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Abstract

Large-scale distributed systems offer computational
power at unprecedented levels. In the past, HPC users typi-
cally had access to relatively few individual supercomputers
and, in general, would assign a one-to-one mapping of ap-
plications to machines. Modern HPC users have simultane-
ous access to a large number of individual machines and are
beginning to make use of all of them for single-application
execution cycles. One method that application developers
have devised in order to take advantage of such systems
is to organize an entire application execution cycle as a
workflow. The scheduling of such workflows has been the
topic of a great deal of research in the past few years and,
although very sophisticated algorithms have been devised,
a very specific aspect of these distributed systems, namely
that most supercomputing resources employ batch queue
scheduling software, has heretofore been omitted from con-
sideration, presumably because it is difficult to model ac-
curately. In this work, we augment an existing workflow
scheduler through the introduction of methods which make
accurate predictions of both the performance of the appli-
cation on specific hardware, and the amount of time indi-
vidual workflow tasks will spend waiting in batch queues.
Our results show that although a workflow scheduler alone
may choose correct task placement based on data locality
or network connectivity, this benefit is often compromised
by the fact that most jobs submitted to current systems must
wait in overcommited batch queues for a significant portion
of time. However, incorporating the enhancements we de-
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scribe improves workflow execution time in settings where
batch queues impose significant delays on constituent work-
flow tasks.

1 Introduction

As grid programming tools have matured, the possibil-
ity of using multiple shared clusters and/or supercomput-
ers has emerged as a viable platform for executing large
parallel workflows [Deelman et al. 2004]. Previous work
has shown that, if the machines are dedicated (but the net-
works interconnecting them are not), it is possible to use
an application-specific performance model (parameterized
dynamically) to choose the execution setting that optimizes
overall execution time [Mandal et al. 2005]. When the ma-
chines are not dedicated, however, they are each typically
managed by a separate batch-queue scheduler that imple-
ments a local space-sharing policy. To execute, workflow
components must be submitted to these queues to wait un-
til a suitable machine partition becomes available. If the
machine is fully utilized, the time in queue can be highly
variable and potentially long; longer in many cases than the
execution time itself.

The problem of efficiently scheduling workflow tasks
to batch queue controlled resources is rapidly becoming
crucial to the community’s effort to support a wide vari-
ety of HPC applications using Grid research technologies.
As part of the VGrADS (Virtual Grid Application Develop-
ment Software) research project, which focuses on the de-
velopment of programming tools to lessen the complexity
of grid application development, maintenance, and support,
we have focused on showing that the problem of resource
selection amongst a wide variety of distributed resources
(including batch queue controlled supercomputers) can be
efficiently handled through use of prediction techniques and



look-ahead scheduling. Further, a key focus of VGrADS is
the simplification of grid programming for the application
developer. Concordantly, we show that it is possible to ef-
ficiently schedule application tasks automatically acrossa
diverse resource pool having widely and dynamically vary-
ing performance characteristics.

Specifically, in this paper, we investigate how a new
technique for predicting batch queue delay [Brevik et al.
2006; Downey 1997a; Downey 1997b; Smith et al. 1999]
can be used to improve the execution times of large-scale
workflows in shared grid environments. Our method uses an
application scheduler and performance model to determine
a mapping of workflow components to cluster processors
based on predicted start-up delay (resulting from queuing
time) and predicted execution time. The scheduler param-
eterizes its model with delay predictions that are generated
dynamically at the time the workflow is initiated. Based on
the mapping it determines to be most advantageous, submits
jobs that it generates on-the-fly to the local batch queues
controlling the processors it wishes to use. That is, given a
set of clusters controlled by batch queues, our system maps
workflow components to job submission requests in a way
that attempts to optimize workflow turn-around time.

We investigate the efficacy of this approach using the
EMAN application [Ludtke et al. 1999], the VGrADS
EMAN scheduler [Mandal et al. 2005], and new Network
Weather Service (NWS) [Wolski et al. 1999a; Wolski et al.
1999b] queue delay prediction functionality [Brevik et al.
2006; Downey 1997a; Downey 1997b; Smith et al. 1999]
targeting TeraGrid∗ as a grid of clusters. Our goal in this
investigation is to explore how the VGrADS performance
modeler and application scheduler can improve overall ap-
plication turn-around time for the user when combined with
the NWS methodology for predicting batch-queue delay.

Our results indicate that queue prediction substantially
reduces turn-around time for the EMAN workflow in
this setting. By integrating this functionality into of the
VGrADS programming environment and execution sys-
tems, we expect to provide similar benefits for workflow
problems that have similar characteristics.

2 Related Work

Past research relevant to this study has been done in three
distinct fields. The first is that of characterizing HPC ap-
plications as workflows to be executed on large-scale sys-
tems. From this work, a significant amount of of the liter-
ature involves efficient scheduling of workflows onto sys-
tems. Scheduling application components onto multipro-
cessors is a hard problem. In most cases the problem is
NP-complete, since the minimum multiprocessor schedul-
ing problem is NP-complete [Garey and Johnson 1979].

∗NSF TeraGrid Project http://www.teragrid.org

Therefore, most of the literature deals with finding good
heuristic solutions. There is a body of work on multipro-
cessor heuristic scheduling of independent application com-
ponents. Braun et al. [2001] give an overview of different
heuristics. However, these heuristics can’t be directly ap-
plied for scheduling workflows because of task dependen-
cies.

Kwok et al. [1999] give a survey on different heuris-
tic scheduling techniques for scheduling application DAGs
(or workflows) onto homogeneous platforms. These heuris-
tics also can’t be applied directly to highly heterogeneous
HPC systems. Topcuogluet al. [2002], Sihet al. [1993]
and Ohet al. [1996], etc. consider DAG scheduling for
heterogeneous platforms. Most of the heuristics are gener-
alizations of the list-scheduling based heuristics for homo-
geneous platforms, which have several drawbacks in het-
erogeneous HPC systems. First, they do not consider the
global effect of the current scheduling decision. Second,
they do not group tasks for scheduling and third, hetero-
geneity makes the average values they use for edge and
node weights questionable. Mandal et al. [2005] and Blythe
et al. [2005] describe strategies for scheduling workflows
onto heterogeneous, distributed Grid resources using per-
formance models. But, they assume instant resource avail-
ability, which is in general not true for modern HPC sys-
tems.

The second field of import is that of creating accu-
rate performance models that can be used in a predictive
way. Accurate component performance models are used as
surrogates of actual execution times during the workflow
scheduling process. Accurately predicting the performance
of a parallel and distributed application is a hard problem
and has been studied extensively in the literature. Sev-
eral modeling techniques like analytical, simulation-based,
hybrid modeling etc. have been used for accurately pre-
dicting application performance on a wide range of archi-
tectures. Sundaram-Stukel et al. [1999] and Kerbyson et
al. [2001] describe detailed analytical performance mod-
eling techniques for special case applications. Marin et
al. [2004] describe a semi-automatic strategy of model-
ing static and dynamic characteristics of applications in an
architecture-neutral fashion using a combination of static
and dynamic analysis of application binaries. The Prophesy
framework [Taylor et al. 2003] uses historical performance
data, system features and application details (all stored in a
database) to drive analytical modeling of application com-
ponents on different platforms. Pllana et al. [2005] use a
hybrid modeling technique using discrete event simulation
and mathematical modeling. The workflow scheduler can
use any available accurate performance predictor to drive
the scheduling process. We use modeling techniques by
Marin et al. [2004] for the purpose of this work.

Finally, a great deal of work exists attempting to char-



acterize job workloads on various HPC systems in order to
predict the amount of time individual jobs spend waiting
in batch queues. Many previous studies attempt to show
that job wait times can be predicted accurately under the
assumptions that we know the length of time the job will
execute and that we have perfect knowledge of the schedul-
ing algorithm. If these conditions are met, it has been shown
by Smith, Taylor and Foster [1999] that the mean job wait
time can be predicted but there is substantial between the
predicted and the actual observed wait times. In their work,
they employ empirical workload traces to derive a model
for job execution time. From the model, and assuming per-
fect knowledge of the scheduling algorithm, they can calcu-
late mean job wait times via simulation in faster-than-real
time. Another approach from Downey [1997a; 1997b] uses
a similar set of assumptions to derive queue wait times, but
he instead uses a log-uniform distribution to model remain-
ing job execution times. From this model, he shows that it
is possible to predict when a certain-sized “cluster” of re-
sources becomes available and thus can predict how long a
job at the head of the queue will wait. Both of these efforts
require that the scheduling algorithm is both exactly known
and not impacted by policy change during the lifetime of the
experiment. In practice, it is rarely the case that we have ac-
cess to the precise scheduling policy being employed by a
given system, and the policies are clearly not static over a
long period of time.

In a paper by Brevik, Nurmi and Wolski [2006], the au-
thors explore an alternative method for job wait-time pre-
diction that uses only the observed job wait times in order
to make bound predictions on individual wait times. In that
work, they suggest that often a user may be more interested
in upper- and lower-bound predictions, together with a mea-
sure ofconfidenceor certainty, for job wait times, since a
point-valued prediction for, say, the mean (expected) wait
time is not particularly meaningful for such highly right-
skewed data. The work produced a software infrastructure
that has been shown to predict quantile bounds for individ-
ual job wait times on7 separate HPC systems over a9-year
period.

In the present work, we show that combining state-of-
the-art workflow scheduling, performance modeling, and
batch queue prediction technologies result in a workflow
scheduling system that can attain much faster workflow
turnaround time than when using any of these components
alone. In the next section, we will briefly outline the
performance-modeling technique, the batch-queue predic-
tion technique, and finally the merger of these technologies
into a high-quality workflow scheduler.

3 Performance Modeling

This section describes our performance modeling
methodologies. We first describe how to estimate the ex-
ecution time of a workflow component on a resource. We
analyze an application component’s behavior by modeling
its characteristics in isolation of any architectural details.
We then estimate the component’s execution cost on a target
platform described by its available hardware resources (e.g.
number and type of execution units, cache size and memory
access latency etc.). To characterize a component’s single-
node performance, we consider both the number of floating
point operations executed as well as its memory access pat-
tern.

To measure the amount of computation performed by an
application component for a particular program input, we
use hardware performance counters to collect floating-point
operation counts from several executions of the program
with different, small-size input problems. We then apply
least square curve-fitting on the collected data to predict for
an actual input data-set.

To understand a component’s memory-access pattern,
we collect histograms of memory reuse distance (MRD) –
the number of unique memory blocks accessed between a
pair of references to the same block – observed by each
“load and store” instruction [Marin and Mellor-Crummey
2004]. Characterizing memory access behavior for pro-
grams in this way has two major advantages. First, data
reuse distance is independent of cache configuration or ar-
chitecture details. Second, reuse distance is a measure of
data reuse, which is the main determinant in cache perfor-
mance. We collect reuse distance information for each ref-
erence in the program for several small-size input problems.
We use the memory reuse distance data to model the behav-
ior of each memory instruction and to predict the fraction
of hits and misses for a given problem size and cache con-
figuration. Our modeling strategy dynamically finds groups
of accesses that have similar growth functions for the reuse
distance and models each such group using two polynomi-
als; one of which models how the number of accesses in
that group changes with problem size and the other how the
average reuse distance of those accesses changes with prob-
lem size. To determine the cache miss count for a different
problem size and cache configuration, we evaluate the MRD
models for each reference at the specified problem size and
count the number of references with reuse distance greater
than the target cache size.

We use the following simplified model to predict the ex-
ecution time for the workflow components.

EstExecT ime(psize) =
A + B + C + D

CpuClock(arch)



where

A = k0 ×

totalFp(psize)

FpPipelineNum(arch)
× FpRptRt(arch)

B = k1 × L1MissCnt(psize)× L1MissPnlty(arch)

C = k2 × L2MissCnt(psize)× L2MissPnlty(arch)

D = k3 × L3MissCnt(psize)× L3MissPnlty(arch)

In the equations,k0, k1, k2 andk3 are constants,psize

is the problem size andarch is the target architecture.
FpRptRt(arch) is the repeat rate of the floating point
pipeline. It is the number of cycles that occur between the
issue of one instruction and the issue of the next instruction
to the same execution unit.MissPnlty, the penalty for a miss
in an arbitrary level of the memory hierarchy, is the differ-
ence between the access time to the next memory level and
the access time to the current memory level.

L(j)MissPnlty(arch) = P − Q

P = L(j + 1)Latency(arch)

Q = L(j)Latency(arch)

We also obtain the communication performance model
for a particular workflow componentC on a particular re-
sourceR. First, we find the set of resources to which the
predecessors ofC have been mapped. We then add the cost
of data movement from each of those resources toR to ob-
tain the estimated overall communication cost. Costs are
estimated as a function of measured latency/bandwidth val-
ues between resource pairs and the known volume of com-
munication annotated on the workflow edges.

We obtain the final performance model of a workflow
component by adding the estimated execution time to the
estimated communication time.

4 Prediction of Wait Times in Batch Queues

Typically, HPC resources are managed usingspace shar-
ing, a high-level scheduling strategy according to which
each application is allocated a dedicated set of resources for
the duration of its execution. Most modern space-sharing
systems use standard resource-management and scheduling
software, such as LoadLeveler, EASY [Lifka et al. 1995],
PBS, NQS/NQE, Maui and GridEngine†, to manage the
mapping of applications to resources. Since there are typi-
cally more jobs needing access to dedicated resources than

†Most batch queue software documentation can be found onlineat the
following locations
PBS - http://www.altair.com/software/pbspro.htm
NQS/NQE - http://docs.cray.com/books/21483.3/html-21483.3
Maui - http://www.clusterresources.com/products/maui
GridEngine http://gridengine.sunsource.net

Figure 1. Graph depicting job wait times from
one machine, in one queue, over a 3 week
period.

there are resources available at any point in time, these
software systems typically implement some form ofbatch
queuefor application jobs that are ready to execute as soon
as resource become available. One problem that arises in
this environment is that the user has little idea how long his
or her job will wait in the batch queue. We have observed
that a job on a heavily utilized machine will often wait in the
queue for more time than it requires to execute. Since scien-
tists are beginning to have access to multiple batch-queue-
controlled HPC machines, we contend that understanding
the relative batch-queue delay between machines is becom-
ing an important issue.

Although some work has focused on point-value predic-
tions for job wait times in a batch queue [Downey 1997a;
Downey 1997b; Smith et al. 1999], we believe that often a
more relevant question is that of determining bounds on the
amount of time a single job will wait in a queue. The de-
termination of an exact value is practically impossible, and
even the average (expected) wait time is of limited practi-
cal utility, given the complex and highly skewed nature of
wait-time data. In our own investigations, we have looked
data from7 different HPC sites over a9-year period. It
clear that job wait times make for a dataset that is diffi-
cult to model. In Figure 1, we show a typical snapshot of
a queue from a highly utilized batch-queue-controlled ma-
chine. From this graph, we can see that there are distinct
modes, drastic changes in regimes (changepoints), periods
of relative inactivity followed by bursts of data, etc.

We have developed a method, the Binomial Method
Batch-Queue Predictor (BMBP), which we have shown to
make accurate and correct predictions (in a very specific
sense to be discussed below) for bounds on job wait times.
BMBP accomplishes this by predicting quantiles directly
from historical job wait time data. As an example, BMBP



is able determine longest time that a particular job is “prob-
ably” going to wait in a particular queue, in the sense that
there is, say, a75% chance that the job will begin execut-
ing in less than that much time. BMBP treats interprets the
problem as that of finding an upper bound on the.75 quan-
tile of the random variable of possible wait times for the
particular job, using a historical trace of wait times that jobs
have experienced in the queue. Note that a separate issue is
that ofconfidence, namely the level of certainty that the up-
per bound determined really is at least as large as the.75
quantile; BMBP typically uses a confidence level of95%.
However, both of the numerical values (the quantile of in-
terest and the confidence level) can be adjusted by the user;
for example, we can equally well ask BMBP for the0.5
quantile, or median, with 90% confidence. In other words,
BMBP allows the user to ask the question, “What is the
longest that my job islikely to wait in the queue?” where
“likely” can be interpreted by the user via a quantile (and,
if desired, a confidence level).

4.1 The Binomial Method Batch Predictor

Quantile bound predictions made by the BMBP is based
on the following simple observation: IfX is a random vari-
able, andXq is the q quantile of the distribution ofX ,
then a single observationx from X will be greater than
Xq with probability(1 − q). Thus (under suitable assump-
tions about independence and identical distribution) as a se-
quence of independent Bernoulli trials with probability of
success equal toq, where an observation is regarded as a
“success” if it is less thanXq. If there aren observations,
the probability of exactlyk “successes” is described by a
Binomial distribution with parametersq andn. Therefore,
the probability thatk or fewer observations are greater than
Xq is equal to

k
∑

j=0

(

n

j

)

· qn−j
· (1 − q)j

Using this basic method, we can find the smallest value
of k for which Equation 4.1 is larger than some specified
confidence level, and thekth value in a sorted set of obser-
vations (of sufficient size) will be greater than or equal to
theXq quantile of the distribution from which the observa-
tions were made with the specified level of confidence.

In practice, the BMBP is implemented as a trace-based
simulation which takes as input a historical job trace, a user
specified quantile and a confidence level. After a short train-
ing period, the simulation walks through the historical trace
data until it arrives at the present. During the simulation,
we employ a simple changepoint detection technique that is
used to effectively trim the number of historical data points
the predictor is taking into account, allowing the method to

only use history which is relevant to the current wait time
conditions. In addition, we employ a technique to “group”
jobs based on the number of nodes they request, which has
the effect of tightening the prediction made for a specific
job by using only a history containing other jobs of simi-
lar size. At the point where the simulator has processed all
jobs up until the present, we can ask the question, for a job
of specific node requirements, for the latest quantile predic-
tion with the specified level of confidence. The simulator
has been shown to correctly capture the population quantile
of interest for almost all of the job traces for which we have
access. In our previous experiment [Brevik et al. 2006], the
quantile predictions were successful for 51 out of 55 traces.

In this work, we integrate our BMBP batch queue bound
prediction technique into a performance model enhanced
workflow scheduler, which is the topic of the next section.

5 Scheduler Design

The core idea of this work is to equip the VGrADS
workflow scheduler [Mandal et al. 2005] with detailed in-
formation about the expected performance of an applica-
tion on specific resource architectures and to use predic-
tions of when resources become available to decrease the
overall makespan of a workflow when executed on real sys-
tems. In previous works, the authors have shown that per-
formance modes and batch queue wait time prediction tech-
niques can correctly predict their respective quantities.In
this section, we briefly describe the way our novel work-
flow scheduler makes use of this predictive information to
produce a “plan” that should reduce the observed makespan
for a single workflow.

The original workflow scheduling algorithm runs three
heuristics (min-min, max-min and suffrage [Tracy D. Braun
et al 2001]) and works as follows. For each heuristic, un-
til all components in the workflow are mapped, the current
set of available components is identified. The rank matrix
is then calculated for the set of available components. The
(i, j) entry in the rank matrix encodes the expected compu-
tation and communication performance of application com-
ponenti on resourcej (obtained using the performance-
modeling techniques described in section 3). Then, the es-
timated completion time of a componenti on a resource
j, (ECT(i,j)), is obtained by adding the rank value to the
maximum of the following two entities – (1) the estimated
availability time of resourcej - EAT(j) that maintains the
state of resourcej and (2) the maximum estimated com-
pletion time among the parents of componenti. Using the
ECT values, the current scheduling heuristic is run to obtain
a mapping for the current set of available components. This
is repeated until the entire workflow is mapped. As a result,
the mappings and makespans for each of the three heuristics
are known. The scheduler finally chooses the mapping (or



“plan”) that gives the minimum makespan among the three.

We modified the original workflow scheduling algorithm
to incorporate the batch queue wait times. Initially, for
each heuristic, the estimated availability time of each of
the resources is populated using the predicted wait time
for the resource. We use the 95% upper bound on the me-
dian queue wait time prediction as the predicted wait time.
Hence, during the scheduling process, the estimated com-
pletion time for a component takes into account the queue
wait time (since ECT is a function of estimated availability
time, rank and maximum ECT of parent components). We
keep track of queue wait times for each cluster and the num-
ber of nodes that correspond to the queue wait time. With
each new mapping to a resource j, we update EAT values
of a specified number of nodes in the cluster (of resource
j) with estimated queue wait time. A component will not
need to wait on a resource if some other component had al-
ready been mapped to the resource (previous acquisition of
the resource implies that wait time has been already been
taken into consideration). We run the heuristics using the
modified ECT values to obtain three mappings. We choose
the mapping (“plan”) with the minimum overall makespan
as the final schedule.

6 Experimental Procedure

The ultimate goal of this work is to determine how much
a workflow schedule can be improved by integrating accu-
rate resource performance models and batch-queue predic-
tion. We have devised several experiments to show the ef-
fectiveness of such an integration.

The first experiment compares the makespan for work-
flow schedules using both performance model predictions
and BMBP with those using only performance model infor-
mation for resource selection. Accordingly, in our simula-
tions we generate two schedules (one generated with batch-
queue predictions taken into consideration and one without)
and run each schedule serially. Repeating this experiment
many times allows us to make a statistical comparison of
the overall turnaround times.

The second experiment attempts to validate the results of
the previous experiment in practice by reproducing the same
conditions as before, except that we use realistic EMAN in-
put data, resulting in much longer runtimes. For this exper-
iment, we ran several instances of a real EMAN job using
BMBP and non-BMBP schedules.

To better understand the experimental setup, this section
will begin with a brief discussion of the EMAN application
and workflow followed by synopsis of the five machines we
used, and finally an in-depth description of the experimental
testbed.

Figure 2. EMAN refinement workflow

6.1 Experimental Environment

For this work, we have chosen to use five supercomput-
ers, of which three are part of the core TeraGrid [NSF ]
project, at five different locations around the country. The
first is the Rice Terascale Cluster of 119 Intel Itanium 2
nodes located at Rice University in Houston, Texas. The
second is a cluster of 128 Intel XEON nodes located at the
University of California, Santa Barbara. Finally, we are
using the SDSC, NCSA, and UC/ANL Teragrid machines
which consist of 262, 887, and 62 Intel Itanium 2 proces-
sors and are located in San Diego, Urbana Champagne, and
Chicago respectively. All of these systems are being moni-
tored by the batch-queue prediction software infrastructure
described in Section 4 and have had performance models
for the individual resources pre-calculated (see Section 3).
In addition these sites all are use some combination of Maui
and PBS to do scheduling and resource management.

6.2 The Application

We used the EMAN [Ludtke et al. 1999] application
as a test workflow application. EMAN (Electron Micro-
graph Analysis) is a bio-imaging application developed at
the Baylor College of Medicine. It primarily deals with
3D reconstruction of single particles from electron micro-
graphs. Human expertise is needed to construct a prelimi-
nary 3D model from the “noisy” electron micrographs. Of
the steps in the EMAN application workflow, the refinement
from a preliminary 3D model to the final 3D model is the
computationally intensive step that benefits most from har-
nessing the power of HPC systems. The EMAN refinement
can be represented by the workflow depicted in Figure 2.
It is essentially a linear workflow with some sequential and
parallel stages. The important and time-consuming steps
are the large parameter sweep steps like “classesbymra”.
We use two EMAN workflows having essentially the same
structure - (1) a regular one corresponding to the “rdv” data



Figure 3. Experimental testbed architecture.

set and (2) a scaled down one corresponding to the ”groel”
data set.

6.3 Experimental Procedure

Our two experiments are similar, differing mainly in the
size of the EMAN application we execute (scaled down or
regular) and in the choice of workflow scheduler (BMBP-
enhanced and non-BMBP enhanced versions).

Each measurement is initiated by taking UNIX time
stamp to indicate when that measurement begins. Next, our
novel workflow scheduler generates a “plan” of workflow
task to resource mappings describing where and when to
execute individual tasks. This step takes place in both the
small and large EMAN experiments, using both the BMBP-
enhanced version and the regular performance-model-only
version of the workflow scheduler. Once the scheduler has
produced the “plan,” we feed it to our execution runtime
manager, which is a simple program that automatically cre-
ates job-submission files for the various tasks in the plan
and submits them to the site controlling the chosen individ-
ual resources. The jobs then wait in the site’s batch queue;
when they are executed, they first send a notice back to the
execution manager indicating that the resource has become
available and the application has begun execution. When
the tasks finish, the job scripts send one final message to
the manager indicating task completion. When the last task
in the workflow has finished execution, the execution man-
ager records a “finished” UNIX timestamp and the measure-
ment is complete. At the end of each measurement, we are
left with a total turnaround runtime (the “finished” times-
tamp minus the “started” timestamp) as well as which re-
sources were chosen from which machines for each task in
the workflow. Figure 3 shows the interaction points of each
described component in our experimental testbed for a sin-
gle experimental trial.

Figure 4. Total turn-around time for small
EMAN runs for both BMBP enhanced sched-
ules and non-BMBP enhanced schedules

7 Results

In this section, we will expose the results of our experi-
ments and show how BMBP enhanced workflow schedules
compare against schedules which used performance models
alone.

Figure 4 shows the result of our first experiment, which
compares the observed makespans from small EMAN runs
using both BMBP enhanced schedules and schedules with-
out any batch queue wait time knowledge. It is clear from
the graph that although there are certain instances for which
the BMBP schedule actually took longer than non-BMBP
schedules, the majority of the experiments show that the
use of BMBP significantly reduces the amount of time from
workflow start to finish. Of the 27 measurement pairs, the
BMBP-enhanced schedule produced a shorter makespan 26
times. The median BMBP enhanced schedule makespan
was 262 seconds, while the median non-BMBP enhanced
schedule was 895 seconds, a difference of 633 seconds (ap-
prox. 10.5 minutes). For most trials, the BMBP-enhanced
schedules are producing observed makespan values which
are roughly three times faster than non-BMBP-enhanced
schedules, which is a substantial performance improvement
considering the only difference is whether we take into ac-
count batch queue delays when calculating the makespans
or use performance models alone.

Although we believe the reduction in observed makespan
is mostly due to the fact that we are able to decide where
to place tasks based on both resource performance models
and batch queue wait time predictions, there are other re-
lated reasons for this benefit. One such interesting result of
the experiment is shown in Table 1, which shows the av-
erage number of nodes and sites contacted for BMBP and
non-BMBP schedule makespans. From this table, we can
see that when the BMBP enhanced scheduler was used, the



Avg. Res. Count Avg. Site Count

BMBP 90.0 1.8
Non-BMBP 98.0 2

Table 1. Table of average number of unique re-
sources and unique sites used for each con-
ducted experiment.

plan used on average fewer unique nodes during its execu-
tion phase. Although we expected this to happen some of
the time, we were surprised to see that in many of the exper-
iments the BMBP enhanced plan used far fewer unique re-
sources, which intuitively translates to less total batch queue
waiting time. In cases where the plan used fewer nodes to
complete the task, the scheduler has decided that it is more
efficient to run some of the tasks in serial on a single node
from one machine than it would be to run the tasks in par-
allel on multiple machines and incur large batch queue wait
times. Without batch queue wait time predictions, such a
decision would most likely never be made unless the perfor-
mance models for one resource architecture predicted sig-
nificantly longer task execution times, which was not the
case for our fairly homogeneous machine set.

From the first experiment, it seems that using batch
queue predictions to decide where best to run workflow
tasks helps reduce the observed makespans. However, we
understand that in a real environment there are potential hid-
den factors not directly related to batch queue wait times
which could impact our relatively small makespans. For in-
stance, an overloaded head node may take a few more sec-
onds to complete a single submission process than an un-
loaded head node, and since we are submitting somewhere
between 90 and 100 jobs per trial, these seconds could po-
tentially add up to effect the overall makespan of a single
experiment. For this reason, we attempted to perform a
more realistic application execution in order to show that the
difference is in fact due to our ability to choose resources
that are likely to become available sooner than when we ig-
nore batch queue wait times. Over a one week time period,
we wished to gather enough BMBP and non-BMBP sched-
ule measurements to show a similar figure and analysis as
in our first experiment. The result of the experimental pro-
cess was somewhat surprising as, unfortunately, none of the
non-BMBP enhanced schedules were able to even complete
due to a variety of scheduled downtime and machine hard-
ware crashes during the experimental period. Recall that
we run our experiments by first running a BMBP enhanced
schedule, then a non-BMBP enhanced, and repeat. Dur-
ing our one week period, we first executed a BMBP sched-
ule, which completed in approximately half a day (45384
seconds). The non-BMBP experiment began immediately
thereafter, but after two days (172800 seconds) the experi-

ment had not completed and one of the sites being used suf-
fered an unexpected power outage. When the machine was
back online, we started the experiment again with a BMBP
schedule which again took approximately half a day (49153
seconds) to complete. Again, a non-BMBP schedule be-
gan executing; somewhere between 1.5 and 2 days later, a
different site brought its machine down due to an overheat-
ing machine room which again caused our trial to terminate
without completing.

Given a large amount of experimental and allocation
time, we expect eventually to be able to complete a few non-
BMBP schedules, but this result is in some sense even more
valuable in the short term. We are experiencing first hand
the fact that in an environment where a single application is
attempting to utilize widely distributed resources, one very
real problem is that of resource failure from any one signif-
icant component. One potential solution that surely helps
reduce the impact of failure is to execute parts of an appli-
cation that require widely distributed resources as quickly
as possible in order to avoid potential individual component
failures. Since our BMBP schedules were able to schedule
jobs on these resources in a way that resulted in relatively
short makespans, around half a day, they were able to ef-
fectively avoid the downtimes that effected the non-BMBP
schedules, for which portions of the application were still
queued after 1.5 to 2 days.

8 Conclusions

The modern HPC user is beginning to face the prob-
lem of deciding where to execute his or her applications to
achieve the shortest turnaround time but cannot effectively
do so without having some idea of the amount of time their
job will remain queued. Additionally, systems for schedul-
ing application tasks across distributed resources commonly
submit jobs to batch-queue-controlled resources. In both
cases, the ability to have some notion of time spent wait-
ing in queues is becoming a critical issue for the efficient
mapping of tasks to resources.

In this work, we introduce the idea that although an ap-
plication workflow scheduler may be able to intelligently
select a task to resource mapping that is optimal in terms of
process execution time, in reality the fact that resources are
not instantly available can significantly impact the overall
execution time of an application. In order to overcome this
difficulty, we have integrated into a workflow scheduler our
Binomial Method Batch Predictor (BMBP) which is used to
predict bounds, with specified confidence, on the amount of
time a single job is expected to wait in a batch queue before
it’s resources become available. Hypothesizing that such
knowledge can help a scheduler better select resources to
reduce the overall makespan of a real application (EMAN)
on real systems (five HPC site machines in five disjoint loca-



tions in the US), we performed two experiments comparing
BMBP-enhanced schedules to schedules which used perfor-
mance models alone to determine task placement. In one
experiment, we found that the plan produced by the BMBP
enhanced scheduler resulted in observed makespans signif-
icantly smaller than the non-BMBP scheduler, and in the
other experiment, the results showed that the use of BMBP
enhanced schedules allowed the real EMAN application to
successfully finish where not one of our non-BMBP sched-
ules was able to complete since they ran for so long that
at least one of the underlying machines failed causing the
application to terminate.

In the near future, we will be integrating our batch-queue
methodology into different state-of-the-art workflow sched-
ulers in an attempt to verify our belief that such predictions
are uniformly beneficial. We also are currently working on
several techniques that use batch-queue predictions to im-
plement a virtual resource provisioning system that would
allow a user and/or system to secure the equivalent of an ad-
vanced reservation using batch-queue-controlled resources.
Many of our techniques are also being integrated into the
VGrADS infrastructure.
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