
Distributed Virtual Computers (DVC): Simplifying the Development of High
Performance Grid Applications

Nut Taesombut and Andrew A. Chien
Department of Computer Science and Engineering

University of California at San Diego
{ntaesomb,achien}@ucsd.edu

Abstract

 Distributed Virtual Computer (DVC) is a
computing environment which simplifies the
development and execution of distributed applications
on computational grids. DVC provides a simple set of
abstractions to simplify application management of
naming, security, communication, and resource, easing
use of highly dynamic and heterogeneous resource
environments. These abstractions enable complex
collections of grid resources to be used in a fashion
similar to private user or workgroup resources. The
DVC model is attractive for lambda-grids with circuit-
switched optical networks, providing a structure for
exploiting unique communication and security
properties. Examples of DVC’s include virtual clusters
and virtual heterogeneous resource collections. We
introduce the concept of a DVC, its system structure
and mechanisms. We discuss the potential benefits of
DVC’s for application programmers.

1. Introduction

 The past decade has seen dramatic growth in e-
science applications on distributed cyber-infrastructures
in terms of number, scale, and complexity. Emerging
scientific and engineering applications, such as analysis
and virtualization of neuroscience, geophysical, or
other forms of scientific data, require an aggregation of
large-scale computing resources and geographically
dispersed scientific data. The vision of “grid”
computing [1] has emerged to meet the needs of such
applications. Grid resources, such as computing
clusters, petabyte data stores and other high-end
scientific instruments in multiple organizations, can be
securely shared through a Virtual Organization (VO)
[2], enabling far greater computing and collaboration
capabilities. A VO is a set of relationships and sharing
policies that grant users access to resources across
traditional organizational boundaries. VO’s are
configured cooperatively amongst the IT administrators

of the organizations, so their lifetime is long, months or
even years.
 When compared to either sequential or parallel
programming, the difficulties in developing grid
applications which efficiently exploit these complex
and heterogeneous infrastructures are daunting [3].
Grid applications (and consequently grid application
programmers) must contend with the complexity of a
dynamic and untrustworthy resource environment
spanning multiple administrative domains. Grid
resources are heterogeneous, varying in performance,
security, availability, and runtime behavior. In the face
of these challenges, to be efficient, applications must
identify and select appropriate resources rapidly, use
them to achieve secure and robust performance, and
even tolerate asynchronous changes in resource
performance and availability. Though a number of
research projects on programming tools are underway
[4], these systems are far from delivering mature
solutions to designers of grid applications who have
little knowledge of grid environments and distributed
systems issues. In the current environment, the system
knowledge and programming effort implied are
slowing the spread and deployment of grid
applications.
 We propose a new approach based on the notion of
a Distributed Virtual Computer (DVC) which presents
to the application a simple computing environment with
complexity of use comparable to a local distributed
environment. Our objective is to make it easy for
inexperienced users to build high-performance, robust
and secure grid applications without the need for them
to understand complex grid resource environments.
DVC’s use a distributed virtual machine model to
simplify application models of naming, security, and
performance while hiding the complexity that attends
these issues in typical grid computing environments. A
key distinguishing feature of DVC’s is to separate the
configuration of resources from the application
programming and execution. DVC’s allow users to

bind a collection of grid resources prior to execution
time, facilitating efficient resource discovery and
selection.
 The primary contributions of this paper are the
conception, design, and analysis of the benefits of
distributed virtual computers (DVC’s). Specifically
these include:

• a distributed virtual computer, expressed as a
resource pool request, which provides the
execution context for a grid application,

• a simple namespace which enables convenient
application process management,

• an integrated set of communication primitives
which coordinate with resource monitoring
and management to provide simpler
communication semantics, and

• a simple security model which enables DVC’s
to leverage existing Virtual Organization
structures, but allows applications to manage
distributed security within a single trust
domain.

 The advent of dynamic lambda circuits provides an
opportunity to exploit optical lightpaths to establish
dedicated multi-gigabit communication channels. These
lambda-based networks are private and can be
effectively formed on-demand. The DVC computing
model can exploit such novel communication
capabilities to dynamically construct high-performance
and secure communication structures among grid
resources, providing computing environments suitable
for sophisticated scientific applications. Our work is
part of the OptIPuter project [5], one such research
effort to exploit availability of such networking
technology in establishing a high-performance
computing infrastructure.
 The remainder of this paper is organized as
follows: In Section 2, we discuss the challenges of
developing applications on grids. In Section 3, we
present the DVC model, comprising its fundamental
concepts and system structure. In Section 4, we outline
the key elements in a DVC. Section 5 gives two
examples of DVC to make the concept concrete, and
Section 6 relates DVC’s to other technologies in the
grid space. We survey related work in Section 7, and
close with a summary and future work in Section 8.

2. Grid Programming Challenges

 Many difficulties have emerged as application
developers and users move from a local programming
environment to a grid computing environment.
Application developers must contend with grid
environments that are distributed, heterogeneous,
dynamic and even untrusted in terms of resources and

networks involved. Grid resources vary in their types,
capabilities, and runtime behaviors. They are drawn
from a range of distributed resource providers that
represent multiple administrative domains and may
have different security and resource management
policies and mechanisms imposed.
 Grid application developers want to build
applications that deliver high quality of service,
capability, security, and are efficient in the use of
resources. However, this is difficult for a number of
reasons:

• Shared Network: Communication cannot be
trusted, necessitating the use of security
mechanisms such as certificates, digital signatures,
data encryption, etc. to ensure correct application
behavior, data integrity and confidentiality.
Managing a security infrastructure and correct use
of these protocols is difficult, significantly
increasing programming effort.

• Best-effort Network: Availability and performance
of the network is unpredictable, forcing applications
to monitor performance and react or adapt to
changes in its behavior (e.g. network congestion,
unreachable end-point, etc.) to deliver predictable
application service. This complicates the design and
development of robust grid applications.

• Heterogeneous Resource Naming: Grid resources
often span multiple sites which impose diverse, site-
dependent resource naming mechanisms (e.g. full
naming, dynamic and internal network address, and
security credentials). Managing these heterogeneous
names for resources complicates application
programming.

• Runtime Resource Allocation and Management:
Applications must discover, select and allocate
resources at run time. This activity is complex and
time-consuming, involving heterogeneous access to
multiple resource providers and negotiation which
optimizes over diverse policies.

 Directly grid applications need to achieve high
levels of quality and capability, but must do so dealing
with complex, heterogeneous, and badly behaving
underlying services and resources. This makes grid
programming even more difficult than traditional
sequential, parallel, and even distributed computing.
Our objective is to develop programming abstractions
and tools which enable grid applications to be built and
deployed in a more convenient way like in a local

rivate distributed computing environment. p

3. Distributed Virtual Computer Overview

 Distributed Virtual Computer (DVC) is a simple
computing environment for developing distributed

applications on computational grids. The DVC provides
an abstraction layer that insulates application
developers from the full complexity of building an
adaptive, robust and secure application on a highly
dynamic and heterogeneous grid. DVC’s provide
applications with a single namespace, a single security
domain, simple communication primitives, and simple
resource management. Altogether, the resulting
programming complexity is comparable to a workgroup
or subnet. Key DVC abstractions include:

• Single Namespace: A DVC provides a simple flat
namespace for resources, masking physical
location, network connection structure, protocol
structure, or any site-specific naming mechanisms.
This namespace can be grown, shrunk, subsetted or
combined, allowing flexible usage.

• Single Security Domain: The DVC computing
model assumes each DVC is private to a single or
group of users; DVC implementation mechanisms
ensure it is secured as a private local distributed
environment. Within the DVC, users have full
control over their computing environments, and
may choose to set various security management
policies appropriate for specific users, applications,
etc.

• Simple Communication Primitives: A DVC
provides a simple set of communication primitives
defined against the simple namespace. These
operations are coupled to DVC management and
monitoring, and thus have a variety of convenient
return codes in exceptional circumstances and
enable novel communication capabilities to be
exposed.

• Simple Resource Management: DVC’s are initiated
with a base set of resource requirements (end
resources and network elements). These
requirements are realized by configuration modules
and runtime libraries that support DVC formation,
freeing applications from these concerns. The
resources bound into a DVC can be increased or
reduced via explicit application control, and in some
cases, resources can be transparently replaced in
response to errors, revocations, or faults.

 Figure 1 illustrates a high-level view of a DVC
computing environment (shown at the bottom-left). The
DVC environment can be viewed as a collection of
computing resources assembled from several remote
sites. These sites can span multiple administrative
domains which each enforce distinct security and
resource management policies. The DVC abstraction
consists of a simple computing environment where the
collected resources (or DVC resources) are tightly
connected via a reliable, private network and controlled

under one administrative domain (by DVC domain
controller). The complexity of low-level site-specific
management systems and diversity of resources are
mitigated through the DVC abstractions.
 A DVC domain controller serves as a resource
manager, a security administrator, a communication
mediator and a job manager of the user’s DVC
environment. It also provides a virtualization service
that enables consistent naming and access methods for
DVC resources. A users can construct secure group
communication structures among them, set various
resource and security policies and mechanisms, as well
as submit distributed jobs to run, via the DVC
controller. Grid resource are reserved and bound into
the DVC environment before an application is actually
executed. During execution, a user may allocate or
deallocate additional grid resources for the DVC.

Figure 1. High-level view of DVC environment
(RM represents resource manager)

4. DVC Components

 Realizing the DVC abstractions requires the
cooperation of a number of high-level services and
libraries, including resource naming, event monitoring,
as well as security, communication, resource, and job
execution management. In addition, the DVC
computing environment provides application
developers a set of convenient routines and their
application interfaces (DVC APIs) to interact with
these services (via the DVC domain controller). This
section first presents a DVC domain controller, and
then discusses each of these elements in further detail.

4.1 DVC Domain Controller

 The purpose of a DVC controller is to reduce the
burden of a user in directly interacting with underlying

complex management systems. It instead offers a set of
simplified services that the user can use to configure
and manage his computing environment appropriately
to meet his application needs. The DVC domain
controller is realized by a group of daemon processes
cooperatively running on a user’s local host and remote
resources. Once the user starts the DVC system on his
local machine and initiates a new DVC environment, a
single daemon, called a DVC manager, is created and
associated with his DVC. The DVC manager takes a
major responsibility in controlling and managing DVC.
It acts as a resource broker that discovers, acquires, and
binds resources into the DVC environment. It also
serves as a DVC domain security authority, managing
trust relationships and implementing security policies
and mechanisms. In addition, the DVC manager
monitors resources to detect failure or unreachability.
When new resources are allocated into the DVC
environment, the DVC manager spawns another
daemon process, called a ghost manager, to run on
each resource. The major function of the ghost manager
is to enable the DVC computing environment at its
attached resource and periodically report resource
status (e.g. utilization, availability and currently
running tasks) back to the DVC manager. The DVC
manager and ghost managers periodically exchange
DVC configuration and status information. If there are
many users working on the same host, different DVC
managers will be created and associated to individual
users so that they cannot compromise one another’s
computation.

Figure 2. DVC Descriptor Structure

 The DVC manager maintains a DVC descriptor
which contains the state of a DVC (see Figure 2). The
descriptor includes information about DVC resources,
the ghost managers on those resources, the active jobs,
and subscribed event handlers. In addition, the

descriptor maintains DVC configuration, including
resource, communication, and security.

4.2 Resource Naming and Namespace Management

 DVC naming provides a flat namespace, and a set
of naming operations, simplifying computation over a
highly complex grid computing environment.
Specifically, to reduce the complexity of handling
diverse low-level naming mechanisms, a new unique
name, called ZoRN (Zero-origin Resource Name), is
generated and assigned to each newly allocated
resource. The ZoRN is a simple and location-
independent name used internally within the DVC
environment. Users and applications can access and
employ grid resources via their respective ZoRNs and
query their detailed information (e.g. physical location
and supported services) via simple APIs. In grid
environments, computing resources are widely
available and they are often interchangeable. To
compete with dynamic application needs and
unexpected system failures, DVC resources can be
effectively and transparently replaced. A ZoRN can be
associated with different physical resources over time
while its presence remains intact. Hence, from the
applications’ perspective, grid resources within a DVC
environment are as reliable and easily accessible as
they are in a local distributed environment.
 Initially, all resources are bound into a single
namespace. Users can create hierarchical or other
structures using these names. DVC’s allow operations
on sets of these names, enabling convenient description
of relationships among resources. For example, a set of
names is a natural basis for describing trust or
communication mechanisms (see Section 4.3). A set of
names is also a natural way to limit a scope in which
security, performance or other policy control domains
are applied.

4.3 Communication

 DVC provides a simple set of communication
primitives defined against the simple namespace. There
are numerous potential novel network capabilities that
can be expressed through the DVC model; here we
focus on three. First, many dedicated optical networks
and virtual private network [6] technologies enable
easy construction of groups of connected endpoints.
This type of private network is directly relevant to
many applications anticipated for DVC's, and enables a
range of optimized group protocols for fast transport [7,
8]. Second, researchers are exploring optical/photonic
level multicast techniques which could also be naturally
expressed and managed as part of the groups of
endpoints [9], though IP multicast groups and naming
could also be employed as an interface. Third, radical

communication architectures, such as LambdaRAM
[10] could also be expressed in our DVC
communication architecture, supporting remote
memory access (RMA) via a high-speed network
through a simple put/get model. We believe there are
numerous other special communication capabilities
which DVC's can express in a fashion that enables easy
use, and underlying implementation.
 The ability to collect sets of names allows novel
communication semantics to be exposed. For instance,
to establish a private network, a set of end-points can
be declared as requiring a private connection and
choose a private network technology to apply. In
response, the DVC controller checks the possibility of
such configuration and, if feasible, it manages to
establish the private connection with the required
properties. In case of creating a physically private
network like a dedicated optical network, the DVC
controller may need to contact the controller of the
underlying network infrastructure to negotiate, allocate
and reserve for network resources, including photonic
switches and light paths. Note that DVC’s separate
configuration and execution, so DVC’s can support
legacy applications while exploiting on-demand optical
network capabilities.

4.4 Security Management

 Each DVC is private to a single or a group of
users. Under a single privilege, a user has full control
over the DVC. Security domains can be formed across
a subset of resources in a namespace. Using DVC
primitives, a user can define the level of security and
trust amongst resources, including the network. Three
security options for network trust are available: 1)
trusted network and resources; 2) trusted network and
untrusted resources; or 3) untrusted network and
resources. Users may also also set finer grained access
control for individual resources and security domains.
Based on the configured trust relation, the DVC domain
controller selects and implements appropriate security
mechanisms prior to application runtime. During actual
execution, the applications can assume a secure
communicating environment, as comparable to a closed

rivate network. p

4.5 Resource Management

 A DVC includes a resource management service,
whose main tasks are to allocate/deallocate grid
resources and to manage their utilization within the
DVC environment. The DVC supports runtime libraries
that application developers can use to interact with this
service. These libraries allow the application
developers to set various resource management policies
for their computing environments and to explicitly

allocate and manage individual resources. The resource
management service is realized by the cooperation of
the DVC and ghost managers. In the resource allocation
process, the DVC manager serves as a resource broker
that inputs a specification of desired resources from a
user and subsequently discovers, reserves and binds the
matching resources with the DVC. The DVC model
supports an aggregation of any kind of network-
enabled resources that allow creating of a process on
them. Once a new resource is allocated, a lightweight-
process ghost manager is created to run on it. The ghost
managers enable a simple view of resources as they
mask resource diversity and complexity and provide a
consistent way to interact with them. Throughout
application execution, the DVC manager and the ghost
managers monitor utilization and availability of DVC
resources. It appropriately adjusts the computing
environment, allocating/deallocating DVC resources, in
response to the dynamic application needs.
Furthermore, DVC resources can be transparently
replaced in case of resource failure or connection
breakdown.
 All these services shield application developers
from interacting with remote resource providers and
handling low-level management systems. Even though
it requires an effort of a user in the resource
configuration process, once constructed the DVC
environment can be viewed as a collection of
computing resources bound up under a single resource
management domain, as in a typical local distributed
environment.

4.6 Event Monitoring

 To enable the development of robust applications
on grids, DVC supports an event subscribe/notification
and asynchronous message services. These services
allow applications to respond to asynchronous changes
in networks and remote resources or let the DVC
controller handle them based on the previously agreed
policy. In the first case, developers can request the
DVC controller to send them and/or their applications a
notification message on an occurrence of particular
events. The user can also specify the tasks to be
executed in response to these events. In the latter case,
the DVC controller has ability to dynamically perform
process migration and resource reallocation, as
appropriate. These capabilities will help hide the
unpredictable and dynamic nature of grid environments
and present a view of reliable computing environments,
as is our goal.

4
.7 Job Execution Management

 The DVC manager facilitates efficient and reliable
execution of a user’s jobs. It schedules jobs to run on

distributed resources under the DVC environment
based on their priority, submission time and other
applicable policy. It also mediates communication
among remote jobs and supports job restart and
migration in case of unexpected execution failure or
resource unavailability.
 When an application is started, the DVC manager
selects computing resources from the DVC resource
pool and binds them up with the application. When the
application spawns computing tasks to run on remote
resources, the DVC manager contacts the
corresponding ghost managers to invoke processes on
the chosen resources.

4.8 DVC Application Interface

 A DVC provides a set of convenient routines and
their interfaces for application developers to interact
with the DVC domain controller and the DVC services.
These include DVC configuration modules and runtime
libraries we have discussed in the section. Besides
DVC-related routines, a DVC supplies fundamental
programming tools necessary for developing parallel
and distributed applications on grids.

5. Example Distributed Virtual Computers

 We discuss several use cases for DVC, describing
their structures and potential advantages.

5.1 Virtual Cluster

 In a typical cluster environment, a collection of
computing resources are logically grouped under a
single administrative domain and controlled by a
centralized resource management system. These
computing resources, such as computing nodes and
disk storages, are generic and interchangeable, though
they may be heterogeneous in capability.
 DVC can allow traditional cluster computing
models to be used on the grid. A cluster DVC can
assemble a large set of distributed computing resources
from multiple organizations, coupled with a high-speed
wide-area network, and allow them to be centrally
managed under a single security domain. Additionally,
a cluster DVC can supply virtualization and naming
services that hide the complexity of highly dynamic and
heterogeneous resource environment and simulates the
view of a typical resource cluster, coupled by a close,
reliable network. Potential advantages include ease of
use, and exploitation of geographically distributed
resources for both larger-scale computing cluster and
geographic failure tolerance.

5.2 Heterogeneous Resources (Virtual Collection)

 For many grid applications, an assemblage of
heterogeneous resources (e.g. special data, scientific

instrument, virtualization devices, etc.) is useful. These
resource aggregations are similar to clusters, but these
resources are not always interchangeable because of
their unique capabilities.
 With DVC, a heterogeneous resource collection
can be effectively and conveniently created on the grid
for a group of users participating in a run. The virtual
collection DVC would use the specification from the
user to discover and select remote grid resources, and
bind them into the DVC. The DVC also includes
naming and virtualization services (see Section 4.2 and
4.5) that enable standard view of these distributed set of
diverse resources, and to establish a complex secure
communicating structure among them. Potential
advantages include simplicity of use and convenient
expression of a shared configuration for addressing
various performance and security needs.

User 2

User 1

Figure 3. Two DVC computing environments established from two
sets of dedicated lambda links

6. DVC’s and Other Grid Technologies

 The DVC model can be applied to all types of
grids, but our initial focus is to employ it on lambda-
based grids, where a collection of distributed resources
are interconnected by dedicated dense wavelength
division multiplexing (DWDM) optical paths (or
lambda network). These communication channels are
private and provide paths without routers or switches.
As compared to a shared, packet-switched network, like
open Internet, the lambda network allows higher-speed
and more reliable data communication. The circuit-
switched lambda can be configured on-demand to form
private end-to-end and multi-endpoint networks,
suitable for creating high-performance and secure
computing environments. We anticipate DVC’s as
secure collections of computing and storage resources
that span multiple administrative domains and are
coupled by these high-speed dedicated optical
connections. Figure 3 illustrates two DVC
environments established from two lambda networks.
In this scenario, two users allocate resources
dynamically to form DVC’s including computing
resources from multiple sites. Within DVC’s,

applications can utilize remote resources directly and
securely with high-performance.
 As discussed earlier, we are exploring several new
primitives to expose novel communication capabilities
provided by bandwidth-rich lambda networks. These
include high-speed optical multicast and group
communication. We believe that these primitives will
be needed in the future and will enable a wide range of
new high-performance distributed applications.
 The DVC model relies on grid technologies in
many areas, including resource management, security,
communication, and data movement. We leverage
existing grid middleware for basic resource access, but
innovate to extract the maximum benefits from the
opportunity of lambda-based grids. In our
implementation of DVC’s we exploit the Globus
Toolkit [11] which provides fundamental grid services
for resource discovery [12], remote resource allocation
[13] and data movement [14]. It also defines Grid
Security Infrastructure (GSI) [15] that provides
standard mechanisms for authentication, authorization
and secure job invocation. DVC’s leverage these grid
components to implement DVC abstractions and make
more application-oriented services available to
developers.

7. Related Work

 A wide variety of work is relevant to DVC; here
we briefly survey the most relevant.
 PVM [16] is a portable message-passing system
which provides a simple user-environment for
distributed computing. Both DVC and PVM provide an
abstraction layer that enables the development of
distributed applications on diverse computer systems.
Traditional PVM assumes a single administrative
domain, and does not explicitly address security and
unique communication capabilities. In contrast, DVC is
designed to span multiple administrative domains, and
also to support unique communication structures.
 A Globus “Virtual Organization” [2] is a set of
relationships and sharing policies that permit
coordinated use of grid resources from multiple
organizations by a community of users. However, its
construction requires agreement of all participating
organizations, so change is slow. The Community
Authorization Service (CAS) [17] is a VO-enabled
service that eliminates the needs of direct contact
between resource providers, providing a community as
a first class identity. The DVC model essentially
assumes an existence of VO and CAS, but is a dynamic
application instance oriented structure. It is easily
instantiated within a VO by a single user, and comes
and goes dynamically with single application runs.

 A number of grid programming tools have
emerged from traditional parallel and distributed
computing paradigms. Tools, such as MPICH-G2 [18]
and GridRPC [19], use the Globus services to operate
in grid environments. These systems are limited in their
capabilities due to their heritage. For instance, MPICH-
G2 assumes a static environment and does not support
secure inter-process communication. GridRPC doesn’t
support convenient use of process collections. In
contrast, the DVC enable flexible construction and
adaptation of groups of processes.
 Condor-G [20] is a computation management
system for compute-intensive jobs on multi-
organizational grids. Both the DVC and Condor-G
systems leverage the Globus system in harnessing grid
resources and support hosting environments and job
execution on remote resources. In Condor-G all
resources share the same level of trust and
communication is implicit, in direct contrast to the
DVC model which enables description of complex
multi-party communication and trust. Unlike DVC
applications, those in Condor cannot take advantages of
topology-aware and unique communication
capabilities.
 The European DataGrid [21] is developing and
deploying grid middleware to support computation and
management of large-scale scientific datasets. Their
middleware makes use of Condor-G for submission and
management of batch and interactive jobs. Parallel
(MPI) jobs are allowed, but they run across local
computer elements within an administrative domain.
This is in direct contrast to the DVC model which
spans multiple administrative domains. Furthermore,
the interaction among jobs in DataGrid is only pairwise
and asynchronous, and thus well matched to the
underlying GSI capabilities.
 The GrADS [22] and GridLab [23] projects share
the same general goal as DVC – to simplify the
development of grid applications. The GrADS project
supports the building of configurable object programs,
while the GridLab project aims to provide application-
oriented grid services. These are innovative, ambitious
efforts. The DVC takes a lower-level approach,
providing only an execution environment which
provides a simple view of a local distributed computing
environment.

8. Summary and Future Work

 We have presented DVC as a computing
environment that provides a set of abstractions to
simplify the development and execution of secure and
robust applications on grids. Grid resources can be
bound up within a DVC environment and expressed
through a single administrative domain. This enables

applications to view their environment as a local private
distributed computing environment with predictable
computation performance. The major benefits arising
from using DVC’s include: simplified view of security
and naming mechanisms as well as efficient runtime
resource selection and binding.
 Our effort in developing the DVC model is
motivated by the novel communication capabilities
provided by lambda circuit-switched networks.
Specifically, the dynamic lambda circuits allow on-
demand construction of bandwidth-rich dedicated
networks that can effectively interconnect
geographically distributed resources, forming high-
performance and secure grid computing environments.
 Our future work is to make the DVC design more
concrete and to build a full implementation of DVC’s.
These implementations will build on existing grid
services and a wide range of new protocol, optical
circuit switching, real-time, and security technology
being developed in the OptIPuter project [5].

Acknowledgements

 Supported in part by the National Science Foundation
under awards NSF EIA-99-75020 Grads and NSF
Cooperative Agreement ANI-0225642 (OptIPuter), NSF
CCR-0331645 (VGrADS), NSF NGS-0305390, and NSF
Research Infrastructure Grant EIA-0303622. Support from
Hewlett-Packard, BigBangwidth, Microsoft, and Intel is also

ratefully acknowledged. g

9. References

[1] I. Foster and C. Kesselman, editors, “The Grid: Blueprint
for a New Computing Infrastructure,” Morgan Kaufmann,
1999.
[2] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of
Grid: Enabling Scalable Virtual Organizations,” International
Journal of Supercomputer Applications, 15(3), 2001.
[3] C. Lee, S. Matsuoka, D. Talia, A. Sussman, M. Mueller,
G. Allen, and J. Saltz, “A Grid Programming Primer,”
Technical Report, Global Grid Forum Programming Model
Working Group, August, 2001.
[4] C. Lee and D. Talia, “Grid Programming Models: Current
Tools, Issues and Directions,” Grid Computing: Making the
Global Infrastructure a Reality, Wiley, pp.555-578, 2003.
[5] L. Smarr, A. Chien, T. Defanti, J. Leigh, and P.
Papadopoulos, “The OptiPuter,” in Communications of the
Association for Computing Machinery (CACM), 47(11),
November 2003. http://www.optiputer.net/.
[6] B. Gleeson, A. Lin, J. Heinanen, T. Finland, G. Armitage,
and A. Malis, “A Framework for IP Based Virtual Private
Network,” RFC 2764, February 2000.
[7] R. Wu and A. Chien, “GTP: Group Transport Protocol for
Lambda-Grids,” to appear in Proceedings of the 4th
IEEE/ACM International Symposium on Cluster Computing
and the Grid, 2004.
[8] E. He, J. Leigh, O. Yu, and T. Defanti, “Reliable Blast
UDP: Predictable High Performance Bulk Data Transfer,” in

Proceedings of IEEE International Conference on Cluster
Computer, 2002.
[9] Leigh et al, “An Experimental OptIPuter Architecture for
Data-Intensive Collaborative Visualization,” in Proceedings
of the 3rd Workshop on Advanced Collaborative
Environments, 2003.
[10] C. Zhang et al, “Terascope: Distributed Visual Data
Mining of Terascale Data Sets over Photonic Networks,”
Journal of Future Generation Computer System 19, pp. 935-
944, Aug. 2003.
[11] The Globus Toolkit.
http://www-unix.globus.org/toolkit/.
[12] K. Czajkowski et al, “Grid Information Services for
Distributed Resource Sharing,” in Proceedings of the 10th

IEEE International Symposium on High-Performance
Distributed, 2001.
[13] K. Czajkowski et al, “A Resource Management
Architecture for Metacomputing Systems,” In Proceedings of
the forth Workshop on Job Scheduling Strategies for Parallel
Processing, 1998.
[14] J. Bester, I. Foster, C. Kesselman, J. Tedesco, and S.
Tuecke, “GASS: A Data Movement and Access Service for
Wide Area Computing Systems,” in Proceedings of the sixth
Workshop on I/O in Parallel and Distributed Systems, 1999.
[15] I. Foster, C. Kesselman, G. Tsudik, S. Tuecke, “A
Security Architecture for Computational Grids,” in
Proceedings of the fifth ACM Conference on Computer and
Communication Security Conference, 1998.
[16] A. Geist, et al, “PVM Parallel Virtual Machine: A Users’
Guide and Tutorial for Networked Parallel Computing,” the
MIT Press, 1994.
[17] L. Pearlman, V. Welch, I. Foster, and C. Keselman, “A
Community Authorization Service for Group Collaboration,”
in Proceedings of IEEE Workshop on Policies for Distributed
Systems and Networks, 2002.
[18] N. Karonis, B. Toonen, and I. Foster, “MPICH-G2: A
Grid-Enabled Implementation of the Message Passing
Interface,” Journal of Parallel and Distributed Computing
(JPDC), 63(5), pp. 551-563, May 2003.
[19] H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra, C.
Lee, and H. Casanova, “GridRPC: A Remote Procedure Call
API for Grid Computing,” in Proceedings of the third
International Workshop on Grid Computing, 2002.
[20] J. Frey et al, “Condor-G: A Computation Management
Agent for Multi-Institutional Grids,” in Proceedings of the
10th IEEE Symposium on High Performance Distributed
Computing, 2001.
[21] F. Gagliardi at el, “European DataGrid Project:
Experiences of Deploying a Large Scale Testbed for E-
Science Applications,” in Proceedings of Performance
Evaluation of Complex Systems: Techniques and Tools
(Performance 2002 Conference), 2002.
[22] F. Berman et al, “The GrADS Project: Software Support
for High-level Grid Application Development,” Internal
Journal of High Performance Computing Applications, 15(4),
pp. 327-344, 2001.
[23] G. Allen et al, “Enabling Applications on the Grid – A
GridLab Overview,” Internal Journal of High Performance
Computing Applications, Aug 2003.

http://www-unix.globus.org/toolkit/

	1. Introduction
	5.2 Heterogeneous Resources (Virtual Collection)

	8. Summary and Future Work
	Acknowledgements
	9. References

