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Abstract 
 

 Distributed Virtual Computer (DVC) is a 
computing environment which simplifies the 
development and execution of distributed applications 
on computational grids. DVC provides a simple set of 
abstractions to simplify application management of 
naming, security, communication, and resource, easing 
use of highly dynamic and heterogeneous resource 
environments. These abstractions enable complex 
collections of grid resources to be used in a fashion 
similar to private user or workgroup resources. The 
DVC model is attractive for lambda-grids with circuit-
switched optical networks, providing a structure for 
exploiting unique communication and security 
properties. Examples of DVC’s include virtual clusters 
and virtual heterogeneous resource collections. We 
introduce the concept of a DVC, its system structure 
and mechanisms. We discuss the potential benefits of 
DVC’s for application programmers. 

 

1. Introduction 
 

 The past decade has seen dramatic growth in e-
science applications on distributed cyber-infrastructures 
in terms of number, scale, and complexity. Emerging 
scientific and engineering applications, such as analysis 
and virtualization of neuroscience, geophysical, or 
other forms of scientific data, require an aggregation of 
large-scale computing resources and geographically 
dispersed scientific data. The vision of “grid” 
computing [1] has emerged to meet the needs of such 
applications. Grid resources, such as computing 
clusters, petabyte data stores and other high-end 
scientific instruments in multiple organizations, can be 
securely shared through a Virtual Organization (VO) 
[2], enabling far greater computing and collaboration 
capabilities. A VO is a set of relationships and sharing 
policies that grant users access to resources across 
traditional organizational boundaries. VO’s are 
configured cooperatively amongst the IT administrators 

of the organizations, so their lifetime is long, months or 
even years.  
 When compared to either sequential or parallel 
programming, the difficulties in developing grid 
applications which efficiently exploit these complex 
and heterogeneous infrastructures are daunting [3]. 
Grid applications (and consequently grid application 
programmers) must contend with the complexity of a 
dynamic and untrustworthy resource environment 
spanning multiple administrative domains. Grid 
resources are heterogeneous, varying in performance, 
security, availability, and runtime behavior. In the face 
of these challenges, to be efficient, applications must 
identify and select appropriate resources rapidly, use 
them to achieve secure and robust performance, and 
even tolerate asynchronous changes in resource 
performance and availability. Though a number of 
research projects on programming tools are underway 
[4], these systems are far from delivering mature 
solutions to designers of grid applications who have 
little knowledge of grid environments and distributed 
systems issues. In the current environment, the system 
knowledge and programming effort implied are 
slowing the spread and deployment of grid 
applications. 
 We propose a new approach based on the notion of 
a Distributed Virtual Computer (DVC) which presents 
to the application a simple computing environment with 
complexity of use comparable to a local distributed 
environment. Our objective is to make it easy for 
inexperienced users to build high-performance, robust 
and secure grid applications without the need for them 
to understand complex grid resource environments. 
DVC’s use a distributed virtual machine model to 
simplify application models of naming, security, and 
performance while hiding the complexity that attends 
these issues in typical grid computing environments. A 
key distinguishing feature of DVC’s is to separate the 
configuration of resources from the application 
programming and execution. DVC’s allow users to 



bind a collection of grid resources prior to execution 
time, facilitating efficient resource discovery and 
selection. 
 The primary contributions of this paper are the 
conception, design, and analysis of the benefits of 
distributed virtual computers (DVC’s). Specifically 
these include: 

• a distributed virtual computer, expressed as a 
resource pool request, which provides the 
execution context for a grid application, 

• a simple namespace which enables convenient 
application process management, 

• an integrated set of communication primitives 
which coordinate with resource monitoring 
and management to provide simpler 
communication semantics, and 

• a simple security model which enables DVC’s 
to leverage existing Virtual Organization 
structures, but allows applications to manage 
distributed security within a single trust 
domain.   

 The advent of dynamic lambda circuits provides an 
opportunity to exploit optical lightpaths to establish 
dedicated multi-gigabit communication channels. These 
lambda-based networks are private and can be 
effectively formed on-demand. The DVC computing 
model can exploit such novel communication 
capabilities to dynamically construct high-performance 
and secure communication structures among grid 
resources, providing computing environments suitable 
for sophisticated scientific applications. Our work is 
part of the OptIPuter project [5], one such research 
effort to exploit availability of such networking 
technology in establishing a high-performance 
computing infrastructure. 
 The remainder of this paper is organized as 
follows: In Section 2, we discuss the challenges of 
developing applications on grids. In Section 3, we 
present the DVC model, comprising its fundamental 
concepts and system structure. In Section 4, we outline 
the key elements in a DVC. Section 5 gives two 
examples of DVC to make the concept concrete, and 
Section 6 relates DVC’s to other technologies in the 
grid space. We survey related work in Section 7, and 
close with a summary and future work in Section 8.  
 

2. Grid Programming Challenges  
 

 Many difficulties have emerged as application 
developers and users move from a local programming 
environment to a grid computing environment. 
Application developers must contend with grid 
environments that are distributed, heterogeneous, 
dynamic and even untrusted in terms of resources and 

networks involved. Grid resources vary in their types, 
capabilities, and runtime behaviors. They are drawn 
from a range of distributed resource providers that 
represent multiple administrative domains and may 
have different security and resource management 
policies and mechanisms imposed. 
 Grid application developers want to build 
applications that deliver high quality of service, 
capability, security, and are efficient in the use of 
resources. However, this is difficult for a number of 
reasons: 
 

• Shared Network: Communication cannot be 
trusted, necessitating the use of security 
mechanisms such as certificates, digital signatures, 
data encryption, etc. to ensure correct application 
behavior, data integrity and confidentiality. 
Managing a security infrastructure and correct use 
of these protocols is difficult, significantly 
increasing programming effort.  

• Best-effort Network: Availability and performance 
of the network is unpredictable, forcing applications 
to monitor performance and react or adapt to 
changes in its behavior (e.g. network congestion, 
unreachable end-point, etc.) to deliver predictable 
application service. This complicates the design and 
development of robust grid applications. 

• Heterogeneous Resource Naming: Grid resources 
often span multiple sites which impose diverse, site-
dependent resource naming mechanisms (e.g. full 
naming, dynamic and internal network address, and 
security credentials). Managing these heterogeneous 
names for resources complicates application 
programming.  

• Runtime Resource Allocation and Management: 
Applications must discover, select and allocate 
resources at run time. This activity is complex and 
time-consuming, involving heterogeneous access to 
multiple resource providers and negotiation which 
optimizes over diverse policies. 

 

 Directly grid applications need to achieve high 
levels of quality and capability, but must do so dealing 
with complex, heterogeneous, and badly behaving 
underlying services and resources. This makes grid 
programming even more difficult than traditional 
sequential, parallel, and even distributed computing. 
Our objective is to develop programming abstractions 
and tools which enable grid applications to be built and 
deployed in a more convenient way like in a local 

rivate distributed computing environment.  p  

3. Distributed Virtual Computer Overview 
 

 Distributed Virtual Computer (DVC) is a simple 
computing environment for developing distributed 



applications on computational grids. The DVC provides 
an abstraction layer that insulates application 
developers from the full complexity of building an 
adaptive, robust and secure application on a highly 
dynamic and heterogeneous grid. DVC’s provide 
applications with a single namespace, a single security 
domain, simple communication primitives, and simple 
resource management. Altogether, the resulting 
programming complexity is comparable to a workgroup 
or subnet. Key DVC abstractions include: 

• Single Namespace: A DVC provides a simple flat 
namespace for resources, masking physical 
location, network connection structure, protocol 
structure, or any site-specific naming mechanisms. 
This namespace can be grown, shrunk, subsetted or 
combined, allowing flexible usage.  

• Single Security Domain: The DVC computing 
model assumes each DVC is private to a single or 
group of users; DVC implementation mechanisms 
ensure it is secured as a private local distributed 
environment. Within the DVC, users have full 
control over their computing environments, and 
may choose to set various security management 
policies appropriate for specific users, applications, 
etc.  

• Simple Communication Primitives: A DVC 
provides a simple set of communication primitives 
defined against the simple namespace. These 
operations are coupled to DVC management and 
monitoring, and thus have a variety of convenient 
return codes in exceptional circumstances and 
enable novel communication capabilities to be 
exposed. 

• Simple Resource Management: DVC’s are initiated 
with a base set of resource requirements (end 
resources and network elements). These 
requirements are realized by configuration modules 
and runtime libraries that support DVC formation, 
freeing applications from these concerns. The 
resources bound into a DVC can be increased or 
reduced via explicit application control, and in some 
cases, resources can be transparently replaced in 
response to errors, revocations, or faults.  

  

 Figure 1 illustrates a high-level view of a DVC 
computing environment (shown at the bottom-left). The 
DVC environment can be viewed as a collection of 
computing resources assembled from several remote 
sites. These sites can span multiple administrative 
domains which each enforce distinct security and 
resource management policies. The DVC abstraction 
consists of a simple computing environment where the 
collected resources (or DVC resources) are tightly 
connected via a reliable, private network and controlled 

under one administrative domain (by DVC domain 
controller). The complexity of low-level site-specific 
management systems and diversity of resources are 
mitigated through the DVC abstractions. 
 A DVC domain controller serves as a resource 
manager, a security administrator, a communication 
mediator and a job manager of the user’s DVC 
environment. It also provides a virtualization service 
that enables consistent naming and access methods for 
DVC resources. A users can construct secure group 
communication structures among them, set various 
resource and security policies and mechanisms, as well 
as submit distributed jobs to run, via the DVC 
controller. Grid resource are reserved and bound into 
the DVC environment before an application is actually 
executed. During execution, a user may allocate or 
deallocate additional grid resources for the DVC. 

 

Figure 1. High-level view of DVC environment 
(RM represents resource manager) 

 

4. DVC Components 
 

 Realizing the DVC abstractions requires the 
cooperation of a number of high-level services and 
libraries, including resource naming, event monitoring, 
as well as security, communication, resource, and job 
execution management. In addition, the DVC 
computing environment provides application 
developers a set of convenient routines and their 
application interfaces (DVC APIs) to interact with 
these services (via the DVC domain controller). This 
section first presents a DVC domain controller, and 
then discusses each of these elements in further detail. 
 

4.1 DVC Domain Controller 
 

 The purpose of a DVC controller is to reduce the 
burden of a user in directly interacting with underlying 



complex management systems. It instead offers a set of 
simplified services that the user can use to configure 
and manage his computing environment appropriately 
to meet his application needs. The DVC domain 
controller is realized by a group of daemon processes 
cooperatively running on a user’s local host and remote 
resources. Once the user starts the DVC system on his 
local machine and initiates a new DVC environment, a 
single daemon, called a DVC manager, is created and 
associated with his DVC. The DVC manager takes a 
major responsibility in controlling and managing DVC. 
It acts as a resource broker that discovers, acquires, and 
binds resources into the DVC environment. It also 
serves as a DVC domain security authority, managing 
trust relationships and implementing security policies 
and mechanisms. In addition, the DVC manager 
monitors resources to detect failure or unreachability. 
When new resources are allocated into the DVC 
environment, the DVC manager spawns another 
daemon process, called a ghost manager, to run on 
each resource. The major function of the ghost manager 
is to enable the DVC computing environment at its 
attached resource and periodically report resource 
status (e.g. utilization, availability and currently 
running tasks) back to the DVC manager. The DVC 
manager and ghost managers periodically exchange 
DVC configuration and status information. If there are 
many users working on the same host, different DVC 
managers will be created and associated to individual 
users so that they cannot compromise one another’s 
computation.  

 

Figure 2. DVC Descriptor Structure 
 

 The DVC manager maintains a DVC descriptor 
which contains the state of a DVC (see Figure 2). The 
descriptor includes information about DVC resources, 
the ghost managers on those resources, the active jobs, 
and subscribed event handlers. In addition, the 

descriptor maintains DVC configuration, including 
resource, communication, and security.  
 

4.2 Resource Naming and Namespace Management 
 

 DVC naming provides a flat namespace, and a set 
of naming operations, simplifying computation over a 
highly complex grid computing environment. 
Specifically, to reduce the complexity of handling 
diverse low-level naming mechanisms, a new unique 
name, called ZoRN (Zero-origin Resource Name), is 
generated and assigned to each newly allocated 
resource. The ZoRN is a simple and location-
independent name used internally within the DVC 
environment. Users and applications can access and 
employ grid resources via their respective ZoRNs and 
query their detailed information (e.g. physical location 
and supported services) via simple APIs. In grid 
environments, computing resources are widely 
available and they are often interchangeable. To 
compete with dynamic application needs and 
unexpected system failures, DVC resources can be 
effectively and transparently replaced. A ZoRN can be 
associated with different physical resources over time 
while its presence remains intact. Hence, from the 
applications’ perspective, grid resources within a DVC 
environment are as reliable and easily accessible as 
they are in a local distributed environment. 
 Initially, all resources are bound into a single 
namespace. Users can create hierarchical or other 
structures using these names. DVC’s allow operations 
on sets of these names, enabling convenient description 
of relationships among resources. For example, a set of 
names is a natural basis for describing trust or 
communication mechanisms (see Section 4.3). A set of 
names is also a natural way to limit a scope in which 
security, performance or other policy control domains 
are applied.  
 

4.3 Communication  
 

 DVC provides a simple set of communication 
primitives defined against the simple namespace. There 
are numerous potential novel network capabilities that 
can be expressed through the DVC model; here we 
focus on three. First, many dedicated optical networks 
and virtual private network [6] technologies enable 
easy construction of groups of connected endpoints. 
This type of private network is directly relevant to 
many applications anticipated for DVC's, and enables a 
range of optimized group protocols for fast transport [7, 
8]. Second, researchers are exploring optical/photonic 
level multicast techniques which could also be naturally 
expressed and managed as part of the groups of 
endpoints [9], though IP multicast groups and naming 
could also be employed as an interface. Third, radical 



communication architectures, such as LambdaRAM 
[10] could also be expressed in our DVC 
communication architecture, supporting remote 
memory access (RMA) via a high-speed network 
through a simple put/get model. We believe there are 
numerous other special communication capabilities 
which DVC's can express in a fashion that enables easy 
use, and underlying implementation. 
 The ability to collect sets of names allows novel 
communication semantics to be exposed. For instance, 
to establish a private network, a set of end-points can 
be declared as requiring a private connection and 
choose a private network technology to apply. In 
response, the DVC controller checks the possibility of 
such configuration and, if feasible, it manages to 
establish the private connection with the required 
properties. In case of creating a physically private 
network like a dedicated optical network, the DVC 
controller may need to contact the controller of the 
underlying network infrastructure to negotiate, allocate 
and reserve for network resources, including photonic 
switches and light paths. Note that DVC’s separate 
configuration and execution, so DVC’s can support 
legacy applications while exploiting on-demand optical 
network capabilities.  
 

4.4 Security Management  
 

 Each DVC is private to a single or a group of 
users. Under a single privilege, a user has full control 
over the DVC. Security domains can be formed across 
a subset of resources in a namespace. Using DVC 
primitives, a user can define the level of security and 
trust amongst resources, including the network. Three 
security options for network trust are available: 1) 
trusted network and resources; 2) trusted network and 
untrusted resources; or 3) untrusted network and 
resources. Users may also also set finer grained access 
control for individual resources and security domains. 
Based on the configured trust relation, the DVC domain 
controller selects and implements appropriate security 
mechanisms prior to application runtime. During actual 
execution, the applications can assume a secure 
communicating environment, as comparable to a closed 

rivate network.  p  

4.5 Resource Management 
 

 A DVC includes a resource management service, 
whose main tasks are to allocate/deallocate grid 
resources and to manage their utilization within the 
DVC environment. The DVC supports runtime libraries 
that application developers can use to interact with this 
service. These libraries allow the application 
developers to set various resource management policies 
for their computing environments and to explicitly 

allocate and manage individual resources. The resource 
management service is realized by the cooperation of 
the DVC and ghost managers. In the resource allocation 
process, the DVC manager serves as a resource broker 
that inputs a specification of desired resources from a 
user and subsequently discovers, reserves and binds the 
matching resources with the DVC. The DVC model 
supports an aggregation of any kind of network-
enabled resources that allow creating of a process on 
them. Once a new resource is allocated, a lightweight-
process ghost manager is created to run on it. The ghost 
managers enable a simple view of resources as they 
mask resource diversity and complexity and provide a 
consistent way to interact with them. Throughout 
application execution, the DVC manager and the ghost 
managers monitor utilization and availability of DVC 
resources. It appropriately adjusts the computing 
environment, allocating/deallocating DVC resources, in 
response to the dynamic application needs. 
Furthermore, DVC resources can be transparently 
replaced in case of resource failure or connection 
breakdown.  
 All these services shield application developers 
from interacting with remote resource providers and 
handling low-level management systems. Even though 
it requires an effort of a user in the resource 
configuration process, once constructed the DVC 
environment can be viewed as a collection of 
computing resources bound up under a single resource 
management domain, as in a typical local distributed 
environment.  
 

4.6 Event Monitoring 
 

 To enable the development of robust applications 
on grids, DVC supports an event subscribe/notification 
and asynchronous message services. These services 
allow applications to respond to asynchronous changes 
in networks and remote resources or let the DVC 
controller handle them based on the previously agreed 
policy. In the first case, developers can request the 
DVC controller to send them and/or their applications a 
notification message on an occurrence of particular 
events. The user can also specify the tasks to be 
executed in response to these events. In the latter case, 
the DVC controller has ability to dynamically perform 
process migration and resource reallocation, as 
appropriate. These capabilities will help hide the 
unpredictable and dynamic nature of grid environments 
and present a view of reliable computing environments, 
as is our goal. 
 

4  
.7 Job Execution Management 

 The DVC manager facilitates efficient and reliable 
execution of a user’s jobs. It schedules jobs to run on 



distributed resources under the DVC environment 
based on their priority, submission time and other 
applicable policy. It also mediates communication 
among remote jobs and supports job restart and 
migration in case of unexpected execution failure or 
resource unavailability.  
 When an application is started, the DVC manager 
selects computing resources from the DVC resource 
pool and binds them up with the application. When the 
application spawns computing tasks to run on remote 
resources, the DVC manager contacts the 
corresponding ghost managers to invoke processes on 
the chosen resources.   
 

4.8 DVC Application Interface 
 

 A DVC provides a set of convenient routines and 
their interfaces for application developers to interact 
with the DVC domain controller and the DVC services. 
These include DVC configuration modules and runtime 
libraries we have discussed in the section. Besides 
DVC-related routines, a DVC supplies fundamental 
programming tools necessary for developing parallel 
and distributed applications on grids.  
 

5. Example Distributed Virtual Computers 
 

 We discuss several use cases for DVC, describing 
their structures and potential advantages.  
 

5.1 Virtual Cluster 
 

 In a typical cluster environment, a collection of 
computing resources are logically grouped under a 
single administrative domain and controlled by a 
centralized resource management system. These 
computing resources, such as computing nodes and 
disk storages, are generic and interchangeable, though 
they may be heterogeneous in capability.  
 DVC can allow traditional cluster computing 
models to be used on the grid. A cluster DVC can 
assemble a large set of distributed computing resources 
from multiple organizations, coupled with a high-speed 
wide-area network, and allow them to be centrally 
managed under a single security domain. Additionally, 
a cluster DVC can supply virtualization and naming 
services that hide the complexity of highly dynamic and 
heterogeneous resource environment and simulates the 
view of a typical resource cluster, coupled by a close, 
reliable network. Potential advantages include ease of 
use, and exploitation of geographically distributed 
resources for both larger-scale computing cluster and 
geographic failure tolerance.  
 

5.2 Heterogeneous Resources (Virtual Collection) 
 

 For many grid applications, an assemblage of 
heterogeneous resources (e.g. special data, scientific 

instrument, virtualization devices, etc.) is useful. These 
resource aggregations are similar to clusters, but these 
resources are not always interchangeable because of 
their unique capabilities.  
 With DVC, a heterogeneous resource collection 
can be effectively and conveniently created on the grid 
for a group of users participating in a run. The virtual 
collection DVC would use the specification from the 
user to discover and select remote grid resources, and 
bind them into the DVC. The DVC also includes 
naming and virtualization services (see Section 4.2 and 
4.5) that enable standard view of these distributed set of 
diverse resources, and to establish a complex secure 
communicating structure among them. Potential 
advantages include simplicity of use and convenient 
expression of a shared configuration for addressing 
various performance and security needs.  
 

 

User 2

User 1

Figure 3. Two DVC computing environments established from two 
sets of dedicated lambda links  

 

6. DVC’s and Other Grid Technologies   

 The DVC model can be applied to all types of 
grids, but our initial focus is to employ it on lambda-
based grids, where a collection of distributed resources 
are interconnected by dedicated dense wavelength 
division multiplexing (DWDM) optical paths (or 
lambda network). These communication channels are 
private and provide paths without routers or switches. 
As compared to a shared, packet-switched network, like 
open Internet, the lambda network allows higher-speed 
and more reliable data communication. The circuit-
switched lambda can be configured on-demand to form 
private end-to-end and multi-endpoint networks, 
suitable for creating high-performance and secure 
computing environments. We anticipate DVC’s as 
secure collections of computing and storage resources 
that span multiple administrative domains and are 
coupled by these high-speed dedicated optical 
connections. Figure 3 illustrates two DVC 
environments established from two lambda networks. 
In this scenario, two users allocate resources 
dynamically to form DVC’s including computing 
resources from multiple sites. Within DVC’s, 



applications can utilize remote resources directly and 
securely with high-performance.  
 As discussed earlier, we are exploring several new 
primitives to expose novel communication capabilities 
provided by bandwidth-rich lambda networks. These 
include high-speed optical multicast and group 
communication. We believe that these primitives will 
be needed in the future and will enable a wide range of 
new high-performance distributed applications.  
 The DVC model relies on grid technologies in 
many areas, including resource management, security, 
communication, and data movement. We leverage 
existing grid middleware for basic resource access, but 
innovate to extract the maximum benefits from the 
opportunity of lambda-based grids. In our 
implementation of DVC’s we exploit the Globus 
Toolkit [11] which provides fundamental grid services 
for resource discovery [12], remote resource allocation 
[13] and data movement [14]. It also defines Grid 
Security Infrastructure (GSI) [15] that provides 
standard mechanisms for authentication, authorization 
and secure job invocation. DVC’s leverage these grid 
components to implement DVC abstractions and make 
more application-oriented services available to 
developers. 
 

7. Related Work 
 

 A wide variety of work is relevant to DVC; here 
we briefly survey the most relevant. 
 PVM [16] is a portable message-passing system 
which provides a simple user-environment for 
distributed computing. Both DVC and PVM provide an 
abstraction layer that enables the development of 
distributed applications on diverse computer systems. 
Traditional PVM assumes a single administrative 
domain, and does not explicitly address security and 
unique communication capabilities. In contrast, DVC is 
designed to span multiple administrative domains, and 
also to support unique communication structures.  
 A Globus “Virtual Organization” [2] is a set of 
relationships and sharing policies that permit 
coordinated use of grid resources from multiple 
organizations by a community of users. However, its 
construction requires agreement of all participating 
organizations, so change is slow. The Community 
Authorization Service (CAS) [17] is a VO-enabled 
service that eliminates the needs of direct contact 
between resource providers, providing a community as 
a first class identity. The DVC model essentially 
assumes an existence of VO and CAS, but is a dynamic 
application instance oriented structure. It is easily 
instantiated within a VO by a single user, and comes 
and goes dynamically with single application runs.  

 A number of grid programming tools have 
emerged from traditional parallel and distributed 
computing paradigms. Tools, such as MPICH-G2 [18] 
and GridRPC [19], use the Globus services to operate 
in grid environments. These systems are limited in their 
capabilities due to their heritage. For instance, MPICH-
G2 assumes a static environment and does not support 
secure inter-process communication. GridRPC doesn’t 
support convenient use of process collections. In 
contrast, the DVC enable flexible construction and 
adaptation of groups of processes.  
 Condor-G [20] is a computation management 
system for compute-intensive jobs on multi-
organizational grids. Both the DVC and Condor-G 
systems leverage the Globus system in harnessing grid 
resources and support hosting environments and job 
execution on remote resources. In Condor-G all 
resources share the same level of trust and 
communication is implicit, in direct contrast to the 
DVC model which enables description of complex 
multi-party communication and trust. Unlike DVC 
applications, those in Condor cannot take advantages of 
topology-aware and unique communication 
capabilities. 
 The European DataGrid [21] is developing and 
deploying grid middleware to support computation and 
management of large-scale scientific datasets. Their 
middleware makes use of Condor-G for submission and 
management of batch and interactive jobs. Parallel 
(MPI) jobs are allowed, but they run across local 
computer elements within an administrative domain. 
This is in direct contrast to the DVC model which 
spans multiple administrative domains. Furthermore, 
the interaction among jobs in DataGrid is only pairwise 
and asynchronous, and thus well matched to the 
underlying GSI capabilities. 
 The GrADS [22] and GridLab [23] projects share 
the same general goal as DVC – to simplify the 
development of grid applications. The GrADS project 
supports the building of configurable object programs, 
while the GridLab project aims to provide application-
oriented grid services. These are innovative, ambitious 
efforts. The DVC takes a lower-level approach, 
providing only an execution environment which 
provides a simple view of a local distributed computing 
environment. 
 

8. Summary and Future Work 
 

 We have presented DVC as a computing 
environment that provides a set of abstractions to 
simplify the development and execution of secure and 
robust applications on grids. Grid resources can be 
bound up within a DVC environment and expressed 
through a single administrative domain. This enables 



applications to view their environment as a local private 
distributed computing environment with predictable  
computation performance. The major benefits arising 
from using DVC’s include: simplified view of security 
and naming mechanisms as well as efficient runtime 
resource selection and binding. 
 Our effort in developing the DVC model is 
motivated by the novel communication capabilities 
provided by lambda circuit-switched networks. 
Specifically, the dynamic lambda circuits allow on-
demand construction of bandwidth-rich dedicated 
networks that can effectively interconnect 
geographically distributed resources, forming high-
performance and secure grid computing environments.  
 Our future work is to make the DVC design more 
concrete and to build a full implementation of DVC’s. 
These implementations will build on existing grid 
services and a wide range of new protocol, optical 
circuit switching, real-time, and security technology 
being developed in the OptIPuter project [5].  
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