their time in

queue, new data becomes available. Our method automatically incorporates this

information by adjusting its clustering and change-point estimates in response to

the availability of new data.

The percentile estimation method we describe here is a product of our pre-

vious work in predicting the minimum time until resource failure [3, 47, 49]. In

this Chapter, we describe its application to the problem of predicting bounds on

the delay experienced by individual jobs waiting for execution in batch-controlled

parallel systems. To do so effectively, we have coupled this methodology with

a new method for detecting change points in the submission history and a new

clustering methodology that automatically groups jobs into service classes. This

latter capability is necessary since many sites implement dynamically changing

priority schemes that use “small” jobs to “backfill” [40] the machine as a way of

ensuring high levels of resource utilization. Moreover, our quantile-based predic-

tion method makes it possible to infer when the the machine may have crashed

while the queuing system still accepts jobs (a common failure mode in these set-

tings where jobs are submitted from one or more “head” nodes). Using this

new system, we have found that it is possible to predict bounds on the delay of
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individual jobs that are tighter then parametric methods based on Maximum Like-

lihood Estimation (MLE) of Weibull, log-normal, and log-uniform distributions.

To achieve these tighter bounds, however, all four components – non-parametric

quantile estimation, change-point detection, clustering, and availability inference

– must be integrated and employed in concert. Because the systems in inherently

an adaptive time series forecasting methodology, we give it the name QBETS as

an acronym for Queue Bounds Estimation from Time Series.

We compare QBETS with various parametric methods in terms of prediction

correctness and accuracy. We also demonstrate how the combination of techniques

that compose QBETS improves the predictive power for production systems.

Our evaluation uses job submission traces from 11 supercomputers (including

8 currently in operation) operated by the National Science Foundation and the

Department of Energy over the past 10 years comprising approximately 1.4 mil-

lion job submissions. By examining job arrival time, requested execution time,

and requested node count, we simulate each queue in each trace and compute a

prediction for each job. Our results indicate that QBETS (which is more effective

than competitive parametric methods) achieves significantly tighter bounds on

job wait time in most cases. Thus the system automatically “reverse engineers”

the effective priority scheme that is in place at each site and determines what job

sizes are receiving the fastest turn-around time.
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Thus, the work presented in this Chapter makes two significant new contribu-

tions with regard to predicting individual job queue delays.

• We present QBETS as an example of an accurate, non-parametric, and fully

automatic method for predicting bounds (with specific levels of certainty)

on the amount of queue delay each individual job will experience.

• We verify the efficacy of QBETS and detail its ability to automatically take

into account job resource characteristics to improve prediction bounds using

currently operating large-scale batch systems, and from archival logs for

systems that are no longer in operation.

• We describe an implementation of QBETS that provides an on-line batch

queue job delay prediction service to high performance computing users

and how we have made available a number of programmatic interfaces to

the system such that others may trivially integrate QBETS into their own

projects.

This ability to make predictions for individual jobs distinguishes our work from

other previous efforts. An extensive body of research [7, 11, 12, 18, 19, 20, 23, 60]

investigates the statistical properties of offered job workload for various HPC sys-

tems. In most of these efforts, the goal is to formulate a model of workload and/or

scheduling policy and then to derive the resulting statistical properties associated
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with queuing delay through simulation. Our approach focuses strictly on the prob-

lem of forecasting future delay bounds; we do not claim to offer an explanatory,

or even a descriptive, model of user, job, or system behavior. However, perhaps

because of our narrower focus, our work is able to achieve predictions that are, in

a very specific and quantifiable sense, more accurate and more meaningful than

those reported in the previous literature.

In Section 4.2, we present a detailed description of QBETS . Section 4.3 dis-

cusses our predictor performance experiment, evaluation procedure and the spe-

cific results we have achieved. Finally, in Section 4.4 we recap and discuss relevant

applications of the methodology.

4.2 Methodology

In this section, we describe our approach to the four related problems that

we must solve to implement an effective predictor: quantile estimation1, change-

point detection, job clustering, and machine availability inference. The general

approach we advocate is first to determine if the machine of interest is in a state

where jobs are being serviced, next to cluster the observed job submission history

according to jobs having similar quantitative characteristics (e.g. requested node

count, requested maximum execution time, or requested node-hours), then to

1We use the term “quantile” instead of the term “percentile” throughout this dissertation.
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identify the most recent region of stationarity in each cluster (treated as a time

series), and finally to estimate a specific quantile from that region to use as a

statistical bound on the time a specific job will wait in queue.

4.2.1 Quantile Prediction

Our goal is to determine an upper bound on a specific quantile at a fixed

level of confidence, for a given population whose distribution is unknown. If the

quantile were known with certainty, and the population were the one from which a

given job’s queue delay were to be drawn, this quantile would serve as a statistical

bound on the job’s waiting time. For example, the 0.95 quantile for the population

will be greater than or equal to the delay experienced by all but 5% of the jobs.

Colloquially, it can be said that the job has a “95% chance” of experiencing a delay

that is less than the 0.95 quantile. We assume that the quantile of interest (0.95,

0.99, 0.50, etc.) is supplied to the method as a parameter by the site administrator

depending on how conservative she believes the estimates need to be for a given

user community.

However, since the quantiles cannot be known exactly and must be estimated,

we use an upper confidence bound on the quantile that, in turn, serves as a con-

servative bound on the amount of delay that will be experienced by a job. To be

precise, to say that a method produces an upper 95% confidence bound on a given
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quantile implies that the bound produced by this method will, over the long run,

overestimate the true quantile 95% of the time. The degree of conservatism we

assume is also supplied to the method as a confidence level. In practice, we find

that while administrators do have opinions about what quantile to estimate, the

confidence level for the upper bound is less meaningful to them. As a result, we

typically recommend estimating what ever quantile is desired by the upper 95%

confidence bound on that quantile.

Here, we examine the performance of four quantile prediction techniques. The

first three are somewhat traditional techniques, each based on fitting a statistical

distribution to historical data and using the distribution quantile of interest as the

predictor for the next observation. We rely on MLE model fitting of three distri-

butions; log-normal, log-uniform, and Weibull. We note that for the log-uniform

and Weibull method, there is no straight-forward way to place confidence bounds

on population quantiles and thus we use the model quantile as the predictor. For

the log-normal and binomial method predictors, we use the upper 95% confidence

bound, but note that even when we use tighter confidence intervals, the result-

ing predictions are not significantly impacted. The fourth approach is a novel,

non-parametric method which makes inference directly from the data, instead of

assuming some pre-defined underlying distribution. Here we describe our novel

method, which we term the Binomial Method, beginning with the following simple
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observation: If X is a random variable, and Xq is the q quantile of the distribution

of X, then a single observation x from X will be greater than Xq with probability

(1−q). (For our application, if we regard the wait time, in seconds, of a particular

job submitted to a queue as a random variable X, the probability that it will wait

for less than X.95 seconds is exactly .95.)

Thus (provisionally under the typical assumptions of independence and iden-

tical distribution) we can regard all of the observations as a sequence of indepen-

dent Bernoulli trials with probability of success equal to q, where an observation

is regarded as a “success” if it is less than Xq. If there are n observations, the

probability of exactly k “successes” is described by a Binomial distribution with

parameters q and n. Therefore, the probability that more than k observations are

greater than Xq is equal to

1−
k∑

j=0

(
n

j

)
· (1− q)j · qn−j (4.1)

Now, if we find the smallest value of k for which Equation 4.1 is larger than

some specified confidence level C, then we can assert that we are confident at level

C that the kth value in a sorted set of n observations will be greater than or equal

to the Xq quantile of the underlying population – in other words, the kth sorted

value provides an upper level-C confidence bound for Xq.
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Clearly, as a practical matter, neither the assumption of independence nor

that of identical distribution (stationarity as a time series) holds true for observed

sequences of job wait times from the real systems, and these failures present

distinct potential difficulties for our method.

Let us first address the issue of independence, assuming for the moment that

our series is stationary but that there may be some autocorrelation structure in

the data. We hypothesize that the time-series process associated to our data is

ergodic, which roughly amounts to saying that all the salient sample statistics

asymptotically approach the corresponding population parameters. Ergodicity is

a typical and standard assumption for real-world data sets; cf., e.g.,[27]. Under

this hypothesis, a given sample-based method of inference will, in the long run,

provide accurate confidence bounds.

Although our method is not invalidated by dependence, a separate issue from

the validity of our method is that exploiting any autocorrelation structure in the

time series should, in principle, produce more accurate predictions than a static

binomial method which ignores these effects. Indeed, most time-series analysis and

modeling techniques are primarily focused on using dependence between measure-

ments to improve forecasting [2]. For the present application, however, there are a

number of obfuscating factors that foil typical time-series methods. First of all, for

a given job entering a queue, there are typically several jobs in the queue, so that
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the most recent available wait-time measurement is for several time-lags ahead.

The correlation between the most recent measurement at the time a job enters the

queue and that job’s eventual wait time is typically modest, around 0.1, and does

not reliably contribute to the accuracy of wait-time predictions. Another issue is

the complexity of the underlying distribution of wait times: They typically have

more weight in their tails than exponential distributions, and many queues exhibit

bimodal or multimodal tendencies as well. All of this makes any linear analysis

of data relationships (which is the basis of the “classical” time-series approach)

very difficult. Thus while the data is not independent, it is also not amenable to

standard time-series approaches for exploiting correlation.

4.2.2 History Trimming

Unlike the issue of independence and correlation, the issue of non-stationarity

does place limitations on the applicability of quantile prediction methods. Clearly,

for example, they will fail in the face of data with a “trend,” say, a mean value

that increases linearly with time. On the other hand, insisting that the data be

stationary is too restrictive to be realistic: Large compute centers change their

scheduling policies to meet new demands, new user communities migrate to or

from a particular machine, etc. It seems to be generally true across the spec-

trum of traces we have examined that wait-time data is typically stationary for a
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relatively long period and then undergoes a “change-point” into another station-

ary regime with different population characteristics. We thus use the Binomial

Method as a prediction method for data which are stationary for periods and for

which the underlying distribution changes suddenly and relatively infrequently;

we next discuss the problem of detecting change-points in this setting.

Given an independent sequence of data from a random variable X, we deem

that the occurrence of three values in a row above X.95 constitutes a “rare event”

and one which should be taken to signify a change-point. Why three in a row?

To borrow a well-known expression from Tukey, two is not enough and four is

too many; this comes from consideration of “Type I” error. Under the hypothesis

of identical distribution, a string of two consecutive high or low values occurs

every 400 values in a time series, which is an unacceptable frequency for false

positives. Three in a row will occur every 8000 values; this strikes a balance

between sensitivity to a change in the underlying distribution of the population

and certainty that a change is not being falsely reported.

Now, suppose that the data, regarded as a time series, exhibits some autocor-

relation structure. If the lag-1 autocorrelation is fairly strong, three or even five

measurements in a row above the .95 quantile might not be such a rare occurrence,

since, for example, one unusually high value makes it more likely that the next

value will also be high. In order to determine the number of consecutive high
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values (top 5% of the population) that constitute a “rare event” approximately

in line with the criterion spelled out for independent sequences, we conducted

a Monte Carlo simulation with various levels of lag-1 autocorrelation in AR(1)

time series [27], observed the frequencies of occurrences of consecutive high and

low values, and generated a lookup table for rare-event thresholds. Thus, to de-

termine if a change-point has occurred, we compute the autocorrelation of the

most recent history, look up the maximum number of “rare” events that should

normally occur with this level of autocorrelation, and determine whether we have

surpassed this number. If so, our method assumes the underlying system has

changed, and that the relevant history must be trimmed as much as possible to

maximize the possibility that this history corresponds to a region of stationarity.

Note that indiscriminate history-trimming will not allow our method to function

properly, since the resulting small sample sizes will generate unnecessarily conser-

vative confidence bounds.

The minimum useful history length depends on the quantile being estimated

and the level of confidence specified for the estimate. For example, it follows from

Equation 4.1 above that in order to produce an upper 95% confidence bound for

the .95 quantile, the minimum history size that can be used is 59. (This reflects

the fact that .9559 < .05, while .9558 > .05.)
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4.2.3 Job Clustering

According to our observations and to anecdotal evidence provided by users

and site administrators, there are differences among the wait times various jobs

might expect to experience in the same queue, based purely on characteristics of

the jobs such as the amount of time and the number of nodes requested. This is

certainly easy to believe on an intuitive level; for example, if a particular queue

employs backfilling [40], it is more likely that a shorter-running job requesting

a smaller number of nodes will be processed during a time when the machine is

being “drained.” Thus, for a given job, we might hope to make a better prediction

for its wait time if we took its characteristics into account rather than making one

uniform prediction which ignores these characteristics.

On the other hand, the same difficulties arise in trying to produce regression

models [60] as we encountered in the problem of trying to use autoregressive meth-

ods: In particular, the data are typically multimodal and do not admit the use

of simple quantile prediction models. We therefore explore the idea of clustering

the data into groups having similar attributes, so that we can use our parametric

and non-parametric predictors on each cluster separately.

In fact, in [5], based on advice we received from several expert site administra-

tors for currently operating systems, we employed a rather arbitrary partitioning

of jobs in each queue by processor count, running separate predictors within each
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partition, which resulted in substantially better predictions. However, it would

clearly be desirable to find a partition which is in some (statistical) sense “op-

timal” rather than relying on such arbitrary methods; for our purposes, it is

also desirable to find a partitioning method that can be machine-learned and is

therefore applicable across different queues with different policies and user char-

acteristics without direct administrator intervention or tuning. Moreover, as a

diagnostic tool, it would be advantageous to be able to compare the machine-

determined clustering with that determined by site administrators to illuminate

the effects of administrator-imposed scheduling policies. In this section, we de-

scribe our approach to this problem, which falls under the rubric of model-based

clustering [35, 56, 71].

4.2.4 Model-Based Clustering

The problem of partitioning a heterogeneous data set into clusters is fairly

old and well studied [35, 43, 56, 71]. The simplest and most common clustering

problems involve using the values of the data, relative to some notion of distance.

Often, one postulates that the distribution within each cluster is Gaussian, and the

clusters are formed using some well-known method, such as the so-called k-means

algorithm [43] or one of various “hierarchical” or “partitional” methods [56, 71].

If the number of clusters is also unknown, a model-selection criterion such as
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BIC [57], which we will discuss further below, is often used to balance goodness

of fit with model complexity.

In fact, it is tempting, if for no other reason than that of simplicity, to form

our clusters in this way, according to how they naturally group in terms of one

or more job attributes. Note, however, that this method of clustering in no way

takes into account the wait times experienced by jobs, which is ultimately the

variable of interest; it is by no means clear that a clustering of jobs by how their

requested wait times group will result in clusters whose wait-time distributions are

relatively homogeneous. For example, it is possible that a subset of the requested

job execution times form a nice Gaussian cluster between 8 and 12 minutes, but

that due to some combination of administrative policy, backfilling, and various

“random” characteristics of the system as a whole, jobs requesting less than 10

minutes experience substantially different wait times than those requesting more

than 10 minutes, so this cluster is actually meaningless in terms of predicting wait

times.

In our case, then, the situation is somewhat more complicated than ordinary

clustering: We wish to cluster the data according to some characteristics which

are observable at the time the job is submitted (explanatory variables), but using

the actual wait times (response variable) as the basis for clustering. That is, we

wish to use observed wait times to cluster jobs, but then to determine how each
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cluster is characterized by quantitative attributes that are available when each job

is submitted so that an arriving job can be categorized before it begins to wait.

In the discussion that follows, we will use the requested execution time (used to

implement backfilling) as the explanatory characteristic, but this is only for the

sake of ease of exposition.

The idea behind our method runs as follows: We postulate that the set of

requested times can be partitioned into k clusters C1, . . . , Ck, which take the form

of intervals on the positive time axis, such that within each Cj the wait times are

governed by an exponential distribution with unspecified parameter λj.

The choice of exponential distributions is something of an oversimplification

– in fact a Weibull, log-normal or hyperexponential would probably be a more

accurate choice – but the fact that the clusters are relatively homogeneous makes

the exponential model accurate enough with relatively little computational ex-

pense; moreover, in practice, exponentials are more than discerning enough to

produce an adequate number of clusters. As a check, we generated an artificial

trace using different log-normally distributed wait times corresponding to the in-

tervals of requested times [1, 100], [101, 200], [201, 300], [301, 400], and [401, 500]

and fed this data to our clustering method. It recovered the following clusters

for the data: [1, 39], [40, 40], [41, 100], [101, 197], [198, 300], [301, 398], [399, 492],

[493, 493], [494, 500]. Since our method always clusters the ends together to ensure
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that these clusters contain at least 59 elements, the exponential clustering method

recovers the original clusters almost exactly.

We assume that the appropriate clustering is into connected intervals along the

time axis; this provides an intuitive model for the eventual users of our predictions.

Given a desired value for the number k of clusters, then, we use a modified form

of hierarchical clustering. According to this method, we start with each unique

value for the requested time in its own cluster. We then merge the two adjacent

(in the sense of adjacency on the time axis) clusters that give the largest value of

the log-likelihood function log L, calculated jointly across the clusters, according

to the maximum-likelihood estimators for the exponential parameters λj, which

are given by
#(Cj)P
x∈Cj

x
. This process continues until the number of clusters is equal

to k. Note that this is a well-accepted method for clustering [43, 56, 71]; however,

it does not guarantee that the resulting clustering will maximize the log-likelihood

over all possible choices of k clusters, even if we assume that the clusters are all

intervals. This latter problem is prohibitively expensive computationally for an

on-line, real-time application, even for moderately large data sets, and we are

therefore forced to use some restricted method.

Each arriving job can then be categorized by identifying the cluster whose

minimum and maximum requested time straddle the job’s requested time.
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Continuing, the question of which value of k to use is a problem in model

selection, which recognizes the balance between modeling data accurately and

model simplicity. The most generally accepted model-selection criterion is the

Bayes Information Criterion (BIC) [57], the form of which is

BIC(θ) = log L(θ)− p

2
log n,

where θ stands for the (vector of) free parameters in the model, L is the joint

likelihood function across the whole data set, calculated using the MLE for θ, p

is the dimensionality of θ (2k − 1 in our case: the k − 1 break points on the time

axis to define our clusters, and the k values for the λj, all of which are scalars),

and n is the total sample size. The first term in the BIC formula should be seen

as a measure of goodness of fit, while the second term is a “penalty” for model

complexity (i.e. one with a large number of parameters). It is always true that

for a less restricted model (in our case, one allowing a larger number of clusters),

the log L term will be larger, so the penalty function is critical to avoid over-

parameterizing. Maximizing the BIC expression over a set of proposed models

has good theoretical properties and generally produces good results in practice.

Thus, our clustering strategy is to specify a range of acceptable k-values; perform

the hierarchical clustering described above for each of these values of k; and then
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calculate the BIC expression for each resulting clustering and choose the one for

which BIC is greatest.

4.2.5 Availability Inference

Curiously, it is common for a batch queuing system to continue to accept jobs

even when some form of failure has disabled those jobs from being eligible for

execution on a set of computation nodes. We know of no automatic detector

for this condition that is part of the production batch-scheduling systems used

by the machines in our study. Moreover, based on our discussion of this issue

with various site administrators, one common solution to this problem seems to

be to rely on the users to call when they observe that jobs are no longer being

released for execution (even though they can still be queued) and enquire as to

whether there is a “problem.”. If a ubiquitous service for notification of machine

unavailability becomes common, QBETS can trivially be augmented to use such

a system. In the meantime, we have found an elegent method to infer machine

failures directly from the job waittime data.

To avoid incorporating jobs with artificially lengthened queue delays (due to

machine downtime) in the history used for forecasting, QBETS attempts to infer

when the computational part of the machine may be down so that these delays can

be filtered. Notice that the combination of Binomial-based quantile estimation and
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history trimming (sans clustering) provides a relatively general non-parametric

method for estimating bounds in time series. QBETS uses this generality in two

ways.

First, it counts the number of jobs that have arrived between the points in

time when the scheduler releases jobs for execution. As each count is generated,

it is incorporated into a time series from which the upper 0.95 quantile (with 95%

confidence) is estimated using a Binomial estimator with history trimming. When

a count exceeds this upper bound, the QBETS predictor declares the machine

to be potentially down until the scheduler releases another job for execution.

This functionality is intended to mimic user behavior in which a queue that has

been observed to grow “too long” indicates that the computational nodes may be

unavailable.

QBETS also maintains a second upper 0.95 quantile predictor to forecast the

bounds on the delay between job releases by the scheduler, again using a trim-

ming Binomial estimator. If the time between when jobs are released exceeds the

prediction of the bounds, the machine is also marked down until the next job is

released. This detector is intended to reflect a user’s determination that it as been

“too long” since a job was released for execution.

When QBETS temporarily marks a machine as “down”, jobs submitted during

the down periods are not forecast. Instead, the user is given a signal that can be
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interpreted to mean “it is possible that the machine is down at this moment so no

prediction is available.” Since there is no ground truth as to when the machines

in this study were actually down (no failure detector were or are available) it

is impossible to know the extent to which this method generates false positive

predictions. In general, however, the number of jobs for which “no prediction”

would have been returned is a small fraction (usually less than 1%) of the total

job submission count.

4.3 Experiments and Results

In this section, we describe our method for evaluating the performance of

our chosen batch-queue wait-time prediction system, and we then detail a set of

simulation experiments that take as input traces of job submission logs gathered

at various supercomputing centers. We describe the details of the simulations and

then report the prediction performance that users would have seen had the tested

system been available at the time each job in each trace was submitted.

We investigate the problem in terms of estimating an upper bound on the 0.95

quantile of queuing delay; however, our approach can be similarly formulated to

produce lower confidence bounds, or two-sided confidence intervals, at any desired

level of confidence. It can also be used, of course, for any population quantile.
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For example, while we have focused on the relative certainty provided by the .95

quantile, our method also effectively produces confidence bounds for the median

(i.e., the point of “50-50” probability). We note that the quantiles at the tail of the

distribution corresponding to rarely occurring but large values are more variable,

hence more difficult to estimate, than those nearer the center of the distribution.

Thus, for typical batch-queue data, which is right-skewed with a substantial tail,

the upper quantiles provide the greatest challenge for a prediction method. By

focusing on an upper bound for the .95 quantile, we are testing the limits of what

can be predicted for queue delay.

Note also that our assertion of retroactive prediction correctness and accuracy

assumes that users would not have changed the characteristics of the jobs they

submitted in response to the availability of the quantile predictions we generate.

Moreover, the on-line prototype we have developed, while operational, is in use by

only a few users (in fact, we ourselves used QBETS to select which site to execute

many of the simulations that generated the results reported here), making it

difficult to analyze whether, and how, predictions affect workload characteristics.

However, unless such feedback induces chaotic behavior, our approach is likely to

continue to make correct and accurate predictions under the new conditions. We

do plan to monitor the workloads experienced by various sites after the system is
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deployed for general use at various large-scale sites and report on the effects as

part of our future work.

4.3.1 Simulation

Our simulator takes as input a file containing historical batch-queue job wait

times from a variety of machine/queue combinations and parameters directing

the behavior of our models. For each machine/queue for which we have historical

information, we were able to create parsed data files each of which contains one

job entry per line comprising the UNIX time stamp when the job was submitted,

the duration of time the job stayed in the queue before executing, the amount of

requested execution time, and the node count.

The steady-state operation of the simulation reads in a line from the data

file, makes a prediction (using one of the four prediction methodologies covered

in Section 4.2) and stores the job in a “pending queue”. The simulation then

reads the next job arrival from the input file and, before making a prediction,

potentially performs a number of tasks.

First, the simulator checks whether any jobs that had been previously queued

have exited the queue since the last job arrived, in which case each such job is

simply added to a growing list of historical job wait times stored in memory.

Although the waiting time for the new job is carried in the trace, the predictor is
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not entitled to “see” the waiting time in the history until it stops waiting in queue

and is released for execution. When the historical record changes, the predictor

is given the new record so that it can update its internal state, if necessary.

After the queue has been updated, the current prediction value is used to

make a prediction for the new job entering the queue, the simulation determines

whether the predicted time for that job is greater than or equal to the actual time

the job will spend in the pending queue (success), or the predicted time was less

than the actual job wait time (failure). The success or failure is recorded, and the

job is placed on the pending queue. Note that in a “live” setting this success or

failure could only be determined after the job completed its waiting period.

In our first set of experiments, we use only the above simulator features to

make predictions for each of the jobs in our traces, varying the predictor used

(binomial method, log-normal, log-uniform, and Weibull). For our second set of

experiments, we add history trimming, automatic job clustering, and availability

inference, as described in Section 4.2, in the following ways.

When a job arrives, the predictor makes a prediction using its current histor-

ical window as before and in addition updates the availability inference engine

with the current state of the queue, which potentially changes the state of the

machine to ’unavailable’. When a job in the pending queue moves into the his-

torical window, it is passed to the predictor, which may then trim the history as
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previously described. Every time a pre-determined number (1000 in our study) of

simulated jobs are processed, automatic clustering is performed on the entire job

history.

The code implementing the simulator is modularized so that any individual

component of the system (predictor, history trimming system, clustering algo-

rithm, availability inference algorithm) can be toggled on/off or replaced at run-

time. In addition, the nature of the prediction employed methodologies allow the

simulator to provide an “on-line” service; meaning it can be executed in a mode

where it waits in an idle state until a new job datum arrives, at which point it

will update its history and refresh its predictor.

4.3.2 Correct and Accurate Predictions

We define a correct prediction to be one that is greater than or equal to a

job’s eventual queuing delay, and a correct predictor to be one for which the total

fraction of correct predictions is greater than or equal to the success probability

specified by the target quantile. For example, a correct predictor of the 0.95 quan-

tile generates correct predictions for at least 95% of the jobs that are submitted.

Notice that it is trivial to specify a correct predictor under this definition.

For example, to achieve a correct prediction percentage of 95%, a predictor could

return an extremely large prediction (e.g., a predicted delay of several years) for
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19 of every 20 jobs, and a prediction of 0 for the 20th. To distinguish among

correct predictors, we compare their accuracy in terms of the error they generate,

where error is some measure of the difference between predicted value and the

value it predicts.

In this work, we will use Root Mean Square (RMS) error for the over-predictions

as a measure of accuracy for correct predictors. We consider only over-prediction

error, as we believe that the error generated for the percentage of jobs that are

incorrectly predicted is relatively unimportant to the user. For example, among

predictors that are 95% correct, it is our contention that users would prefer one

that achieves lower over-prediction error for the 95% of the jobs it predicts cor-

rectly over one that achieves a lower error rate on the 5% that are incorrectly

predicted at the expense of greater overall error in the correct predictions.

Note that one cannot compare predictors strictly in terms of their error with-

out taking into consideration their correctness. For example, a predictor that

estimates the mean of each stationary region will generate a lower RMS than one

that estimates the 0.95 quantile, but the mean predictor will not provide the user

with a meaningful delay bound (i.e., one having a probability value attached to

it). Thus, for a given job workload, we only compare predictor accuracy among

those predictors that are correct.
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Note also that, while RMS error is used widely as a measure of accuracy for

predictions of expected values (e.g. in time series), its meaning is less clear in

the context of quantile prediction. In this paper, we are focusing on estimating a

time value which is greater than the wait time of a specific job with probability

.95. Therefore, if the distribution of wait times is highly right-skewed, a predictor

may be working quite well and still have a very high RMS error. Thus, the actual

value of the RMS error is not particularly meaningful; however, it is still useful

as a means of comparison: For a particular set of jobs, if one correct prediction

method has a lower RMS than another, then the first method, at least by this

measure, produces tighter, less conservative upper bounds than the second.

4.3.3 Experiments

We perform two experiments in order to show the effectiveness of our prediction

methods. The first experiment compares the correctness and accuracy of four

different predictors for all data sets without the use of history trimming, job

clustering or availability inference features. The results of this experiment are

shown in Table 4.1. From the table, we first note that while each of the predictors

is correct for some subset of the traces, the only predictor that is correct for all

traces is the one based on the log-uniform distribution. Thus it might appear that

the log-uniform-based method is the obvious winner for batch-queue prediction;
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however, upon closer inspection it becomes clear that the only reason this method

is getting 95 percent or more of the predictions correct for any given trace is due

to its extremely conservative individual predictions. This fact is reflected in the

extremely low RMS ratios for the log-uniform method shown in Table 4.1 under

Accuracy, which clearly indicates that the distance between the log-uniform

predictions and the actual values is much greater than, say, the distance between

the binomial method predictions and actual values for the same set of jobs. Note

that in the table, bold values indicate that the shown method also was correct

for that machine/queue/predictor tuple. The over-conservativeness of the log-

uniform predictions is also borne out by the fact that, in general, its fraction of

correct predictions is well above the target value of .95.

From the first set of experiments, we learned that there is no method that is

both more correct and more accurate than the others. Our second experiment

uses a combination of all of the features we have developed to improve both the

correctness and the accuracy of each of the techniques. In Table 4.2, we show the

results of the QBETS system on the same traces, varying only the predictor used

during the simulation. Again, values in bold indicate machine/queue/predictor

tuples which were correct. From these results, we can begin to see that the

binomial method clearly stands apart from the rest in terms of both correctness

and accuracy. Out of 25 traces, the binomial method was correct 22 times, which
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is more often than all others except for the log-uniform. Further, note that out of

the 21 traces for which both the binomial and log-uniform methods were correct,

the binomial was more accurate for every one of them. Additionally, overall,

the binomial method was both correct and more accurate than any of the other

predictors in 15 out of 25 traces; this number far exceeds the performance of any

other predictor (log-normal 2/25, log-uniform 2/25, Weibull 5/25).

4.3.4 Correctness Analysis

Table 4.2 shows that when we use QBETS with the binomial-method predic-

tor, we are able to predict bounds correctly for 95% or more individual job wait

times for almost all of our traces. In this section, we explore the reasons for the

effectiveness of QBETS and suggest that, for these reasons, the non-parametric

approach should perform well when applied to other traces in the future.

In previous work [4], we showed that using history trimming is essential to

ensure that a predictor not suffer from an inability to adjust to drastic infrequent

increases in overall job queue wait times. In Figure 4.1, we can see the effect such

drastic regime shifts have on a predictor without history trimming, and observe

how trimming positively effects correctness on an example trace, the CNSI Dell

cluster default queue (cnsidell/ALL). On the y-axis we show delay measured in

seconds. Along the x-axis are Unix time stamps. The relatively straight line
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of values near the bottom of the graph depicts .95 quantile predictions made by

the binomial method, but without QBETS enhancements, during a short time

period. We can see that although a large number of observations lie above these

predictions in the right half of the graph, there are enough relatively low values

in the history that the inferred .95 quantile rises only very slowly. The other

set of predictions, represented on the graph by a number of near-horizontal short

segments, were made by the binomial method with QBETS over the same time

period, is able to react to the shift toward longer wait times and is therefore able

to produce more correct predictions. In general, this adaptivity greatly improves

a predictor’s ability to achieve its desired correctness, because such shifts are

common in almost all of our traces. We note that while history trimming is an

effective enhancement for all of the predictors, it works especially well with the

binomial predictor; we posit that this is due to the fact that the binomial predictor

is set up to make accurate inferences about quantiles, so that it is able to find

changepoints in those quantiles reliably. In essence, the accuracy of the method

(Cf. Section 4.3.5) feeds its correctness.

Although QBETS allows the predictor to react to drastic wait-time shifts,

there are still traces for which it fails to meet the target percentage of correct

predictions. In the cases where QBETS fails, we observe that in general, the

reason is due to frequent drastic upward trends in wait times, which appear as
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Figure 4.1: Job queue delay times and predictions made with and without
QBETS on the CNSI Dell cluster. Dark features (black) indicate actual job
wait times, the medium shaded (cyan on color displays) linear features depict
predictions made without QBETS , and the light colored features (red) depict
predictions made with QBETS .

’spikes’ in the trace graphs. Figure 4.2 shows such spikes in the middle of the

Dante default queue trace. As we can see from this graph, if a large number of

jobs is queued in a relatively short amount of time, and all of them experience wait

times that are greater than the current quantile prediction, our method will fail

to correctly make predictions for most of them, due to the fact that a wait time

is not added to the predictor’s available history until it comes out of the queue.

Although the availability inference method attempts to discover these degenerate
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Figure 4.2: Actual queue delay times and QBETS binomial method predictions
illustrating how frequent, drastic linear delay increases on the Dante cluster cause
the method to fail. Dark features (black) show actual observed job wait times,
while the light features (red on color displays) depict QBETS predictions.

data cases, it cannot discover them all. In the traces for which QBETS with

binomial predictor is unable to succeed, such as the dante default queue trace

shown here, there are many spikes that the availability inference method does not

eliminate; their negative impact on the overall correctness measure outweighs the

number of jobs the method does correctly capture.

While one might be tempted to use an extremely conservative method in order

to combat this eventuality, this strategy may require such extreme measures as to
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Figure 4.3: Trace from the Tsubame machine, Gaussian submission queue indi-
cating large difference between log-normal and binomial method QBETS predic-
tions after the training period. Dark features (black) show actual observed job
wait times, medium shaded features (cyan on color displays) depict less conser-
vative predictions using the log-normal, and light features (red) show predictions
when the binomial method was used.

make the method unreasonable for non-degenerate cases. We note that even the

log-uniform method, which is the most conservative method we evaluate, fails to

be correct in the face of the dante default queue trace.
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4.3.5 Accuracy Analysis

In terms of accuracy, the results presented above support two assertions. First,

QBETS is the most accurate of the methods we have tested. Second, the non-

parametric binomial quantile estimator is more effective than the corresponding

parametric approaches. That is, when the change-point detection, clustering,

and machine downtime detection features of QBETS are omitted, and we are

simply applying the binomial prediction method to all jobs using the entire history,

the binomial method still provides more accurate over-predictions than the other

methods.

This greater accuracy, we believe, is because the binomial technique estimates

directly only a specific quantile and not the entire distribution. In contrast, para-

metric approaches using MLE attempt to “fit” the data to all quantiles and in

so doing may not estimate the specific quantile of interest as accurately. In par-

ticular a log-normal or Weibull model such as we have chosen to evaluate in this

experiment (and typically used for such highly right-skewed data as in our traces)

suffers from the fact that quantiles out in the tail of the distribution are very

sensitive to the estimated population parameters. For the same reason, using a

estimation technique such as MLE, the estimated parameters are sensitive to a

few very high values in the data set. Thus an estimated quantile for such a dis-

tribution is highly dependent on the model’s ability, typically based on a small
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number of high values in the data, to fill in its right tail. In practice, the end result

of this phenomenon is usually that the quantile estimates produced by these para-

metric models are much more conservative than the ones that can be made using

the binomial method, which does not need to take into account the relationship

between high and (irrelevant for our purposes) low values in the way that curve

fitting does.

One fundamental reason for the superior accuracy of predictions generated

using QBETS stems from the automatic job-clustering feature, which allows the

predictor to only consider “like jobs” when making its prediction instead of all

jobs, which may be only loosely related to the job of interest in terms of experi-

enced wait time. During the experiment, we observed that QBETS automatically

grouped jobs into three to five clusters, never choosing only one group for all jobs.

Additionally, we observe that not only is QBETS more correct in general, but

that QBETS with the binomial method predictor outperforms the other predic-

tors in most of the traces. Again, the reason this is true is due to the fact that in

general the binomial method is making more accurate predictions, as we see from

Table 4.2 and Table 4.1; this amounts to heightened sensitivity to change-points

in the data, thus allowing the history-trimming feature to activate more often

than it does for other predictors.
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This being said, there are a few cases where the parametric models were in

fact more accurate than the binomial method. In these cases, most notably the

tsubame/guassian and tsubame/high traces, we observe that the primary reason

why the log-normal is achieving so much better RMS errors stems from the fact

that in those traces, the training period data included a disproportionate number

of very large wait times relative to the experimental set. The training set can be

seen in Figure 4.3 as the period of observations before any predictions are being

made; notice that the binomial method starts out making very conservative pre-

dictions based on the large number of high values in the training set, while there

are enough low values to bring down the MLE log-normal parameters, making

these predictions less conservative. In this case, data for the training period was

bimodal, with about 10% of the wait times in an extremely high mode, orders

of magnitude higher than the bulk of the wait times in the lower mode. This

higher mode, which would have caused the log-normal predictions to be incor-

rect, disappeared at the end of the training period, leaving the binomial method

with an unrepresentative data set to begin with and also rendering the log-normal

predictions both correct and accurate. We note two things, however: First, the

experimental set was only slightly larger than the training set, so that there was

not time to balance the anomalies in the training data, and so may not have been

reflective of long-term performance; second, by the middle of the experimental
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set, the binomial method predictor was able both to make more accurate predic-

tions than the log-normal predictor for the relatively short wait times and also to

maintain correctness when the wait times suddenly became longer again at the

end of the trace.

4.4 Conclusions

Space-shared parallel computers use queuing systems for scheduling parallel

jobs to processor partitions in such a way that each job runs exclusively on the

processors it is given. While such techniques have been optimized for resource

utilization, the amount of time individual jobs wait in queue is highly variable

and often comprises a substantial portion of the overal-turnaround time of a job.

In this chapter we describe QBETS , which combines history trimming, auto-

matic job clustering, availability inference, and various prediction methodologies

to provide a batch queue job wait time prediction system which is shown to

perform better than more naive approaches for almost all of the data we have

access to. Additionally, we show that QBETS , with the non-parametric binomial

method quantile predictor presented in previous work, is both more correct and

more accurate than any other tested technique and prediction method.
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While QBETS offers users the ability to predict bounds on the amount of time

individual jobs will wait in queue, and further to predict the probability of a job

meeting a specified deadline, there are other problems that QBETS alone does not

address. QBETS predicts an upper bound on job wait time, but does not inform

the user when, during that interval, the job is likely to run. For users who require

resources or jobs to be available during a specific time interval, the QBETS is

not sufficient to satisfy their requirements. In the next chapter, we describe this

problem in more detail and present our solution.
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Machine Correctness Accuracy
Queue BM LogN LogU Weib BM LogN LogU Weib
cnsidell
ALL 0.92 0.97 0.97 0.81 1.00 0.21 0.48 2.14
dante
dque 0.82 0.75 0.96 0.40 1.00 1.28 0.48 8.82
datastar
TGnormal 0.91 0.83 0.98 0.84 1.00 4.16 0.25 3.51
express 0.93 0.88 1.00 0.84 1.00 3.16 0.11 3.90
high 0.90 0.92 0.97 0.85 1.00 0.74 0.27 1.48
normal 0.91 0.91 0.99 0.88 1.00 0.90 0.17 1.37
ucteragrid
dque 0.89 0.88 1.00 0.94 1.00 11.28 0.00 12.30
lonestar
development 0.92 0.92 1.00 0.92 1.00 3.30 0.00 4.40
high 0.96 0.98 1.00 0.94 1.00 0.61 0.22 1.54
normal 0.92 0.84 1.00 0.84 1.00 4.00 0.04 4.74
serial 0.97 0.95 1.00 0.94 1.00 2.77 0.03 4.54
ncsateragrid
debug 0.93 0.88 0.99 0.91 1.00 2.02 0.14 0.59
dque 0.93 0.89 1.00 0.91 1.00 1.06 0.06 0.51
gpfs-wan 0.99 1.00 1.00 0.93 1.00 0.16 0.55 0.66
sdscteragrid
dque 0.93 0.86 0.98 0.90 1.00 2.44 0.23 0.26
tsubame
B 0.93 0.94 1.00 0.94 1.00 11.38 0.00 4.22
default 0.93 0.84 1.00 0.84 1.00 13.16 0.01 6.22
gaussian 0.96 0.94 1.00 0.95 1.00 137.71 0.08 23.15
high 1.00 0.97 1.00 0.97 1.00 210.66 0.14 37.95
ctc
ALL 0.94 0.97 1.00 0.92 1.00 0.48 0.04 0.49
llnl
ALL 0.96 0.99 1.00 0.94 1.00 0.29 0.08 0.63
sdscblue
high 0.90 0.90 1.00 0.79 1.00 0.53 0.15 1.51
low 0.90 0.99 1.00 0.89 1.00 0.36 0.11 1.09
normal 0.89 0.94 1.00 0.85 1.00 0.44 0.09 1.13
express 0.92 0.90 0.99 0.84 1.00 1.12 0.17 2.20

Table 4.1: Correctness and accuracy results of four predictors with-
out QBETS . Under Correctness, values >= 0.95 indicate a cor-
rect result. Under Accuracy, highest RMS error ratio indicates
most accurate method.
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Machine Correctness Accuracy
Queue BM LogN LogU Weib BM LogN LogU Weib
cnsidell
ALL 0.96 0.93 0.93 0.97 1.00 0.05 1.55 0.51
dante
dque 0.80 0.69 0.87 0.72 1.00 0.05 0.71 0.40
datastar
TGnormal 0.97 0.90 0.97 0.96 1.00 0.46 0.85 0.70
express 0.97 0.87 0.99 0.93 1.00 0.78 0.59 1.28
high 0.96 0.95 0.98 0.95 1.00 0.31 0.78 0.75
normal 0.95 0.92 0.97 0.93 1.00 0.23 0.65 1.00
ucteragrid
dque 0.96 0.94 1.00 0.96 1.00 0.25 0.19 0.78
lonestar
development 0.98 0.92 1.00 0.96 1.00 2.12 0.07 2.85
high 0.98 0.95 1.00 0.96 1.00 0.34 0.29 0.81
normal 0.96 0.89 0.99 0.94 1.00 0.07 0.50 0.66
serial 0.97 0.81 1.00 0.92 1.00 1.17 0.21 0.49
ncsateragrid
debug 0.96 0.86 0.98 0.91 1.00 1.37 0.55 2.02
dque 0.93 0.91 0.97 0.93 1.00 0.17 0.46 1.06
gpfs-wan 0.92 0.98 1.00 0.93 1.00 0.38 0.66 0.96
sdscteragrid
dque 0.96 0.88 0.98 0.93 1.00 0.12 0.89 0.50
tsubame
B 0.98 0.91 1.00 0.97 1.00 2.45 0.29 1.27
default 0.97 0.94 1.00 0.96 1.00 0.05 0.18 0.73
gaussian 0.98 0.95 1.00 0.97 1.00 177.20 0.08 8.37
high 0.99 0.97 1.00 0.98 1.00 70.46 0.17 18.76
ctc
ALL 0.96 0.93 0.99 0.93 1.00 0.48 0.18 1.66
llnl
ALL 0.97 0.95 0.99 0.95 1.00 0.65 0.57 1.58
sdscblue
high 0.96 0.96 0.97 0.94 1.00 0.24 0.87 0.97
low 0.96 0.96 0.99 0.95 1.00 0.26 0.38 1.08
normal 0.97 0.95 0.97 0.95 1.00 0.24 0.55 1.03
express 0.97 0.91 0.98 0.94 1.00 0.17 0.50 0.55

Table 4.2: Correctness and accuracy results of four predictors using
QBETS . Under Correctness, values >= 0.95 indicate a correct
result. Under Accuracy, highest RMS error ratio indicates most
accurate method.
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Virtual Advance Reservations

5.1 Introduction

One approach to solving the planning problems brought about by unpre-

dictable queuing delay is to allow users to make advanced reservations [32, 59, 61]

for resources. With an advanced reservation system in place, users can attempt

to reserve partitions of the machine, each starting at a particular time for a speci-

fied duration. In situations where real-world deadlines are critical to success (e.g.

for paper deadlines, conference demonstrations, collaborative meetings, etc.) an

advanced reservation capability is essential.

However, while most open-source and commercial batch schedulers provide

support for user reservations, to date this capability is not offered to the general

user population by any of the HPC computing centers of which we are currently

aware. While there are a number of reasons why advanced user-settable reser-
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vations are not available (e.g., it is not clear what users should be charged for a

reservation, what the priorities for making a reservation should be, etc.) the pri-

mary concern appears to be the possible loss of machine utilization. Unlike a busy

restaurant that can cover the cost of an unused or under-used reservation through

higher prices to all customers, the HPC centers pay for their resources almost

entirely “up front” and then account for the capital expense as utilization over

the lifetime of the machine. Thus lost utilization can be viewed as lost revenue

that cannot be recovered. It is currently true that specially privileged users may

still make reservations for particularly important and well-justified deadlines, but

these reservations are negotiated individually with site administrators beforehand

on a case-by-case basis and are not available to the general user community.

In this Chapter, we present a new statistical method that implements ad-

vanced reservations probabilistically as an overlay atop existing best-effort (i.e.

non-reservable) batch-queue systems in production HPC settings. Our approach

builds upon recent work in predicting bounds on queuing delay using fast, on-line

time-series techniques [48]. We use these results to build a virtual reservation ca-

pability – Virtual Advanced Reservations for Queues (VARQ) – for regular (e.g.

non-privileged) users that does not require the cooperation of the target batch

scheduler. With VARQ, site administrators are not required to implement a local

reservation capability; rather, they see jobs managed by our system as part of the
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normal workload. Users experience the cost of a virtual reservation as an addi-

tional charge to their accounts (typically funded in units of allowed occupancy

time) automatically, without a change to local accounting systems. One draw-

back of our approach is that the exact cost for a specific reservation is difficult

to predict precisely. The system attempts to minimize this cost, however, and it

does provide conservative worst-case estimates. Finally, users are able to specify

explicitly an acceptable failure probability for each VARQ virtual reservation.

In this Chapter, we detail the implementation of virtual advanced reservations

and evaluate its effectiveness empirically using several shared production HPC

facilities currently dedicated to science and engineering research. We also analyze

the cost, in terms of additional charges to our occupancy allocations, incurred

during our experiments. Finally, we use a trace-based, faster-than-real-time sim-

ulator to explore the possible effects of virtual advanced reservations should our

system become a popular infrastructure component.

In so doing, the work described in this Chapter makes the following contribu-

tions.

• We propose a statistical approach to implementing advanced reservations in

production science and engineering HPC settings that does not require site

administrators to implement hard reservations.
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• We analyze the effectiveness of this approach using both a working imple-

mentation targeting “live” HPC systems running in production mode and

its potential impact using a new trace-based simulation capability.

• We find that virtual advanced reservations are surprisingly effective at the

present time on the HPC machines we tested and that their impact is un-

likely to affect current HPC operational settings negatively.

• We describe the statistical conditions that must exist at the sites for these

results to be general in future, and argue that they are likely to exist for the

near and medium term.

These contributions are important and relevant to the parallel computing com-

munity because they offer the possibility of providing a specific quality-of-service

to users without the need to modify local software and/or management policies.

In particular, for grid settings where resource usage is federated and cross-site

scheduling is tremendously challenging, we believe virtual reservations prove an

important and enabling technology.

The remainder of this chapter is organized as follows. In the next section (Sec-

tion 5.2, we describe the statistical approaches and methods we have developed

to make virtual advanced reservations. Section 5.3 describes the experiments we

have performed to evaluate the efficacy and generality of our technique and their
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results. Finally we conclude this chapter with a discussion of limitations of our

method in Section 5.4.

5.2 Methodology

VARQ implements a reservation by determining when (according to predic-

tions made by QBETS) a job should be submitted to a batch queue so as to

ensure it will be running at a particular point in future time. It does not actually

reserve the resource, but rather achieves the same goal – the predictably scheduled

execution of a user program – that a reservation enables. Because VARQ does

not require modification to the local scheduling policies or scheduler submission

protocols, it can function as an overlay. VARQ jobs do not appear different from

non-VARQ submissions at the batch scheduler.

Figure 5.1 provides an overview of the functional relationships between VARQ,

QBETS, and the local batch scheduler. User batch jobs may be submitted to

VARQ for execution at a specific point in time in the future (specified by a dead-

line). VARQ then uses QBETS predictions to determine when the job should be

submitted to the batch scheduler queue to ensure it is executing at the deadline.

At the same time, non-VARQ jobs are being submitted to the batch scheduler

queue. The delays these jobs experience affect QBETS predictions which in turn,
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Figure 5.1: Overview of VARQ system interaction with local batch scheduler

affects VARQ decision making. We describe the nature of this interaction more

completely in the following subsections.

5.2.1 Virtual Advanced Reservations

Using QBETS, we can estimate the probability, at time T , of a specific job

beginning execution by a certain time in the future T + startDeadline, but we

cannot say when between T and T +startDeadline the job will actually start. Us-
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ing the UC TeraGrid example above, we know that, at time T , QBETS reported a

0.89 probability of the specified job starting within ten minutes. However QBETS

provides no information about the likelihood of the job starting at any specific

time between T +1 seconds and T +599 seconds. Because of this uncertainly, this

probabilistic prediction alone is not sufficient for certain applications which need

to reserve a precise time slot in the future when the resources will be available.

One naive way to get around this deficiency is to attempt to submit a job

that requests a runtime long enough to encapsulate both the time from T to

T + startDeadline and the requested time of the job itself (wallTime). Using

such a tactic, we would submit a job which, instead of requesting wallT ime

seconds of compute time, instead requests wallT ime + startDeadline seconds.

This technique will guarantee that if the job begins execution between T and

T + startDeadline, then it will be allowed to execute from T + startDeadline

to T + startDeadline + wallT ime. If the user desires that the job start at

T + startDeadline and not before, the job simply needs to “sleep” or spin until

time T + startDeadline. Recall from Section 5.1 that once the batch scheduler

allocates nodes to a job, the job will not be prematurely terminated nor pre-

empted. Thus any job is free to simply wait to begin doing useful work, however

the accounting system will charge the user’s allocation for occupancy starting at

the moment the job acquires its nodes. Because this occupancy is by a user job,
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and the user’s account is charged for it, the center does not need to, and indeed

cannot, consider it lost utilization.

Potential Drawbacks

The disadvantages to this approach are twofold. First, when the desired

startDeadline is large (and it likely is), then the job could waste a substan-

tial amount of allocation by holding the resources until the user’s deadline ar-

rives. Second, again when startDeadline is large, the probability of such a

large job making it through the queue is much lower than the job requesting

the time actually needed for execution. For example, if startDeadline = 43200

and wallT ime = 3600, then we would be requesting a 46800 second job when we

only need 3600 seconds of compute time, 43200 seconds from now. The probabil-

ity of a 46800 second job making it through the queue by startDeadline is much

lower than that of a 3600 second job starting by startDeadline, primarily because

of the inability of the scheduler to use this job for backfilling.

Bounds Prediction Stability

Our solution to this problem is to find the amount of time to wait before

submitting a job so that when we do submit, the job isn’t so large as to make the

probability of success prohibitively low because of the additional runtime necessary
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to cover the possibility that it begins running immediately. This approach is

based on the observation that if the percentile estimates do not change, or change

slowly, QBETS predictions made in the future will look very much like current

predictions. Thus it is possible to predict the bounds on delay if the user were

to wait a short time (thereby reducing the extra time needed to cover the delay

until the deadline) before submitting a job.

In the process of verifying QBETS (a process that continues), we observed

that while the queue delays may fluctuate to a great degree, the time series of

percentile predictions corresponding to those delays are relatively stable, often

over many days. Figure 5.2 presents an example that compares queue delays

observed for jobs submitted to the “normal” queue (the default work queue) on

the San Diego Supercomputer Center’s Datastar machine and the corresponding

QBETS estimates for the upper 95th percentile reported during the month of

February of 2007.

In the figure, the x-axis represents the submission time of a job, and the y-axis

(using a log scale) describes the delay (so that the figure shows the time series of

delays). Each point feature represents the delay observed for a single job, and the

line feature traces the QBETS estimates. Notice that even though the job delays

vary from between 10 and 110, 000 seconds, the percentile estimate is quite stable

by comparison.
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Figure 5.2: Queue delay measurements and QBETS 95th percentile predictions
on Datastar for the month of February, 2007.

The clustering feature of QBETS enhanced the stability shown in Figure 5.2

by selecting a relatively homogeneous subset of the wait times. While the full

trace shows several orders of magnitude variation, this trace for a single cluster

automatically identified by QBETS shows only a range of only about 4 orders of

magnitude. The reason for this effect is that the appearance of highly variable

delay may be because the scheduler is interleaving jobs of different classes, each

of which experiences a different “class” of delay. For example, if large jobs are
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experiencing roughly 100, 000 seconds of delay and small jobs are all being serviced

in 10s of seconds, an interleaving of the two appears to have more variance than

either taken separately.

QBETS, as discussed in Chapter 4, computes a time bound on the delay a

specific user job will experience. For this work, we have modified QBETS to

invert this functionality so that it returns an integer percentile estimate between

1 and 100 for a specific time bound. By treating these percentiles as coming

from a single empirical distribution, QBETS can return the probability that a

job corresponding to a specific 5-tuple will begin executing before a specified

period of time has elapsed (termed the deadline). This functionality, which is the

foundation of VARQ, is expressed here as a function to be used for the remainder

of this dissertation:

QBETS(m, q, nodes, wallT ime, startDeadline) = prob

Because the bounds predictions are so stable, it is possible to use the inverted

predictor function QBETS() to estimate the probabilities that jobs submitted

at successive points in the future (each having a successively shorter requested

execution time) will start running at some point before a specific deadline and

will be able to continue executing until completion. However, the effect is not
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monotonic. Notice that in Figure 5.2 very few jobs waited less than 20 seconds

between the time they were submitted and the time they began execution; a

greater number waited between 20 and 100 seconds; etc. This effect occurs because

in the short run, the scheduler attempts to implement a fair policy between jobs of

equivalent resource requirements. Thus a VARQ job submitted near the deadline

will contend with non-VARQ jobs for immediate initiation thereby, decreasing that

job’s probability of starting before the deadline. Therefore, as the submission time

approaches the deadline, the probability of starting before the deadline tends to

increase, possibly due to the backfilling, as less additional runtime is necessary

to cover the time before the approaching deadline; but it tends to decrease due

to contention by other submissions and the scheduler’s need to enforce fairness

among equivalent jobs. One might expect, then, to find a “sweet spot” at which

the probability is maximized.

Probability Trajectories

To find the submission time in the future that will most likely meet the dead-

line or a submission time that corresponds to a user’s reservation request, VARQ

computes a probability trajectory for the user’s job by considering the possibility

of submitting a given job at successive 30 second intervals from the time the job

is given to VARQ until the specified deadline. For each point in time, it decre-
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ments the additional runtime startDeadline required by 30 seconds, and estimates

the probability of starting before the deadline using QBETS(). Specifically, it

implements the algorithm described in pseudocode in Figure 5.3, where the al-

gorithm accepts as input the 4-tuple job description, the required time when the

resources must be available (startDeadline) and the minimum acceptable prob-

ability that the reservation request is successful (reqProb). Upon completion,

the algorithm returns the number of seconds VARQ should wait before submit-

ting the job (waitT ), and the modified job walltime (advWallT ime) required to

ensure that the reservation can be met with probability reqProb.

Figure 5.4 depicts an example VARQ probability trajectory (denoted probV ec

in the pseudocode) computed in this way. The data comes from a VARQ reser-

vation made at 2:49 PM on March 6th, 2007 on the NCSA TeraGrid machine for

the “dque.” For this reservation, the user requested 4 nodes for 1 hour of exe-

cution time starting at 2:49 AM on March 7th (12 hours into the future). Time

of day (given as a Unix timestamp) beginning at 2:49 PM on the left-hand side

of the figure is shown along the x-axis. The y-axis shows the return values of

QBETS() which is the probability estimate for the job starting before the dead-

line at 2:49 AM (right-hand side of the graph) as function of when, in the future,

it is submitted.
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INPUT(mach, queue, nodes, wallTime, startDeadline, reqProb)
OUTPUT(waitT, advWallTime)
T = current UNIX timestamp
currT = T
currProb = I = 0

WHILE (currT < startDeadline)
    advWallTime = wallTime + (startDeadline - currT)
    currProb = QBETS(nodes, advWallTime)
    probVec[I] = (currT, currProb)
    I = I + 1
    currT = currT + 30
ENDWHILE

I = LENGTH(probVec)
WHILE (I >= 0)
    (currT, currProb) = probVec[I]
    IF (currProb >= reqProb) THEN
        waitT = currT
        advWallTime = startDeadline - currT
        RETURN(waitT, advWallTime)
    ENDIF
    I = I - 1
ENDWHILE

Figure 5.3: Pseudocode describing VARQ determines how long to wait before
submitting a VARQ job.

From time T at 2:49 AM until approximately T+21600 seconds, the probability

of the requisite sized job starting before T +43200 steadily drops from slightly be-

low 0.4 to 0.25. This part of the graph illustrates the probability decay that occurs

as the eventual submission time and the deadline draw closer together. However,

at approximately T + 21600, we see a drastic increase in probabilistic prediction.

This increase shows the effects of the clustering algorithm used by QBETS. At

that point in time, the combination of node request and total requested execution
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time for the job put it in a different scheduler service class (presumably due to

the possibility of backfilling). After this point, again the probabilities steadily

approach 0 as the deadline approaches.

The probability trajectory can be used to identify the point in time when

VARQ should submit the job to the machine’s queue that corresponds to the

most probable success in attaining the reservation (at T + 21600 in the figure the

QBETS reported a maximum probability of approximately 0.7). VARQ supports

this mode of operation, but in choosing the maximum, the user cannot explicitly

tradeoff success probability for potentially lost allocation. If the user in this case

requested VARQ to submit at the most probable point in time, and the job began

running immediately, the user’s allocation could be charged a maximum of an

additional 4 ∗ (43200− 21600) = 86400 node-seconds of allocation in addition to

the 3600 ∗ 4 = 14400 node-seconds required for the job’s execution.

Minimizing Lost Allocation

To allow somewhat greater efficiency and flexibility, VARQ also accepts a tar-

get success probability from the user and finds the latest submission time in the

probability trajectory that can meet it as a way of minimizing the additional allo-

cation overhead. For example, if the user specified success probability of 0.5 and

the trajectory in Figure 5.4 were used, then VARQ walks backwards in probV ec
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Machine Processors Batch Software Description
datastar 2176 Load Leveler SDSC IBM PowerPC

Production Compute Cluster
ucteragrid 316 Torque/Maui UC/ANL IBM/Intel Compute

Viz Linux TeraGrid Cluster
dante 35 Torque/Maui RENCI Intel Xeon Research

Linux Cluster
cnsidell 256 Torque/Maui UCSB NanoScience Research

Linux Cluster
ncsateragrid 1744 Torque/Maui NCSA IBM/Intel Compute

Linux TeraGrid Cluster
iuteragrid 32 PBS IU AVIDD Compute Linux

Cluster
ornlteragrid 56 Torque ORNL IA64 Compute Linux

Cluster

Table 5.1: HPC machines used in VARQ empirical experiment. Chosen systems
represent a realistic set of distributed HPC resources on which users would have
simulataneous access.

until it encounters the first timestamp where the probability is equal to or ex-

ceeds 0.5. In this case, such a timestamp exists at T + 40470 which indicates

that we should wait 40470 seconds and then submit a 4 node job requesting 6330

second job (3600 + (43200 − 40470)) to guarantee that the job will be running

between T + 43200 and T + 43200 + 3600. The potential allocation overhead (i.e.

the maximum possible additional allocation cost) is 4 ∗ (43200 − 40470) = 9480

node-seconds for the same job requiring 14400 node-seconds of execution time.

Thus the VARQ probability trajectory allows the user to trade estimated suc-

cess probability for potential allocation overhead. In this example, reducing the

desired success probability from 0.7 to 0.5 implies a reduction in potential extra
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Figure 5.4: VARQ probability trajectory for a 4-node, 1-hour job in the “dque”
on NCSA TeraGrid machine

allocation cost from 86400 node-seconds to 9480 node-seconds. VARQ, at present,

reports only the maximum possible allocation overhead since it does not currently

attempt to estimate at what time before the deadline the job is likely to begin

executing. We believe a “best guess” in addition to the worst case allocation loss

is possible, however, and we are pursuing it as part of current efforts.

Notice also that the probability trajectory associated with a particular VARQ

reservation may indicate that there is no submission time corresponding to the
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user’s specified success probability. Returning to the example, if the user had

specified a desired success probability greater than 0.7, the system would have re-

sponded by indicating that no reservation is possible. This condition is analogous

to the circumstance in which a “hard” reservation is denied because a conflicting

reservation has already been made. In addition, to handle the possibility that a

change-point occurs during a reservation period, VARQ continually generates new

probability trajectories while waiting to submit a job.

In sum, VARQ exploits the slowly changing nature of QBETS bounds esti-

mates to determine when in the future a job should be submitted so that it will

be running at a specific deadline. Because QBETS estimates are upper bounds,

the job may start earlier than the desired time and simply wait, incurring an

extra allocation charge while it does. VARQ allows the user to control this cost

explicitly by specifying a target success probability that it will try to honor with

the minimum potential cost.

5.3 Experiments and Results

To explore the efficacy of VARQ, we report results from a series of empiri-

cal experiments conducted using the machines listed in Table 5.1. Each of these

machines is currently in production use by a shared, and potentially competing,

80



Chapter 5. Virtual Advance Reservations

user community. To the best of our knowledge, our user login and account spec-

ification received “typical” treatment on each machine (with one possible caveat

discussed below), and we did not inform the relevant system administrators of

the experiments. We also conducted a simulation experiment to understand the

effects of multiple users submitting VARQ jobs as a preliminary investigation of

its potential generality. Without cooperation from site administrators, however,

we felt it ill-advised to conduct “stress” tests involving multiple and frequent

VARQ requests in live settings in which unsuspecting users could be exposed to

unforeseen system response.

5.3.1 Efficacy Experiments and Apparatus

Table 5.1 describes the characteristics of the machines we chose to use for our

experiments. We chose these machines for a number of reasons: Each machine

is supported by QBETS, has a number of active users (although some machines

are observed to be busier than others), and provides us the low-level ability to

instrument the submission and tracking of job status necessary to perform an

actual experiment and gather meaningful results.

In each experiment a submitting process formulates a job, and then selects a

specific time in the future when the job needs to be running, and a probability

of success. Ideally, we would have liked to perform this experiment for all job
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.50
machine predicted actual count
datastar 0.52 0.42 36
ucteragrid 0.76 0.98 45
dante 0.90 0.80 61
cnsidell 0.54 0.71 62
ncsateragrid 0.53 0.74 23
iuteragrid 0.80 0.88 24
ornlteragrid 0.88 1.00 39

all 0.71 0.79 290

Table 5.2: Average predicted success probability and actual success fraction for
VARQ reservations with minimum success probability of 0.50.

.75
machine predicted actual count
datastar 0.75 0.71 17
ucteragrid 0.86 1.00 45
dante 0.93 0.78 59
cnsidell 0.76 0.88 66
ncsateragrid 0.76 0.77 13
iuteragrid 0.81 1.00 22
ornlteragrid 0.87 1.00 37

all 0.83 0.89 259

Table 5.3: Average predicted success probability and actual success fraction for
VARQ reservations with minimum success probability of 0.75.

sizes, with a large number of future deadlines, and for a multitude of success

probabilities. However, since the experiments run in real time, and the delays

on these machines can be substantial, exploring every reasonable combination of

these factors is infeasible.

We have set up one machine at our host institution to act as a single point

where all experiments are launched. On this machine, we run submitting processes
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.95
machine predicted actual count
datastar 0.97 0.00 1
ucteragrid 0.96 0.96 48
dante 0.96 0.85 61
cnsidell 0.00 0.00 0
ncsateragrid 0.00 0.00 0
iuteragrid 0.97 0.94 18
ornlteragrid 0.97 1.00 58

all 0.96 0.93 186

Table 5.4: Average predicted success probability and actual success fraction for
VARQ reservations with minimum success probability of 0.95.

designed to act as users that make reservation requests to VARQ for the HPC

targets listed in Table 5.1.

Each process targets a specific machine and queue. When it is initiated, the

job is passed a specific success probability and deadline (expressed as a duration

until a reservation should be made) as parameters. It begins by composing a

job for submission through VARQ using a randomly selected node count and run

time from the following sets: either 1, 4, 8, 16, or 32 nodes and either 600, 1800,

3600, 7200, or 14400 seconds of run time. Once the submit process has crafted a

job, it queries VARQ regarding the possibility of attaining a virtual reservation

using the newly minted job and the deadline and success probability originally

specified when the submit process was initiated. If, after computing the necessary

probability trajectory for the reservation, VARQ cannot find a submission time in

83



Chapter 5. Virtual Advance Reservations

the future that will satisfy the reservation specification at the desired probability

levels, it reports “unable to make reservation” to the submission process which

sleeps for 15 seconds, composes a new random job, subtracts 15 seconds from the

deadline (so that it targets the same point in time in the future), and retries. The

process continues to retry every 15 seconds until VARQ accepts the reservation

or until the deadline is decremented to zero. If the latter conditions occurs, the

submission process resets the deadline it is attempting to its originally specified

value (thereby picking a new target time in the future for a reservation) and

continues to retry. Once the submit process successfully makes a reservation with

VARQ, it then waits until shortly after the deadline has expired and starts again,

attempting a new reservation one deadline duration into the future.

The intention of the protocol is to model a user who wishes to obtain a reser-

vation that starts at a specific point in time, and who is willing to re-query the

system in the event VARQ is unable to grant the request. It has the effect, how-

ever, of making the time between attempted reservations more or less equal. We

do not believe this induced periodicity affects the results negatively, particularly

since we observed a fair amount of “drift” in the experiment cycle for each process

over the entire experimental period.

For instrumentation purposes, the experimental apparatus determines the suc-

cess or failure of a VARQ job in meeting its deadline, and the actual allocation
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overhead incurred, by searching through the batch scheduler logs on the target

machine post facto. We considered adding an instrumentation facility to VARQ

itself to allow users to query the success history of their own reservations. Such an

extension would increase the intrusiveness of VARQ substantially, however, since

in its current form the only component that requires access to the local batch

scheduler logging information is QBETS.

On the launching machine, we run an experiment process for each of three

required probabilities (0.5, 0.75, and 0.95) and the same deadline duration (to

speed the time to results). We stagger the start times of these processes so that

they do not all target exactly the same moment as a deadline. Also, we for the

sake of alacrity, we have chosen a deadline duration of 21600 seconds (six hours),

both to improve the number of completed experiments, but also because we felt

that six hours the shortest reasonable lead time a user would normally expect

to be able to make static advanced reservations. As shown in Figure 5.2, the

percentile time series for these machines is typically stable for several days. If a

short reservation is possible, longer ones should be more likely within the confines

of this stability.
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5.3.2 Efficacy Results

To determine the efficacy of the VARQ system, we compare the percentage

of successful VARQ attempts to the specified success probability. For example, a

submit process attempting to make VARQ requests with 0.5 success probability,

should have at least 50% of the submissions accepted by VARQ start before their

specified deadlines.

In Tables 5.2, 5.3, and 5.4, we compare the target success probabilities with

those we observed across all machines. Each row corresponds to a specific ma-

chine (we used the default queue in each case). For each of three different success

probabilities (0.5, 0.75, and 0.95) we show three columns of numbers: the average

expected success probability used by VARQ, the actual fraction of jobs accepted

by VARQ that met their deadlines, and the number of accepted jobs. Recall that

VARQ uses the latest time in its probability trajectory that exceeds specified suc-

cess probability as a way of reducing potential allocation overhead. In some cases,

this probability may be quite a bit larger than that specified, especially when the

machine is lightly loaded. For example, using a specified 0.5 success probability on

ornlteragrid, VARQ submitted a job when it “saw” predicted success probability,

on the average, of 0.88 in the probability trajectories it computed. 100% of the

39 jobs it submitted in this category met their deadlines (as shown in columns 2,

3, and 4 of Table 5.2 in the row for ornlteragrid).
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These results indicate that VARQ, in the mode we have tested it, is quite

successful. Of the 21 test cases (7 machines at 3 target probabilities each) only

dante at the 0.95 target level and datastar at the 0.5 and 0.75 were probabilistic

failures (shown in bold face in the table). There were several instances, however,

where VARQ refused to accept any reservations, or only accepted one. These are

not failures in the sense that the user (the submission process in our case) did not

experience a different quality of service than the one VARQ agreed to deliver.

Returning to the observed failures, in dante’s case, of 61 jobs accepted by

VARQ, with an average predicted success probability of 0.96, only 0.86 (52 jobs)

successfully met their deadlines. We provide a more probing analysis of this case

also in the next section. For datastar, however, the problem was that our job

submissions were being assigned (accidentally) to an account used for educational

purposes and not research. Apparently jobs submitted to this account receive

degraded scheduling priority in comparison to the “average” research user tracked

by QBETS. We discovered this anomaly only in post mortem analysis of the exper-

iments. At the time of this writing, we have re-initiated the datastar experiment

under the correct account, and the results for the small number of attempts show

success. For the sake of uniformity, however, we felt it unwise to replace the

datastar numbers with the new data since it was not part of the original experi-
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mental run and also because the number of attempts so far is too small to yield

a meaningful inference.

For all other tests, however, in which the count of jobs attempted is not 0

or 1, the observed fraction of successes exceeds the average predicted success

probability. These results combine to show that VARQ is conservative with respect

to success probability. Generating Tables 5.2, 5.3, and 5.4 required 457 hours

of wallclock time. We initiated the experiments at 11:30 AM on February 15th,

2007 and terminated them at 12:48 PM on March 6th, 2007. In many cases,

despite retrying every 15 seconds, VARQ could not identify a single instance in

a probability trajectory that it predicted would result in a successful reservation

over the entire experimental period.

5.3.3 Allocation Overhead Results

In Table 5.5 we show the effects of VARQ on the allocation charges incurred

during the experiment described above. Organized in a way similar to Tables 5.2,

5.3, and 5.4, each row corresponds to a specific machine, and each of the three

major columns represents results for different specified success probabilities (0.5,

0.75, and 0.95 respectively). In Table 5.5, each major column shows the total

allocation required to execute the jobs in that category (denoted required), the

actual allocation used by VARQ in that category (denoted used) and the ratio of
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.5 .75 .95
machine req. used ratio req. used ratio req. used ratio
datastar 14 22 1.58 8 9 1.16 0 0 0.00
ucteragrid 1038 1120 1.08 877 956 1.09 563 1221 2.17
dante 884 944 1.07 604 735 1.22 831 2040 2.45
cnsidell 257 636 2.48 60 212 3.53 0 0 0.00
ncsateragrid 58 127 2.17 28 84 3.00 0 0 0.00
iuteragrid 82 82 1.00 91 91 1.00 110 258 2.34
ornlteragrid 464 473 1.02 628 640 1.02 83 94 1.13

all 2797 3405 1.22 2295 2725 1.19 1587 3612 2.28

Table 5.5: Non-VARQ (req.) and VARQ (used) allocation costs and their ratio.
Cost units are node-hours.

allocation used to allocation required (denoted ratio). The units of allocation in

this table are node-hours. For example, columns 2, 3, and 4 of the row marked

ornlteragrid show that the VARQ reservations submitted with a 0.5 success prob-

ability required 464 total node-hours of occupancy to execute the work in all jobs

and 473 node-hours for that occupancy and the additional cost when jobs started

early under VARQ. The ratio of 1.02 indicates the cost factor associated with the

use of VARQ. That is, the submission process in this experiment “spent” 1.02

times as much allocation to obtain VARQ reservations as it would have spent had

it simply submitted the jobs (without reservations).

From the table, the allocation overhead penalty VARQ introduces varies from

machine to machine. On the cnsidell machine, for example, VARQ reservations

at the 0.5 probability level cost the allocation almost 2.5 times the non-reserved

outlay compared to a cost factor of 1.08 on ucteragrid. This variability is consistent
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with our experience in developing QBETS previously in that each of the machines

in this study displays a unique queue delay response profile. Also confirmed is

the notion that greater certainty (in terms of higher success probability) implies

a greater allocation cost since the cost factor increases monotonically from left to

right in each row.

5.3.4 Generality Experiments and Apparatus

To be able to test the effectiveness of VARQ when a sizeable fraction of user-

offered jobs are under its control, we constructed a faster-than-real time, trace-

based simulator which uses the same VARQ infrastructure we used for the empir-

ical experiment and the Maui [44] batch-scheduler running in simulation mode.

The Maui scheduler is the actual scheduler deployed at many of the sites we

tested empirically (See Table 5.1). Maui includes a simulation capability that

allows input job workloads to exercise a given scheduler policy so that potential

performance effects can be identified prior to deployment. Because we did not

have access to the specific scheduler policy files at each site, we chose Maui’s de-

fault policy which is first-come-first-served with backfilling [44, 34] and a processor

node count set to 272, which is the total number of nodes in the Datastar machine

at SDSC, where each node has 8 processors.
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We hasten to clarify that we do not claim the performance results generated by

this simulator are representative of any actual system hence we did not use it to

investigate the effectiveness of VARQ. However, the question of how well VARQ

performs when the fraction of offered workload controlled by VARQ increases is

one we believe must be considered. To do so, we use the simulator to compare

VARQ performance over repeated experiments where we vary only the fraction of

jobs that use VARQ. If VARQ is to be a generally useful methodology, it must

be able to support an appreciable fraction of the workload experienced without

breaking down or adversely impacting competitive users outside the prioritization

specified in the local scheduler policy.

The simulator takes a workload trace (we chose the datastar “normal” queue

since it seems particularly active), a fraction of jobs that should use VARQ and

a success probability. Next, the simulator chooses regular time periods (six hours

apart) within the trace indicating times of advance reservation start deadlines.

This mode of operation represents the worst case where the given percentage of

jobs request reservations starting at same time every six hours. Jobs are considered

in submission order, and a job is selected to be considered a VARQ job randomly,

but in proportion to the specified fraction (e.g. if the fraction is 0.10 each job has

a 10% chance of being converted into a VARQ job). If the job is selected, it is
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.5 .75 .95
Percentage
VARQ jobs pred. act. count pred. act. count pred. act. count
10 0.54 0.66 359 0.77 0.72 60 0.97 0.91 11
50 0.55 0.60 1869 0.77 0.68 1108 0.96 0.84 194
95 0.68 0.64 1960 0.43 0.81 939 0.98 0.97 48

Table 5.6: Average predicted success probability (pred.) and actual observed
success fraction (act.) for VARQ jobs in simulation.

presented to VARQ for execution at the next six hour deadline with the specified

success probability.

5.3.5 Generality Results

The results of our simulation experiment are shown in Table 5.6. Note that

although there are times when we failed to achieve the minimum expected suc-

cess percentage using VARQ, in most cases VARQ was able to acquire a success

percentage very close to the expected success percentage of reservations. Pre-

dictably, as the fraction of VARQ jobs increases and the success probability in-

creases, VARQ’s success rate decreases. However, in many cases the results are

surprisingly close, given the extreme nature of the simulation. For example, if

10% of the jobs are VARQ jobs and they target the same deadline with a desired

success probability of 0.95, the observed success fraction is 0.91. Only when 95%

of the jobs are VARQ jobs and the desired success probability is equal to 0.75 do

the simulations show VARQ’s quality of service guarantees breaking down. Note
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that when 95% of the jobs are VARQ jobs and the desired success probability is

either 0.5 or 0.95 VARQ almost succeeds. In the former case, the conservativeness

of QBETS predictions furnishes VARQ with enough “slack” in the estimate of the

50th percentile so that the predicted probability (0.68) is only slightly larger than

the observed success fraction (0.64). In the latter case, QBETS is able to find

few instances where it predicts the probability to be 0.95 or greater. A closer

analysis of the simulation trace reveals that the 48 VARQ attempts in this case

only occurred during period of light workload in the job trace we used. Thus we

observe in this example there is a regime between the extremes of 0.5 and 0.95

success probability where VARQ clearly fails to operate. We believe this effect is

general, but the precise failure regime will be site specific.

At a high level, these results indicate that VARQ is both likely to offer a larger

user community valuable functionality without degrading resource performance or

utilization. In the simulations, each VARQ job had its run time increased to cover

the possibility of an early start. Either the simulated machine was under utilized

by the original (non-VARQ) workload, in which case VARQ increases the utiliza-

tion perceived by the system administration, or the machine was originally over

committed, in which case VARQ does not cause utilization to be lost. Moreover

all of the simulations executed in approximately the same simulated time interval

as did the VARQ-free simulation (not shown). Thus the amount of work accom-
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plished with active VARQ jobs is approximately the same as when no VARQ jobs

are present. We present these results in order to provide evidence that a more

aggressive field test of VARQ is warranted as its general use (even in the worst

case) appears relatively benign.

5.3.6 Discussion

The results presented in the previous subsection show that VARQ implements

a new advanced reservation abstraction for HPC users. Moreover, the abstraction

is virtual. Existing batch systems, governed by complex and hidden local schedul-

ing policies, do not need to change in any way and, in particular, do not need to

agree to support any form of user-initiated reservation mechanism for VARQ to

function. Finally, the virtualization is statistical. VARQ uses predictions gen-

erated by QBETS to “manufacture” a reservation without local infrastructure

support. As a fortuitous side-effect, each VARQ reservation can be character-

ized by success probability that is conservative. Users know the minimum success

probability associated with each of their reservations. Together, these features en-

able VARQ to achieve a functionality first hypothesized as being useful almost a

decade previously [10] and for which we believe there will be substantial demand.

VARQ also offers several capabilities that would otherwise be difficult to im-

plement as standardized batch queue software mechanisms:
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• It trivially implements a zero-overhead “best effort” reservation. In this

mode, a user specifies a deadline and a success probability, but is willing to

tolerate having the submitted job start before the deadline.

• It allows users to control what they pay in allocation as a function of how

precisely they wish to have their deadlines met.

• It allows VARQ reservations to be combined from independent sites with

predictable joint probabilities of success.

The first feature is simply a function of when a user job actually begins doing

work after it has successfully be allocated a set of processors. If a user does not

want to pay the allocation overhead necessary to wait until her deadline, her job

need only begin executing immediately instead of ‘spinning” until the deadline. In

the current prototype, this spinning or waiting is implemented in the application

itself. It is trivial to wrap the application in a script to avoid the need for user

modification of the program. Either way, however, the user can control the cost at

the time the job begins node occupancy. This leads to the second new capability,

which is specifically that a user of VARQ has explicit knowledge of the “costs”

involved in acquiring an advance reservation. Knowing both the probability with

which a reservation will be granted and the maximum over-allocation cost allows

users or higher level work planning systems to potentially apply customizable
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cost models to resource selection and scheduling processes. Currently, finding the

“cost” of hard advance reservation allocation on existing systems is ill specified,

non-standardized, and often simply impossible. We hope that VARQ’s ability

to both expose and control the success probability and over-allocation costs of

virtual advance reservations will lead to new research in workflow planning and

distributed resource scheduling.

Finally, because each VARQ reservation is associated with a success proba-

bility, it is trivially possible to combine reservations to meet a specific reliability

target as long as the user can take advantage of which ever resource ultimately is

delivered first. For example, if it is possible to obtain two different VARQ reser-

vations for the same point in time, each with a success probability of 0.9, and the

machines behave independently with respect to queue delay (which they almost

certainly do at present), the probability of getting one or the other or both is 1.0

minus the probability that they will both fail. That is, the joint probability of

success in this example is at least 0.99. While users may not take advantage of

this simple approach manually since it involves canceling one of the submissions

to avoid even greater allocation cost, in grid settings, where meta-schedulers can

manage this complexity automatically, the possibility is intriguing.

However, the using VARQ for co-allocation induces the reverse effect. That

is, the joint probability associated with co-allocated reservations is less than the
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probability of either one. However, our future efforts are beginning to show that

it is possible to use the “either-or” approach to mitigate this probability decay

in a grid setting of sufficient scale. Because VARQ reservations are character-

ized by explicit success probabilities, using them coherently in combination under

programmatic control has great promise that we leave to future work.

5.4 Conclusion

One major hurdle the HPC community has yet solve generally is that of pro-

viding users and grid/metacomputing systems the ability to obtain advance reser-

vations. In this Chapter, we describe VARQ, a statistical approach which pro-

vides scientists with a familiar mechanism to obtain virtual advance reservations

on existing systems, without affecting local site software or administration and

scheduling policies. We show through empirical experiment that VARQ success-

fully obtains resources corresponding to a variety of user requests on real HPC

systems in operation, and provide evidence that the introduction of VARQ as a

more general tool is likely to be effective and will not cause a substantial impact

on resource performance. In the next chapter, we will extend the idea of VARQ to

handle the synchronized allocation of resources on multiple, independently man-

aged HPC sites.
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Statistical Co-allocation

6.1 Introduction

In the previous Chapter, we presented a methodology for provisioning HPC

resources during a specified time interval atop existing best effort batch systems.

Our methodology, VARQ, provides a user with a probabilistic guarantee that their

specified resources will be available during their specified time interval, but we

focused our verification experiments on independent resources. While this facility

is solves a significant problem for users that require an ’advance reservation’ service

for individual machines, there is a need to a similar functionality across different

machines. Further, applications within this class can grow to a size where they

require more resources than are available at any one site, or have some application

component that always must run at a specific site, but others that can execute

elsewhere to improve performance (for example, a data gathering component that
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reads data from a weather sensor station needs to execute near that station,

geographically, even though the computationally intensive application component

can execute elsewhere). These applications are currently impossible to reliably

execute on production HPC systems, since most sites do not support general

mechanisms that allow the user to, automatically and consistently, guarantee that

their application components, distributed across multiple sites, will be granted

their requested resource set at or before a fixed time in the future. Generally, this

situation is referred to in the literature as the co-allocation problem.

In the previous Chapter 5, we introduced a novel system for providing regular

HPC users the ability to make virtual advance reservations. Our system, termed

Virtual Advance Reservations or Queues (VARQ), uses a probabilistic technique

to decide when, between the request for a reservation and that reservation’s de-

sired start time, to submit a batch job such that the resources are available during

the requested time period. Since VARQ is implemented as an overlay on top of

existing batch queue software and policies, and uses queue wait time predictions

(QBETS [48, 4]), the advance reservations granted have a well defined probability

of success. While we showed that VARQ can be used to acquire a single reser-

vation on a single machine with a reasonable probability of success, we note that

if we try to make multiple VARQ requests simultaneously, and further require

that that they all succeed for the reservation to be useful (thus implementing a
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co-allocation service), the success probabilities quickly plummet since the joint

probability of all reservations succeeding is the product of the individual reserva-

tion probabilities. In this Chapter, we observe that if we are able to relax an input

parameter of VARQ, namely the actual site on which a single reservation is to be

serviced, we can boost the probability of acquiring multiple VARQ reservations

by making multiple VARQ requests simultaneously, discarding those that turn

out to be redundant. Our results show that the combination of VARQ with our

novel probability boosting techniques (which we term CO-VARQ) allows regular

users of production HPC machines to request co-allocated reservations on top of

existing, best effort batch queues with a configurable probability of success.

The rest of this Chapter is organized as follows: in Section 6.2, we discuss the

methodologies we use to implement CO-VARQ. Finally, we present a description

of an experiment we’ve designed to test the effectiveness of CO-VARQ and costs

associated with using the system in Section 6.3. We conclude in Section 6.4.

6.2 Methodology

In this section, we describe the methodology we employ to attempt to solve

the co-allocation problem probabilistically, as an overlay on top of existing soft-

ware and platforms. At a high level, our techniques differ sigificantly from past
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approaches in that our methods rely on observation of empirical job, queue and

policy behavior instead of attempting to introduce some level of control into the

existing systems. Aside from being a much more pragmatic approach, our tactic

has shown, thus far, an incredible level of flexibility as the same approach has

survived fluctuations in workload, software changes, and even significant sched-

uler policy adjustment. Next, we briefly describe our system for making virtual

advance reservations and describe how we extend the concept to implement a

co-allocation service.

In the previous Chapter we describe VARQ, which allows regular HPC users

to make advance reservation requests on individual existing batch queue con-

trolled HPC systems, without requiring any change to the local system software or

scheduling policies. The benefits of VARQ are clear: adding the ability of regular

users to make advance reservations on existing HPC systems without modification

to system software, special priviledges, or even notification of the local resource

administrators thus allowing for automatic and frequent use. However, there are

costs associated with using VARQ.

First, in order to guarantee that a reservation will be serviced during a specified

time period, recall that VARQ typically submits a placeholder job that is longer

than the actual requested reservation. Although VARQ chooses the latest time

to submit in order to minimize this wasted allocation, there were cases where
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a VARQ placeholder used up three and a half times the allocation that the job

actually required to execute. Again, this (worst case) cost is known at the time of

VARQ submission, allowing the user to decide (along with the success probability,

discussed next) whether the over-allocation expenditure is less valuable than the

ability to get deterministic resource availability. The second “cost” is less obvous.

As an input to VARQ, a user must specify a minimum success probability which

must be necessarily less than 1. We evaluated VARQ using 0.50, 0.75 and 0.95

as input minimum success probabilities, finding that, for the most part, VARQ

was able to supply reservations with at least the input level of success. However,

or the higher probabilities (0.95 and above), we found many cases where VARQ

was simply unable to find a point in the future where it could guarantee with

such a high level of probability that a request could be succesfully granted. While

this effect is not considered a failure (since upon making such a request, VARQ

immediately returns a “not possible” message), the reality that there were many

cases where we could not make a reservation with a high level of success was a

problem we wished to address. Although we consider the necessity to input a

minimum success probability a “cost” of using VARQ, it should be noted that

using more traditional hard-coded advance reservation systems does in fact have

some success probability associated with it, but this probability is neither known

nor is it presented to the user, and so VARQ’s ability to return a “not possible at
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CO-VARQ

R
es1

ucteragrid
P1=.60

OR

R
es2

ncsateragrid
P2=.88

dante
P3=.65

OR

datastar
P4=.55

OR

cnsidell
P5=.70

Pres1 = .952 Pres2 = .953

Co-allocation request: two reservations
starting in four hours.

AND

Figure 6.1: Steps involved when a CO-VARQ request (consisting of two simulta-
neous advance reservations) is supplied. Here, CO-VARQ executes two VARQ pro-
cesses in order to procure one reservation, and three VARQ processes to procure
the other, resulting in an overall probability of success equal to 0.952∗0.953 = 0.91.

the input level of success” message, upon reservation request time, can be seen as

added functionality.

6.2.1 CO-VARQ Overview

When considering the use of VARQ to implement a co-allocation service, we

quickly discovered that requiring more than one VARQ request being succesfully

serviced had a drastic impact on the success probability that could be achieved.

Consider the following example; a user requests a single VARQ reservation on
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machine A with a minimum success probability of 0.95. Next, the user wants to

add a second reservation on machine B at the same level of success. Indepen-

dently, each reservation has a probability of 0.95 of being serviced successful, but

the probability that both are successful is the product of the two, namely 0.903.

Adding a third reservation results in a joint probability of 0.857, etc. One ap-

proach is to fix the joint probability at the user specified level and reverse solve

for the independent VARQ input probabilities. For example, we allow the user

to specify that they wanted two simultaneous VARQ reservations with a joint

probability of success equal to 0.95. Thus, each reservation needs an independent

success probability of 0.951/2 = 0.975. Three reservations require independent

probabilities of 0.951/3 = 0.983, etc. Although this method is sound, we find that

VARQ is generally unable to satisfy requests at theses minimum success levels

unless the deadline is generally far in the future (say, a day or more). Since we

wish to provide users the ability to make reservations with as little as a few hours

of lead time, we use a different approach to “boost” the success probabiliies of

independent VARQ requests.

Because VARQ reservations are characterized with success probabilities, we

can combine them in order to “boost” the probability of any one of the requests

being successful. For example, in our above example, if the user did not care

where a resevation was serviced, just that it was serviced at the right time with
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a specified success probability, then we can submit more than one VARQ job

on multiple machines with each request having a lower level of success than the

overall input level. For example, consider a user with a roaming allocation who

requires a single reservation on either machine A or machine B. If VRQ could

service either of these reservations with a minimum probability of 0.90, then the

probability Peither that one or the other is succesfully granted is:

Peither = 1.0− 0.12 = 0.99 (6.1)

That is, if we assume that the success of each VARQ reservation is independent,

the failure probability for each VARQ reservation is 0.1, and so the joint probabil-

ity they will both fail is 0.01. Although we can use this technique to “boost” the

probability of an individual reservation request, we focus here on using it to im-

plement a co-allocation service, since the ability to provide simultaneous requests

is a super-set of a the ability to provide one.

CO-VARQ uses the both the independent request probability reverse solv-

ing technique and the probability “boost” technique described above to pro-

vide a co-allocation service. First, we define a set of resources from which CO-

VARQ can attempt to make a VARQ request. Next, CO-VARQ reads the co-
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allocation request specification which has the following form, where N = nodes,

W = maxWallT ime, D = startDeadline:

N1 W1 D1

N2 W2 D2

...

CO-VARQ remembers the number of allocation requests in total (COUNT ).

In addition, the user specifies a single minimum success probability (Pall) that is

understood to defined as the joint probability that all reservations listed in the

above specification are successful. Next, the CO-VARQ engine reverse solves the

minumum success probability that each independent VARQ request must satisfy:

Pindep = (Pall)
1/COUNT

CO-VARQ then iterates through all of the resources in it’s resource set, gen-

erating a table of probabilities for each specified reservation on each resource.

Finally, we iterate over each input reservation, drawing the VARQ request from

the resource pool with the highest expected probability of success, completing

when we have either exahusted our resource set, or when each input reservation

has a joint probability high enough to satisfy Pall. The resulting VARQ “plan”

is then acted upon, with CO-VARQ making as many VARQ requests as it deter-

mined were necessary to acquire the specified reservations.
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In Figure 6.1, we show a typical example of a single CO-VARQ request. In the

example, a user requires two (COUNT = 2) reservations be made, each starting

at the same time, four hours from the time of the request. As described earlier, the

user is allowed to additionally specify their desired minimum success probability,

in this case we’ve chosen to depict the default of Pall = 0.90. CO-VARQ first

determines the minimum probabilities that each reservation must satisfy (Pindep =

(Pall)
1/COUNT = 0.95). Finally, CO-VARQ begins querying VARQ to determine

how many VARQ requests need to be submitted per reservation in order to meet

Pindep. In the example, CO-VARQ found that for Res1, two VARQ requests must

be submitted (one on ucteragrid and one on ncsateragrid) resulting in a joint

probability that one of the VARQ requests is successful equal to Pres1 = 0.952.

For Res2, CO-VARQ found that three VARQ requests needed to be made to end

up with a joint probability of Pres2 = 0.953. Once this “schedule” of requests

has been decided, CO-VARQ submits five total VARQ requests and informs the

user as to which reservations are successfully acquired during the requested time

period, cancelling those that are redundant once one VARQ request from each

reservation has been successfully obtained.
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Machine Processors Batch Software Description
datastar 2176 Load Leveler SDSC IBM PowerPC

Production Compute Cluster
ucteragrid 316 Torque/Maui UC/ANL IBM/Intel Compute

Viz Linux TeraGrid Cluster
cnsidell 256 Torque/Maui UCSB NanoScience Research

Linux Cluster
ncsateragrid 1744 Torque/Maui NCSA IBM/Intel Compute

Linux TeraGrid Cluster
sdscteragrid 524 Torque/Maui SDSC IBM/Intel Compute

Linux TeraGrid Cluster

Table 6.1: HPC machines used in CO-VARQ empirical experiments.

6.3 Experiments and Results

To test the effectiveness of CO-VARQ in practice, we have designed a simple

experiment that exactly models the behavior potential users. We chose five pro-

duction and research HPC machines to use for this study that we believe fairly

represent a set of machines that a typical user might have access to simultane-

ously. In order for a machine to be included in the set of supported systems,

the only requirement is that the QBETS batch queue prediction system is cur-

rently monitoring the system. Otherwise, VARQ and CO-VARQ operate entirely

on top of the existing software stack, and requires no communication with the

administrators or special access. In Table 6.1, we describe the machines we used

for this study. The UC/ANL TeraGrid, NCSA TeraGrid, SDSC TeraGrid and

SDSC Datastar systems are all production qualit super-computers operated by
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NSF/DOE centers, while the CNSI Dell system is a large University cluster oper-

ated at our home institution.

The experiment is designed as follows: we first pre-determine a set of co-

allocation request parameters COUNT, N, W, and D, along with a required

minimum success probability that all reservations will succeed (Pall). Next, we

execute a script that calls the CO-VARQ system once every D + W hours, so

that we only ever have one CO-VARQ experiment running at a time, avoiding the

possibility that our CO-VARQ experiements will interfere with one another. CO-

VARQ will attempt to compute the “plan” of VARQ requests necessary to fulfill

Pall and if successful, will implement the plan by calling VARQ and monitoring

the progress of each reservation request. If CO-VARQ cannot compute a schedule

that fulfills Pall, it gives up and waits ten minutes before trying again.

The experiment is designed to accomplish several goals. First, we wish to

verify the correctness of CO-VARQ by comparing the percentage of successful

CO-VARQ requests to the specified minimum success probability. Second, the

experiment allows us to inspect, for successful CO-VARQ requests, how much

excess allocation is used in order to achieve co-allocated resources. Finally, the

experiment is designed to execute in a real production environment using a variety

of HPC resources and user workload behaviors over a relatively long period of time.
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Job Params (N,W,D) Pall Pexpected Pachieved

4, 1hr, 4hr 0.90 0.942 0.901
4, 1hr, 12hr 0.75 0.877 0.920
16, 1hr, 12hr 0.75 0.866 0.957
48, 1hr, 12hr 0.75 0.836 0.906

Table 6.2: Minimum success probability (Pall), calculated expected probability
(Pexpected), and actual achieved probability (Pachieved) of four CO-VARQ trials.

In total, the experiment ended up using resources from six HPC sites over a six

month time period (Sep. 2007 - Mar. 2008).

We performed the experiment with various values of N, W, D and Pall (each

N,W,D,Pall tuple is considered a trial), and report the percentage of total CO-

VARQ requests that were successful along with the total over-allocation costs

assoctiated with each trial.

The results of our experiment are shown in Table 6.2. In the table, each row

depicts the percentage of co-allocation requests that resulted in a successful pro-

visioning of the specified resources. In the first column, we describe the ’shape’

of the jobs that were specified in terms of a tuple (nodes, job execution time, and

start time of the co-allocated jobs). In the second column, we show the specified

minimum success probability that was given to CO-VARQ when the co-allocation

request was made. The third column shows the average actual probability of suc-

cess that CO-VARQ computed given the conditions that existed when the request
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was made. The fourth column shows the percentage of co-allocation requests that

CO-VARQ was able to successfully provision.

In sum, the results indicate that for all of the trials we have completed thus

far, CO-VARQ is able to successfully co-allocate resources for jobs at at least the

target minimum success probability, and in each case actually exceeds the expected

probability of success (Pachieved is greater than both Pexpected and Pall). This result

indicates that while CO-VARQ is able to successfully co-allocate resources at the

specified target minimum success probability, our calculations must be somewhat

overly conservative since we’re achieving a higher percentage of success (Pachieved)

than we should expect (Pexpected). We believe that the conservative results are a

residual effect of using the conservative bound estimates on job queue delay that

QBETS provides. These experiments are on-going, with a wider range of target

minimum success probabilities (0.50 and 0.90) and job walltimes (4 and 8 hours).

6.4 Conclusion

While existing batch queue systems efficiently manage local HPC workloads,

the software and, more importantly, the local scheduling policies, are not designed

to support the co-allocation of multiple reservations across site boundaries. Al-

though there has been significant work showing that meta-schedulers can solve the
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co-allocation problem, they all require that the local site give up some amount of

control over how their resources are manage, which has thus far made these global

scheduling systems infeasible in practice. In this Chapter, we present CO-VARQ,

a system that uses a statistical technique to provide co-allocated reservations us-

ing the existing best effort batch queues, without requiring any modification to

local site software, policy or control. We show that, in practice, CO-VARQ was

able to successfully reserve the target percentage of co-allocation requests on five

production and research HPC machines currently in operation today.
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Related Work

7.1 Backgound and Related Work

There is a great deal of literature in the fields of grid and distributed systems

surrounding the problems apparent in characterizing, managing and predicting the

performance response of resources in a heterogeneous, distributed setting. Here,

we cover two major areas related to performance dynamism of resource availability

(uptimes, downtimes, and failures) and provisioning (predicting, modeling and

characterizing provisioning delay).

7.1.1 Resource Availability Dynamism

When high-performance resource pools are composed of very large numbers

of heterogeneous resources, the amount of time that individual resources remain

available once acquired can be highly variable. Designing the next-generation of
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Grid applications that can run in such an environment requires an accurate model

of resource failure behavior. A great deal of previous work [46, 37, 25, 33, 38] has

studied the problem of modeling resource failure (or equivalently resource avail-

ability) using statistical techniques. As Plank and Elwasif point out in their

landmark paper [54], however, most of these approaches assume that the underly-

ing statistical behavior can be described by some form of exponential distribution

or hyperexponential distribution [38]. In addition, they go on to note that despite

their popularity, many of these modeling techniques do not accurately reflect em-

pirical observation of machine availability. Other work has been done showing

that a Weibull distribution is an appropriate model for various resource availabil-

ity data [68, 31] but neglects to provide a detailed analysis of fitting and model

verification stages.

Exponential distributions have been studied extensively in fault tolerant com-

puting settings [64, 41, 54, 55, 42]. More recently, peer-to-peer systems have used

exponential distributions to as the basis of their availability assumptions [62, 69,

70]. However, models of resource lifetimes based on the exponential distribution

have been shown to be inaccurate, though model inaccuracies may not have a

significant negative impact on the application of the model, depending on spe-

cific model usage [42]. In other contexts such as process lifetime estimation [30]
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and network performance [52, 51, 66, 9, 39] researchers often advocate the use of

“heavy-tailed” distributions, especially the Pareto.

We performed our own studies of Grid-resource availability [47, 3, 49] and dis-

covered that the use of more accurate parametric models improve methodologies

that rely on models to make optimization decisions at runtime. In addition, in [3],

we show that while parametric models can be used to make somewhat accurate

machine uptime predictions, non-parametric techniques have some key character-

istics that make them an attractive choice when predicting future events. First,

the techniques we studied required fewer data points to make accurate predictions.

Parametric modeling techniques tend to characterize the entire population in order

to make a prediction for an individual event, while the non-parametric techniques

are better at characterizing only the aspect of the population that is required to

make a prediction. Second, we note that, while the parametric techniques require

us to choose a family of statistical distributions in advance with which to model

our data, the non-parametric techniques impose no such requirement. This fea-

ture is important due to observed anecdotal evidence that indicates that resource

uptimes vary widely between sets of resources, and even over time within the same

resource. We found that, while we could discover an accurate parametric model of

resource uptimes for a static data-set, the model does not necessarily hold up over
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time or between disparate sets of resources, while the non-parametric techniques

have proven robust in the face of ever changing underlying behaviors.

7.1.2 Resource Provisioning Dynamism

The second set of previous related literature addresses the problems imposed

by substantial and variable batch queue job delay observed on HPC resource.

Previous work in this field can be categorized into two groups. The first group

of work belongs under the general heading of the scheduling of jobs on parallel

supercomputers. In works by Feitelson and Rudolph [19, 20], the authors outline

various scheduling techniques employed by different supercomputer architectures

and point out strengths and deficiencies of each. The prevalence of distributed

memory clusters as supercomputer architectures has led to most large scale sites

using a form of “variable partitioning” as described in [19]. In this scheme, ma-

chines are space-shared and jobs are scheduled based on how many processors the

user requests and how much time they specify as part of the job submission. As

the authors point out, this scheme is effective for cluster-type architectures but

leads to fragmentation as well as potentially long wait times for jobs in the queue.

The second field of previous work relevant to our work involves using various

models of large-scale parallel-job scenarios to predict the amount of time jobs

spend waiting in scheduler queues. These works attempt to show that batch-
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queue job wait times can be inferred under the conditions that one knows the

length of time jobs actually execute and that the algorithm employed by the

scheduler is known. Under the assumption that both of these conditions are met,

Smith, Taylor and Foster introduce in [60] a prediction scheme for wait times.

In this work, the authors use a template-based approach to categorize and then

predict job execution times. From these execution-time predictions, they then

derive mean queue delay predictions by simulating the future behavior of the

batch scheduler in faster-than-real time. In practice, however even when their

model fits the execution-time data well, the mean error ranges from 33% to 73%.

Downey [11, 12] uses a similar set of assumptions for estimating queue wait

times. In this work, he explores using a log-uniform distribution to model the

remaining lifetimes of jobs executing in all machine partitions as a way of pre-

dicting when a “cluster” of a given size will become available and thus when the

job waiting at the head of the queue will start. As a base case, Downey per-

forms a simulation which has access to the exact execution times of jobs in the

queue, plus knowledge of the scheduling algorithm, to provide deterministic wait

time predictions for the job at the head of the queue. As a metric of success,

Downey uses the correlation between the wait times of the head jobs during the

base case simulation and the wait times experienced by head jobs if his execution

time model is used.
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Both of these approaches make the underlying assumption that the scheduler

is employing a fairly straightforward scheduling algorithm (one which does not

allow for special users or job queues with higher or lower priorities), and also that

the resource pool is static for the duration of their experiments (no downtimes,

administrator interference, or resource pool dynamism).

Our work differs from these approaches in two significant ways. First, instead

of inferring from a job execution model the amount of time jobs will wait, we make

job wait time inference from the actual job wait time data itself. The motivation

for why this is desirable stems from research efforts [8, 29], which suggest that

modeling job execution time may be difficult for large-scale production computing

centers. Further, making inference straight from the job wait time data, we avoid

having to make underlying assumptions about scheduler algorithms or machine

stability. We feel that in a real world scenario, where site scheduling algorithms

are rarely published and are not typically simple enough to model with a straight-

forward procedure, it is unlikely that valid queue wait-time predictions can be

made with these assumptions.

Second, our approach differs in the statistic we use as a prediction. Most

often, researchers look for an estimator of the expected (mean) wait time for

a particular job. Our approach instead uses bounds on the time an individual

job will wait rather than a specific, single-valued prediction of its waiting time.
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We contend that the highly variable nature of observed queue delay is better

represented to potential system users as quantified confidence bounds than as a

specific prediction, since users can “know” the probability that their job will fall

outside the range. For example, the information that the expected wait time for

a particular job is 3 hours tells the user less about what delay his or her job

will experience than the information that there is a 75% chance that the job will

execute within 15 minutes.

Our contribution of a Virtual Advanced Reservation system for Queues (VARQ)

is designed to function in an administrative environment that is typical of science

and engineering computing centers serving users with potentially competing re-

source demands. In this section, we describe the general characteristics of these

HPC settings and discuss other research projects that are germane to our effort.

VARQ’s function depends critically on QBETS [48]. While developing and deploy-

ing QBETS in a number of University, National Science Foundation (NSF), and

open Department of Energy (DOE) centers, we observed several features common

to the way these systems are managed that, in part, make the success of VARQ

possible.
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7.1.3 Co-Allocation of Distributed Resources

Over the last decade, there has been a great deal of interest in the concept of

grid computing [1, 22] (originally termed “metacomputing” [58]), which is essen-

tially the idea of using multiple distributed, heterogeneous resources with minimal

global centralized control structures to perform coordinated tasks, such as execut-

ing scientific applications. One of the fundamental research hurdles which needs to

be overcome to realize a functional grid computing environment is that of resource

co-allocation, where multiple disparate sets of resources must be made available

simultaneously to some global scheduler. There have been many research efforts

indicating that grid “meta-scheduler” systems [6, 13, 14, 24] can increases global

system utilization while providing large resource pools, but for the most part these

efforts require the use of a centralized, global batch scheduling entity to which all

jobs (both global and local) are submitted. While this body of work shows a great

deal of promise and utility using simulation and closed research environments, the

modification and coordination burden placed on local site resource operators has

proven to be so severe as to not be applicable in practice. The primary prohibitive

modification these systems impose on local site schedulers is that of allowing reg-

ular users to make advance reservations in order to support resource co-allocation.

Several studies have shown that allowing regular users the right to make advance

reservations can have a negative impact on both system utilization and overall
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turnaround time for regular jobs. In [59], it was shown that the introduction of

a general use advanced reservation system into a normal HPC workload can have

a substantial impact on the experience of regular batch users. In this work, the

authors convert 10-20% of jobs in historical job traces into “reservation” requests

for a upcoming time in the future. Even though the assumption is that the jobs

requiring advanced reservations can tolerate some slippage (reservation start time

can be delayed if scheduler cannot guarantee resources at the requested time), the

average wait time increase for regular batch jobs increased by 9-37% depending

on how many reservation jobs were made (10-20% of overall jobs, respectively).

In [32], the authors evaluate the impact of advance reservations on a regular

batch controlled workload in terms of percentage of reservation requests rejected,

slowdown factor of regular jobs (termed “variable” jobs in the paper) and sys-

tem utilization. Running various simulation experiments, using two reservation

algorithms and a real job trace, the authors are able to determine that the intro-

duction of advance reservations increases the queuing delay experienced by regular

jobs, but it is difficult to gauge the magnitude of the impact based on the metric

used. Finally, researchers in [61] perform a simulation based experiment, using

the popular Maui scheduler [44], that attempts to determine the effect of advance

reservations and co-allocation requests on regular HPC workloads; the authors

suggest methods for minimizing this effect when compared to an alternate tech-
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nique for co-allocation in which sites explicitly reserve a specific time every day for

explicit meta-scheduler use. Although the authors make a compelling case for the

use of advance reservations based scheduling to support cross-site co-allocation

of resources, their experiments and conclusions indicate that the introduction of

advance reservations have a negative impact on both system utilization as well as

queue delay experienced by non-reservation jobs.

As a result of these studies, HPC site operators have been reluctant to adopt

the use of general advance reservation or co-allocation systems to support off-

site metaschedulers, and are unwilling or unable to relinquish local control of

resource scheduling to a global scheduling system. In a particularly relevant work

proposing a resource management system for metacomputing [10], the authors

acknowledge the fact that local control must be maintained in order for HPC

centers to subscribe to metacomputing methodologies, but argue that advance

reservations must be supported to fully support co-allocation. Even so, the au-

thors briefly propose a method for making a “best effort” batch submission to

support co-allocation without advance reservation, but do not detail the specific

mechanisms used to implement their solution, and make it clear that their solution

is a temporary situation which will be replaced when sites adopt general advance

reservation functionality. However, in the decade since this paper was published,

general adoption of advance reservation and/or co-allocation capabilities has re-
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mained elusive and shows little sign of becoming enabled on production systems.

With growing network capacity, data set size, existence of useful specialized in-

struments, and workflow application management systems, grid users are once

again calling to a solution to the co-allocation problem with renewed voracity.
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Impact and Conclusion

8.1 Impact

The statistical methodologies and techniques that comprise QBETS, VARQ,

and CO-VARQ have been implemented as a set of tools and services that have

positively impacted the HPC community. The implementation of these tech-

niques not only benefits the community, but also provides valuable evidence for

the continuing correctness and accuracy of the techniques as the workloads of

HPC systems change through time. Over the past several years, these services

have improved the usability of HPC resources for many users, and have allowed

some applications that were previously unable to execute in many existing HPC

resources to utilize a much larger pool of resources. In addition, we use the data

gathered from usage of the services for continual verification of the methodologies.
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Currently, QBETS is providing predictions to a growing base of HPC re-

searchers and users around the world. Our batch queue monitoring sensors are

gathering real-time batch queue delay data from 16 super-computers, 24 hours a

day. From this database of job delay information, the QBETS prediction software

is able to constantly generate up-to-date quantile predictions through a number of

interfaces. Over the past several years, our records indicate that the QBETS sys-

tem has been accessed over 3000 times per day, from approximately 2000 unique,

non-searchbot Internet hosts. This level of activity indicates that users interested

in integrating real-time QBETS predictions into their projects are using a number

of interfaces, including a C API (in the form of a UNIX library), UNIX command

line tools (for curious users and administrative scripting), a dedicated QBETS

Web Service (for integration into existing Web Service based projects), and our

own custom QBETS web site [50]. Using these interfaces, scientists have used

QBETS in a variety of settings, including the construction and use of HPC site

selection hints for users (TeraGrid User Portal [63]), in-advance workflow schedul-

ing for disaster recovery applications (LEAD Project [53]), redundant batch queue

resource provisioning for fault-tolerant systems (LEAD/VGrADS [65]), augmen-

tation of TeraGrid meta-scheduling services, and a variety of individual research

efforts. As the popularity of QBETS continues to grow, we continue to add more

systems to the infrastructure and note that QBETS has been added to the list
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of core services that is enabled whenever a new HPC resource is added to the

TeraGrid national grid infrastructure.

8.2 Conclusion

Computational scientists require large collections of heterogeneous resources

in order to achieve the level of performance necessary to further their science. The

concept of “meta-computing” or “grid-computing” outlines a vision where access

to computational and storage facilities is as ubiquitous and readily available as

electrical power. However, large scale systems are typically not centrally managed

and use space-sharing techniques to provide access to site resources, leading to sig-

nificant and highly variable delay between the time when resources are requested

and those resources are made available to the scientist. While some applications

can tolerate this resource provisioning delay dynamism, a large set of applications

that could potentially use many distributed HPC machines together for a single

application execution cycle have been unable to do so.

In this dissertation, we have analyzed over 10 years of resource provisioning

delay data in the for of batch queue job delay, and have developed a methodology

for predicting, with quantifiable confidence intervals, bounds on the amount of

time jobs will wait in queue before beginning execution. We present a detailed
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analysis of the performance of the methodology using trace data from 11 large

scale HPC machines and find that our non-parametric methodology (QBETS )

performs better, and more accurately, than a collection of previously suggested

parametric and non-parametric methodologies. QBETS has been successfully used

to optimize workflow schedulers and to provide prediction services to the HPC

community through a number of interfaces. Building upon QBETS , we present a

new abstraction that allows a scientists to obtain a “virtual” advance reservation

for queues (VARQ), with a quantifiable probability of success. We implement the

methodology as a service for simple integration into existing workflow planners and

meta-schedulers that require access to advance reservation capability. We show

that VARQ can successfully provision resources, with a specified probability of

success, on existing HPC resources without the need to modify local site software

of policies. Finally, we present a second abstraction, built upon VARQ, that we

use to implement a statistical co-allocation service (CO-VARQ). Using CO-VARQ,

we show that co-allocation of resource sets across distributed HPC resources can

be obtained using only QBETS and VARQ as it’s underlying infrastructure.

Together, these contributions present a new solution to problems that arise

from highly variable and significant delays in provisioning HPC resources. They

have been implemented as tools that the HPC community has used in practice in a

number of settings, allowing scientists simultaneous access to multi-site resources
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that have been previously only available individually. Thus, this work provides

a framework for both existing and future scientists to leverage resources from

extremely large scale, distributed, and highly utilized HPC sites in order to further

their science.

128



Bibliography

[1] F. Berman, G. Fox, and T. Hey. Grid Computing: Making the Global Infras-
tructure a Reality. Wiley and Sons, 2003.

[2] G. Box, G. Jenkins, and G. Reinsel. Time Series Analysis, Forecasting, and
Control, 3rd edition. Prentice Hall, 1994.

[3] J. Brevik, D. Nurmi, and R. Wolski. Quantifying machine availability in
networked and desktop grid systems. In Proceedings of CCGrid04, April
2004.

[4] J. Brevik, D. Nurmi, and R. Wolski. Predicting bounds on queuing delay for
batch-scheduled parallel machines. In Proceedings of PPoPP 2006, March
2006.

[5] J. Brevik, D. Nurmi, and R. Wolski. Predicting bounds on queuing delay in
space-shared computing environments. In Proceedings of IEEE International
Symposium on Workload Characterization 2006, October 2006.

[6] A. Bucur and D. Epema. The performance of processor co-allocation in
multicluster systems. In 3rd IEEE/ACM Int’l Symp. on Cluster Computing
and the GRID, 2003.

[7] S.-H. Chiang and M. K. Vernon. Dynamic vs. Static Quantum-based Processor
Allocation. Springer-Verlag, 1996.

[8] S. Clearwater and S. Kleban. Heavy-tailed distributions in supercomputer
jobs. Technical Report SAND2002-2378C, Sandia National Labs, 2002.

[9] M. Crovella and A. Bestavros. Self-similarity in world wide web traffic: Evi-
dence and possible causes. IEEE/ACM Transactions on Networking, 5, De-
cember 1997.

129



Bibliography

[10] C. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and
S. Tuecke. A resource management architecture for metacomputing systems.
In International Parallel Processing Symp. – Workshop on Job Scheduling
Strategies for Parallel Processing, 1998.

[11] A. Downey. Predicting queue times on space-sharing parallel computers. In
Proceedings of the 11th International Parallel Processing Symposium, April
1997.

[12] A. Downey. Using queue time predictions for processor allocation. In Proceed-
ings of the 3rd Workshop on Job Scheduling Strategies for Parallel Processing,
April 1997.

[13] C. Ernemann, V. Hamscher, U. Schwiegelshohn, R. Yahyapour, and A. Streit.
On advantages of grid computing for parallel job scheduling. In 2nd
IEEE/ACM International Symposium on Cluster Computing and the Grid,
2002.

[14] C. Ernemann, V. Hamscher, and R. Yahyapour. Economic scheduling in grid
computing. In Job Scheduling Strategies for Parallel Processing, 2002.

[15] The evergrid home page – http://www.evergrid.com/.

[16] D. Feitelson and L. Rudolph. Gang Scheduling Performance Benefits for
Fine-Grain Synchronization. Journal of Parallel and Distributed Computing,
16(4):306–318, 1992.

[17] D. G. Feitelson. A survey of scheduling in multiprogrammed parallel systems.
In Research Report RC 19790 (87657), IBM T. J. Watson Research Center,
1997.

[18] D. G. Feitelson and B. Nitzberg. Job characteristics of a production parallel
scientific workload on the NASA Ames iPSC/860. Springer-Verlag, 1996.

[19] D. G. Feitelson and L. Rudolph. Parallel Job Scheduling: Issues and Ap-
proaches. Springer-Verlag, 1995.

[20] D. G. Feitelson and L. Rudolph. Towards Convergence in Job Schedulers for
Parallel Supercomputers. Springer-Verlag, 1996.

[21] D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn. Parallel job scheduling,
a status report. In Job Scheduling Strategies for Parallel Processing. Springer-
Verlag, 2004.

130



Bibliography

[22] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers, Inc., 1998.

[23] E. Frachtenberg, D. G. Feitelson, J. Fernandez, and F. Petrini. Parallel Job
Scheduling Under Dynamic Workloads. Springer-Verlag, 2003.

[24] J. Gehring and T. Preiss. Scheduling a metacomputer with uncooperative
sub-schedulers. In Job Scheduling Strategies for Parallel Processing, 1999.

[25] A. L. Goel. Software reliability models: Assumptions, limitations, and appli-
cability. In IEEE Trans. Software Engineering, Dec 1985.

[26] B. Gorda and R. Wolski. Time sharing massively parallel machines. In Pro-
ceedings of International Conference on Parallel Processing (ICPP), August
1995.

[27] C. Granger and P. Newbold. Forecasting Economic Time Series. Academic
Press, 1986.

[28] R. Gupta and C. Chi. Improving instruction cache behavior by reducing
cache pollution. Supercomputing’90. Proceedings of, 1990.

[29] M. Harchol-Balter. The effect of heavy-tailed job size distributions on com-
puter system design. In Proceedings of ASA-IMS Conference on Applications
of Heavy Tailed Distributions in Economics, Engineering and Statistics, June
1999.

[30] M. Harcol-Balter and A. Downey. Exploiting process lifetime distributions
for dynamic load balancing. ACM Transactions on Computer Systems, 1997.

[31] T. Heath, P. M. Martin, and T. D. Nguyen. The shape of failure. In Pro-
ceedings of the First Workshop on Evaluating and Architechting System de-
pendabilitY (EASY), 2001.

[32] F. Heine, M. Hovestadt, O. Kao, and A. Streit. On the impact of reserva-
tions from the grid on planning-based resource management. In International
Workshop on Grid Computing Security and Resource Management, 2005.

[33] R. K. Iyer and D. J. Rossetti. Effect of system workload on operating system
reliabilty: A study on ibm 3081. In IEEE Trans. Software Engineering, 1985.

[34] D. Jackson, Q. Snell, and M. Clement. Core algorithms of the maui scheduler.
In 7th Workshop on Job Scheduling Strategies for Parallel Processing, 2001.

131



Bibliography

[35] A. K. Jain and R. C. Dubes. Algorithms for clustering data. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1988.

[36] D. N. Jutla and P. Bodorik. Improving applications performance: a memory
model and cache architecture. SIGARCH Comput. Archit. News, 1997.

[37] J.-C. Laprie. Dependability evaluation of software systems in operation. In
IEEE Trans. Software Engineering, 1984.

[38] I. Lee, D. Tang, R. K. Iyer, and M. C. Hsueh. Measurement-based evaluation
of operating system fault tolerance. In IEEE Trans. on Reliability, 1993.

[39] W. Leland and T. Ott. Load-balancing heuristics and process behavior. In
Proceedings of Joint International Conference on Measurement and Modeling
of Computer Systems (ACM SIGMETRICS ’86), 1986.

[40] D. Lifka. The ANL/IBM SP scheduling system, volume 949. Springer-Verlag,
1995.

[41] D. Long, A. Muir, and R. Golding. A longitudinal survey of internet host
reliability. In 14th Symposium on Reliable Distributed Systems, 1995.

[42] D. D. E. Long, J. L. Carroll, and C. J. Park. A study of the reliability
of internet sites. In Proceedings of the 10th IEEE Symposium on Reliable
Distributed Systems (SRDS91), 1991.

[43] J. MacQueen. Some methods for classification and analysis of multivariate
observations. 1967.

[44] Maui scheduler home page – http://www.clusterresources.com/

products/maui/.

[45] A. W. Mu’alem and D. G. Feitelson. Utilization, predictability, workloads,
and user runtime estimates in scheduling the ibm sp2 with backfilling. In
IEEE Trans. Parallel and Distributed Systems, 2001.

[46] M. Mutka and M. Livny. Profiling workstations’ available capacity for re-
mote execution. In Proceedings of Performance ’87: Computer Performance
Modelling, Measurement, and Evaluation, 12th IFIP WG 7.3 International
Symposium, December 1987.

[47] D. Nurmi, J. Brevik, and R. Wolski. Modeling machine availability in enter-
prise and wide-area distributed computing environments. In Proceedings of
Europar 2005, August 2005.

132



Bibliography

[48] D. Nurmi, J. Brevik, and R. Wolski. QBETS: Queue bounds estimation from
time series. In Proceedings of 13th Workshop on Job Scheduling Strategies
for Parallel Processing (with ICS07), June 2007.

[49] D. Nurmi, R. Wolski, and J. Brevik. Model-based checkpoint scheduling for
volatile resource environments. In Proceedings of Cluster 2005, September
2004.

[50] NWS Batch Queue Pprediction web interface. http://nws.cs.ucsb.edu/

ewiki/nws.php?id=Batch+Queue+Prediction.

[51] V. Paxon and S. Floyd. Wide area traffic: the failure of poisson modeling.
IEEE/ACM Transactions on Networking, 3(3), 1995.

[52] V. Paxon and S. Floyd. Why we don’t know how to simulate the internet.
In Proceedings of the Winder Communication Conference, December 1997.

[53] B. Plale, D. Gannon, J. Brotzge, K. Droegemeier, J. Kurose, D. Mclaugh-
lin, R. Wilhelmson, S. Graves, M. Ramamurhty, R. D. Clark, S. Yalda, D. A.
Reed, E. Joseph, and V. Chandraeskar. CASA and LEAD: Adaptive Cyberin-
frastructure for Real-Time Multiscale Weather Forecasting. IEEE Computer,
2006.

[54] J. Plank and W. Elwasif. Experimental assessment of workstation failures
and their impact on checkpointing systems. In 28th International Symposium
on Fault-Tolerant Computing, June 1998.

[55] J. Plank and M. Thomason. Processor allocation and checkpoint interval
selection in cluster computing systems. Journal of Parallel and Distributed
Computing, November 2001.

[56] C. Posse. Hierarchical model-based clustering for large datasets. Journal of
Computational and Graphical Statistics, 2001.

[57] G. Schwartz. Estimating the dimension of a model. In Ann. of Statistics,
1979.

[58] L. Smarr and C. E. Catlett. Metacomputing. In Communications of the
ACM, 1992.

[59] W. Smith, I. Foster, and V. Taylor. Scheduling with advanced reservations.
In Parallel and Distributed Processing Symposium, 2000.

133



Bibliography

[60] W. Smith, V. Taylor, and I. Foster. Using run-time predictions to esti-
mate queue wait times and improve scheduler performance. In IPPS/SPDP
’99/JSSPP ’99: Proceedings of the Job Scheduling Strategies for Parallel Pro-
cessing, London, UK, 1999. Springer-Verlag.

[61] Q. Snell, M. Clement, D. Jackson, and C. Gregory. The performance impact
of advance reservation meta-scheduling. In 6th Workshop on Job Scheduling
Strategies for Parallel Processing, 2000.

[62] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and K. Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. In In Proc.
SIGCOMM (2001), 2001.

[63] TeraGrid user portal. http://portal.teragrid.org.

[64] N. Vaidya. Impact of checkpoint latency on overhead ratio of a checkpointing
scheme. IEEE Transactions on Computers, 46(8), August 1997.

[65] The virtual grid application development software (vgrads).
http://vgrads.rice.edu/.

[66] W. Willinger, M. Taqqu, R. Sherman, and D. Wilson. Self-similarity through
high-variability: statistical analysis of ethernet lan traffic at the source level.
In SIGCOMM’95 Conference on Communication Architectures, Protocols,
and Applications, 1995.

[67] R. Wolski, N. Spring, and J. Hayes. The network weather service: A dis-
tributed resource performance forecasting service for metacomputing. Future
Generation Computer Systems, October 1999.

[68] J. Xu, Z. Kalbarczyk, and R. K. Iyer. Networked windows nt system field
failure data analysis. In Pacific Rim International Symposium on Dependable
Computing, 1999.

[69] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J. Kubiatowicz.
Tapestry: A resilient global-scale overlay for service deployment. IEEE Jour-
nal on Selected Areas in Communications, 22(1), January 2004.

[70] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastructure for
fault-tolerant wide-area location and routing. Technical Report UCB/CSD-
01-1141, U.C. Berkeley Computer Science Department, April 2001.

[71] S. Z. Zhong. A unified framework for model-based clustering. In Journal of
Machine Learning Research 4, 2003.

134


