

- 1 -

Abstract-- Large-scale grids that aggregate and share resources
over wide-area networks present major challenges in understanding
dynamic application and resource behavior for performance, stability,
and reliability. Accurate study of the dynamic behavior of
applications, middleware, resources, and networks depends on
coordinated and accurate modeling of all four of these elements
simultaneously.

We have designed and implemented a tool called the MicroGrid

which enables accurate and comprehensive study of the dynamic
interaction of applications, middleware, resource, and networks.
The MicroGrid creates a virtual grid environment – accurately
modeling networks, resources, the information services (resource and
network metadata) transparently. Thus, the MicroGrid enables users,
grid researchers, or grid operators to study arbitrary collections of
resources and networks. The MicroGrid includes the MaSSF online
network simulator which provides packet-level accurate, but scalable
network modeling.

We present experimental results with applications which validate

the implementation of the MicroGrid, showing that it not only runs
real grid applications and middleware, but that it accurately models
both their and underlying resource and network behavior. We also
study a range of techniques for scaling a critical part of the online
network simulator to the simulation of large networks. These
techniques employ a sophisticated graph partitioner, and a range of
edge and node weighting schemes exploiting a range of static
network and dynamic application information. The best of these,
profile-driven placement, scales well to online simulation of large
networks of 6,000 nodes using 24 simulation engine nodes.

1 INTRODUCTION

Improvements in networking and middleware technology are
enabling large-scale grids that aggregate and share resources
over wide-area networks to support applications at
unprecedented levels of scale and performance. Because
the aggregation and sharing of resources in grids presumes
dynamic application and resource configuration, grids present
significant new challenges for performance modeling and
design of adaptive middleware and adaptive applications.
Further, as grid and internet applications increasingly couple
end system and network behavior – and service quality
depends on end-to-end performance – accurate study of the
dynamic behavior of applications, middleware, resources, and
networks depends on coordinated and accurate modeling of all
four of these elements simultaneously.

A number of grid middleware projects have been developed to
enable access to grid resources, such as Globus [1], Legion [2],
Condor [3], NetSolve [4], and GrADS [5]. However, these
middleware layers today are providing only basic mechanisms
for execution in a grid environment and do not provide
solutions which ensure resource stability, application stability,
predictable behavior, guaranteed quality of service, etc., in
open, shared, efficiently utilized grid environments. All
these middleware systems themselves and applications that
use them are developed and painstakingly evaluated in a few
grid environments before being released for early use. Only
after some time, and extensive ad hoc testing and use, are their
dynamic behaviors considered stable. In fact, the breadth of
understanding their dynamic properties in novel resource
environments or in the presence of novel competitive resource
demands is minimal. In short, understanding the dynamic
behavior of grid environments (applications, middleware,
resources, and networks) remains an open research challenge,
and the subsequent engineering need to ensure resource
stability, application performance stability, application quality
of service, and also efficient resource utilization remains
daunting. It is this problem which motivates the efforts
described in this paper.

The goal of the MicroGrid project is to develop and
implement simulation tools that enable scientific and
systematic of the dynamic behavior of applications,
middleware, resources, and networks. These tools will
provide a vehicle for observable, repeatable study and
systematic exploration of design spaces for a wealth of design
problems for applications and middleware, exploration of rare
or extreme situations, and rational choices in application
deployment and grid resource and network design.

We have designed and implemented a tool called the
MicroGrid which enables accurate and comprehensive study
of the dynamic interaction of applications, middleware,
resource, and networks. The MicroGrid creates a virtual grid
environment – accurately modeling networks, resources, the
information services (resource and network metadata).
Thus, the MicroGrid enables users, grid researchers, or grid
operators to study arbitrary collections of resources and
networks. Further, the MicroGrid virtualizes transparently,
allowing the direct study of complex applications or
middleware whose internal dynamics are difficult to model
accurately. That is, real application software and middleware

Validating and Scaling the MicroGrid: A Scientific
Instrument for Grid Dynamics

Xin Liu, Huaxia Xia, Andrew A. Chien

Department of Computer Science and Engineering
and Center for Networked Systems
University of California, San Diego
{xinliu, hxia, achien}@cs.ucsd.edu

- 2 -

can be used unchanged and executed on arbitrary virtual grid
structures. In short, the MicroGrid provides a virtual grid
infrastructure that enables scientific and systematic
experimentation with dynamic resource management
techniques and adaptive applications by supporting
controllable, repeatable, observable experiments.

The MicroGrid complements experimentation with actual grid
testbeds because the MicroGrid can be used to explore a wide
variety of grid resource configurations and scenarios (such as
catastrophic failure), which may not be possible to exhibit in
the actual resources. The MicroGrid provides reduced setup
effort for simulation and increases the observability of
application behavior. We describe the design of the
MicroGrid includes the following key innovations:

• Because network performance and protocol behavior is

critical in many applications, we have paid careful
attention to detailed network modeling, so the MicroGrid
employs packet-level online simulation.

• Studying large applications, compute, and storage
resources with high fidelity requires efficient and scalable
execution performance. The MicroGrid employs
parallel, direct execution of applications.

• Studying large grid networks with high speed
communication requires an efficient parallel online
simulation. The MicroGrid includes the MaSSF system,
a scalable online network simulator.

• Because dynamic behavior of applications and
middleware is difficult to model accurately, the
MicroGrid system employs direct execution, enabling use
of the actual implementations as models.

However, a design with these goals and techniques alone is
insufficient to enable the systematic study of dynamic
behavior. This paper also describes the following key results
for the MicroGrid:
• validation of the CPU resource model on one and several

virtual resources per physical resource,
• validation of the online network simulation models

exercised by real transport protocol stacks,
• validation of the MicroGrid system on a range of grid

application programs ranging from kernels to full-blown
applications on two grid resource configurations,

• design and evaluation of three approaches for the critical
load-balancing problem for scalable network simulation,
and

• a range of experiments which show that while static
prediction can achieve good parallel scaling, only profile
information can provide even better scaling.

The remainder of the paper is organized as follows. In
Section 2, we describe the problem of modeling dynamic grid
behavior in detail. The simulation-based approach used by
the MicroGrid is covered in Section 3. The design and
implementation used in the MicroGrid 2.4 is presented in
Section 4. Validation of the constituent models, and the
entire MicroGrid system on applications is described in
Section 5. Section 6 explores challenges in scaling the

MaSSF network simulator, particularly several load-balancing
approaches. Section 7 discusses related work and Section 8
summarizes our results and discusses some future directions.

2 THE PROBLEM: MODELING DYNAMIC GRID BEHAVIOR
We face daunting research challenges in understanding the
dynamic behavior of grid environments (applications,
middleware, resources, and networks), and critical practical
challenges in the engineering. To support the next
generation of network services which will support a broad
variety of critical commercial, scientific, and societal
functions, we must be able to engineer resource stability,
application performance stability, application quality of
service, and also efficient resource utilization. The evolution
of the distributed systems to grid environments is happening
rapidly – driven by business pressures to reduce management
cost, increase resource efficiency, and accelerate the process
of designing and deploying information technology solutions.

Traditionally, distributed applications and networks have been
studied largely separately – each community employing
relative simple models for the other domain. For example,
distributed systems researchers often used simple latency,
bandwidth, and reliability models for networks, and
networking researchers often used application models based
on simple web-browsing or other simple models of workloads
for applications. These methodologies have produced
significant advances, but we are increasing faced with the
reality that a broad range of distributed applications are now
strongly network dependent, that is their performance depends
directly on detailed dynamic network properties such as
packet loss, protocol behavior, latency, bandwidth, etc.
While significant advances have been made in aggregate
modeling of network behavior[6, 7], at present only detailed
packet-level or close analogs can accurately model protocol
dynamics, particularly in extreme cases[8, 9]. At the same
time, increasingly complex and dynamic applications can have
dramatic impacts on networks; for example, peer-to-peer file
sharing, viruses such as MyDoom, and multi-gigabit stream
transfers for scientific applications. In particular,
peer-to-peer file sharing and multi-gigabit scientific
applications are exemplars of a future generation of
applications which are highly network performance aware,
and adapt their behavior and thereby network use rapidly and
drastically in response to the experienced network
performance. These concurrent changes motivate a strong
need for integrated simulation and modeling of distributed
systems and networks. Further, the increasing complexity of
adaptive application and middleware behavior motivates the
use of integrated simulation tools which allow these complex
software systems to be used directly – accurate modeling is
difficult.

Low-end pervasive or ubiquitous computing systems (i.e. Jini,
Windows CE, Cell phone, etc.) systems also have similar
needs. These applications often depend on open shared
resource environments, must ensure application quality of
service, and are subject to large fluctuations in load (which

- 3 -

may arise from crowds of devices!). While the structure of
solutions for pervasive computing and grid systems may
ultimately differ, the simulation and modeling needs for
coupled network and resource modeling are remarkably
similar.

In summary, the rapidly evolving needs of application,
middleware, grid, and network designers as well as users and
operators demand integrated simulation tools. Without tools
that integrate resource, network, and software system
modeling, accurate study of general system dynamics is not
possible. Our goal is to develop and implement simulation
tools that meet these needs, enable scientific and systematic of
the dynamic behavior of applications, middleware, resources,
and networks. These tools will provide a vehicle for
observable, repeatable study and systematic exploration of
design spaces for a wealth of design problems for applications
and middleware, exploration of rare or extreme situations, and
rational choices in application deployment and grid resource
and network design.

3 AN ONLINE SIMULATION APPROACH: THE MICROGRID
We describe the MicroGrid approach which provides an
online simulation capability for real grid applications and
middleware, enabling accurate experiments with large
numbers of resources with arbitrary performance ratios. The
MicroGrid enables study of large complex grids of today and
those that will exist with future technologies.

Figure 1. The MicroGrid Approach

The MicroGrid provides an online simulation of virtual grid
environments transparently, allowing applications to be run
unchanged. At launch, the MicroGrid reads a virtual grid
configuration, and then builds corresponding simulation
objects so as to provide the experience of running on virtual
grid. These simulation objects implement models of network
elements, compute resources, or grid information services.
The MicroGrid can implement the virtual grid simulation
using essentially any physical resources, including
homogeneous clusters, heterogeneous grid resources, or even
on a single computer.

High speed grid simulation is achieved by direct execution of
applications and middleware against a CPU scheduler which
controls the virtual speed and capacity of the resource.
Direct execution allows experiments to proceed at near
real-time. The MicroGrid uses a wrapper library which
automatically intercepts library functions in user applications,
thereby creating hooks for the virtual grid simulation system.

Thus MicroGrid users can run any applications on the
MicroGrid by simply re-linking the applications to the
“wrapper” libraries; no changes to application or middleware
source codes or understanding is needed.

The ability to control resource and network speeds in an
online simulation (as opposed to emulation) enables the
MicroGrid to support arbitrary performance ratios between
elements in the simulation. This capability can be used to
simulate future networks or processors which are much faster
connected to slow 100Mbit networks, future 100Gbit networks,
or every different speed in between. For example, by
slowing the simulated speed of computing resources, the effect
of future high speed transparent optical networks can be
studied.

To use the MicroGrid, a user specifies the following:

First, the set of virtual resources, including network
connectivity and protocols must be described.
• Network topology (Nodes, including routers and hosts and

Network links, link capacity and link latency)
• Network protocol (Transport protocols -- TCP or UDP

and Routing protocols – OSPF, BGP)
• Node properties related to communication protocols (e.g.

TCP buffer, send window, receive window, segment size,
etc.)

• Compute (relative CPU speed)
• Compute Node Connections into the network

Second, the MicroGrid simulation must be deployed against
the physical resources. The MicroGrid simulation takes as
input a set of physical resources used for the compute and
online network simulation.
Based on the specification of the virtual and the physical
resources, the MicroGrid intelligently maps virtual machines
to physical hosts. The automatic mapping balances the
compute and memory load across physical machine and
reduces the network traffic between them. Both of these
optimizations improve the scalability of simulations. If
desired, the user can manually control these mappings.

4 DESIGN & IMPLEMENTATION

4.1 Overview
The basic functionality of the MicroGrid allows grid

experimenters to directly execute their applications in a virtual
grid environment. The MicroGrid can exploit either
homogeneous or heterogeneous physical resources (see Figure
1). We describe the MicroGrid 2.4 implementation, released
in February 2004 and available from
http://www-csag.ucsd.edu/. The MicroGrid 2.4, succeeding
earlier MicroGrid implementations which go back as far as
October 2000, supports Grid applications that use the Globus
Toolkit 2 middleware infrastructure. The key challenges in
constructing such a high-fidelity virtual grid are as follows.

• Virtualization: The application perceives only the virtual

grid resources (host names, networks), independent of the

Grid Application

Virtual Grid, “MicroGrid”

MicroGrid Software

LAN Workgroup Scalable Cluster Heterogeneous Environment

Grid Application

Virtual Grid, “MicroGrid”

MicroGrid Software

LAN Workgroup Scalable Cluster Heterogeneous Environment

- 4 -

physical resources being utilized. This is achieved by
virtualizing the grid information services and
virtualizing/simulating the appropriate operating system
resources.

• Global Coordination: The MicroGrid provides a coherent

global simulation of dynamic virtual resources, all
running on heterogeneous physical resources. One major
function is to coordinate the simulation speed of different
virtual resources. Based on the desired virtual resources
and physical resources employed (CPU capacity and
network bandwidth/latency), the virtual time module
determines the maximum feasible simulation rate, under
which all resource simulation can be run in a functionally
correct manner.

• Resource Simulation: Each virtual resource (host, CPU,

network, disk, etc.) is modeled accurately as an element
of the overall simulation. Within the MicroGrid
simulation, each of the Grid resources must also be
simulated accurately, provide real-time performance
feedback to the simulation, and be simulated at the rate at
which virtual time is allowed to progress. While
ultimately many resources may be critical, we initially
focus on two resource types -- computing and
communication.

Figure 2. Architecture of the MicroGrid tools

The MicroGrid approaches which address these challenges

are discussed in the following subsections.

4.2 Virtualization
To provide a virtual Grid environment, the MicroGrid

intercepts all direct uses of resources or information services
made by the application. In particular, it is necessary to
mediate over all operations which identify resources by name
either to use or retrieve information about them.

4.2.1 Virtualizing Resources

In general, the MicroGrid needs to virtualize processing,
memory, networks, disks, and any other resources being used

in the system. However, since operating systems effectively
virtualize each of these resources -- providing unique
namespaces and seamless sharing -- the major challenge is to
virtualize host identity. In the MicroGrid, each virtual host is
mapped to a physical machine using a mapping table from
virtual IP address to physical IP address. All relevant library
calls are intercepted and mapped from virtual to physical
space using this table. These library calls include:
• gethostname()
• bind, send, receive (e.g. socket libraries)
• process creation

By intercepting these calls, a program can run transparently

on a virtual host with the appearance of the virtual hostname
and IP address. The interception ensures that the program
can communicate with processes running on other virtual Grid
hosts. Many program actions which utilize resources (such
as memory allocation) only name hosts implicitly, and thus do
not need to be changed. We can run any socket-based
application on the virtual Grid as the MicroGrid completely
virtualizes the socket interface.

An interactive user of the MicroGrid typically logs in

directly on a non-virtualized host and submits jobs to a virtual
Grid. Thus, the job submission must cross from the real
resources domain into the virtual resources domain. For the
Globus middleware, our current solution is to run all
gatekeepers, jobmanagers, and client processes on virtual
hosts. Thus jobs are submitted to virtual servers through the
virtual Grid resource's gatekeeper, which runs in the real
domain and is modified to connect into the virtual host
domain.

4.2.2 Virtualizing Information Services

Information services are critical for resource discovery and
intelligent use of resources in Computational Grids. Since
the MicroGrid currently supports Globus, this problem
amounts to virtualization of the Globus Grid Information
Service (GIS).

Desirable attributes of a virtualized GIS include:

• Compatibility: virtualized information should be used as
before by all programs

• Identification and Grouping: easy identification and
organization of virtual Grid entries should be provided

• Use of identical information servers: there should be no
incompatible change in the entries

Our approach achieves all of these attributes by extending

the standard GIS LDAP records with fields containing
virtualization-specific information. Specifically, we extend
records for compute and network resources. Extension by
addition ensures subtype compatibility of the extended records
(a la Pascal, Modula-3, or C++). The added fields are
designed to support easy identification and grouping of the
virtual Grid entries (there may be information on many virtual
Grids in a single GIS server). Finally, all of these records are

Virtual
Machine Virtual
Machine Virtual
Machine

CPU
controller

Virtual
Machine Virtual
Machine Virtual
Machine

WrapSocket

Application

Network
Simulator
(MaSSF)

Transparent
socket level
interception

CPU
controlle

WrapSocket

Application

WrapSocket

Application

Virtual
Machine Virtual
Machine Virtual
Machine

CPU
controller

WrapSocket

Application

- 5 -

placed in the existing GIS servers --- no additional servers or
daemons are needed. The following shows an example of the
extensions to the basic host and network GIS records:

Virtual host MDS records
hn=vm.ucsd.edu, ou=Concurrent Systems Architecture

Group, ...
Is_Virtual_Resource=Yes
Configuration_Name=Slow_CPU_Configuration
Mapped_Physical_Resource=csag-226-67.ucsd.edu
CpuSpeed=10

Virtual network MDS records
nn=1.11.11.0, nn=1.11.0.0, ou=Concurrent Systems

Architecture Group,
Is_Virtual_Resource=Yes
Configuration_Name=Slow_CPU_Configuration
nwType=LAN
speed=100Mbps 50ms

4.3 Online Network Simulation (MaSSF)
MaSSF (pronounced “massive”) is a scalable packet-level

network simulator that supports direct execution of
unmodified application. MaSSF consists of four parts.

• Simulation Engine: MaSSF uses a distributed simulation

engine based on DaSSF[10]. It utilizes MPI-connected
cluster systems to achieve scalable performance. We also
employ a soft real-time scheduler to allocate CPU
proportionately. This scheduler can also run in a
scaled-down mode when the simulated system is too large
to be run in real time on available hardware. With the
global coordination of the MicroGrid, this feature
provides extreme flexibility to simulate a wide range of
networks accurately.

• Network Modeling: MaSSF provides necessary protocol

modules for detailed network modeling, such as IP,
TCP/UDP, OSPF, and BGP4. We have built simplified
implementations of these protocols which maintain their
behavior characteristics. We also use a network
configuration interfaces similar to a popular Java network
simulator implementation, SSFNet[11], for user
convenience.

• Online Simulation Capability: To support simulation of

traffic from live applications, we employ an Agent which
accepts and dispatches live traffic from application
wrapper to the online network simulation. Traffic is also
sent back to application through the Agent module.

• Live Traffic Interception: Application processes use a

wrapper library called WrapSocket to intercept live
network streams at the socket level. The WrapSocket then
talks with the Agent module to redirect traffic into the
network simulator and vice versa. WrapSocket can be
either statically or dynamically linked to application
processes and requires no application modification.

These components and their relationship are illustrated in
Figure 3. In the following sections we will present a more
detailed description and rationale for our design choices.

Simulation Engine

Network Modeling

Virtual Grid

I/O
Thread
Pool

Input Queue

Output Queue

Agent Nodes

Grid Application

Wrap Socket
Virtual/Real IP
Mapping Server

Live Traffic

SSF API

Figure 3. The MaSSF Scalable Network Simulation System

4.3.1 Scaled-Real time Online Network Simulation

One major goal of MaSSF is to support direct execution of
real applications. So we need to intercept live traffic from
applications and present it to the network simulator. There are
many approaches to achieve this. We can either make it
happen at the socket level by intercepting the send(), recv()
network related system calls or we can make it at the IP packet
level by manipulating the IP packet directly. The difference of
these two approaches is whether we use TCP stack of the node
operating system (see Figure 4). The advantage of the
second approach is that it does not require us to model the
TCP stack, a much simpler implementation. However, using
original TCP stack means that we have to do the simulation on
real time, since the OS TCP stack observes the real packet
RTT(round trip time) and adjusts its send rate according to
whatever RTT it gets. This is a big constraint, since in many
situations the physical resources are not fast enough to achieve
real time simulation. So in MaSSF, we take the first approach,
intercepting the live traffic at socket level for scaled-real time
simulation.

Figure 4. Traffic Flow in Real World

TCP Stack

Application

TCP Stack

send() recv()

IP packets

Physical Network

Application

- 6 -

Figure 5. Traffic Flow in MaSSF

As shown in Figure 5, MaSSF intercepts all network related

system calls using a library WrapSocket. This library can be
either statically or dynamically linked to application programs.
Every virtual host has a corresponding Agent inside the
simulator, and the WrapSocket deliver to the Agent a logical
reference for each intercepted network operation. A detailed
TCP stack is implemented inside MaSSF and packet
movement and timing are simulated accurately. Only a packet
reference is routed in the simulated network, the real data
stays in the WrapSocket and is delivered directly to the
destination processes’ WrapSocket library. There is no extra
data copy, and minimal real network traffic is incurred. When
all required data arrive the destination Agent, it returns the
recv() to WrapSocket successfully. At this point, we expect
that all real data is already waiting in the WrapSocket, since it
is transferred directly through the fast local network. Then the
application recv() call is returned with the real data.

In our approach, all network behaviors (including TCP

sliding window management, link congestion, and packet drop,
etc.) are modeled precisely inside the simulator, and the only
source of distortion is the delay for transferring a logic
reference from WrapSocket to Agents. Since this is just a
small amount of data (~60 bytes) moving across a fast local
link, its impact on the simulation of a wide-area network delay
is negligible.

4.3.2 Detailed Network Simulation

MaSSF’s goal is detailed modeling and simulation of
Internet protocols and networks. It uses object-oriented
simulation components to construct a network, setup network
protocols running on hosts and routers, and create/accept
traffic to be simulated. MaSSF models are self-configuring -
that is, each MaSSF class instance can autonomously
configure itself from a configuration file in DML format [12].

An input DML file specifies the network topologies,

including network entities (host/router) and link between
entities. The link latency and bandwidth are also specified in
the DML file. For each entity, the user can also decide
which network protocols are running on it. For example, a
host can be configured with IP, TCP, and Socket protocols,

plus traffic generator module tcpClient or live traffic Agent
module. A router can be configured with IP, TCP, OSPF
modules as internal AS router and it can also be configured
with IP, TCP, BGP modules to be used as a BGP router.
MaSSF provides these basic components and users can
construct a network entity using any reasonable module
combination. Users can also write their own protocol
modules for new application or network devices.

All simulation modules are implemented above the

SSFAPI[13], using the underlying conservative discrete event
simulation engine. Basically each network packet is
represented by a simulation event, and models the IP packet
movement in the network hop by hop, including link transfer
delay, queuing delay in a router queue, and packet drop. The
simulation engine has a real-time scheduler that delivers the
event at the exact time specified by the event timestamp. In
this way, we can capture the link congestion and network
dynamics in the real world.

4.3.3 Distributed Simulation Engine

To achieve scalable performance, MaSSF uses a distributed
simulation engine running on a cluster. Given a network
topology and available cluster nodes, MaSSF partitions the
virtual network to multiple blocks, assigns each block to a
cluster node, and simulates in parallel, as shown in Figure 6.
Every cluster node runs a discrete event simulation engine and
events are exchanged among cluster nodes. To maintain the
simulation accuracy, these cluster nodes also need to
synchronize periodically.

Figure 6. Mapping routers to physical resources

For large simulations, the network mapping cannot be done

manually or casually. Instead, the mapping is a critical and
demanding challenge. First we need to achieve load balance
across all cluster nodes. This is difficult because the
workload on each physical node varies greatly, depending
both on the virtual mapping and network traffic in that subset
of virtual network [Figure 7]. And we should also consider
two more optimization goals. One is to maximize link
latency across partitions to reduce the frequency of
synchronization among simulation engines and maximize
concurrency, a critical element of scalability for large scale
simulation. This feature is an attribute of our MaSSF system
and all other network simulators based on conservative
discrete event simulation engines. The second optimization

Application

send() recv() Real Data
Wrap
Socket

Wrap
Socket

Agent Agent TCP
Stack

TCP
Stack

Simulated
Network

Scalable
Cluster System

Router

Host

Router

Router

TCP
Stack

TCP
Stack

Application

- 7 -

goal is to minimize the communication of simulation events
between simulation engine nodes. It is expensive to transfer
a simulation event across physical nodes both in terms of
computation overhead and communication latency. Also, the
physical network of the simulation engine nodes is often a
performance bottleneck for the whole simulation. Hence, it is
important to minimize this communication.

To achieve the optimal load balance even if the traffic were
known is an NP-Complete problem, and in practice, a network
mapping problem can be naturally modeled as a graph
partitioning problem and solved with the classical graph
partitioning algorithms. With detailed traffic information, we
can estimate the number of simulation events on each single
link and use it to calculate the edge weight. We discuss this
approach in greater detail in Section 6.

Figure 7. Load Variation over the Lifetime of Simulation

4.4 The MicroGrid CPU controller
The CPU controller virtualizes the CPU resources, providing
appropriate performance for the processes running on virtual
compute resources. The MicroGrid uses one CPU controller
on each physical host to monitor the resource utilization of the
processes on each virtual machine, and starts/stops them using
SIGSTOP and SIGCONT signals. The controller consists of
three parts:

• Live Process Interception: Whenever a virtualized process

or a thread is created or is destroyed, the CPU controller
detects the event via intercepted main() or exit() function
calls and updates its internal process table.

• CPU Usage Monitoring: Every 20ms, the controller reads
the /proc file system to check the CPU usage of all the
processes in its process table.

• Process Scheduling: The controller calculates the CPU
usage of each virtual host in a time window. If the
amount of effective cycles exceeds the speed of the
virtual hosts, the controller sends a SIGSTOP signal to all
processes of the virtual host; otherwise, the controller
wakes up the processes and let them proceed.

The CPU controller also supports the ability to scale down

the execution speed of all virtual compute resources, enabling
it to simulate arbitrary relative CPU speeds.

For each step of process scheduling, we use a sliding

window algorithm to track CPU usage information and make
scheduling decision. Because Linux schedules processes in
the unit of 10ms, called “jiffy”s, the controller uses a window
size which is an integral number of jiffies. At the same time,
we hope to keep the sliding window as small as possible –
otherwise, the communication latencies may be masked by our
scheduling granularity. So we determine the minimal sliding
window so that the simulation error can be reasonably small.
We use 5% as acceptable error and assume the scaled virtual
machine speed is p (fraction of physical CPU), then the sliding
window size (w jiffies) and the available jiffies n for virtual
machine should satisfy:

 w = round(n/p) and | 1 – p*n/w | < 0.05

This architecture allows simulation of large numbers of
machines (100’s to thousands) on a small number of machines.
Further, grids with extremes of heterogeneous performance
from slow to fast machines can be modeled accurately.

5 VALIDATION EXPERIMENTS

5.1 CPU Modeling Using CPU Controller
To test the accuracy of the CPU Controller, we use a simple
program “cpuhog” which only does computation without any
input/output operations. We first run it directly on a physical
machine, get the real running time T. Then we run it on a
virtual machine, which is given different fraction λ of CPU by
the CPU Controller, to get a controlled time Tλ. If CPU
controller is accurate, the value λ*Tλ/T should equal to 1.

Our experiments were performed on a dual 450MHz PII
machine. “cpuhog” takes 10 seconds to complete without
CPU controller. Recall that the CPU controller design uses a
5% acceptable error margin (see Section 4.4).
:

Figure 8. CPU Controller Performance for single virtual
resource

Figure 8 are the results for single virtual resource. The
results show that when there is only one process, the error is
almost always in 2%, except as we near full utilization of the

- 8 -

underlying physical resource. At 90% CPU, we observe a
6.7% error. When there are multiple processes, the running
time becomes about 6-8% longer.

We then run multiple virtual resources on each physical
machine to understand the performance of CPU controller
with some competitive workload. We do two groups of
experiments with three virtual resources and five virtual
resources on each physical machine respectively. Each time,
we create the virtual resources, and launch one “cpuhog” on
each virtual resource. Then use the average completion time
as the virtual running time to calculate the efficiency rate
λ*Tλ/T. The results are shown in Figure 9. The
“aggregated CPU speed” is the sum of speeds of all the virtual
machines. Most of the tests have an error of less than 4%,
with the one exception a 9% error when total CPU is 78%.

Figure 9. CPU Controller Performance for multiple virtual
resources

The inaccuracy for 90% CPU in Figure 8 and for 78% CPU in
Figure 9 mainly comes from the 5% acceptable error in the
sliding window algorithm: Since we allow 5% error and we
always choose the window size as small as possible, when
virtual machine has speed 90%, we would schedule the
application for six of seven jiffies rather than nine of ten,
which causes theory speed of 85.7% CPU with 4.8% error
from 90% CPU; in the multiple-virtual resource experiments,
each virtual machines each has 26% CPU and is scheduled for
one jiffy every four jiffies, which leads to 25% actually speed
with about 4% error from 26% CPU.

In a summary, our experiments show that the CPU controller
can model CPU speed accurately. The multiple-virtual
resource experiments also demonstrate its capability to model
multiple virtual CPUs on one physical machine accurately.

5.2 Network Modeling Using MaSSF
To test the performance of MaSSF, we use a client/server
program which sends and receives packets using TCP/IP
between two nodes. In each iteration, the sender sends a
packet to the receiver then wait for a one-byte reply from the
receiver. When packet size is small, the time for each

iteration is the roundtrip time (RTT); when packet size is large
enough, the bandwidth approximates the maximum bandwidth
between the two nodes.

The TCP performance is affected by network latency (L), TCP
window size (W), network capacity (C), and packet loss [14].
If there is no packet loss, the maximum bandwidth should be
close to:
 Bandwidth = min(C, W/(2*L))

Our experiments first test the network performance between
two nodes on a cluster. The nodes are dual Xeon 2.4GHz
machines connected by GigE, configured with 128KB TCP
window. Experiments show that real network has latency
0.222ms and bandwidth 782.87Mbps. On the MicroGrid, we
simulate the two nodes with 128K TCP window and 0.2ms
wire latency. The simulated results are shown in Figures 10
and 11.

Figure 10. Network bandwidth on GigE LAN. The MicroGrid
is configured with 0.2ms latency. The physical hosts are dual
Xeon 2.4GHz machine.

Figure 11. Network Latency on GigE LAN. The MicroGrid is
configured with 0.2ms latency. The physical hosts are dual
Xeon 2.4GHz machine.

The figures show that the virtual bandwidth (simulated) is

- 9 -

close to the target bandwidth when virtual CPU speed is faster
than 25% of 2.4GHz Xeon. When virtual CPU speed is not
fast enough to deal support the memory and I/O operations,
the bandwidth falls off.

The network latency is about 0.15ms longer than the
configured wire latency. This is presumed to be due to
Agent overhead, overhead through TCP/IP stacks, and the
overhead of the MaSSF simulator.

The next set of tests use a network topology with a 1ms
latency between the two nodes, and varies the TCP window
size from 32KB to 128KB. The results are shown in Figure
12 and 13.

Figure 12. Network Bandwidth on MAN, the latency between
nodes is 1 ms.

Figure 13. Network Latency on MAN, the latency between
nodes is configured as 1 ms.

In this case, the network capacity is not the bottleneck any
longer, so the TCP bandwidth is mainly decided by latency
and TCP window size. We calculate the bandwidth upper
bound in theory, as shown in Table 1.

From Figure 12 and Table 1 we see that our simulator
achieves 82-90% of the theoretical maximum bandwidth.
Considering the overheads on TCP stacks and application’s
memory operations, these are excellent results.

As for latency, the simulated value, as shown in Figure 13, is
about 0.25ms higher than the configured wire latency. Still,
this is due to overheads on TCP stacks, application memory
operations, and MaSSF overhead.

 32KB 48KB 64KB 128KB
1 ms 128Mbps 192Mbps 256Mbps 512Mbps
5ms 25.6Mbps 38.4Mbps 51.2Mbps 102.4Mbps
10ms 12.8Mbps 19.2Mbps 25.6Mbps 51.2Mbps
Table 1. Theoretical Maximum Bandwidth on a Network
Channel

The following figures show the bandwidth on network channel
with latency 5 ms and 10ms respectively. The results are
consistent to the theoretical bounds in Table 1.

Figure 14. Simulated Network Bandwidth on network channel
with latency 5ms and 10ms.

Based on these experiment results, we conclude that the
MaSSF network simulator can model TCP communications
accurately. With no network congestion, the modeled
maximum bandwidth approximates real results in local, metro,
and wide area networks. The network latency is also
modeled accurately, except that MaSSF has some extra
overhead which takes about 0.15-0.25ms per message.

We did not evaluate the simulator with network congestion,

- 10 -

although our simulator supports the capability to model
competitive traffic (background traffic). Performance with
congestion is not easy to evaluate since it depends on the
competitive traffic model. In the following experiments, we
model the network without and competitive traffic, likely
overestimating performance.

5.3 Application Running on Emulated Environment
In this section, we run five classic applications on both real
environment and virtual environment simulated using the
MicroGrid. Before the results, we first introduce the five
applications briefly. These applications are used in the
GrADS project [5, 15].

All five applications are SPMD MPI applications and have
been previously tested on the GrADS testbed in various
real-world experiments. These applications were integrated
into the GrADS framework and tested in various experiments
as part of the following efforts: ScaLAPACK [16], Jacobi [17],
Game of Life [17], Fish [18], and FASTA [19].

ScaLAPACK [20] is a popular software package for parallel
linear algebra, including the solution of linear systems based
on LU and QR factorizations. We use the ScaLAPACK
right-looking LU factorization code based on 1-D block cyclic
data distribution. The application is implemented in Fortran
with a C wrapper. The data-dependent and iteration-dependent
computation and communication requirements of
ScaLAPACK provide an important test for the MicroGrid
simulation. In our experiments we used a matrix size of
6000x6000.

FASTA [21] The search for similarity between protein or
nucleic acid sequences is an important and common operation
in bio-informatics. Sequence databases have grown immensely
and continue to grow at a very fast rate; due to the magnitude
of the problems, sequence comparison approaches must be
optimized. FASTA is a sequence alignment technique that
uses heuristics to provide faster search times than more exact
approaches, which are based on dynamic programming
techniques. Given the size of the databases, it is often
undesirable to transport and replicate all databases at all
compute sites in a distributed grid. We use an implementation
of FASTA that uses remote, distributed databases that are
partially replicated on some of the grid nodes. FASTA is
structured as a master-worker and is implemented in C. For
MicroGrid validation purposes, an important aspect of FASTA
is that each processor is assigned a different database (or
portion of a database) so the MicroGrid must properly handle
input files and provide proper ordering of data assignments
onto processors. In our experiments the sizes of the databases
are 8.5MB, 1.7MB and 0.8MB respectively. The query
sequence is 44KB.

The Jacobi method [22] is a simple linear system solver. A
portion of the unknown vector x is assigned to each processor.
During each iteration, every processor computes new results
for its portion of x and then broadcasts its updated portion of x
to every other processor. Jacobi is a memory-intensive

application with a communication phase involving lots of
small messages. In our experiments we used a matrix size of
9600x9600.

The Fish application models the behavior and interactions of
fish and is indicative of many particle physics applications.
The application calculates Van der Waals forces between
particles in a two-dimensional field. Each computing process
is responsible for a number of particles that move about the
field. The amount of computation depends on the location and
proximity of particles, so Fish exhibits a dynamic amount of
work per processor. In our experiments we used 6,000
particles.

Conway’s Game of Life [23] is a well-known binary cellular
automaton. A two-dimensional mesh of pixels is used to
represent an environment of cells. In each iteration every cell
is updated with a 9-point stencil and then processors send data
from their edges (ghost cells) to their neighbors in the mesh.
Game of Life has significant memory requirements compared
to its computation and communication needs. In our
experiments we used a matrix size of 9600x9600.

We use a subset of the multi-site testbed for the GrADS
project as our testbed. The 11 machines used are as
following:
UCSD cluster: four 2100+ XP Athlon AMD (1.73 GHz) with
512 MB RAM each. These systems run Debian Linux 3.0 and
are connected by Fast Ethernet.
UIUC cluster: three 450 MHz PII machines with 256MB
memory connected via TCP/IP over 1Gbps Myrinet LAN.
These systems run RedHat Linux 7.2.
UTK cluster: four PIII 550 MHz machines with 512MB
memory, running RedHat Linux 7.2, and connected with Fast
Ethernet.

The three sites are connected by the Internet2 network with
2.4Gbps backbone links. During our experiments, we
observed NWS latency and bandwidth values over a period of
12 hours and obtained ranges as shown in table 2.

 UCSD

machine
UIUC machine UTK

machine
UCSD
machine

60-80Mbps,
0.2 ms

3-7Mbps
31 ms

4-6Mbps
30 ms

UIUC
machine

3-7Mbps
31 ms

115-220Mbps
0.2 ms

7-17Mbps
11 ms

UTK
machine

7-8Mbps
30 ms

12-18Mbps
11 ms

82-87Mbps
0.2ms

Table 2. Network performance of the testbed, reported by
NWS. The variance of the bandwidth is due to resource
sharing.

In our simulation, we configure all the machines to have 64KB
TCP window. The wide area latency is as shown in Table 2;
the LAN latency is 0.2 ms. We have to remind the audience
that, the simulated LAN latency might higher than real latency
due to simulation overhead as shown in subsection 5.2; while
the simulated WAN bandwidth will higher than real

- 11 -

bandwidth due to lack of contention.

We do two groups of experiments: “Cluster” group uses four
UTK machines to do clustering computation, “Grid” group
uses three machines from each of the three sites. Both
groups use a separate UCSD machine to run Globus
gatekeeper. The results are shown in Figure 15.

Figure 15. Running Time of Applications, on four-node

cluster and nine-node Grid respectively.

For the cluster, all applications run slower on the MicroGrid
than on real testbed; most of them have error in 6%-27%,
except 66% for ScaLAPACK. The extra overhead comes
from two major sources: 1) MaSSF has some overhead which
increases network latency. 2) WrapSocket wraps many
system functions for simulation, which will cause some
overhead.

For the grid environment, the simulated time has about 5% -
35% errors. We can see several interesting differences from
the cluster results. ScaLAPACK still runs slower on the
MicroGrid than on real testbed, but much closer than on
cluster, because ScaLAPACK uses a lot of small
communications and the simulation overhead will have more
impact on simulated LAN latency than on simulated WAN
latency (as shown in subsection 5.2). Fish and GameOfLife
run faster on the MicroGrid than on real grid. A possible
reason is that they both use many large communications, and

the simulated network bandwidth is higher than real system
due to lack of contention.

6 IMPROVING SCALABILITY
The MicroGrid must be scalable to support the study of large
networks, resources, middleware, and applications. While
most resources can be naturally simulated in parallel with
enough physical resources, all the coordination,
synchronization and dynamic interaction amongst resources
must go through network communication. This means the
network must be simulated as a single system with global
coordination, and thus the scalability of network simulation is
a critical challenge for the entire MicroGrid system. In
particular, the challenge is scalable detailed packet-level
simulation combined with online simulation. We require
packet-level simulation to ensure fidelity in simulation of
network, protocol, and application behavior. Higher level
simulation approaches, such as flow level simulation and
approximation through network aggregation provide
insufficient fidelity for our problems if interest in dynamic
distributed systems.

As mentioned in Section 4.3, our network simulator MaSSF
uses distributed discrete event simulation engine to achieve
scalable performance. But only this is not enough to provide a
scalable simulation. Like all other distributed or parallel
applications, MaSSF must have good load balance for good
speedup, and such load balance is challenging for network
simulation. In this section we will present our approaches
and results of load balance techniques for scalable network
simulation.

6.1 Modeling Network Mapping as a Graph Partitioning
Problem

Typical graph partitioning algorithms generally solve single
objective partition problems such as:

Given an input graph G = (V, E) with weighted vertices and
edges, we want to partition it into k parts such that,
- each part has roughly the same total vertex
weight(constraint)
- the edge-cut (the number of edges) that straddles
partitions is minimized(objective)

By setting the vertex and edge weights appropriately, mapping
a simulated network to a set of physical simulation resources
can be modeled as a graph partitioning problem and solved
using a generic graph partitioning algorithm.

As a well studied problem, we expect that any high quality
graph partitioning package (in this case METIS[24]) should
produce results comparable to other graph packages. So our
challenge is how to apply the graph partitioning algorithm in
METIS to solve the mapping problem by defining the suitable
input graph G, constraint conditions, and optimization
objectives for the graph partitioning algorithm.

• Input Graph: The input graph G is defined by two

categories of parameters: network structure and traffic

- 12 -

information. The network structure includes detailed
network topology, link latency, and link bandwidth.
Network traffic information is used to define edge
weights in the graph, and it may also affect vertex
weights.

• Constraints: The constraint is the vertex weight to be
balanced among multiple vertices. In the network
mapping problem, the vertex weight can be defined as
weighted sum of computation and memory requirement
on each simulation engine node.

• Objectives: The objective is the edge-cut to be minimized.
In the network mapping problem, the optimization can
use two objectives, maximal link latency and minimal
communication across partitions, mentioned in Section
4.3.3.

In summary, the mapping process can be modeled as shown in
Figure 16. First, it takes the network structure and traffic
information as input, creates a graph G, and builds objectives
and constraints for the graph partitioning algorithms. Then the
mapping process applies partitioning algorithms to get a
partitioned network. The partitioned network defines the
mapping of simulated network nodes to physical resources
(subject to additional arbitrary choices of placement amongst
symmetric physical resources). In different cases, we
explore how the abstractions of the network mapping
problems are varied and use different constraints and
objectives in the graph partitioning algorithm. The
remaining problem is how to collect and use the traffic
information, which will be discussed in the following section.

Figure 16. Process of Network Mapping

6.2 Traffic Based Network Mapping
We explore three different approaches for network mapping.
These approaches vary how network topology, background
traffic, and application traffic are represented and used in the
partition. The more accurately an approach predicts the
actual simulation work (i.e. network traffic), the better
partitioning, and thereby better load balance are expected.
However, there are tradeoffs between the specificity of the
information used and the generality of the partition produced.

6.2.1 Network Topology-Based Mapping
Our first approach only considers the virtual network topology,
link bandwidth, and latency. In this approach, TOP, each
virtual node is weighted with the total bandwidth in and out of
it. The optimization objective is to maximize the link latency
between simulation engine nodes. This maximizes decoupling,
supporting efficient parallel simulation.

6.2.2 Application Placement-Based Mapping
To achieve a better network mapping, we need precise traffic
information. The second approach is based on the observation
that simulated network traffic typically consists of a
background and a foreground load. Foreground traffic is
created by the target application that a user wants to study, and
background traffic is used to provide realistic network
conditions. We estimate both traffic loads separately, then
combine them to estimate the aggregated traffic data for better
network mapping. We call this approach PLACE.

For background traffic, all traffic generators can provide some
prediction of their generated traffic load, for example,
specifying the average traffic bandwidth between two
endpoints. The foreground load is typically the live traffic
from a small set of application programs. Unlike background
traffic prediction, it is difficult for users to predict the traffic
of the real application. As an approximation, we determine
the traffic injection points of the application, where its
processes attach to the simulated network, assuming that the
application fully utilizes the network link at each injection
point and every node talks to all other nodes with evenly
distributed bandwidth. While this approximation may seem
coarse at first glance, it is acceptable when considering that
most target applications in simulation are complex and
network intensive. With the source/destination pairs of all
traffic flows, we can compute the aggregated traffic on each
link by summing the contribution from each flow.

6.2.3 Profile-Based Mapping
The third approach uses profiling techniques to obtain traffic
information automatically from simulation experiments
(PROFILE). The profiles are then used to estimate future
network use, and to improve the network mapping.
Typically this involves an initial simulation experiment using
an initial partition and traffic monitoring. The simulation
yields detailed traffic information and the network can be
repartitioned based on this information.

The critical challenge for this approach is the efficient
collection and representation of traffic information during
profiling, and the use of this information to repartition the
network. In MaSSF, we implement the Cisco NetFlow-like
[25] function on each simulated router. This functionality is
used to record every traffic flow on each router to a local file.
The dump files record the average bandwidth and duration of
every flow on every router. Parsing the dump files allows
computation of the aggregated traffic on every router and link
in the network. By tuning the granularity of the NetFlow, we
can get detailed network traffic information with small
overhead.

Network
Structure

Partitioned
Network

Traffic
Information

Graph
Partitioning
Algorithms

G
Constraints
Objectives

Graph
Preparation

- 13 -

6.3 Experimental Evaluation
6.3.1 Methodology and Experimental Setup
To evaluate these mapping approaches, we implement them in
the MaSSF network simulator of the MicroGrid Project [26].
We apply these approaches on a range of different simulated
network topologies and background traffic conditions.

Metrics
Three evaluation metrics are used in the experiments: load
imbalance, application simulation time, and network
simulation time. We define the load of a simulation engine
node as the simulation kernel event rate (essentially one per
packet). Using these counters, we calculate the overall load
imbalance across all the physical nodes. Assuming the
simulation kernel event rates are k1, k2, …, kn, for n nodes
used by the simulation engine, the load imbalance is
calculated as the normalized standard deviation of {k}.

The second metric is the application simulation time. If load
balance is improved, this improvement should reduce the
execution time of the application simulation. Since
communication is typically the performance bottleneck for
only part of the execution time, the application simulation
time is not always directly correlated to network simulation
load balance. Nevertheless, as faster simulation is the
ultimate goal of load balance, it is an important criterion.

The third metric is network simulation time, which directly
measures how much time is required to simulate the traffic
created by the application. MaSSF records all network traffic
trace of a simulation execution, and then replays it without
real computation in the application. When replaying, it tries to
send out traffic as fast as possible, but still follows the real
application casualty and message logic order. This is a direct
measurement of the mapping approaches.

Network
Topology Router Host Simulation

Engine Node
Campus 20 40 3
TeraGrid 27 150 5

Brite 160 132 8
Table 3. Network Topology Setup

Hardware Configuration
The experiments use two RedHat Linux clusters. The first
cluster includes 24 dual 550MHz Pentium-II processors,
linked with 100Mbps Ethernet switch, with 2Gbps backbone
bandwidth. This cluster is used for the network simulation
engine. The second cluster consists of 8 dual 1.6GPentium-III
processors, linked with 1 Gbps Ethernet switch (with 24 Gbps
backbone bandwidth). It is mainly used for the real application
execution. Two clusters are connected by a single, full duplex
gigabit Ethernet link.

Network Topologies
Three network topologies are used in our experiments. The
first two represent real networks, such as the TeraGrid
(http://www.teragrid.org/) and a section of a university
campus network (Campus). To explore more complex network

structures, our third network topology Brite is created by a
generic topology generator (adapted from the BRITE[27]
toolkits), which creates Internet-like topologies and also
provides background traffic support.

Traffic Workloads
The experiments use aggregated traffic flows to create
background traffic. Here HTTP clients and severs are selected
randomly from endpoints in the virtual network. In this study,
a HTTP traffic generator is used, which has been well-studied
by other researchers [28]. While this background traffic model
is not perfect, it exercises some range of network dynamics,
allows user control of load intensity by changing those
parameters, and is widely used [29-31].

Foreground traffic is created live from real Grid applications,
including ScaLAPACK[16] and GridNPB3.0 [32].
GridNPB3.0 is a widely used set of grid benchmarks in a
workflow style composition in data flow graphs encapsulating
an instance of a slightly modified NPB task in each graph
node, which communicates with other nodes by
sending/receiving initialization data. GridNPB includes a
range of computation types and problem sizes, and in our
experiments we use the combination of Helical Chain (HC),
Visualization Pipeline (VP), Mixed Bag (MB) applications, all
run at class S size. These programs run for about 15 minutes
on our platform.

6.3.2 Experiment Results

Load Imbalance
Application workloads are executed on three network
topologies (Campus, TeraGrid, and Brite) with moderate
background traffic, and the measured load imbalance for two
applications (ScaLAPACK and GridNPB) is shown in Figures
17 and 18. The figures report the normalized load imbalance
across the physical simulation engine nodes for each
combination of mapping approach and network topology.
Each mapping approach produces significantly different
results. The application placement-based mapping (PLACE)
improves significantly on topology-based mapping (TOP) for
both ScaLAPACK and GridNPB applications. The
profile-based mapping (PROFILE) further improve the load
imbalance up to 66% and 48% for ScaLAPACK and GridNPB
respectively. For both workloads, the profile-based mapping
approach delivers the best performance among three
approaches. It is clear that the use of detailed traffic
information from a previous simulation execution provides a
critical advantage in partitioning the network effectively.

The advantage of profile-based mapping over
placement-based mapping for GridNPB is more significant
than that for ScaLAPACK. This is due to the fact that for
ScaLAPACK, the application-placement based traffic
prediction is very close to the actual traffic pattern, so there is
little improvement to be had for PROFILE. For GridNPB, in
contrast, the traffic is more irregular and the
application-placement based prediction is less accurate. As a
result, significant load imbalance remains for PLACE, leaving

- 14 -

more room for improvement for PROFILE.

Figure 17. Load Imbalance for ScaLAPACK

 Figure 18. Load Imbalance for GridNPB

We can also see that the scale of the simulation affects the
achieved load balance. The Campus network uses 3 simulation
engine nodes, the TeraGrid uses 5 nodes, and the Brite
network uses 8 nodes. The normalized load imbalance
increases when the number of simulation engine nodes is
increased, as one would expect if work were held constant (it
is not across these experiments). When the simulation scales
up, load balance is more critical to achieving high
performance.

Application Simulation Time
The simulation time of both applications is shown in Figures
19 and 20. For ScaLAPACK, the use of application
placement-based mapping (PLACE) reduces overall
simulation time significantly (about 40%), and the use of the
profile-based mapping (PROFILE) further reduces the
simulation up to 50%. For the GridNPB workload, we can see
the benefits of both PLACE and PROFILE mappings, but the
improvement is much smaller (about 17%). As we have
mentioned before, the simulation time is not a direct
measurement of load imbalance, and because the execution
time of GridNPB is computation rather than

communication-intensive, improvement of the simulator gives
little overall runtime benefit.

Figure 19. Simulation Time for ScaLAPACK

Figure 20. Simulation Time for GridNPB

Network Simulation Time in Isolation
All experiments above use the simulated application as targets,
and the computation and communication are mixed together.
To further understand the direct effect on network simulation,
we use the MaSSF replay function to study the network
simulation performance in isolation, as mentioned in Section
4.1.1. Figures 21 and 22 show that the simulation time for
network traffic is improved significantly for ScaLAPACK
replays, in consistent with the result of overall simulation time
in Figure 19. For GridNPB, the network simulation time is
also reduced by 30%, even when the execution time for the
whole application shows less difference in Figure 20.

6.3.3 Scalability
To evaluate the effectiveness of our mapping approaches for
larger network simulation, we use BRITE to build two
network topologies with 3,000 routers and 3,000 hosts. The
first network is a flat network in a single AS, using shortest
path routing. The second network consists of 30 AS’s and
each AS has about 100 routers. BGP4 protocol is used for
inter-AS routing and OSPF protocol is used for intra AS

- 15 -

routing. The simulator itself uses 24 simulation engine nodes
and ScaLapack uses 5 additional nodes. For background traffic,
there are 2,500 clients keeping continuously sending file
requests to 300 servers. The average time gap between two
successive requests is 5 seconds and average file size is 50KB.
We only test the TOP and PROFILE approach here.

Figure 21. ScaLAPACK Isolated Network Simulation

Figure 22. GridNPB Isolated Network Simulation

The results in Figure 23 show that the PROFILE approach
continues to work well for these larger-scale networks,
especially for the Multi-AS network. The Multi-AS network
has much higher load imbalance when compared to the single
AS network due to the different routing protocols used in
these networks. For Multi-AS network, connectivity does
not mean the reachability, due to differences between OSPF
and hierarchical routing with BGP. However, because the
PROFILE partition is based on the real traffic following the
routing decision and flows, it can track the different routing
structure and still balance load more effectively.

6.4 Summary
Experimental results show that network mapping using static
network topology and predicted traffic information can
improve load balance in large-scale network simulation. The
topology-based approach (TOP) is fast and simple, and the

placement-based approach (PLACE) can improve the
performance for application with evenly distributed traffic
load. For more irregular application and real large simulation,
the profile-based approach (PROFILE) is most effective.
Depending on the specific network structure and traffic load, it
can improve load balance by up to 66% and speed up the
simulation up to 50%. Further, PROFILE has also been
shown to work well for large network simulations.

Figure 23. Scalability

7 RELATED WORK
Three methods have been used to perform distributed system
and Grid experiments: real testbeds, simulation, and
emulation.

Real testbeds use a specific set of real resources for
experiments, such as PlanetLab [33], TeraGrid, and GrADS
testbed [5]. Real testbeds of course have the advantage of
providing high speed execution and of course realistic
execution. However, actual testbeds have a number of
limitations, including: (i) limited experimental configurations
(cannot run experiments for a wide range of platform
scenarios or for platforms or networks that do not exist), (ii)
non-observability – phenomena that occur which are not
observable in routers, systems, networks, etc., and (iii)
reproducibility – phenomena occur which cannot be repeated
to be understood. We believe that tools such as MicroGrid
are an essential complement to use of real testbeds.

Many research efforts explore network and computation
simulation systems and techniques in order to model a wide
range of distributed systems and networks. However, in
early systems, distributed applications and networks have been
studied largely separately – each community employing
relative simple models for the other domain. These separate
tools cannot be easily composed. For example, many
network simulators have been built which provide accurate
network environment (e.g. NS [34], GloMoSim [35]).
However, these tools only capture part of what is relevant to

- 16 -

future distributed systems which couple resources and
networks and have adaptive applications – they do not enable
the network simulations to be coupled directly to applications.

A wide range of software tools provide general-purpose
discrete-event simulation or even more focused Grid
simulation libraries (GridSim and SimGrid) [36-40][41][42].
The challenge with all of these tools is that they do not allow
easy use of existing applications and grid middleware, and
thus the results achieved are only as good as the models which
are developed for these complex pieces of software. In
addition, these tools typically have simple models of networks
and protocols – known to be inaccurate. No direct
experimentation with applications, middleware, networks, and
grid resources is supported.

Extensive research has been devoted to virtual machine
monitors (VMM), including VMWare [43], Denali [44], and
Xen [45]. The majority of these efforts focus on functional
virtualization, and only secondarily on performance modeling.
VMWare can aggregate a large number of distributed,
heterogeneous resources as a single pool of processing,
storage and networking power, on which user can run multiple
off-the-shelf operating systems. Denali virtualizes hardware
resources on single physical machine to enable running of
multiple instances of a specific OS IIwaco. Xen is a virtual
machine monitor for x86 that supports execution of multiple
guest operating systems with both high performance and
resource isolation. Commodity operating systems, such as
Linux, BSD and Windows XP, can be ported to Xen. The
major differences from the MicroGrid are: (i) their emphasis
on functional virtualization, (ii) the need to maintain an entire
OS kernel installation for each image, and (iii) the lack of
support for detailed network simulation and performance
modeling. Finally, the overhead and complexity of the
MicroGrid wrapper and CPU scheduler is dramatically lower
than any of these systems.

Several recent research efforts are most similar to the
MicroGrid, including Albatross [46], Emulab [47] and
Modelnet [48]. While these systems also support execution
of real application over a modeled network, there are
important differences between these efforts and the
MicroGrid.

First, none of these systems model CPU speed, thus they
cannot simulate grid environments with a wide range of
heterogeneous computation resources. This also limits the
ability to model relative compute and network speeds.

Second, the network modeling in these systems either use
approximation models [49] or have limited scalability [34].
These approximations reduce the cost (compared to
MicroGrid’s global synchronized simulation) to achieve faster
execution. For example, Emulab uses a set of real routers,
switches and configurable software routers to emulate wide
area network. This approach has the advantage of speed of
emulation, but provides little in the way of detailed control of
speed and modeling to the experiment designer. The

ModelNet project at Duke University (and now at UCSD) is a
software emulator. Their approach to scalability simplifies
both network topology (a network of pipes) and routing
(assuming a simple routing protocol based on shortest path)
and then maps the resulting network of queues onto a set of
emulation cores. This summarized network is an
approximation to actual detailed network behavior. Further,
there is no synchronization between these cores, so the
number of cores can be used without affecting accuracy is
unknown. In contrast, MaSSF uses full-scale detailed packet
simulation based on a distributed discrete-event simulation
engine. While there have been many efforts which use PDES
for network simulation [50], we know of no other modeling
efforts that achieve detailed online network simulation of the
documented scale.

8 SUMMARY AND FUTURE WORK
The increasing acceptance of grid computing in both scientific
and commercial communities presents significant challenges
for understanding the performance of applications and
resources. The associations between applications and
resources are no longer static, and dynamic resource sharing
and application adaptation further complicate the situation.
To meet the emerging modeling needs and enable growth in
understanding the dynamic properties of grids, we have
designed and implemented a tool called the MicroGrid. The
MicroGrid enables accurate and comprehensive study of the
dynamic interaction of applications, middleware, resource, and
networks. The MicroGrid creates a virtual grid environment
– accurately modeling networks, resources, the information
services (resource and network metadata) transparently.
Thus, the MicroGrid enables users, grid researchers, or grid
operators to study arbitrary collections of resources and
networks. The MicroGrid includes the MaSSF online
network simulator which provides packet-level accurate, but
scalable network modeling.

We present experimental results with applications which
validate the implementation of the MicroGrid, showing that it
not only runs real grid applications and middleware, but that it
accurately models both their and underlying resource and
network behavior. We also study a range of techniques for
scaling a critical part the online network simulator to the
simulation of large networks. These techniques employ a
sophisticated graph partitioner, and a range of edge and node
weighting schemes exploiting a range of static network and
dynamic application information. By carefully mapping the
virtual network to physical resources using multi-objective
graph partitioning algorithms, we achieve good load balance
and better scalability in network simulation. Our studies
show that the static network topology and application
placement information can be exploited to achieve good
balance for some application. In our experiments, it reduces
the load balance by up to 66%. The profile-based mapping
uses detailed traffic information and further reduces the
application simulation time up to 50%. The best of these,
profile-driven placement, scales well to online simulation of
large networks of 6,000 nodes using 24 simulation engine

- 17 -

nodes.

In future work, we will use MicroGrid to study larger network
and application, specially using a 256-node Itanium Linux
cluster to simulation a network with 100,000 network entities,
which can be taken as a non-trivial part of real Internet with
hundreds of Autonomous System (AS). Under this scale of
network, we expect to experience much larger load balance
challenge and we have to make our traffic based load balance
solution for better scalability. We will also use MicroGrid to
study larger scale Grid applications, include resources
scheduling and overlay network behaviors.

ACKNOWLEDGMENT
Supported in part by the National Science Foundation under
awards NSF EIA-99-75020 Grads and NSF Cooperative
Agreement ANI-0225642 (OptIPuter), NSF CCR-0331645
(VGrADS), NSF ACI-0305390, and NSF Research
Infrastructure Grant EIA-0303622. Support from
Hewlett-Packard, BigBangwidth, Microsoft, and Intel is also
gratefully acknowledged.

The authors also acknowledge the contributions of Alex
Olugbile to the system infrastructure which made this work
possible.

REFERENCES
1. C. Kesselman, and I. Foster, The Globus Toolkit, in The

Grid: Blueprint for a New Computing Infrastructure, and
I. Foster C. Kesselman, Editor. 1999, Morgan Kaufmann
Publishers, Inc. p. 259--278.

2. A. S. Grimshaw, W. A.Wulf, and the Legion Team, The
Legion Vision of a Worldwide Virtual Computer.
Communications of the ACM, 1997. 40(1).

3. Douglas Thain, Todd Tannenbaum, and Miron Livny,
Condor and the Grid, in Grid Computing: Making The
Global Infrastructure a Reality, Anthony J.G. Hey Fran
Berman, Geoffrey Fox, Editor. 2003., John Wiley.

4. S. Agrawal, J. Dongarra, K. Seymour, et al., NetSolve:
Past, Present, and Future - A Look at a Grid Enabled
Server, in Grid Computing: Making The Global
Infrastructure a Reality, A. and Berman Hey, F. and Fox,
G., editors, Editor. 2003, John Wiley.

5. Francine Berman, Andrew Chien, Keith Cooper, et al., The
GrADS Project: Software Support for High-Level Grid
Application Development. International Journal of High
Performance Computing Applications, 2001. 15(4): p.
327-344.

6. Vern Paxson and Sally Floyd, Wide-Area Traffic: The
Failure of Poisson Modeling. IEEE/ACM Transactions on
Networking, 1995. 3(3): p. 226-244.

7. Vishal Misra, Weibo Gong, and Don Towsley. A
Fluid-based Analysis of a Network of AQM Routers
Supporting TCP Flows with an Application to RED. in
ACM SIGCOMM'00. 2000. Stockholm, Sweden.

8. James Cowie, Hongbo Liu, Jason Liu, et al. Towards

Realistic Million-Node Internet Simulations. in
Proceedings of the 1999 International Conference on
Parallel and Distributed Processing Techniques and
Applications (PDPTA'99). June 28 - July 1, 1999. Las
Vegas, Nevada.

9. Rich Wolski, Neil Spring, and Jim Hayes, The Network
Weather Service: A Distributed Resource Performance
Forecasting Service for Metacomputing. Journal of Future
Generation Computing Systems, October 1999. 15(5-6): p.
757-768.

10. J. Liu, and Nicol, D., DaSSF 3.1 User's Manual. 2001.
11. SSFNet webpage, http://www.ssfnet.org/.
12. How to write DML network models,

http://www.ssfnet.org/InternetDocs/ssfnetTutorial-1.html.
13. James H. Cowie, SCALABLE SIMULATION

FRAMEWORK API REFERENCE MANUAL. 1999.
14. T. V. Lakshman, and U. Madhow, The Performance of

TCP/IP for Networks with High Bandwidth-Delay
Products and Random Loss. IFIP Transactions C-26, High
Performance Networking, 1994: p. 135--150.

15. The GrADS project, http://hipersoft.cs.rice.edu/grads.
16. A.Petitet, S.Blackford, J.Dongarra, et al., Numerical

Libraries and the Grid: The GrADS Experiment with
ScaLAPACK. International Journal of High Performance
Computing Applications, 2001. 15(4): p. 359-374.

17. Holly Dail, Fran Berman, and Henri Casanova, A
Decoupled Scheduling Approach for Grid Application
Development Environments. Journal of Parallel and
Distributed Computing, 2003.

18. Otto Sievert, and Henri Casanova, A Simple MPI Process
Swapping Architecture for Iterative Applications.
International Journal of High Performance Computing
Applications (IJHPCA), 2004.

19. FASTA package of sequence comparison programs at
ftp://ftp.virginia.edu/pub/fasta.

20. L. S. Blackford, J. Choi, A. Cleary, et al., ScaLAPACK
Users' Guide. 1997: Society for Industrial and Applied
Mathematics, Philadelphia, PA.

21. W. R. Pearson, and D. J. Lipman. Improved tools for
biological sequence comparison. in Proc. Natl. Acad. Sci.
1988.

22. Richard Barrett, Michael W. Berry, Tony F. Chan, et al.,
Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods, 2nd Edition. 1994,
Philadelphia, PA: SIAM.

23. Gary W. Flake, The Computational Beauty of Nature:
Computer Explorations of Fractals, Chaos, Complex
Systems, and Adaptation. 1998, Cambridge, MA: MIT
Press.

24. Kirk Schloegel, George Karypis, and Vipin Kumar. A New
Algorithm for Multi-Objective Graph Partitioning. in
Euro-Par'99 Parallel Processing. 1999. Springer Verlag,
Heidelberg.

25. Cisco Systems, NetFlow. 2001.
26. H. Song, X. Liu, D. Jakobsen, et al. The MicroGrid: a

Scientific Tool for Modeling Computational Grids. in IEEE
Supercomputing (SC 2000). Nov. 4-10, 2000. Dallas, USA.

27. Alberto Medina, Anukool Lakhina, Ibrahim Matta, and
John Byers. BRITE: An Approach to Universal Topology
Generation. in In Proceedings of the International

- 18 -

Workshop on Modeling, Analysis and Simulation of
Computer and Telecommunications Systems- MASCOTS
'01. 2001. Cincinnati, Ohio.

28. Paul Barford and Mark Crovella. Generating
Representative Web Workloads for Network and Server
Performance Evaluation. in Measurement and Modeling of
Computer Systems 1998. 1998.

29. David P. Olshefski, Jason Nieh, and Dakshi Agrawal.
Inferring Client Response Time at the Web Server. in
Proceedings of the ACM International Conference on
Measurement and Modeling of Computer Systems
(SIGMETRICS 2002). 2002. Marina del Rey, CA.

30. Rong Pan, Balaji Prabhakar Konstantinos Psounis, and
Damon Wischik. SHRINK: A Method for Scalable
Performance Prediction and Efficient Network Simulation.
in IEEE INFOCOM. 2003.

31. Jaeyeon Jung, Balachander Krishnamurthy, and Michael
Rabinovich. Flash crowds and denial of service attacks:
Characterization and implications for CDNs and web sites.
in Proceeding of 11th World Wide Web conference. 2002.
Honolulu, Hawaii.

32. Rob F Van Der Wijngaart and Michael Frumkin, NAS Grid
Benchmarks Version 1.0. 2002, NASA Ames Research
Center.

33. PlanetLab Website, http://www.planet-lab.org/.
34. Lee Breslau, Deborah Estrin, Kevin Fall, et al., Advances

in Network Simulation. IEEE Computer, May, 2000. 33(5):
p. 59-67.

35.Lokesh Bajaj, Mineo Takai, Rajat Ahuja, et al., GloMoSim:
A Scalable Network Simulation Environment. May 1999,
UCLA Computer Science Department Technical Report
990027.

36. H. Schwetman. CSIM: A C-based, process oriented
simulation language. in Proceedings of the 1986 Winter
Simulation Conference. 1986.

37. S. Toh. SimC: A C Function Library for Discrete
Simulation. in Proceedings of the 11th Workshop in
Parallel and Distributed Simulation. 1993.

38. A. Miller, R. Nair, and Z Zhang. JSIM: A Java-Based
Simulation and Animation Environment. in Proceedings of
the 30th Annual Simulation Symposium (ANSS'97). 1997.

39. F. Gomes, S. Franks, B. Unger, et al. SimKit: A High
Performance Logical Process Simulation Class Library in
C++. in Proceedings of the 1995 Winter Simulation
Conference. 1995.

40. F. Howell, and McNab R. SimJava: A Discrete Event
Simulation Package for Java with Applications in
Computer Systems Modelling. in Proceedings of the First
International Conference on Web-based
Modelling and Simulation. 1998.

41. R. Buyya, and M. Murshed, GridSim: A Toolkit for the
Modeling and Simulation of Distributed Resource
Management and Scheduling for Grid Computing. The
Journal of Concurrency and Computation: Practice and
Experience (CCPE), 2002. 14(13-15).

42. A. Legrand, L. Marchal, and H. Casanova. Scheduling
Distributed Applications: The SimGrid Simulation
Framework. in Proceedings of the third IEEE
International Symposium on Cluster Computing and the
Grid (CCGrid'03), Tokyo, Japan. 2003.

43. VMWare website, http://www.vmware.com/.
44. Andrew Whitaker, Marianne Shaw, and Steven D. Gribble.

Scale and Performance in the Denali Isolation Kernel. in
Fifth Symposium on Operating System Design and
Implementation (OSDI 2002). 2002. Boston, MA.

45. Paul Barham, Boris Dragovic, Keir Fraser, et al. Xen and
the Art of Virtualization. in Nineteenth ACM Symposium
on Operating Systems Principles. 2003. Bolton Landing,
NY.

46. T. Kielmann, H. Bal, J. Maassen, et al., Programming
Environments for High-Performance Grid Computing: the
Albatross Project. Future Generation Computer Systems,
2002. 18(8).

47. Brian White, Jay Lepreau, Leigh Stoller, et al. An
Integrated Experimental Environment for Distributed
Systems and Networks. in Proceedings of 5th Symposium
on Operating Systems Design and Implementation (OSDI).
December 2002.

48. Amin Vahdat, Ken Yocum, Kevin Walsh, et al. Scalability
and Accuracy in a Large-Scale Network Emulator. in
Proceedings of 5th Symposium on Operating Systems
Design and Implementation (OSDI). December 2002.

49. L. Rizzo. Dummynet and Forward Error Correction. in
Proc. of the 1998 USENIX Anuual Technical Conf. 1998.
New Orleans, LA: USENIX Association.

50. Rob Simmonds, Russell Bradford, and Brian Unger.
Applying parallel discrete event simulation to network
emulation. in 14th Workshop on Parallel and Distributed
Simulation (PADS 2000). May 28-31, 2000. Bologna,
Italy.

