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Abstract-- Large-scale grids that aggregate and share resources 
over wide-area networks present major challenges in understanding 
dynamic application and resource behavior for performance, stability, 
and reliability.  Accurate study of the dynamic behavior of 
applications, middleware, resources, and networks depends on 
coordinated and accurate modeling of all four of these elements 
simultaneously. 

 
We have designed and implemented a tool called the MicroGrid 

which enables accurate and comprehensive study of the dynamic 
interaction of applications, middleware, resource, and networks.  
The MicroGrid creates a virtual grid environment – accurately 
modeling networks, resources, the information services (resource and 
network metadata) transparently.  Thus, the MicroGrid enables users, 
grid researchers, or grid operators to study arbitrary collections of 
resources and networks.  The MicroGrid includes the MaSSF online 
network simulator which provides packet-level accurate, but scalable 
network modeling. 

 
We present experimental results with applications which validate 

the implementation of the MicroGrid, showing that it not only runs 
real grid applications and middleware, but that it accurately models 
both their and underlying resource and network behavior.  We also 
study a range of techniques for scaling a critical part of the online 
network simulator to the simulation of large networks.  These 
techniques employ a sophisticated graph partitioner, and a range of 
edge and node weighting schemes exploiting a range of static 
network and dynamic application information.  The best of these, 
profile-driven placement, scales well to online simulation of large 
networks of 6,000 nodes using 24 simulation engine nodes. 
 

1 INTRODUCTION 

Improvements in networking and middleware technology are 
enabling large-scale grids that aggregate and share resources 
over wide-area networks to support applications at 
unprecedented levels of scale and performance.    Because 
the aggregation and sharing of resources in grids presumes 
dynamic application and resource configuration, grids present 
significant new challenges for performance modeling and 
design of adaptive middleware and adaptive applications.  
Further, as grid and internet applications increasingly couple 
end system and network behavior – and service quality 
depends on end-to-end performance – accurate study of the 
dynamic behavior of applications, middleware, resources, and 
networks depends on coordinated and accurate modeling of all 
four of these elements simultaneously. 
 

A number of grid middleware projects have been developed to 
enable access to grid resources, such as Globus [1], Legion [2], 
Condor [3], NetSolve [4], and GrADS [5].   However, these 
middleware layers today are providing only basic mechanisms 
for execution in a grid environment and do not provide 
solutions which ensure resource stability, application stability, 
predictable behavior, guaranteed quality of service, etc., in 
open, shared, efficiently utilized grid environments.  All 
these middleware systems themselves and applications that 
use them are developed and painstakingly evaluated in a few 
grid environments before being released for early use.  Only 
after some time, and extensive ad hoc testing and use, are their 
dynamic behaviors considered stable.  In fact, the breadth of 
understanding their dynamic properties in novel resource 
environments or in the presence of novel competitive resource 
demands is minimal.  In short, understanding the dynamic 
behavior of grid environments (applications, middleware, 
resources, and networks) remains an open research challenge, 
and the subsequent engineering need to ensure resource 
stability, application performance stability, application quality 
of service, and also efficient resource utilization remains 
daunting.  It is this problem which motivates the efforts 
described in this paper. 
 
The goal of the MicroGrid project is to develop and 
implement simulation tools that enable scientific and 
systematic of the dynamic behavior of applications, 
middleware, resources, and networks.  These tools will 
provide a vehicle for observable, repeatable study and 
systematic exploration of design spaces for a wealth of design 
problems for applications and middleware, exploration of rare 
or extreme situations, and rational choices in application 
deployment and grid resource and network design.  
 
We have designed and implemented a tool called the 
MicroGrid which enables accurate and comprehensive study 
of the dynamic interaction of applications, middleware, 
resource, and networks.  The MicroGrid creates a virtual grid 
environment – accurately modeling networks, resources, the 
information services (resource and network metadata).   
Thus, the MicroGrid enables users, grid researchers, or grid 
operators to study arbitrary collections of resources and 
networks.  Further, the MicroGrid virtualizes transparently, 
allowing the direct study of complex applications or 
middleware whose internal dynamics are difficult to model 
accurately.  That is, real application software and middleware 
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can be used unchanged and executed on arbitrary virtual grid 
structures.  In short, the MicroGrid provides a virtual grid 
infrastructure that enables scientific and systematic 
experimentation with dynamic resource management 
techniques and adaptive applications by supporting 
controllable, repeatable, observable experiments. 
 
The MicroGrid complements experimentation with actual grid 
testbeds because the MicroGrid can be used to explore a wide 
variety of grid resource configurations and scenarios (such as 
catastrophic failure), which may not be possible to exhibit in 
the actual resources.   The MicroGrid provides reduced setup 
effort for simulation and increases the observability of 
application behavior.  We describe the design of the 
MicroGrid includes the following key innovations: 
 
• Because network performance and protocol behavior is 

critical in many applications, we have paid careful 
attention to detailed network modeling, so the MicroGrid 
employs packet-level online simulation. 

• Studying large applications, compute, and storage 
resources with high fidelity requires efficient and scalable 
execution performance.  The MicroGrid employs 
parallel, direct execution of applications. 

• Studying large grid networks with high speed 
communication requires an efficient parallel online 
simulation.  The MicroGrid includes the MaSSF system, 
a scalable online network simulator.  

• Because dynamic behavior of applications and 
middleware is difficult to model accurately, the 
MicroGrid system employs direct execution, enabling use 
of the actual implementations as models. 

 
However, a design with these goals and techniques alone is 
insufficient to enable the systematic study of dynamic 
behavior. This paper also describes the following key results 
for the MicroGrid: 
• validation of the CPU resource model on one and several 

virtual resources per physical resource, 
• validation of the online network simulation models 

exercised by real transport protocol stacks, 
• validation of the MicroGrid system on a range of grid 

application programs ranging from kernels to full-blown 
applications on two grid resource configurations, 

• design and evaluation of three approaches for the critical 
load-balancing problem for scalable network simulation, 
and 

• a range of experiments which show that while static 
prediction can achieve good parallel scaling, only profile 
information can provide even better scaling.   

 
The remainder of the paper is organized as follows.  In 
Section 2, we describe the problem of modeling dynamic grid 
behavior in detail.  The simulation-based approach used by 
the MicroGrid is covered in Section 3.  The design and 
implementation used in the MicroGrid 2.4 is presented in 
Section 4.   Validation of the constituent models, and the 
entire MicroGrid system on applications is described in 
Section 5.  Section 6 explores challenges in scaling the 

MaSSF network simulator, particularly several load-balancing 
approaches.  Section 7 discusses related work and Section 8 
summarizes our results and discusses some future directions. 

 

2 THE PROBLEM: MODELING DYNAMIC GRID BEHAVIOR 
We face daunting research challenges in understanding the 
dynamic behavior of grid environments (applications, 
middleware, resources, and networks), and critical practical 
challenges in the engineering.  To support the next 
generation of network services which will support a broad 
variety of critical commercial, scientific, and societal 
functions, we must be able to engineer resource stability, 
application performance stability, application quality of 
service, and also efficient resource utilization.  The evolution 
of the distributed systems to grid environments is happening 
rapidly – driven by business pressures to reduce management 
cost, increase resource efficiency, and accelerate the process 
of designing and deploying information technology solutions.   
 
Traditionally, distributed applications and networks have been 
studied largely separately – each community employing 
relative simple models for the other domain.  For example, 
distributed systems researchers often used simple latency, 
bandwidth, and reliability models for networks, and 
networking researchers often used application models based 
on simple web-browsing or other simple models of workloads 
for applications.  These methodologies have produced 
significant advances, but we are increasing faced with the 
reality that a broad range of distributed applications are now 
strongly network dependent, that is their performance depends 
directly on detailed dynamic network properties such as 
packet loss, protocol behavior, latency, bandwidth, etc.   
While significant advances have been made in aggregate 
modeling of network behavior[6, 7], at present only detailed 
packet-level or close analogs can accurately model protocol 
dynamics, particularly in extreme cases[8, 9].  At the same 
time, increasingly complex and dynamic applications can have 
dramatic impacts on networks; for example, peer-to-peer file 
sharing, viruses such as MyDoom, and multi-gigabit stream 
transfers for scientific applications.  In particular, 
peer-to-peer file sharing and multi-gigabit scientific 
applications are exemplars of a future generation of 
applications which are highly network performance aware, 
and adapt their behavior and thereby network use rapidly and 
drastically in response to the experienced network 
performance.  These concurrent changes motivate a strong 
need for integrated simulation and modeling of distributed 
systems and networks.  Further, the increasing complexity of 
adaptive application and middleware behavior motivates the 
use of integrated simulation tools which allow these complex 
software systems to be used directly – accurate modeling is 
difficult. 
 
Low-end pervasive or ubiquitous computing systems (i.e. Jini, 
Windows CE, Cell phone, etc.) systems also have similar 
needs.  These applications often depend on open shared 
resource environments, must ensure application quality of 
service, and are subject to large fluctuations in load (which 
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may arise from crowds of devices!).  While the structure of 
solutions for pervasive computing and grid systems may 
ultimately differ, the simulation and modeling needs for 
coupled network and resource modeling are remarkably 
similar. 
 
In summary, the rapidly evolving needs of application, 
middleware, grid, and network designers as well as users and 
operators demand integrated simulation tools.  Without tools 
that integrate resource, network, and software system 
modeling, accurate study of general system dynamics is not 
possible.  Our goal is to develop and implement simulation 
tools that meet these needs, enable scientific and systematic of 
the dynamic behavior of applications, middleware, resources, 
and networks.  These tools will provide a vehicle for 
observable, repeatable study and systematic exploration of 
design spaces for a wealth of design problems for applications 
and middleware, exploration of rare or extreme situations, and 
rational choices in application deployment and grid resource 
and network design. 
 

3 AN ONLINE SIMULATION APPROACH: THE MICROGRID 
We describe the MicroGrid approach which provides an 
online simulation capability for real grid applications and 
middleware, enabling accurate experiments with large 
numbers of resources with arbitrary performance ratios.  The 
MicroGrid enables study of large complex grids of today and 
those that will exist with future technologies. 

 

Figure 1. The MicroGrid Approach 
 

The MicroGrid provides an online simulation of virtual grid 
environments transparently, allowing applications to be run 
unchanged.    At launch, the MicroGrid reads a virtual grid 
configuration, and then builds corresponding simulation 
objects so as to provide the experience of running on virtual 
grid.  These simulation objects implement models of network 
elements, compute resources, or grid information services.  
The MicroGrid can implement the virtual grid simulation 
using essentially any physical resources, including 
homogeneous clusters, heterogeneous grid resources, or even 
on a single computer. 
 
High speed grid simulation is achieved by direct execution of 
applications and middleware against a CPU scheduler which 
controls the virtual speed and capacity of the resource.  
Direct execution allows experiments to proceed at near 
real-time. The MicroGrid uses a wrapper library which 
automatically intercepts library functions in user applications, 
thereby creating hooks for the virtual grid simulation system.  

Thus MicroGrid users can run any applications on the 
MicroGrid by simply re-linking the applications to the 
“wrapper” libraries; no changes to application or middleware 
source codes or understanding is needed. 
 
The ability to control resource and network speeds in an 
online simulation (as opposed to emulation) enables the 
MicroGrid to support arbitrary performance ratios between 
elements in the simulation.  This capability can be used to 
simulate future networks or processors which are much faster 
connected to slow 100Mbit networks, future 100Gbit networks, 
or every different speed in between.  For example, by 
slowing the simulated speed of computing resources, the effect 
of future high speed transparent optical networks can be 
studied.   
 
To use the MicroGrid, a user specifies the following: 
 
First, the set of virtual resources, including network 
connectivity and protocols must be described. 
• Network topology (Nodes, including routers and hosts and  

Network links, link capacity and link latency) 
• Network protocol (Transport protocols  -- TCP or UDP 

and Routing protocols – OSPF, BGP) 
• Node properties related to communication protocols (e.g. 

TCP buffer, send window, receive window, segment size, 
etc.) 

• Compute (relative CPU speed) 
• Compute Node Connections into the network   

 
Second, the MicroGrid simulation must be deployed against 
the physical resources.  The MicroGrid simulation takes as 
input a set of physical resources used for the compute and 
online network simulation. 
Based on the specification of the virtual and the physical 
resources, the MicroGrid intelligently maps virtual machines 
to physical hosts.  The automatic mapping balances the 
compute and memory load across physical machine and 
reduces the network traffic between them.  Both of these 
optimizations improve the scalability of simulations.  If 
desired, the user can manually control these mappings. 

4 DESIGN & IMPLEMENTATION  

4.1 Overview 
The basic functionality of the MicroGrid allows grid 

experimenters to directly execute their applications in a virtual 
grid environment. The MicroGrid can exploit either 
homogeneous or heterogeneous physical resources (see Figure 
1).  We describe the MicroGrid 2.4 implementation, released 
in February 2004 and available from 
http://www-csag.ucsd.edu/.  The MicroGrid 2.4, succeeding 
earlier MicroGrid implementations which go back as far as 
October 2000, supports Grid applications that use the Globus 
Toolkit 2 middleware infrastructure. The key challenges in 
constructing such a high-fidelity virtual grid are as follows. 

 
• Virtualization: The application perceives only the virtual 

grid resources (host names, networks), independent of the 
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physical resources being utilized. This is achieved by 
virtualizing the grid information services and 
virtualizing/simulating the appropriate operating system 
resources. 

 
• Global Coordination: The MicroGrid provides a coherent 

global simulation of dynamic virtual resources, all 
running on heterogeneous physical resources. One major 
function is to coordinate the simulation speed of different 
virtual resources. Based on the desired virtual resources 
and physical resources employed (CPU capacity and 
network bandwidth/latency), the virtual time module 
determines the maximum feasible simulation rate, under 
which all resource simulation can be run in a functionally 
correct manner.  

 
• Resource Simulation: Each virtual resource (host, CPU, 

network, disk, etc.) is modeled accurately as an element 
of the overall simulation. Within the MicroGrid 
simulation, each of the Grid resources must also be 
simulated accurately, provide real-time performance 
feedback to the simulation, and be simulated at the rate at 
which virtual time is allowed to progress.  While 
ultimately many resources may be critical, we initially 
focus on two resource types -- computing and 
communication. 

 
 

 
Figure 2.  Architecture of the MicroGrid tools 

 
The MicroGrid approaches which address these challenges 

are discussed in the following subsections. 

4.2 Virtualization 
To provide a virtual Grid environment, the MicroGrid 

intercepts all direct uses of resources or information services 
made by the application.  In particular, it is necessary to 
mediate over all operations which identify resources by name 
either to use or retrieve information about them. 

 
4.2.1 Virtualizing Resources 

In general, the MicroGrid needs to virtualize processing, 
memory, networks, disks, and any other resources being used 

in the system.  However, since operating systems effectively 
virtualize each of these resources -- providing unique 
namespaces and seamless sharing -- the major challenge is to 
virtualize host identity.  In the MicroGrid, each virtual host is 
mapped to a physical machine using a mapping table from 
virtual IP address to physical IP address. All relevant library 
calls are intercepted and mapped from virtual to physical 
space using this table. These library calls include: 
• gethostname() 
• bind, send, receive (e.g. socket libraries) 
• process creation 
 
By intercepting these calls, a program can run transparently 

on a virtual host with the appearance of the virtual hostname 
and IP address.  The interception ensures that the program 
can communicate with processes running on other virtual Grid 
hosts.  Many program actions which utilize resources (such 
as memory allocation) only name hosts implicitly, and thus do 
not need to be changed.  We can run any socket-based 
application on the virtual Grid as the MicroGrid completely 
virtualizes the socket interface. 

 
An interactive user of the MicroGrid typically logs in 

directly on a non-virtualized host and submits jobs to a virtual 
Grid.  Thus, the job submission must cross from the real 
resources domain into the virtual resources domain.   For the 
Globus middleware, our current solution is to run all 
gatekeepers, jobmanagers, and client processes on virtual 
hosts.  Thus jobs are submitted to virtual servers through the 
virtual Grid resource's gatekeeper, which runs in the real 
domain and is modified to connect into the virtual host 
domain.   
 
4.2.2 Virtualizing Information Services 

Information services are critical for resource discovery and 
intelligent use of resources in Computational Grids.  Since 
the MicroGrid currently supports Globus, this problem 
amounts to virtualization of the Globus Grid Information 
Service (GIS). 

 
Desirable attributes of a virtualized GIS include: 

• Compatibility: virtualized information should be used as 
before by all programs 

• Identification and Grouping: easy identification and 
organization of virtual Grid entries should be provided 

• Use of identical information servers: there should be no 
incompatible change in the entries 

 
Our approach achieves all of these attributes by extending 

the standard GIS LDAP records with fields containing 
virtualization-specific information.  Specifically, we extend 
records for compute and network resources.  Extension by 
addition ensures subtype compatibility of the extended records 
(a la Pascal, Modula-3, or C++).  The added fields are 
designed to support easy identification and grouping of the 
virtual Grid entries (there may be information on many virtual 
Grids in a single GIS server).  Finally, all of these records are 
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placed in the existing GIS servers --- no additional servers or 
daemons are needed. The following shows an example of the 
extensions to the basic host and network GIS records: 

 
Virtual host MDS records 
hn=vm.ucsd.edu, ou=Concurrent Systems Architecture 

Group, ... 
Is_Virtual_Resource=Yes 
Configuration_Name=Slow_CPU_Configuration 
Mapped_Physical_Resource=csag-226-67.ucsd.edu 
CpuSpeed=10 
 
Virtual network MDS records 
nn=1.11.11.0, nn=1.11.0.0, ou=Concurrent Systems 

Architecture Group, 
Is_Virtual_Resource=Yes 
Configuration_Name=Slow_CPU_Configuration 
nwType=LAN 
speed=100Mbps 50ms 
 

4.3 Online Network Simulation (MaSSF) 
MaSSF (pronounced “massive”) is a scalable packet-level 

network simulator that supports direct execution of 
unmodified application. MaSSF consists of four parts. 

 
• Simulation Engine:  MaSSF uses a distributed simulation 

engine based on DaSSF[10]. It utilizes MPI-connected 
cluster systems to achieve scalable performance. We also 
employ a soft real-time scheduler to allocate CPU 
proportionately. This scheduler can also run in a 
scaled-down mode when the simulated system is too large 
to be run in real time on available hardware. With the 
global coordination of the MicroGrid, this feature 
provides extreme flexibility to simulate a wide range of 
networks accurately. 

 
• Network Modeling: MaSSF provides necessary protocol 

modules for detailed network modeling, such as IP, 
TCP/UDP, OSPF, and BGP4. We have built simplified 
implementations of these protocols which maintain their 
behavior characteristics. We also use a network 
configuration interfaces similar to a popular Java network 
simulator implementation, SSFNet[11], for user 
convenience. 

 
• Online Simulation Capability: To support simulation of 

traffic from live applications, we employ an Agent which 
accepts and dispatches live traffic from application 
wrapper to the online network simulation. Traffic is also 
sent back to application through the Agent module. 

 
• Live Traffic Interception: Application processes use a 

wrapper library called WrapSocket to intercept live 
network streams at the socket level. The WrapSocket then 
talks with the Agent module to redirect traffic into the 
network simulator and vice versa. WrapSocket can be 
either statically or dynamically linked to application 
processes and requires no application modification. 

 

These components and their relationship are illustrated in 
Figure 3. In the following sections we will present a more 
detailed description and rationale for our design choices. 
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Figure 3. The MaSSF Scalable Network Simulation System 
 
4.3.1 Scaled-Real time Online Network Simulation 

One major goal of MaSSF is to support direct execution of 
real applications. So we need to intercept live traffic from 
applications and present it to the network simulator. There are 
many approaches to achieve this. We can either make it 
happen at the socket level by intercepting the send(), recv() 
network related system calls or we can make it at the IP packet 
level by manipulating the IP packet directly. The difference of 
these two approaches is whether we use TCP stack of the node 
operating system (see Figure 4).  The advantage of the 
second approach is that it does not require us to model the 
TCP stack, a much simpler implementation. However, using 
original TCP stack means that we have to do the simulation on 
real time, since the OS TCP stack observes the real packet 
RTT(round trip time) and adjusts its send rate according to 
whatever RTT it gets. This is a big constraint, since in many 
situations the physical resources are not fast enough to achieve 
real time simulation. So in MaSSF, we take the first approach, 
intercepting the live traffic at socket level for scaled-real time 
simulation. 

 

 
 

Figure 4. Traffic Flow in Real World 
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Figure 5. Traffic Flow in MaSSF 
 
As shown in Figure 5, MaSSF intercepts all network related 

system calls using a library WrapSocket. This library can be 
either statically or dynamically linked to application programs. 
Every virtual host has a corresponding Agent inside the 
simulator, and the WrapSocket deliver to the Agent a logical 
reference for each intercepted network operation. A detailed 
TCP stack is implemented inside MaSSF and packet 
movement and timing are simulated accurately. Only a packet 
reference is routed in the simulated network, the real data 
stays in the WrapSocket and is delivered directly to the 
destination processes’ WrapSocket library.  There is no extra 
data copy, and minimal real network traffic is incurred. When 
all required data arrive the destination Agent, it returns the 
recv() to WrapSocket successfully. At this point, we expect 
that all real data is already waiting in the WrapSocket, since it 
is transferred directly through the fast local network. Then the 
application recv() call is returned with the real data.  

 
In our approach, all network behaviors (including TCP 

sliding window management, link congestion, and packet drop, 
etc.) are modeled precisely inside the simulator, and the only 
source of distortion is the delay for transferring a logic 
reference from WrapSocket to Agents.  Since this is just a  
small amount of data (~60 bytes) moving across a fast local 
link, its impact on the simulation of a wide-area network delay 
is negligible.  

 
4.3.2 Detailed Network Simulation 

MaSSF’s goal is detailed modeling and simulation of 
Internet protocols and networks. It uses object-oriented 
simulation components to construct a network, setup network 
protocols running on hosts and routers, and create/accept 
traffic to be simulated. MaSSF models are self-configuring - 
that is, each MaSSF class instance can autonomously 
configure itself from a configuration file in DML format [12].  

 
An input DML file specifies the network topologies, 

including network entities (host/router) and link between 
entities. The link latency and bandwidth are also specified in 
the DML file.  For each entity, the user can also decide 
which network protocols are running on it.  For example, a 
host can be configured with IP, TCP, and Socket protocols, 

plus traffic generator module tcpClient or live traffic Agent 
module.  A router can be configured with IP, TCP, OSPF 
modules as internal AS router and it can also be configured 
with IP, TCP, BGP modules to be used as a BGP router. 
MaSSF provides these basic components and users can 
construct a network entity using any reasonable module 
combination.  Users can also write their own protocol 
modules for new application or network devices. 

 
All simulation modules are implemented above the 

SSFAPI[13], using the underlying conservative discrete event 
simulation engine.  Basically each network packet is 
represented by a simulation event, and models the IP packet 
movement in the network hop by hop, including link transfer 
delay, queuing delay in a router queue, and packet drop.  The 
simulation engine has a real-time scheduler that delivers the 
event at the exact time specified by the event timestamp. In 
this way, we can capture the link congestion and network 
dynamics in the real world. 

 
4.3.3 Distributed Simulation Engine 

To achieve scalable performance, MaSSF uses a distributed 
simulation engine running on a cluster. Given a network 
topology and available cluster nodes, MaSSF partitions the 
virtual network to multiple blocks, assigns each block to a 
cluster node, and simulates in parallel, as shown in Figure 6. 
Every cluster node runs a discrete event simulation engine and 
events are exchanged among cluster nodes. To maintain the 
simulation accuracy, these cluster nodes also need to 
synchronize periodically.  

 

   
 

Figure 6. Mapping routers to physical resources 
 
For large simulations, the network mapping cannot be done 

manually or casually. Instead, the mapping is a critical and 
demanding challenge.  First we need to achieve load balance 
across all cluster nodes.  This is difficult because the 
workload on each physical node varies greatly, depending 
both on the virtual mapping and network traffic in that subset 
of virtual network [Figure 7].  And we should also consider 
two more optimization goals.  One is to maximize link 
latency across partitions to reduce the frequency of 
synchronization among simulation engines and maximize 
concurrency, a critical element of scalability for large scale 
simulation. This feature is an attribute of our MaSSF system 
and all other network simulators based on conservative 
discrete event simulation engines.  The second optimization 
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goal is to minimize the communication of simulation events 
between simulation engine nodes.  It is expensive to transfer 
a simulation event across physical nodes both in terms of 
computation overhead and communication latency. Also, the 
physical network of the simulation engine nodes is often a 
performance bottleneck for the whole simulation. Hence, it is 
important to minimize this communication.  

To achieve the optimal load balance even if the traffic were 
known is an NP-Complete problem, and in practice, a network 
mapping problem can be naturally modeled as a graph 
partitioning problem and solved with the classical graph 
partitioning algorithms. With detailed traffic information, we 
can estimate the number of simulation events on each single 
link and use it to calculate the edge weight.  We discuss this 
approach in greater detail in Section 6. 
 

 
Figure 7. Load Variation over the Lifetime of Simulation 

4.4 The MicroGrid CPU controller 
The CPU controller virtualizes the CPU resources, providing 
appropriate performance for the processes running on virtual 
compute resources.  The MicroGrid uses one CPU controller 
on each physical host to monitor the resource utilization of the 
processes on each virtual machine, and starts/stops them using 
SIGSTOP and SIGCONT signals. The controller consists of 
three parts: 
 
• Live Process Interception: Whenever a virtualized process 

or a thread is created or is destroyed, the CPU controller 
detects the event via intercepted main() or exit() function 
calls and updates its internal process table. 

• CPU Usage Monitoring: Every 20ms, the controller reads 
the /proc file system to check the CPU usage of all the 
processes in its process table. 

• Process Scheduling: The controller calculates the CPU 
usage of each virtual host in a time window.  If the 
amount of effective cycles exceeds the speed of the 
virtual hosts, the controller sends a SIGSTOP signal to all 
processes of the virtual host; otherwise, the controller 
wakes up the processes and let them proceed. 

 
The CPU controller also supports the ability to scale down 

the execution speed of all virtual compute resources, enabling 
it to simulate arbitrary relative CPU speeds.  

 
For each step of process scheduling, we use a sliding 

window algorithm to track CPU usage information and make 
scheduling decision.  Because Linux schedules processes in 
the unit of 10ms, called “jiffy”s, the controller uses a window 
size which is an integral number of jiffies.  At the same time, 
we hope to keep the sliding window as small as possible – 
otherwise, the communication latencies may be masked by our 
scheduling granularity.  So we determine the minimal sliding 
window so that the simulation error can be reasonably small.  
We use 5% as acceptable error and assume the scaled virtual 
machine speed is p (fraction of physical CPU), then the sliding 
window size (w jiffies) and the available jiffies n for virtual 
machine should satisfy: 

 w = round(n/p)  and | 1 – p*n/w | < 0.05 
 

This architecture allows simulation of large numbers of 
machines (100’s to thousands) on a small number of machines. 
Further, grids with extremes of heterogeneous performance 
from slow to fast machines can be modeled accurately. 

5 VALIDATION EXPERIMENTS 

5.1 CPU Modeling Using CPU Controller 
To test the accuracy of the CPU Controller, we use a simple 
program “cpuhog” which only does computation without any 
input/output operations.  We first run it directly on a physical 
machine, get the real running time T.  Then we run it on a 
virtual machine, which is given different fraction λ of CPU by 
the CPU Controller, to get a controlled time Tλ.  If CPU 
controller is accurate, the value λ*Tλ/T should equal to 1. 
 
Our experiments were performed on a dual 450MHz PII 
machine.  “cpuhog” takes 10 seconds to complete without 
CPU controller.  Recall that the CPU controller design uses a 
5% acceptable error margin (see Section 4.4). 
: 

 
Figure 8. CPU Controller Performance for single virtual 
resource 
 
Figure 8 are the results for single virtual resource.  The 
results show that when there is only one process, the error is 
almost always in 2%, except as we near full utilization of the 
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underlying physical resource.  At 90% CPU, we observe a 
6.7% error.  When there are multiple processes, the running 
time becomes about 6-8% longer.   
 
We then run multiple virtual resources on each physical 
machine to understand the performance of CPU controller 
with some competitive workload.  We do two groups of 
experiments with three virtual resources   and five virtual 
resources on each physical machine respectively.  Each time, 
we create the virtual resources, and launch one “cpuhog” on 
each virtual resource.  Then use the average completion time 
as the virtual running time to calculate the efficiency rate 
λ*Tλ/T.  The results are shown in Figure 9.  The 
“aggregated CPU speed” is the sum of speeds of all the virtual 
machines.  Most of the tests have an error of less than 4%, 
with the one exception a 9% error when total CPU is 78%. 
 

 
Figure 9. CPU Controller Performance for multiple virtual 
resources 
 
The inaccuracy for 90% CPU in Figure 8 and for 78% CPU in 
Figure 9 mainly comes from the 5% acceptable error in the 
sliding window algorithm: Since we allow 5% error and we 
always choose the window size as small as possible, when 
virtual machine has speed 90%, we would schedule the 
application for six of seven jiffies rather than nine of ten, 
which causes theory speed of 85.7% CPU with 4.8% error 
from 90% CPU; in the multiple-virtual resource experiments, 
each virtual machines each has 26% CPU and is scheduled for 
one jiffy every four jiffies, which leads to 25% actually speed 
with about 4% error from 26% CPU. 
 
In a summary, our experiments show that the CPU controller 
can model CPU speed accurately.  The multiple-virtual 
resource experiments also demonstrate its capability to model 
multiple virtual CPUs on one physical machine accurately. 
 

5.2 Network Modeling Using MaSSF 
To test the performance of MaSSF, we use a client/server 
program which sends and receives packets using TCP/IP 
between two nodes.  In each iteration, the sender sends a 
packet to the receiver then wait for a one-byte reply from the 
receiver.  When packet size is small, the time for each 

iteration is the roundtrip time (RTT); when packet size is large 
enough, the bandwidth approximates the maximum bandwidth 
between the two nodes. 
 
The TCP performance is affected by network latency (L), TCP 
window size (W), network capacity (C), and packet loss [14].  
If there is no packet loss, the maximum bandwidth should be 
close to: 
   Bandwidth = min(C, W/(2*L)) 
 
Our experiments first test the network performance between 
two nodes on a cluster.  The nodes are dual Xeon 2.4GHz 
machines connected by GigE, configured with 128KB TCP 
window.  Experiments show that real network has latency 
0.222ms and bandwidth 782.87Mbps.  On the MicroGrid, we 
simulate the two nodes with 128K TCP window and 0.2ms 
wire latency.  The simulated results are shown in Figures 10 
and 11. 
 

 
Figure 10. Network bandwidth on GigE LAN. The MicroGrid 
is configured with 0.2ms latency. The physical hosts are dual 
Xeon 2.4GHz machine. 
 

 
Figure 11. Network Latency on GigE LAN. The MicroGrid is 
configured with 0.2ms latency. The physical hosts are dual 
Xeon 2.4GHz machine. 
 
The figures show that the virtual bandwidth (simulated) is 
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close to the target bandwidth when virtual CPU speed is faster 
than 25% of 2.4GHz Xeon.  When virtual CPU speed is not 
fast enough to deal support the memory and I/O operations, 
the bandwidth falls off. 
 
The network latency is about 0.15ms longer than the 
configured wire latency.  This is presumed to be due to 
Agent overhead, overhead through TCP/IP stacks, and the 
overhead of the MaSSF simulator. 
 
The next set of tests use a network topology with a 1ms 
latency between the two nodes, and varies the TCP window 
size from 32KB to 128KB.  The results are shown in Figure 
12 and 13. 

 
Figure 12. Network Bandwidth on MAN, the latency between 
nodes is 1 ms. 

 
Figure 13. Network Latency on MAN, the latency between 
nodes is configured as 1 ms. 
 
In this case, the network capacity is not the bottleneck any 
longer, so the TCP bandwidth is mainly decided by latency 
and TCP window size.  We calculate the bandwidth upper 
bound in theory, as shown in Table 1. 
 
From Figure 12 and Table 1 we see that our simulator 
achieves 82-90% of the theoretical maximum bandwidth.  
Considering the overheads on TCP stacks and application’s 
memory operations, these are excellent results. 

As for latency, the simulated value, as shown in Figure 13, is 
about 0.25ms higher than the configured wire latency.  Still, 
this is due to overheads on TCP stacks, application memory 
operations, and MaSSF overhead. 
 
 32KB 48KB 64KB 128KB 
1 ms 128Mbps 192Mbps 256Mbps 512Mbps 
5ms 25.6Mbps 38.4Mbps 51.2Mbps 102.4Mbps 
10ms 12.8Mbps 19.2Mbps 25.6Mbps 51.2Mbps 
Table 1.  Theoretical Maximum Bandwidth on a Network 
Channel 
 
The following figures show the bandwidth on network channel 
with latency 5 ms and 10ms respectively.  The results are 
consistent to the theoretical bounds in Table 1. 
 

 

 
Figure 14. Simulated Network Bandwidth on network channel 
with latency 5ms and 10ms. 
 
Based on these experiment results, we conclude that the 
MaSSF network simulator can model TCP communications 
accurately.   With no network congestion, the modeled 
maximum bandwidth approximates real results in local, metro, 
and wide area networks.  The network latency is also 
modeled accurately, except that MaSSF has some extra 
overhead which takes about 0.15-0.25ms per message. 
 
We did not evaluate the simulator with network congestion, 
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although our simulator supports the capability to model 
competitive traffic (background traffic).  Performance with 
congestion is not easy to evaluate since it depends on the 
competitive traffic model.  In the following experiments, we 
model the network without and competitive traffic, likely 
overestimating performance.   
 

5.3 Application Running on Emulated Environment 
In this section, we run five classic applications on both real 
environment and virtual environment simulated using the 
MicroGrid.  Before the results, we first introduce the five 
applications briefly.  These applications are used in the 
GrADS project [5, 15]. 
 
All five applications are SPMD MPI applications and have 
been previously tested on the GrADS testbed in various 
real-world experiments. These applications were integrated 
into the GrADS framework and tested in various experiments 
as part of the following efforts: ScaLAPACK [16], Jacobi [17], 
Game of Life [17], Fish [18], and FASTA [19]. 
 
ScaLAPACK [20] is a popular software package for parallel 
linear algebra, including the solution of linear systems based 
on LU and QR factorizations. We use the ScaLAPACK 
right-looking LU factorization code based on 1-D block cyclic 
data distribution. The application is implemented in Fortran 
with a C wrapper. The data-dependent and iteration-dependent 
computation and communication requirements of 
ScaLAPACK provide an important test for the MicroGrid 
simulation. In our experiments we used a matrix size of 
6000x6000. 
 
FASTA [21] The search for similarity between protein or 
nucleic acid sequences is an important and common operation 
in bio-informatics. Sequence databases have grown immensely 
and continue to grow at a very fast rate; due to the magnitude 
of the problems, sequence comparison approaches must be 
optimized. FASTA is a sequence alignment technique that 
uses heuristics to provide faster search times than more exact 
approaches, which are based on dynamic programming 
techniques. Given the size of the databases, it is often 
undesirable to transport and replicate all databases at all 
compute sites in a distributed grid. We use an implementation 
of FASTA that uses remote, distributed databases that are 
partially replicated on some of the grid nodes. FASTA is 
structured as a master-worker and is implemented in C. For 
MicroGrid validation purposes, an important aspect of FASTA 
is that each processor is assigned a different database (or 
portion of a database) so the MicroGrid must properly handle 
input files and provide proper ordering of data assignments 
onto processors. In our experiments the sizes of the databases 
are 8.5MB, 1.7MB and 0.8MB respectively. The query 
sequence is 44KB. 
 
The Jacobi method [22] is a simple linear system solver. A 
portion of the unknown vector x is assigned to each processor.  
During each iteration, every processor computes new results 
for its portion of x and then broadcasts its updated portion of x 
to every other processor. Jacobi is a memory-intensive 

application with a communication phase involving lots of 
small messages. In our experiments we used a matrix size of 
9600x9600. 
 
The Fish application models the behavior and interactions of 
fish and is indicative of many particle physics applications. 
The application calculates Van der Waals forces between 
particles in a two-dimensional field. Each computing process 
is responsible for a number of particles that move about the 
field. The amount of computation depends on the location and 
proximity of particles, so Fish exhibits a dynamic amount of 
work per processor. In our experiments we used 6,000 
particles. 
 
Conway’s Game of Life [23] is a well-known binary cellular 
automaton. A two-dimensional mesh of pixels is used to 
represent an environment of cells. In each iteration every cell 
is updated with a 9-point stencil and then processors send data 
from their edges (ghost cells) to their neighbors in the mesh. 
Game of Life has significant memory requirements compared 
to its computation and communication needs. In our 
experiments we used a matrix size of 9600x9600. 
 
We use a subset of the multi-site testbed for the GrADS 
project as our testbed.  The 11 machines used are as 
following: 
UCSD cluster: four 2100+ XP Athlon AMD (1.73 GHz) with 
512 MB RAM each. These systems run Debian Linux 3.0 and 
are connected by Fast Ethernet. 
UIUC cluster: three 450 MHz PII machines with 256MB 
memory connected via TCP/IP over 1Gbps Myrinet LAN. 
These systems run RedHat Linux 7.2. 
UTK cluster: four PIII 550 MHz machines with 512MB 
memory, running RedHat Linux 7.2, and connected with Fast 
Ethernet. 
 
The three sites are connected by the Internet2 network with 
2.4Gbps backbone links. During our experiments, we 
observed NWS latency and bandwidth values over a period of 
12 hours and obtained ranges as shown in table 2. 
 
 UCSD 

machine 
UIUC machine UTK 

machine 
UCSD 
machine 

60-80Mbps, 
0.2 ms 

3-7Mbps 
31 ms 

4-6Mbps 
30 ms 

UIUC 
machine 

3-7Mbps 
31 ms 

115-220Mbps 
0.2 ms 

7-17Mbps 
11 ms 

UTK 
machine 

7-8Mbps 
30 ms 

12-18Mbps 
11 ms 

82-87Mbps 
0.2ms 

Table 2. Network performance of the testbed, reported by 
NWS.  The variance of the bandwidth is due to resource 
sharing. 
 
In our simulation, we configure all the machines to have 64KB 
TCP window.  The wide area latency is as shown in Table 2; 
the LAN latency is 0.2 ms.  We have to remind the audience 
that, the simulated LAN latency might higher than real latency 
due to simulation overhead as shown in subsection 5.2; while 
the simulated WAN bandwidth will higher than real 
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bandwidth due to lack of contention. 
 
We do two groups of experiments: “Cluster” group uses four 
UTK machines to do clustering computation, “Grid” group 
uses three machines from each of the three sites.  Both 
groups use a separate UCSD machine to run Globus 
gatekeeper.  The results are shown in Figure 15. 
 

 

 
Figure 15. Running Time of Applications, on four-node 

cluster and nine-node Grid respectively. 
 
For the cluster, all applications run slower on the MicroGrid 
than on real testbed; most of them have error in 6%-27%, 
except 66% for ScaLAPACK.  The extra overhead comes 
from two major sources: 1) MaSSF has some overhead which 
increases network latency.  2) WrapSocket wraps many 
system functions for simulation, which will cause some 
overhead. 
 
For the grid environment, the simulated time has about 5% - 
35% errors.  We can see several interesting differences from 
the cluster results.  ScaLAPACK still runs slower on the 
MicroGrid than on real testbed, but much closer than on 
cluster, because ScaLAPACK uses a lot of small 
communications and the simulation overhead will have more 
impact on simulated LAN latency than on simulated WAN 
latency (as shown in subsection 5.2).  Fish and GameOfLife 
run faster on the MicroGrid than on real grid.  A possible 
reason is that they both use many large communications, and 

the simulated network bandwidth is higher than real system 
due to lack of contention. 

6 IMPROVING SCALABILITY 
The MicroGrid must be scalable to support the study of large 
networks, resources, middleware, and applications. While 
most resources can be naturally simulated in parallel with 
enough physical resources, all the coordination, 
synchronization and dynamic interaction amongst resources 
must go through network communication. This means the 
network must be simulated as a single system with global 
coordination, and thus the scalability of network simulation is 
a critical challenge for the entire MicroGrid system. In 
particular, the challenge is scalable detailed packet-level 
simulation combined with online simulation.  We require 
packet-level simulation to ensure fidelity in simulation of 
network, protocol, and application behavior.  Higher level 
simulation approaches, such as flow level simulation and 
approximation through network aggregation provide 
insufficient fidelity for our problems if interest in dynamic 
distributed systems. 
 
As mentioned in Section 4.3, our network simulator MaSSF 
uses distributed discrete event simulation engine to achieve 
scalable performance. But only this is not enough to provide a 
scalable simulation. Like all other distributed or parallel 
applications, MaSSF must have good load balance for good 
speedup, and such load balance is challenging for network 
simulation.  In this section we will present our approaches 
and results of load balance techniques for scalable network 
simulation. 

6.1 Modeling Network Mapping as a Graph Partitioning 
Problem 

Typical graph partitioning algorithms generally solve single 
objective partition problems such as:  
 
Given an input graph G = (V, E) with weighted vertices and 
edges, we want to partition it into k parts such that, 
- each part has roughly the same total vertex 
weight(constraint) 
- the edge-cut (the number of edges) that straddles 
partitions is minimized(objective) 
 
By setting the vertex and edge weights appropriately, mapping 
a simulated network to a set of physical simulation resources 
can be modeled as a graph partitioning problem and solved 
using a generic graph partitioning algorithm.  
 
As a well studied problem, we expect that any high quality 
graph partitioning package (in this case METIS[24]) should 
produce results comparable to other graph packages. So our 
challenge is how to apply the graph partitioning algorithm in 
METIS to solve the mapping problem by defining the suitable 
input graph G, constraint conditions, and optimization 
objectives for the graph partitioning algorithm.  
 
• Input Graph: The input graph G is defined by two 

categories of parameters: network structure and traffic 
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information. The network structure includes detailed 
network topology, link latency, and link bandwidth. 
Network traffic information is used to define edge 
weights in the graph, and it may also affect vertex 
weights.  

• Constraints: The constraint is the vertex weight to be 
balanced among multiple vertices. In the network 
mapping problem, the vertex weight can be defined as 
weighted sum of computation and memory requirement 
on each simulation engine node.  

• Objectives: The objective is the edge-cut to be minimized. 
In the network mapping problem, the optimization can 
use two objectives, maximal link latency and minimal 
communication across partitions, mentioned in Section 
4.3.3. 

 
In summary, the mapping process can be modeled as shown in 
Figure 16. First, it takes the network structure and traffic 
information as input, creates a graph G, and builds objectives 
and constraints for the graph partitioning algorithms. Then the 
mapping process applies partitioning algorithms to get a 
partitioned network. The partitioned network defines the 
mapping of simulated network nodes to physical resources 
(subject to additional arbitrary choices of placement amongst 
symmetric physical resources).   In different cases, we 
explore how the abstractions of the network mapping 
problems are varied and use different constraints and 
objectives in the graph partitioning algorithm.  The 
remaining problem is how to collect and use the traffic 
information, which will be discussed in the following section.  
 

 
Figure 16. Process of Network Mapping 

6.2 Traffic Based Network Mapping  
We explore three different approaches for network mapping.  
These approaches vary how network topology, background 
traffic, and application traffic are represented and used in the 
partition.  The more accurately an approach predicts the 
actual simulation work (i.e. network traffic), the better 
partitioning, and thereby better load balance are expected.  
However, there are tradeoffs between the specificity of the 
information used and the generality of the partition produced.  

 
6.2.1 Network Topology-Based Mapping  
Our first approach only considers the virtual network topology, 
link bandwidth, and latency.  In this approach, TOP, each 
virtual node is weighted with the total bandwidth in and out of 
it.  The optimization objective is to maximize the link latency 
between simulation engine nodes. This maximizes decoupling, 
supporting efficient parallel simulation. 
 
6.2.2 Application Placement-Based Mapping 
To achieve a better network mapping, we need precise traffic 
information. The second approach is based on the observation 
that simulated network traffic typically consists of a 
background and a foreground load. Foreground traffic is 
created by the target application that a user wants to study, and 
background traffic is used to provide realistic network 
conditions. We estimate both traffic loads separately, then 
combine them to estimate the aggregated traffic data for better 
network mapping.  We call this approach PLACE. 
 
For background traffic, all traffic generators can provide some 
prediction of their generated traffic load, for example, 
specifying the average traffic bandwidth between two 
endpoints. The foreground load is typically the live traffic 
from a small set of application programs.  Unlike background 
traffic prediction, it is difficult for users to predict the traffic 
of the real application.  As an approximation, we determine 
the traffic injection points of the application, where its 
processes attach to the simulated network, assuming that the 
application fully utilizes the network link at each injection 
point and every node talks to all other nodes with evenly 
distributed bandwidth.  While this approximation may seem 
coarse at first glance, it is acceptable when considering that 
most target applications in simulation are complex and 
network intensive. With the source/destination pairs of all 
traffic flows, we can compute the aggregated traffic on each 
link by summing the contribution from each flow.  
 
6.2.3 Profile-Based Mapping 
The third approach uses profiling techniques to obtain traffic 
information automatically from simulation experiments 
(PROFILE).  The profiles are then used to estimate future 
network use, and to improve the network mapping.  
Typically this involves an initial simulation experiment using 
an initial partition and traffic monitoring. The simulation 
yields detailed traffic information and the network can be 
repartitioned based on this information.  
 
The critical challenge for this approach is the efficient 
collection and representation of traffic information during 
profiling, and the use of this information to repartition the 
network. In MaSSF, we implement the Cisco NetFlow-like 
[25] function on each simulated router.  This functionality is 
used to record every traffic flow on each router to a local file.  
The dump files record the average bandwidth and duration of 
every flow on every router. Parsing the dump files allows 
computation of the aggregated traffic on every router and link 
in the network.  By tuning the granularity of the NetFlow, we 
can get detailed network traffic information with small 
overhead. 

Network 
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6.3 Experimental Evaluation 
6.3.1 Methodology and Experimental Setup 
To evaluate these mapping approaches, we implement them in 
the MaSSF network simulator of the MicroGrid Project [26].  
We apply these approaches on a range of different simulated 
network topologies and background traffic conditions.  

Metrics 
Three evaluation metrics are used in the experiments: load 
imbalance, application simulation time, and network 
simulation time.  We define the load of a simulation engine 
node as the simulation kernel event rate (essentially one per 
packet).  Using these counters, we calculate the overall load 
imbalance across all the physical nodes. Assuming the 
simulation kernel event rates are k1, k2, …, kn, for n  nodes 
used by the simulation engine, the load imbalance is 
calculated as the normalized standard deviation of {k}. 
 
The second metric is the application simulation time. If load 
balance is improved, this improvement should reduce the 
execution time of the application simulation.  Since 
communication is typically the performance bottleneck for 
only part of the execution time, the application simulation 
time is not always directly correlated to network simulation 
load balance.  Nevertheless, as faster simulation is the 
ultimate goal of load balance, it is an important criterion. 
 
The third metric is network simulation time, which directly 
measures how much time is required to simulate the traffic 
created by the application. MaSSF records all network traffic 
trace of a simulation execution, and then replays it without 
real computation in the application. When replaying, it tries to 
send out traffic as fast as possible, but still follows the real 
application casualty and message logic order. This is a direct 
measurement of the mapping approaches. 
 

Network 
Topology Router Host Simulation 

Engine Node 
Campus 20 40 3 
TeraGrid 27 150 5 

Brite 160 132 8 
Table 3.  Network Topology Setup 

Hardware Configuration 
The experiments use two RedHat Linux clusters.  The first 
cluster includes 24 dual 550MHz Pentium-II processors, 
linked with 100Mbps Ethernet switch, with 2Gbps backbone 
bandwidth. This cluster is used for the network simulation 
engine. The second cluster consists of 8 dual 1.6GPentium-III 
processors, linked with 1 Gbps Ethernet switch (with 24 Gbps 
backbone bandwidth). It is mainly used for the real application 
execution. Two clusters are connected by a single, full duplex 
gigabit Ethernet link. 

Network Topologies 
Three network topologies are used in our experiments. The 
first two represent real networks, such as the TeraGrid 
(http://www.teragrid.org/) and a section of a university 
campus network (Campus). To explore more complex network 

structures, our third network topology Brite is created by a 
generic topology generator (adapted from the BRITE[27] 
toolkits), which creates  Internet-like topologies and also 
provides background traffic support. 

Traffic Workloads 
The experiments use aggregated traffic flows to create 
background traffic. Here HTTP clients and severs are selected 
randomly from endpoints in the virtual network. In this study, 
a HTTP traffic generator is used, which has been well-studied 
by other researchers [28]. While this background traffic model 
is not perfect, it exercises some range of network dynamics, 
allows user control of load intensity by changing those 
parameters, and is widely used [29-31].  
 
Foreground traffic is created live from real Grid applications, 
including ScaLAPACK[16] and GridNPB3.0 [32]. 
GridNPB3.0 is a widely used set of grid benchmarks in a 
workflow style composition in data flow graphs encapsulating 
an instance of a slightly modified NPB task in each graph 
node, which communicates with other nodes by 
sending/receiving initialization data. GridNPB includes a 
range of computation types and problem sizes, and in our 
experiments we use the combination of Helical Chain (HC), 
Visualization Pipeline (VP), Mixed Bag (MB) applications, all 
run at class S size.  These programs run for about 15 minutes 
on our platform. 
 
6.3.2 Experiment Results 

Load Imbalance 
Application workloads are executed on three network 
topologies (Campus, TeraGrid, and Brite) with moderate 
background traffic, and the measured load imbalance for two 
applications (ScaLAPACK and GridNPB) is shown in Figures 
17 and 18. The figures report the normalized load imbalance 
across the physical simulation engine nodes for each 
combination of mapping approach and network topology.  
Each   mapping approach produces significantly different 
results. The application placement-based mapping (PLACE) 
improves significantly on topology-based mapping (TOP) for 
both ScaLAPACK and GridNPB applications. The 
profile-based mapping (PROFILE) further improve the load 
imbalance up to 66% and 48% for ScaLAPACK and GridNPB 
respectively. For both workloads, the profile-based mapping 
approach delivers the best performance among three 
approaches. It is clear that the use of detailed traffic 
information from a previous simulation execution provides a 
critical advantage in partitioning the network effectively. 
 
The advantage of profile-based mapping over 
placement-based mapping for GridNPB is more significant 
than that for ScaLAPACK. This is due to the fact that for 
ScaLAPACK, the application-placement based traffic 
prediction is very close to the actual traffic pattern, so there is 
little improvement to be had for PROFILE. For GridNPB, in 
contrast, the traffic is more irregular and the 
application-placement based prediction is less accurate.  As a 
result, significant load imbalance remains for PLACE, leaving 
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more room for improvement for PROFILE.  
 

 
Figure 17. Load Imbalance for ScaLAPACK 

 

 
      Figure 18. Load Imbalance for GridNPB 
 
We can also see that the scale of the simulation affects the 
achieved load balance. The Campus network uses 3 simulation 
engine nodes, the TeraGrid uses 5 nodes, and the Brite 
network uses 8 nodes.  The normalized load imbalance 
increases when the number of simulation engine nodes is 
increased, as one would expect if work were held constant (it 
is not across these experiments). When the simulation scales 
up, load balance is more critical to achieving high 
performance.  

Application Simulation Time 
The simulation time of both applications is shown in Figures 
19 and 20. For ScaLAPACK, the use of application 
placement-based mapping (PLACE) reduces overall 
simulation time significantly (about 40%), and the use of the 
profile-based mapping (PROFILE) further reduces the 
simulation up to 50%. For the GridNPB workload, we can see 
the benefits of both PLACE and PROFILE mappings, but the 
improvement is much smaller (about 17%). As we have 
mentioned before, the simulation time is not a direct 
measurement of load imbalance, and because the execution 
time of GridNPB is computation rather than 

communication-intensive, improvement of the simulator gives 
little overall runtime benefit.   
 

 
Figure 19. Simulation Time for ScaLAPACK 

 

 
Figure 20. Simulation Time for GridNPB 

Network Simulation Time in Isolation 
All experiments above use the simulated application as targets, 
and the computation and communication are mixed together. 
To further understand the direct effect on network simulation, 
we use the MaSSF replay function to study the network 
simulation performance in isolation, as mentioned in Section 
4.1.1. Figures 21 and 22 show that the simulation time for 
network traffic is improved significantly for ScaLAPACK 
replays, in consistent with the result of overall simulation time 
in Figure 19.  For GridNPB, the network simulation time is 
also reduced by 30%, even when the execution time for the 
whole application shows less difference in Figure 20.  
 
6.3.3 Scalability 
To evaluate the effectiveness of our mapping approaches for 
larger network simulation, we use BRITE to build two 
network topologies with 3,000 routers and 3,000 hosts. The 
first network is a flat network in a single AS, using shortest 
path routing. The second network consists of 30 AS’s and 
each AS has about 100 routers. BGP4 protocol is used for 
inter-AS routing and OSPF protocol is used for intra AS 
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routing. The simulator itself uses 24 simulation engine nodes 
and ScaLapack uses 5 additional nodes. For background traffic, 
there are 2,500 clients keeping continuously sending file 
requests to 300 servers. The average time gap between two 
successive requests is 5 seconds and average file size is 50KB. 
We only test the TOP and PROFILE approach here. 
 

 
Figure 21. ScaLAPACK Isolated Network Simulation 

 

 
Figure 22. GridNPB Isolated Network Simulation 

 
The results in Figure 23 show that the PROFILE approach 
continues to work well for these larger-scale networks, 
especially for the Multi-AS network. The Multi-AS network 
has much higher load imbalance when compared to the single 
AS network due to the different routing protocols used in 
these networks.  For Multi-AS network, connectivity does 
not mean the reachability, due to differences between OSPF 
and hierarchical routing with BGP. However, because the 
PROFILE partition is based on the real traffic following the 
routing decision and flows, it can track the different routing 
structure and still balance load more effectively. 

6.4 Summary 
Experimental results show that network mapping using static 
network topology and predicted traffic information can 
improve load balance in large-scale network simulation. The 
topology-based approach (TOP) is fast and simple, and the 

placement-based approach (PLACE) can improve the 
performance for application with evenly distributed traffic 
load. For more irregular application and real large simulation, 
the profile-based approach (PROFILE) is most effective. 
Depending on the specific network structure and traffic load, it 
can improve load balance by up to 66% and speed up the 
simulation up to 50%.  Further, PROFILE has also been 
shown to work well for large network simulations. 
 

 
Figure 23. Scalability 

 

7 RELATED WORK 
Three methods have been used to perform distributed system 
and Grid experiments: real testbeds, simulation, and 
emulation. 

 
Real testbeds use a specific set of real resources for 
experiments, such as PlanetLab [33], TeraGrid, and GrADS 
testbed [5].  Real testbeds of course have the advantage of 
providing high speed execution and of course realistic 
execution. However, actual testbeds have a number of 
limitations, including: (i) limited experimental configurations 
(cannot run experiments for a wide range of platform 
scenarios or for platforms or networks that do not exist),  (ii) 
non-observability – phenomena that occur which are not 
observable in routers, systems, networks, etc., and (iii) 
reproducibility – phenomena occur which cannot be repeated 
to be understood.  We believe that tools such as MicroGrid 
are an essential complement to use of real testbeds. 

 
Many research efforts explore network and computation 
simulation systems and techniques in order to model a wide 
range of distributed systems and networks.  However, in 
early systems, distributed applications and networks have been 
studied largely separately – each community employing 
relative simple models for the other domain.  These separate 
tools cannot be easily composed.  For example, many 
network simulators have been built which provide accurate 
network environment (e.g. NS [34], GloMoSim [35]). 
However, these tools only capture part of what is relevant to 
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future distributed systems which couple resources and 
networks and have adaptive applications – they do not enable 
the network simulations to be coupled directly to applications. 

 
A wide range of software tools provide general-purpose 
discrete-event simulation or even more focused Grid 
simulation libraries (GridSim and SimGrid) [36-40][41][42].    
The challenge with all of these tools is that they do not allow 
easy use of existing applications and grid middleware, and 
thus the results achieved are only as good as the models which 
are developed for these complex pieces of software.   In 
addition, these tools typically have simple models of networks 
and protocols – known to be inaccurate.  No direct 
experimentation with applications, middleware, networks, and 
grid resources is supported. 

 
Extensive research has been devoted to virtual machine 
monitors (VMM), including VMWare [43], Denali [44], and 
Xen [45].  The majority of these efforts focus on functional 
virtualization, and only secondarily on performance modeling.  
VMWare can aggregate a large number of distributed, 
heterogeneous resources as a single pool of processing, 
storage and networking power, on which user can run multiple 
off-the-shelf operating systems.  Denali virtualizes hardware 
resources on single physical machine to enable running of 
multiple instances of a specific OS IIwaco.  Xen is a virtual 
machine monitor for x86 that supports execution of multiple 
guest operating systems with both high performance and 
resource isolation.  Commodity operating systems, such as 
Linux, BSD and Windows XP, can be ported to Xen.  The 
major differences from the MicroGrid are: (i) their emphasis 
on functional virtualization, (ii) the need to maintain an entire 
OS kernel installation for each image, and (iii) the lack of 
support for detailed network simulation and performance 
modeling.  Finally, the overhead and complexity of the 
MicroGrid wrapper and CPU scheduler is dramatically lower 
than any of these systems. 
 
Several recent research efforts are most similar to the 
MicroGrid, including Albatross [46], Emulab [47] and 
Modelnet [48].  While these systems also support execution 
of real application over a modeled network, there are 
important differences between these efforts and the 
MicroGrid. 

First, none of these systems model CPU speed, thus they 
cannot simulate grid environments with a wide range of 
heterogeneous computation resources.  This also limits the 
ability to model relative compute and network speeds. 

Second, the network modeling in these systems either use  
approximation models [49] or have limited scalability [34].    
These approximations reduce the cost (compared to 
MicroGrid’s global synchronized simulation) to achieve faster 
execution. For example, Emulab uses a set of real routers, 
switches and configurable software routers to emulate wide 
area network. This approach has the advantage of speed of 
emulation, but provides little in the way of detailed control of 
speed and modeling to the experiment designer. The 

ModelNet project at Duke University (and now at UCSD) is a 
software emulator. Their approach to scalability simplifies 
both network topology (a network of pipes) and routing 
(assuming a simple routing protocol based on shortest path) 
and then maps the resulting network of queues onto a set of 
emulation cores. This summarized network is an 
approximation to actual detailed network behavior.  Further, 
there is no synchronization between these cores, so the 
number of cores can be used without affecting accuracy is 
unknown.  In contrast, MaSSF uses full-scale detailed packet 
simulation based on a distributed discrete-event simulation 
engine. While there have been many efforts which use PDES 
for network simulation [50], we know of no other modeling 
efforts that achieve detailed online network simulation of the 
documented scale. 

8 SUMMARY AND FUTURE WORK 
The increasing acceptance of grid computing in both scientific 
and commercial communities presents significant challenges 
for understanding the performance of applications and 
resources. The associations between applications and 
resources are no longer static, and dynamic resource sharing 
and application adaptation further complicate the situation.  
To meet the emerging modeling needs and enable growth in 
understanding the dynamic properties of grids, we have 
designed and implemented a tool called the MicroGrid.  The 
MicroGrid enables accurate and comprehensive study of the 
dynamic interaction of applications, middleware, resource, and 
networks.  The MicroGrid creates a virtual grid environment 
– accurately modeling networks, resources, the information 
services (resource and network metadata) transparently.  
Thus, the MicroGrid enables users, grid researchers, or grid 
operators to study arbitrary collections of resources and 
networks.  The MicroGrid includes the MaSSF online 
network simulator which provides packet-level accurate, but 
scalable network modeling. 
 
We present experimental results with applications which 
validate the implementation of the MicroGrid, showing that it 
not only runs real grid applications and middleware, but that it 
accurately models both their and underlying resource and 
network behavior.  We also study a range of techniques for 
scaling a critical part the online network simulator to the 
simulation of large networks.  These techniques employ a 
sophisticated graph partitioner, and a range of edge and node 
weighting schemes exploiting a range of static network and 
dynamic application information.  By carefully mapping the 
virtual network to physical resources using multi-objective 
graph partitioning algorithms, we achieve good load balance 
and better scalability in network simulation.  Our studies 
show that the static network topology and application 
placement information can be exploited to achieve good 
balance for some application. In our experiments, it reduces 
the load balance by up to 66%. The profile-based mapping 
uses detailed traffic information and further reduces the 
application simulation time up to 50%.  The best of these, 
profile-driven placement, scales well to online simulation of 
large networks of 6,000 nodes using 24 simulation engine 
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nodes. 
 
In future work, we will use MicroGrid to study larger network 
and application, specially using a 256-node Itanium Linux 
cluster to simulation a network with 100,000 network entities, 
which can be taken as a non-trivial part of real Internet with 
hundreds of Autonomous System (AS). Under this scale of 
network, we expect to experience much larger load balance 
challenge and we have to make our traffic based load balance 
solution for better scalability. We will also use MicroGrid to 
study larger scale Grid applications, include resources 
scheduling and overlay network behaviors. 
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