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Abstract

Workflow technologies have become a major vehicle for
the easy and efficient development of science applications.
At the same time new computing environments such as the
Cloud are now avaiable. A challenge is to determine the
right amount of resources to provision for an application.
This paper introduces an algorithm named Balanced Time
Scheduling (BTS), which estimates the minimum number of
virtual processors required to execute a workflow within a
user-specified finish time. The resource estimate of BTS is
abstract, so it can be easily integrated with any resource
description language or any resource provisioning system.
The experimental results with a number of synthetic work-
flows demonstrate that BTS can estimate the computing ca-
pacity close to the optimal. The algorithm is scalable so
that its turnaround time is only tens of seconds even with
workflows having thousands of tasks and edges.

1 Introduction

As high-performance distributed computing technolo-
gies advance, scientists and engineers are able to ex-
plore more complex phenomena in a variety of scientific
fields. For instance, LEAD (Linked Environments for At-
mospheric Discovery) [17] which orchestrates data collec-
tion and simulation experiments that forecast the forma-
tion and evolution of tornados continues to configure re-
sources rapidly and automatically in response to weather.
Likewise, the SCEC (Southern California Eartquake Cen-
ter) [15] project determines which geograpic area are sub-
ject to the highest acceleration by calculating wave propa-
gation on demand.

One of the key challenges that the applications confront
in this exploration is how to transition their knowledge and
legacy software to new computing environments. Some so-
lutions include the use of higher-level application descrip-
tions such as workflows [9], which can specify the overall
behavior and the structure of applications in a platform-
independent way. A workflow is often represented as a
Directed Acyclic Graph (DAG) that consists of nodes and
edges which represents tasks, and data and control depen-
dencies between them. When an application is specified
in this high-level manner, workflow management systems
such as Pegasus [6] can target a number of execution en-
vironments and automatically transform the specifications
into executable workflows that can be executed on dis-
tributed resources.

At the same time, the coordination and the provision-
ing of distributed resources have been challenging issues
in the high-performance distributed computing community.
Recent cloud computing technologies such as Amazon’s
EC2 [2] and 3Tera [1] enable dynamic resource provision-
ing taking into account of performance, cost, and other
factors. Leveraging the resource specification technologies
such vgDL [11] and SLA(Service Level Aggrement), users
can specify a variety of resource requirements of applica-
tions. For instance, EC2 users can create a group of virtual
processors with certain performance characteristics on-the-
fly by selecting one out of predefined instance types even
though QoS (Quality of Service) of resources, especially
for network, is not yet guaranteed.

Workflow management systems can potentially benefit
from compute clouds. For example, workflows can obtain
consistent resources since cloud infrastructures take care of
complex factors of resource management such as admis-



sion, performance, security, reliability, etc. A critical is-
sue in the integration of workflow management and com-
pute clouds is how to automatically estimate the number of
virtual processors for given workflows because the comput-
ing capacity determines application performance and utility
cost. A large number of virtual processors can reduce the
execution time of parallel tasks while too many processors
can cause low resource utilization, high scheduling over-
head, and high cost. On the contrary, if the computing ca-
pacity is too small, the execution time of the workflow can
increase, which can violate the timing requirements of ap-
plications.

In this work we focus on estimating the minimum num-
ber of virtual processors needed to complete a workflow.
Specifically, we are focusing on time-constrained appli-
cations, where results are needed within a certain time
frame. Note that this problem is different from conven-
tional workflow scheduling [13, 7, 29, 25, 21, 3, 20] or cost-
optimization problems [27, 28, 22, 16, 5], which aim at min-
imizing the application’s runtime when a set of resources is
given.

More importantly, this computing capacity estimate
should be neutral so that it is independent of target lan-
guage, resource environments, and detailed specifications
of resources. As a solution, we propose a heuristic algo-
rithm named as Balanced Time Scheduling (BTS), which
estimates the minimum number of virtual processors re-
quired to execute a workflow within a given deadline. Our
algorithm has several benefits when making resource allo-
cation plans. BTS can utilize the idle time of resources allo-
cated already instead of allocating additional resources by
adjusting the start time of tasks on non-critical paths. In
consequence, BTS can execute a workflow with fewer re-
sources than the approaches based on conventional work-
flow scheduling techniques. The time complexity of BTS
algorithm is small enough so it scales well even for work-
flows with thousands of tasks and edges. The experiments
with synthetic workflows demonstrate the efficiency of our
algorithm with respect to cost and performance.

The rest of this paper is organized as follows. Section
2 illustrates an example when resource capacity estimate
is required and Section 3 details the proposed algorithm.
The methodology and experimental results are presented in
Sections 4 and 5, respectively. In Section 6, we discuss the
prior studies closely related to our research. Finally, Section
7 concludes this paper with future research directions.

2 A Use Case: Pegasus on EC2

Pegasus [6] is a workflow management framework which
enables the users to describe logical behavior of applica-
tions via abstract workflows, maps abstract workflows onto
distributed resources through workflow planning, and uses

Condor DAGMan [24] to execute tasks with fault-tolerance.
Meanwhile, EC2 (Elastic Compute Cloud) is one of Ama-
zon’s Web Services components, which enables users to
configure a virtual cluster on-the-fly. To instantiate a virtual
cluster, users specify a VM (Virtual Machine) image named
AMI (Amazon Machine Image), an instance type (out of
5 predefined platform configurations as of July 2008), the
number of virtual processors.

For example, let an application require a cluster that con-
sists of 10 Opteron processors with more than 1GB memory
each. A EC2 command for this request can be

ec2run ami-xxxxxx -t m1.small -k gsg-keypair -n 10

In the above example, the user uses a small instance, the
default standard instance type, which instantiates a VM im-
age on a 32-bit platform that has 1.7 GB memory, 1 EC2
compute unit, and 160GB storage space.

EC2 charges on the basis of instance type, the number
of instances, and their lifespan. Since the instance type and
lifespan can be directly extracted from the user specifica-
tions of applications (e.g., task execution time and dead-
line), the key functionality required to integrate workflow
technologies with cloud computing infrastructures is to esti-
mate the number of virtual processors. Moreover, the num-
ber of processors is a common metric for computing power
that can be used for other provisioning systems. Therefore,
our main focus is on the estimate of the number of homoge-
neous processors.

The following is a simple use case for our resource esti-
mator. We assume that a VM image which includes appli-
cation software packages is created. The user would specify
(in the Pegasus framework) application-specific knowledge
about the resource requirements (e.g., processor type, mem-
ory capacity) and the application-level information (e.g., lo-
cations of executable, data, and replica) needed to run their
application and the requested finish time. Then, a resource
capacity estimator intercepts the resource information be-
fore the ordinary planning of Pegasus takes place; it synthe-
sizes EC2 commandline arguments through a capacity esti-
mate and instantiates a virtual cluster. Basically, the estima-
tor determines the minimum number of virtual processors to
complete a workflow within a certain deadline, termed the
RFT (Requested Finish Time). Pegasus then can continue
its normal planning process with the provisioned resources.

3 BTS Algorithm

Our algorithm is motivated by a simple idea that a task
can be delayed as long as the delay does not violate its
time constraints and other tasks can take advantage of the
slack. We provide the resource estimate under several as-
sumptions: a workflow is defined by a set of tasks with pre-
dicted execution time and a set of edges between tasks each



with data transfer time; ahost is defined as an independent
processing unit on which a task is executed. A host is equiv-
alent to a virtual processor of EC2, and it is connected to
other hosts via network; tasks are non preemtable and can
be executed on any host on-demand.

In practice, we consider three criteria in the design of
the algorithm;1) Communication cost: When two depen-
dent tasks are scheduled on the same host, the data transfer
time between them can be ignored. This can reduce the
makespan and eventually the number of hosts;2) Overesti-
mation: A resource capacity can be overestimated as long
as workflows can finish within a given deadline. However,
we should reduce this overestimate because a tight estimate
can improve resource utilization and reduce the overall re-
source allocation cost;3) Scalability: Since workflow plan-
ning is a time-consuming process and determining the mini-
mum number of hosts for a deadline is an NP-hard problem,
an algorithm should be scalable with a low time complexity.

We embody this idea through three steps; initialization
which determines the valid scheduling time range of each
task, task placement which determines the detailed sched-
ule of workflow tasks, and task redistribution which reduces
the number of hosts by adjusting the start time of the tasks
scheduled at the placement. The following sections describe
each step in details.

3.1 Initialization

The goal of the BTS algorithm is to minimize the amount
of resources required by a workflow while satisfying the
user-provided time constraints. For this purpose, BTS keeps
track of a valid scheduling time range of each task, termed
schedulable duration (SD), throughout its scheduling pro-
cesses. A task can be scheduled at any time in its schedu-
lable duration without violating the time constraints of the
entire workflow.

SD is defined asLFT (latest finish time) −
EST (earliest start time). EST represents the earliest
start time of a task when all its parent tasks finish as early
as possible and LFT represents the latest finish time when
all the descendants of a task are executed as late as possible
until RFT. The initial values of EST and LFT of each task
are calculated based on the RFT,UpLength, andDnLength;
UpLengthdenotes the length of the longest execution path
to a task from the entry task andDnLengthis the length of
the longest execution path from a task to the exit task as
defined in the following equations.

If RFT < max
∀taski

{ETi + UpLengthi}, stop and return false. (1)

SDi = LFTi − ESTi (2)

ESTi = UpLengthi (3)

LFTi = RFT −DnLengthi (4)

UpLengthi = max
∀taskj∈P (i)

{UpLengthj + ETj + DTTj,i, 0} (5)

DnLengthi = max
∀taskj∈C(i)

{DnLengthj + ETj + DTTj,i, 0} (6)

whereP (i) : set of parent tasks oftaski,
C(i) : set of child tasks oftaski,

ETi : predicted execution time oftaski,
DTTi,j : data transfer time betweentaski andtaskj

First, BTS checks whether RFT is valid or not as in
inequality (1). If a given RFT is smaller than the mini-
mum makespan of the workflow, BTS returns an error. The
term on the right of the inequality denotes the minimum
makespan which is equal to the length of the longest execu-
tion path through the workflow.

If a tasks has a long SD, it is flexible and accordingly
likely to be scheduled at the time when some resources are
idle. Therefore, widening a schedulable duration of a task
can contribute to reducing the total number of hosts required
by the workflow. Increasing the schedulable durations of
the tasks on the critical path is particularly important be-
cause they are the most time-contrained. We note that the
data transfer time between tasks can be eliminated when the
tasks are co-located on the same resource. As a result the
co-located tasks on the critical path can have more schedul-
ing flexibility.

We implement this idea in a simple heuristic algorithm.
First,UpLengths of all tasks are calculated by conducting
a reverse depth first search starting from the exit task (if
no single exit task exists, a dummy task with a runtime of
zero is added and it is made dependent on all the leaf nodes
of the workflow). Then, for each task in a descending or-
der ofUpLength, we find the child task that has the largest
(DnLength+ET +DTT ), since the path through the child
task determinesDnLength of the current task. If any in-
coming edges to the child task are not zeroed, the DTT be-
tween the current task and the child task is set to zero. Then,
we calculate theDnLengthof the task using the new DTT.
Note that all children of a task are visited prior to the task
because theUpLengths of children cannot be smaller than
those of their parents. After calculatingDnLengths of all
tasks,UpLengths are recalculated to reflect the changed
DTTs. UsingUpLength andDnLength values the initial
schedulable durations for all the tasks are computed.

Figure 1 (a) shows an example workflow. Circles repre-
sent tasks and arrows show data dependencies between the
tasks.UpLengths andDnLengths of tasks are summarized
in 1 (b). During the calculation, DTT of four edges: (1,2),
(3,4), (4,5), and (7,8) are ignored. The numbers to the left
of the arrows represent the original values and those on the
right the values after the task co-locating algorithm is ap-
plied. Finally, the initial values of schedulable durations of
tasks are summarized in Figure 1 (c).



3.2 Task Placement

The task placement algorithm iterates over three steps
until all tasks’ start times are determined. 1) select the task
to be scheduled, 2) find the best start time of the selected
task within its schedulable duration to minimize the host
requirement, and 3) update EST and LFT of all dependent
tasks considering the effects of the already scheduled tasks.

The scheduling order of tasks and their placement in the
schedule is determined by a set of rules. First, tasks with
a narrow schedulable duration are scheduled with higher
priority since tasks with a wide schedulable duration have
more flexibility. Second, if multiple tasks have the same
schedulable duration, a task that has more independent tasks
as its children has priority since such independent tasks tend
to be scheduled in the same time slot. Third, if the number
of descendants is larger than that of the ancestors, a task
is scheduled at the earliest time. The task is scheduled at
the latest time in the opposite case because the slack cre-
ated by the placement can benefit a larger number of tasks.
Otherwise, either of two places is selected randomly. The
following describe the algorithm in detail.

Initialize schedulable duration of all tasks.
Initialize NH(i) = 0 , 0 < i ≤ The number of time slots, NH(i) denotes
the number of hosts occupied by the placed tasks at the time sloti
While there are unscheduled tasks, repeat the following steps.
1. Pick up a task with the narrowest schedulable duration
2. Determine the starting time(x),EST < x < (LFT − ET )

s.t. max
i∈TimeSlot(x,x+ET )

{NH(i)} is minimized.

TimeSlot(a, b):set of time slots covering time range from a and b

3. Add 1 toNH(i), ∀i ∈ T imeSlot(x, x + ET ).
4. Update EST and LFT of all dependent tasks.

ESTi = max
∀taskj∈P (i)−ST S,

∀taskk∈P (i)∩ST S

{ESTj + ETj + DTTj,i,

STk + ETk + DTTk,i
}

LFTi = max
∀taskj∈C(i)−ST S,

∀taskk∈C(i)∩ST S

{LFTj − ETj −DTTj,i,

STk −DTTk,i
}

STi : scheduled start time oftaski,STS : set of already scheduled tasks

Figure 1 (d) shows the time schedule diagram of tasks
after conducting the task placement in the workflow in Fig-
ure 1 (a). The x-axis denotes the elapsed time from the start
of the execution of the workflow and the y-axis denotes the
number of hosts occupied by the scheduled tasks. Tasks 1,
8, 2, 3, 4, 7, 5, and 6 are scheduled in this order and even-
tually the diagram shows that three hosts are required since
tasks 5, 6 and 7 are use different hosts during time slots
from 22 to 27.

The time complexity of this algorithm isO(n(n + e +
tlogt)) wheren is the number of tasks,e is the number of
edges, andt is the number of time slots; the time complexity
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Figure 1. An example of BTS algorithm

of selecting a task with the minimum time range is (O(n));
that of updating ESTs and LFTs of all dependent tasks is
(O(e)); and that of selecting a time slot that minimizes the
number of hosts is (O(tlogt)). The number of time slots
is calculated by dividing RFT by unit time. BTS uses the
greatest common divisor (GCD) of predicted execution time
of all tasks as the unit time. Since the precision of execution
time is coarse, the unit time in practice is not so small and
the order oft is not much larger than the order ofe or n.

3.3 Task Redistribution

The task placement technique can fail to find a global
optimum for workflows with certain structures. This can be
seen in Figure 1 (d), where task placement algorithm sched-
uled tasks with narrower schedulable duration first: task 3
is scheduled before tasks 4, 5, 6 and 7. This causes tasks
5, 6 and 7 to be scheduled on different hosts. To deal with
such imbalance of resource utilization, we introduce a new



1. Non-propagated Redistribution

2. Thrust to the earlier slots

For all tasks  scheduled at time slot(s) with maximum NH.

Check whether it can be scheduled at other time slot except the current time slot.

If  possible, reschedule the task and restart algorithm

3. Thrust to the later slots

a. Select the earliest time slot which have maximum NH.

b. Select the task(t) with the least number of ancestor tasks while satisfying 

)(  tTimeStartScheduledETUpLength tt ≤+

4. If both 2 and 3 return fail, return NH as the estimate number of host

c. Call ThrustLeft( t, start time of the selected time slot)

bxUpLength

iNHiNH

t

RFTTimeS lo tiETxxTimeS lo ti t

≤≤

<+
∈+∈

    where

   )}({max1)}({max
),0(),(

a. Select the latest time slot with maximum NH.

b. Select the task(t) with the least number of descendant tasks while satisfying 

)(  tTimeFinishScheduledETDownLengthRFT tt ≥−−

c. Call ThrustRight( t, end time of the selected time slot)

ThrustLeft(task t, time b)             // b: time bound of task t’s finish time

Find maximum x which satisfy 

If x doesn’t exist, return false 

If x < EST,

If at least one parent return false, return false

Update ESTs of all child tasks  and return true

),(  call  ),( ,tpDTTxpThrustLefttPp −∈∀

tt

RFTTimeSlotiETxxTimeSloti

ETDnLengthRFTxb

iNHiNH
t

−−≤≤

<+
∈+∈

  where

   )}({max1)}({max
),0(),(

ThrustRight(task t, time b)          // b: time bound of task t’s start time

Find maximum x which satisfy 

If x doesn’t exist, return false

If x < LFT,

If at least one child return false, return false

Update LFTs of all parent tasks and return true

),(  call  ),( ,ctt DTTETxctThrustRightCc ++∈∀

Figure 2. Task Redistribution algorithm

step namedTask redistribution. The main idea of this step is
to move tasks in the busiest time slot to adjacent time slots
one by one within their schedulable duration and to see if
this reduces the number of needed resources or not.

A high-level description of our task redistribution algo-
rithm is shown in Figure 2. The first non-propagated redis-
tribution step adjusts the start time of tasks in the busiest
time slots without affecting other tasks. Then, Steps 2 and 3
force to move tasks in the busiest time slots to underutilized
time slots. We minimize the effects on the original schedul-
ing results of other tasks and make the results consistent if
changes are required. The time complexity of this algorithm
is O(n ∗ e ∗ tlogt) in the worst case.

Figure 1(e) shows how Task redistribution complements
the limitation of Task placement. Task 5 is selected since
it lies in the thickest time slot and is rescheduled to start at
time 16 and to finish at time 22. It causes tasks 4 and 3 also
to be rescheduled. Eventually, BTS concludes that 2 hosts
are required to complete the workflow within 30 time units.

4 Methodology

4.1 Synthetic Workflows

We rigorously evaluate the performance of our algorithm
with randomly generated synthetic workflows. We classify
the random workflows into two groups, based on their struc-
tures.

• Fully Random Workflows (FRW): Any task can be
connected to any other task. For every taska there is a
path from the entry task to taska and from taska to the
exit task. We use four parameters for synthesizing this
type of workflows; the number of tasks (N), the num-
ber of edges (E), range of execution time of each task
(T), and data transfer time of each edge (C). Each edge
connects two randomly selected tasks and the execu-
tion time of tasks are selected through random trials
with a uniform distribution over given ranges.

• Leveled Parallel Workflows (LPW):Workflows in this
group are structured so that only tasks in adjacent lev-
els can have dependencies. Five parameters are used
to represent these workflows: the number of tasks (N),
the number of levels (L), maximum parallelism (MP),
range of execution time of each task (T), data trans-
fer time of each edge (C). MP is the maximum degree
of parallelism of a workflow where the degree of par-
allelism of a level is the number of tasks in the level.
Any task in theith level can be the parent of a task in
the (i+1)th level. The execution time is selected via
uniform random trials. We also consider two cases: 1)
the execution time of tasks in the same level is homo-
geneous and 2) heterogeneous.

4.2 Algorithm Comparison

We use existing workflow scheduling algorithms that can
be used (or adapted) to estimate the needed resource capac-
ity to evaluate the efficiency of BTS.
• FU: FU determines the number of hosts by summing

up the execution times of all tasks divided by RFT.
This is the resource capacity required when all hosts
are fully utilized and data dependencies are ignored.
Even though this algorithm does not guarantee RFT,
it can calculate the lower bound on resource capacity
with constant time.

• IterHEFT: HEFT [] picks the task with the largest
value of(ET + DnLength) and schedules it on the
resource which can finish the task as early as possible.
In general, the workflow makespan monotonously de-
creases as more hosts are used for the scheduling (up
to the maximum parallelism of the workflow). There-
fore, we can determine the minimum number of hosts
required to finish a given workflow within a deadline
by repeating HEFT-based scheduling over a growing
resource set until the resulting makespan is equal to or
shorter than RFT.
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5 Experiments

5.1 Synthetic Fully Random Workflows

We evaluate the quality of BTS with respect to the
turnaround time and the estimated number of hosts, com-
paring to the other two approaches. The resource capacity
estimate against a variety of synthetic random workflows is
shown in Figure 3. Each bar represents the average estimate
of 30 workflows. The execution time of tasks is randomly
selected from 2 to 10 time units. The average data transfer
time of each edge is 1 time unit for the four groups on the
left and 6 time units for the four groups on the right.

First, BTS achieves good quality of estimate for fully
random workflows–close to optimal in that the estimate of
FU is considered the lower bound. Moreover, BTS performs
better than IterHEFT. The reason is that HEFT schedules
tasks as early as possible so that it can make the idle time
fragmented while BTS determines the task schedule in a
more flexible way in schedulable duration in order to mini-
mize the number of hosts.

Next, Table 1 summarizes the turnaround time of Iter-
HEFT and BTS measured on a PC having a 3Ghz CPU
and 2GB RAM. The results show that BTS is very efficient.
BTS takes less than 1 minute even with large workflows
having thousands of tasks and edges while IterHEFT takes
more than one hour. In summary, BTS outperforms Iter-
HEFT with respect to quality and cost.

5.2 Synthetic Leveled Parallel Workflows

We evaluate BTS and IterHEFT against leveled parallel
workflows consisting of tasks with heterogenous execution
time. The results are shown in Figure 4. Each workflow
has 1,000 tasks and 10 levels and the execution time of each
task ranges from 3 to 10 for the graphs at the top and from 7
to 10 for the graphs at the bottom. Data transfer time is 1 for
all cases. BTS achieves a similar quality of estimate to Iter-
HEFT. The main reason is that the tasks of leveled parallel
workflows at one level cannot share time slots with tasks at
different levels while the fully random workflow can have

Table 1. Estimate time(seconds)
Workflow complexity IterHEFT BTS

1000 tasks, 1000 edges 9.2 1.2

5000 tasks, 2000 edges 84.4 7.6

5000 tasks, 5000 edges 3914 36.1

tasks with wide schedulable durations. The two graphs on
the top show that the number of hosts is less than the max-
imum parallelism when the RFT is equal to the minimum
makespan because tasks with short execution time (e.g., 3
time units) at a level can be scheduled onto the same hosts
while the tasks with long execution times at the same level
are running.

Due to space limitations we do not present the results of
the evaluation of BTS and iterHEFT for LPW workflows
with homogeneous execution times. However, both algo-
rithms estimate exactly the same number of needed hosts
with BTS performing at least as well as iterHEFT.

6 Related Work

The main objective of workflow scheduling algorithms
is to minimize the makespan of a workflow for a given re-
source set. Many algorithms were developed [13, 29, 7]
such as list scheduling [25, 3, 21, 18], dividing a DAG into
several levels [20], greedy randomized adaptive search [4],
task duplication [19] and critical path first [25]. Different
from the conventional approaches which aim at minimizing
the makespan over limited resources, our goal is to find the
minimum resource set that satisfies a given deadline.

Another category is workflow scheduling over un-
bounded resources. In practice, clustering techniques [8]
such as DSC [26] and CASS-II [14] return the amount of
resources required to minimize the makespan as well as the
resulting schedules. To reduce the makespan, the cluster-
ing algorithms remove the data transfer between tasks with
data dependency by scheduling them onto the same clus-
ter. Similar to the conventional workflow scheduling algo-
rithms, their main focus is to minimize makespan. There-
fore, they cannot be used to explore the effect of application
deadline on the resource amount required for application.

Singh et al [22] and Yu et al [28] used a genetic algorithm
to find optimal task-resource mappings. Singh’s approach
minimizes both cost and makespan at the same time while
the Yu’s approach minimize only cost for a given deadline.
Time Distribution approach [27] distributes a deadline to
subgraphs and cost-optimization is performed for each sub-
graph. Conceptually, our problem can be thought as cost-
minimization with time constraint over unbound resources.
That is, our objective is to find a mechanism to estimate
the minimal resource set required for successful workflow
execution. The major difference between conventional cost-
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Figure 4. Comparison of BTS and IterHEFT for leveled parallel workflow with non-identical tasks.

minimization problems and our estimate is that they focus
mostly on selecting a subset from a limited resource set
whose properties such as unit cost and available time range
are known. In contrast, our approach assumes that the re-
source universe and the selection mechanism are opaque.

Sudarsanam et al [23] proposed a simple technique to es-
timate the amount of resources. They iteratively calculated
the makespan and utilization for numerous resource con-
figurations and determined the best one. Even though this
approach is likely to find an optimal solution, it does not
scale well to large workflows and large resource sets. Next,
Huang et al [10] proposed a mechanism for finding the min-
imum resource collection (RC) size to complete a workflow
within minimum execution time. A RC size is determined
by empirical data gathered from many sample workflows,
varying the parameters such as DAG size, communication-
computation ratio, parallelism, and regularity that charac-
terize workflows. Even though this approach provides rea-
sonable performance for workflows with similar character-
istics to those of the sample workflows, it does not guar-
antee that its estimates are correct for arbitrary workflows.
Additionally, parallelism and regularity cannot be calcu-
lated deterministically for workflows with a complex shape.
Due to such limitations, this approach is only useful for spe-
cific classes of workflows. In contrast, our algorithm can be
applied to any type of workflow since our algorithm directly
analyzes the workflow structure. Finally, our algorithm can
explore any finish times greater than the minimum execu-
tion time while Huang’s approach can be applied for the
minimum execution time.

7 Conclusions
In this paper, we proposed a new algorithm named BTS

which estimates the minimum resource capacity needed to
execute a workflow within a given deadline. This mech-
anism can bridge the gap between workflow management
systems and resource provisioning systems. Moreover, the
resource estimate is abstract and independent of the re-
source selection mechanism, so it can be easily integrated
with any resource description language and any resource
provisioning system even though our case study is con-
ducted in the context of a compute cloud. Through our ex-
periments with synthetic workflows, we demonstrated that
BTS can estimate the resource capacity very efficiently with
small overestimates, compared to the existing approaches.
It also scales comparatively well, giving a turnaround time
of only tens of seconds even with large workflows having
thousands of tasks and edges. This short turnaround time is
critical to the applications such as LEAD that need realtime
adaptation.

In this study, we assumed that each workflow task is
serial. Therefore, this estimate can be applied to applica-
tions such as parameter sweep studies. We understand that
many science applications include data-parallelism and that
a workflow task can be an MPI-like parallel task. We are
working on extending the BTS algorithm for this class of
applications by defining the task occupyingn hosts. In addi-
tion, we assumed that all resources required for a workflow
are available throughout the lifetime of application. How-
ever, holding all resources during the entire lifespan can
cause resources to be underutilized. Resource provision-



ing techniques such as the Virtual Grid [12] provide fine-
grained time-based resource reservation over heterogenous
resources. We believe that an extension of our algorithm
can exploit such advanced features of provisioning systems
and enable more cost-efficient workflow execution. Finally,
BTS doesn’t consider failures of resources which may cause
deadline misses. This problem may be handled by overpro-
visioning or computation restarts, but both may cause more
resource costs. We will expand BTS to handle such be-
haviors. In the future, we plan on evaluating the algorithm
on the cloud and integrating the Pegasus workflow manage-
ment system with the Virtual Grid to evaluate the approach
in real settings.
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