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Abstract 
Large-scale network simulation is an important technique for 
studying the dynamic behavior of networks, network protocols, 
and emerging classes of distributed application (e.g. Grid, 
peer-to-peer, etc.)  Large-scale and realism are two critical 
requirements for network simulations of Grid application 
studies.  Our work here extends previous efforts in three key 
ways.  First, we study networks 100x larger than in our 
previous studies (20,000 routers).  Second, at this scale, we 
study realistic network struct ures (100 AS’s, BGP4 and 
OSPF routing) versus flat OSPF routing.  Finally, we 
describe and evaluate a new profile-based load-balancing 
approach called hierarchical profile-based load balance.   
Our extensive large-scale experiments with profile-based load 
balance (PROF) on flat-routed (OSPF) networks show that 
PROF outperforms several other techniques based on 
topology and static application information.  However, these 
results and those for multi-AS networks motivate our 
invention of a new hierarchical technique (HPROF) which 
clusters network nodes to achieve a desired minimum link 
latency (MLL), a key determinant of simulation parallelism, 
then applies the graph partitioner.  HPROF explicitly 
controls the tradeoff between simulation efficiency and 
available parallelism, producing robust and superior 
performance for large-scale networks, including both single-
AS and multi-AS networks.  HPROF can improve load 
imbalance by 40%, and reduce the simulation time by about 
50% in our 20,000 router simulations executed on 128-node 
clusters.  The parallel efficiency achieved by these 
simulations is over 40%, providing substantial capabilities for 
simulating large networks.  In summary, these advances 
demonstrate that realistic large-scale network simulation for 
networks of 20,000 routers (comparable to a large Tier-1 ISP 
network like AT&T) can be accomplished with our system.  

1. Introduction 
Historically, network simulations/emulations have been used 
extensively to explore the behavior of network protocols[1-3].  
Because of the difficulty of modeling application behavior in 
detail, most of these simulations use simple application 
models to exercise the protocols and networks.  However, 
with the advent of large numbers of applications which tightly 
couple the use of compute, storage, and network, techniques 
to study these resources together are emerging.  In particular, 
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large-scale network simulation is an important technique for 
studying the dynamic behavior of networks, network 
protocols, and emerging classes of distributed applications, 
including Peer-to-Peer [4] and  Grid applications [5]  – where 
the network is an important contributor to application 
performance, applications generate large amounts of network 
traffic,  and overall application performance is critical.  A 
wide variety of simulation systems have been built to model 
network behavior based on discrete event simulation[6-9]. 
 
The MaSSF, a network simulation tool [10] is a key 
component of the MicroGrid system[11] built by our group at 
UCSD to study the dynamic behavior of Grid applications.  
The MicroGrid enables the execution of complete Grid or 
distributed applications. There are two key requirements for a 
network simulator targeted for large-scale study of such 
applications and resource infrastructures.  
    The first requirement is that it must scale to Internet-scale 
network. As in many other network simulation projects, the 
MaSSF utilizes cluster systems to achieve scalable 
performance.  By harnessing scalable compute resources, the 
MaSSF system and user applications together are themselves 
an interesting distributed application, and load balance of 
network simulation itself is one key problem for scalability. In 
our previous work[10], we formulated the load balance 
problem as a graph partitioning problem and applied classical 
graph partition algorithms [12-15] to solve it. Three 
approaches exploiting topology only, topology and 
application placement, and profile-based were presented and 
evaluated for moderate-sized networks. The results showed 
that exploiting static topology and application placement 
information improves load balance, but a profile-based 
approach further improves the load balance achieved. In this 
paper, we improve on all of these with a new hierarchical 
approach and evaluate all of them on much larger networks 
(100x).  
    The second requirement for large-scale network simulation 
is that it must simulate in detail the structure of realistic 
networks. Our previous published work on MaSSF [10] 
addresses simulation accuracy (validation) in this paper we 
will address the issue of realistic network topology and 
routing selection. While much research explores realistic 
Internet-like topology generators and background traffic, few 
efforts explore realistic network routing with most large-scale 
simulations pursuing only shortest-path routing (OSPF). It is 
well-known that in large, multi-AS networks, routing amongst 
different AS domains is controlled by BGP and policy routing, 
therefore connectivity does not equal reachability. A realistic 
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Internet network simulation must support BGP routing among 
Autonomous Systems (AS) and must have reasonable BGP 
routing policy configuration. In MaSSF, we support the 
detailed BGP4 routing protocol, and here address the 
remaining problem of how to generate a reasonable BGP 
routing policy for large networks.  
 
In this paper, we demonstrate techniques that enable realistic 
large-scale online network simulation.  These techniques 
together make a realistic large-scale simulation study of the 
networks and coupled application performance possible.  The 
more specific contributions of this paper include: 
 
• evaluating our previous load-balancing techniques (TOP, 

PROF) for online simulation using networks 100 times 
larger (20,000 routers),  

• study of more realistic network routing structures (100 
AS’s, BGP4 and OSPF routing) versus flat OSPF routing,  

• describing and evaluating a new load-balancing approach 
called hierarchical profile-based load balance (HPROF),  

• developing a set of heuristics for automatic realistic BGP 
routing configuration as an improvement to Internet-like 
topology generation,  

• evaluating a range of load balancing techniques (TOP, 
HTOP, PROF, HPROF) in simulations of both single-AS 
and multi-AS networks, which demonstrate HPROF can 
improve load imbalance by 40%, and reduce simulation 
time by 50% in 20,000-router simulations executed on 
128-node clusters, and 

• demonstrate that realistic large-scale network simulation 
for networks of 20,000 routers (comparable to a large 
Tier-1 ISP network like AT&T) can be accomplished 
with our MaSSF system 

 
The remainder of the paper is organized as follows.  Section 2 
provides background on MicroGrid/MaSSF and Internet 
hierarchy. Section 3 describes the load balance approaches for 
scalability challenges, summarizing existing partition 
algorithms and presenting our hierarchical partition approach 
for larger scale networks. Experiments in Section 4 
demonstrate the scalability of our partition approaches on 
single-AS networks.  In Section 5, we first introduce a set of 
heuristic rules for automatic BGP routing configuration, then 
provide evaluation results for our load balance approaches 
against Internet-like multi-AS networks with realistic BGP 
routing. The results are discussed, along with related work in 
Section 6, and finally Section 7 summarizes our work and 
points out some future directions for research. 

2. Background 

2.1 MicroGrid and MaSSF 
We have designed and implemented a tool called the 
MicroGrid [11, 16] which enables accurate and 
comprehensive study of the dynamic interaction of 
applications, middleware, resources, and networks.  The 
MicroGrid creates a virtual grid environment by accurately 

modeling networks, resources, and information services to 
enable users, grid researchers, or grid operators to study 
arbitrary collections of resources and networks.  In addition, 
the MicroGrid virtualizes transparently, allowing the direct 
study of complex applications or middleware whose internal 
dynamics are difficult to model accurately.  That is, real 
application software and middleware can be used unchanged 
and executed on arbitrary virtual grid structures.  In short, the 
MicroGrid provides a virtual grid infrastructure that enables 
scientific and systematic experimentation with dynamic 
resource management techniques and adaptive applications by 
supporting controllable, repeatable, and observable 
experiments.  Because the rate of execution of all components 
of the system (applications, network, etc.) can be controlled, a 
wide range of relative performance and system combinations 
can be modeled using MicroGrid. 
 

Simulation Engine 

Network Modeling 

Virtual Grid 

I/O 
Thread 
Pool 

Input Queue 

Output Queue 

Agent Nodes 

Grid Application 
Wrap Socket 

Virtual/Real IP 
Mapping Server 

Live Traffic 

SSF API 

 
 
Figure 1. The MaSSF Scalable Network Simulation System 
 
The key component of MicroGrid is the online network 
simulator MaSSF. MaSSF (pronounced “massive”) is a 
scalable packet-level network simulator that supports direct 
execution of unmodified applications. MaSSF consists of four 
parts. 

 
• Simulation Engine:  MaSSF uses a distributed simulation 

engine based on DaSSF[17]. It utilizes MPI-connected 
cluster systems to achieve scalable performance. A soft 
real-time scheduler is used to emulate virtual computer 
resources, allocating CPU proportionately. This scheduler 
can also be used to run in a scaled-down (slowdown) 
mode when the simulated system is too large to run in 
real time on the available hardware. With the global 
coordination of the MicroGrid, this feature provides 
tremendous flexibility to simulate a wide range of 
networks and resources accurately. 

 
• Network Modeling: MaSSF provides the necessary 

protocol modules for detailed network modeling, such as 
IP, TCP/UDP, OSPF, and BGP4. We have built basic 
implementations of these protocols which maintain their 
behavior characteristics. We also use a network 
configuration interfaces similar to a popular Java network 
simulator implementation, SSFNet[18], for user 
convenience. 

 
• Online Simulation Capability: To support simulation of 

traffic from live applications, we employ an Agent which 



 3

accepts and dispatches live traffic from application 
wrapper to the network simulation. Traffic is also sent 
back to the application through the Agent module. 

 
• Live Traffic Interception: Application processes use a 

wrapper library called WrapSocket to intercept live 
network streams at the socket level. The WrapSocket 
then talks with the Agent module to redirect traffic into 
the network simulator and vice versa. WrapSocket can be 
either statically or dynamically linked to application 
processes and requires no application modification. 

 
These components and their relationship are illustrated in 
Figure 1. For more details of MaSSF, the interested reader is 
referred to [11]. 

2.2 Background on Internet Hierarchy 
We summarize some background information on Internet 
routing[19]. 
 
Autonomous System(AS): The Internet consists of more than 
10,000 ASes, and the relationship between ASes is decided by 
commercial agreements. Two basic relationships are Provider-
and-Customer and Peer-and-Peer. A pair of ASes that one 
offers Internet connectivity and delivers traffic to the other is 
said to have a provider-and-Customer relationship; a pair of 
ASes that provides connectivity and delivers traffic between 
their respective customers is said to have a Peer-and-Peer 
relationship. 
Internet Topology Hierarchy: According to [20], ASes can 
be classified into 5 categories: Customers, Small Regional 
ISPs, Outer Cores, Transit Cores, and Dense Cores. The 
Customers count for about 90% of total ASes, and Dense 
Cores only count for 2%. The Dense Cores are roughly equal 
to Tier-1 ISP, and they have almost full connection between 
each other. 
Policy-based Routing : BGP4 is widely used inter-AS routing, 
which exchanges reachability information between ASes in 
the form of route announcement. Each route announcement 
contains some attributes, such as AS Path, Multi-Exit-
Discriminator (MED), and Next Hop. The most important 
attribute, AS Path, is a list of AS numbers to a network. Other 
attributes are used to define routing policies. The key feature 
of BGP protocol is policy routing, which allows each AS to 
choose its own policy in accepting routes, selecting the best 
route, and announcing routes to its neighbors. 

3. Hierarchical Load Balance for Large-Scale 
Network Simulation 

3.1 Scalability Challenge in Network Simulation 
To achieve scalable performance, MaSSF uses a distributed 
simulation engine running on a cluster. Given a virtual 
network topology and a set of cluster nodes, MaSSF partitions 
the virtual network into multiple blocks, assigns the blocks to 
cluster nodes, and simulates in parallel, as shown in Figure 2. 
Every cluster node runs a discrete event simulation engine and 

exchanges events with other cluster nodes. To maintain 
accurate simulation, cluster nodes must synchronize 
periodically.  

 

   
 
Figure 2. Mapping routers to physical resources 

 
For large simulations, the network mapping is too complex to 
be done manually. But in such simulations, good load balance 
is critical to achieving good parallel efficiency.  Load balance 
for network simulations is known to be difficult because the 
network traffic workload on each physical node varies greatly, 
depending both on the virtual mapping and network traffic in 
that subset of virtual network (Figure 3).  However, beyond 
achieving good load balance, we need to consider two more 
optimization goals to achieve good network simulation 
performance.  First, we want to maximize the Minimal Link 
Latency (MLL) across partitions.  Maximizing MLL reduces 
the frequency of synchronization among simulation engines, 
increasing concurrency, a critical element of scalability for 
large scale simulations. This is an attribute of our MaSSF 
system and all other network simulators based on 
conservative discrete event simulation engines.  Second, we 
want to minimize the communication of events between 
simulation engine nodes.  Transferring a simulation event 
across physical nodes is expensive both in terms of 
computation overhead and communication latency. Also, the 
physical network of the simulation engine nodes is often a 
performance bottleneck for the whole simulation. Hence, it is 
important to minimize this communication.  

 
Figure 3. Load Variation over the Lifetime of Simulation 
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3.2 Modeling Load Balance as a Graph Partitioning 
Problem 

A network mapping problem can be naturally modeled as a 
graph partitioning problem and solved with the classical graph 
partitioning algorithms.  
 
Given a weighted graph G with constraint and optimization 
objectives, a typical graph partitioner can partition G and 
achieve balanced total weights and minimized edge-cut across 
partitions. The challenge here is how to apply the graph 
partitioning algorithm to solve the mapping problem by 
defining the suitable input graph G, constraint conditions, and 
optimization objectives for the graph partitioning algorithm. 
As shown in Figure 4, the mapping process first takes the 
network structure and traffic information as input, creates a 
graph G, and builds objectives and constraints. Then it applies 
the partitioning algorithm to get a partitioned network. The 
partitioned network defines the mapping of simulated network 
nodes to physical resources (subject to additional arbitrary 
choices of placement amongst symmetric physical resources).    
 

 
Figure 4. Process of Network Mapping 

3.3 Existing Load Balance Approaches 
In our previous work, we explored approaches based on a 
range of static and dynamic network information, namely, 
Topology-Based approach (TOP) and Profile-Based approach 
(PROF)[10]. This information was used to estimate the traffic 
load in virtual network. Key ideas of these approaches are 
summarized as:  
• TOP: uses static information for partition, such as the 

virtual network topology, link bandwidth, and latency. 
Each virtual node is weighted with the total bandwidth in 
and out of it.  The optimization objective is to maximize 
the MLL between simulation engine nodes. This 
maximizes decoupling, supporting efficient parallel 
simulation. 

• PROF: uses traffic profiling to obtain traffic-level 
information automatically from simulation experiments.  
The profiles are used to estimate future network use and 

determine the weights used.  Because they are more 
accurate, this improves the network mapping.  Typically 
profiling involves an initial simulation experiment using 
a naive initial partition and traffic monitoring. The 
simulation yields  detailed traffic information, and 
improves subsequent network partitions.  

3.4 Hierarchical Load Balance Approach 

3.4.1 The Small Achieved MLL Problem 
When we apply the TOP and PROF approaches to larger 
networks (e.g.  10,000 routers running on 100 nodes), neither 
of them gets satisfactory results. Checking the partition output 
manually reveals that the common reason for poor 
performance is that the achieved Minimal Link Latency (MLL) 
across partitions is too small when compared to the 
synchronization cost.  This produces an overall simulation 
efficiency that is quite low. For example, for one network of 
10,000 routers, the achieved MLL was only 0.1ms; far less 
than the synchronization cost of ~0.58ms for 100 simulation 
engine nodes (see Figure 5).  In such a situation, the majority 
of the time will be spent doing synchronization – even perfect 
load balance would only moderate efficiency.  This situation 
is quite different from the 1ms MLL for a 160 router network 
and 0.9ms synchronization cost for 8 simulation engine nodes 
in our previous experiments[10].  
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Figure 5. Synchronization Cost of the TeraGrid NCSA 
Cluster: the time used by the simulation engine nodes for 
global synchronization, which need to be executed every 
MLL time. 

3.4.2 The Reason  
The example above exposes a major problem with the 
existing load balance approaches.  In TOP and PROF 
mappings, the link latency is converted to edge weight of the 
graph G, and smaller link latency leads to a larger edge 
weight. When the graph partitioner archives minimal edge-cut 
across partitions , it is less likely to partition across the link 
with small link latency, since it corresponds to a large edge 
weight. However, the optimization goal is the not the MLL, 
but the minimum edge-cut (the sum of all edge weights that 
cross partitions). When we have a large graph, the partitioner 
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becomes less sensitive to the MLL, since even the large edge 
weight from a link with MLL may only be a small part of the 
final edge-cut.   
 
We may tune the converting algorithm to make the edge 
weight of small link latency so large that it is unlikely to 
across partitions, but this highly depends on the network 
topology, the simulation engine node number, and the 
physical synchronization cost.  

3.4.3 The Solution 
To address the issue of small achieved MLL, we design a new 
hierarchical partition algorithm. To avoid partitions across 
edges with small link latencies, we remove edges with latency 
smaller than a threshold, LL, from the input graph (by 
merging nodes) to the partitioner and add them back to the 
partitioned output. In this way, we can guarantee the worst-
case of MLL. However, this produces a new problem — how 
to choose the latency threshold, LL.  If the threshold is too 
large, it will damage load balance, but if it is too small it will 
achieve a smaller MLL than possible.   Instead of guessing the 
threshold, our approach is to simply try all reasonable 
thresholds, create a partition for each, evaluate these partitions, 
and then pick up the best partition.  This is feasible because 
we can do the partition fast, even for large networks, and we 
can evaluate different partition outputs without running the 
simulation. The pseudo code for hierarchical partitioning is: 
 
Input: graph G, partition N, and synchronization cost C 
Output: the best partition P of graph G 
 
Hierarchical Partition: 

Set the initial Threshold of MLL (Tmll) 
Loop through all reasonable Tmll: 
 Get the dumped graph Gd(Tmll)  

Partition the Gd(Tmll) using an existing partitioner, 
and get P(Tmll) 

 Evaluate the partition result Pd(Tmll) 
Pickup the best partition Pd(Tmll) 
Get the best partition P of original G 

 
This algorithm requires the graph, G, the partition number, N, 
and the synchronization cost of the simulation engine nodes, 
C.  Figure 5 shows the synchronization cost of the TeraGrid 
SDSC cluster, which is used for all simulations in this paper.  
We use the synchronization cost to set the initial threshold of 
MLL (Tmll) based on knowledge of the desired number of 
simulation engines. We require a Tmll to be larger than the 
synchronization cost, otherwise all time will be spent on 
synchronization, giving poor efficiency. Given the Tmll, the 
original graph G is reduced to a dumped graph Gd by 
collapsing nodes with link latency less then Tmll into a single 
node. Then any existing partition can be applied to the 
dumped graph Gd and get the partitioner output. By increasing 
the Tmll step by step (0.1ms in our experiments), we can get a 
sequence of partitions, and the remaining question is how to 
select amongst them.  

To evaluate the candidate partitions, we use an efficiency 
metric Efficiency (E), which consists of two factors, Es and Ec. 
The first factor (Es) represents the efficiency decided by the 
achieved MLL and is calculated: 
  Es = (MLL – CN)/MLL,  
where CN is the synchronization cost of N simulation engine 
nodes. The latter (Ec) represents the result of computational 
load balance and is calculated by:  

Ec = Caverage/Cmax, 
where Caverage is the estimated average load (simulation event 
rate) on all nodes, and Cmax is the max load of all nodes. The 
final efficiency E is Es * Ec, where larger values of E 
correspond to better partitions.  Maximizing Es and Ec 
separately does not work because they represent the tradeoff 
between simulation efficiency and available parallelism. 
Larger Es means better simulation efficiency, but it also 
means less parallelism available, since smaller MLL leads to a 
more coarse-grained partition graph. 
 
In summary, our hierarchical partitioning approach balances 
the parallelism and decoupling concerns in generating a good 
network partition.  To do so, it generates and evaluates many 
possible partitions which is possible because we can create 
graph partitions and evaluate graph partitions quickly. The 
METIS graph partitioner[21] used in MaSSF can partition a 
graph with 10,000 vertexes in about 10 seconds.  Thus it is 
fast enough to enable us to consider thousands of possible Tmll. 

4. Simulation of Large Single-AS Network 
To demonstrate the scalability of MaSSF and to study the 
performance of these partitioning and mapping approaches, 
we apply them to a range of network topologies and 
background traffic conditions.  First we consider the 
simulation of a large flat network, which corresponds to a 
large single AS network and uses the OSPF protocol for 
routing (shortest path routing).  

4.1 Evaluation Metrics 
The first metric is the application simulation time T, which is 
the time taken to simulate an application in a specific network 
simulation. As faster simulation is the ultimate goal of our 
scalability studies, it is the most important metric.  
 
To get deeper insight into the efficacy of our partition and 
load balance techniques, we also use three other metrics: 
achieved MLL, load imbalance, and parallel efficiency. 
    The second metric achieved MLL shows the effect of the 
hierarchical load balance approaches in increasing parallelism 
and is reported directly by the partitioner.  
    For the third metric load imbalance, we define the load of a 
simulation engine node as the event rate of the simulation 
kernel (essentially one per network packet).  Using these 
counters, we calculate the overall load imbalance across all 
the physical nodes in the actual simulation. Assuming the 
simulation kernel event rates are k1, k2, … , kn, for n  nodes 
used by the simulation engine, the load imbalance is 
normalized by the standard deviation of {k}. 
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    The last metric is the parallel efficiency, PE(N, L) for a 
problem of size L on N nodes is defined in the usual way[22] 

by 
),(*

)(
),(

NLTN
LTseq

LNPE = , 

where T(L, N) is the runtime of the parallel algorithm, and 
Tseq(L) is the runtime of the best sequential algorithm. 
Tseq(L) cannot be measured directly since the network is too 
large to be simulated on a single machine, thus, we 
approximate the Tseq(L) by 

chNodentRateOnEaMaximalEve
NumberTotalEvent

LTseq =)( . 

4.2 Experimental Setup: Topologies, Traffic load, and 
Simulation Engines 

We generate network topologies for our experiments with an  
adapted BRITE tool [23], a degree-based Internet topology 
generator following the Power-Law[24]. The flat network 
topology includes 20,000 routers and 10,000 hosts, which are 
spread over a geographic area of 5000milex5000mile (roughly 
the size of North American continent). This router count is 
comparable to the size of a large Tier-1 ISP, such as the 
AT&T network [25]. 
 
For background traffic, there are 8,000 clients continuously 
sending HTTP file requests to 2,000 servers. The average 
time gap between two successive requests of a client is 5 
seconds and average file size is 50KB. Foreground traffic is 
created live from real Grid applications, including 
ScaLapack[26] and GridNPB3.0[27]. GridNPB3.0 is a set of 
grid benchmarks in a workflow style composition in data flow 
graphs encapsulating an instance of a slightly modified NPB 
task in each graph node, which communicates with other 
nodes by sending/receiving initialization data. GridNPB 
includes a range of computation types and problem sizes, and 
in our experiments we use the combination of Helical Chain 
(HC), Visualization Pipeline (VP), Mixed Bag (MB) 
applications, all run at class S size.  These programs run for 
about 30 minutes on our platform. 
 
The experiments use the TeraGrid Itanium-2 cluster for 
simulation engine nodes.  The cluster nodes are dual 1.3GHz 
Itanium-2 processors with 2Gigabytes of memory, linked with 
Myrinet 2000 using MPICH-GM. We use 90 nodes as the 
simulation engines, and 7 nodes for application execution. 

4.3 Results 
Application workloads are executed on the single-AS network 
with moderate background traffic, and we study the 
performance of four mapping approaches: topology-based 
mapping (TOP), profile-based mapping (PROF), hierarchical 
topology-based mapping (HTOP), and hierarchical profile-
based mapping (HPROF).  The TOP and PROF partitioners 
achieve such small MLL that their performance is extremely 
poor and the simulations cannot be completed in a reasonable 

time limit. So we adjusted the link latency to edge weight 
converting algorithm for the large scale network simulation, 
so partitions are less likely to across edges with small link 
latency. It is not a general solution and has to be done 
according different topologies manually. The results are 
labeled as TOP2 and PROF2.   

Application Simulation Time 
The application simulation time of both applications is shown 
in Figure 6. For ScaLapack, the use of PROF2 mapping 
reduces overall simulation time of TOP mapping by 14%, and 
the use of the hierarchical mapping (HPROF) further reduces 
the simulation time up to 40%.   
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Figure 6. Simulation Time on the Single-AS Network 

Achieved MLL 
The achieved MLL is shown in Figure 7, and we can see both 
TOP2 and PROF2 still have much smaller MLL (about 0.6ms) 
comparing to HTOP and HPROF.  It is clear that the 
hierarchical approaches can significantly increase the MLL, 
producing enough parallelism for large-scale simulation. 
These MLL values show that there is enough parallelism 
achievable for networks of ~20,000 routers in 5000M by 
5000M area using 90 simulation nodes.  These simulations 
will provide good efficiency with slowdown of 8 times.   
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Figure 7. Achieved MLL on the Single-AS Network 
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Despite the fact that it produces the largest MLL (3ms), 
HTOP does not work very well compared to HPROF. The 
inaccurate load prediction in HTOP produces a much larger 
load imbalance which hurts performance. 

Load Imbalance 
The measured load imbalance for both applications is shown 
in Figures 8. The figure reports the normalized load 
imbalance across the physical simulation engine nodes for 
each combination of mapping approach and network topology.  
Each mapping approach produces significantly different 
results. Compared to TOP2, PROF2 improves load imbalance 
by about 7%. The HPROF mapping also improves the load 
imbalance by 11% over HTOP. It is clear that the use of 
detailed traffic information from a previous simulation 
execution provides a critical advantage in achieving effective 
network partitions. 
 
It is also shown that the HPROF mapping produces better 
load balance than TOP2 and PROF2.  This improvement is 
surprising because the hierarchical approaches use a simpler 
graph with coarse-grained node weights. So they should have 
less chance to achieve better load balance.  We believe the 
explanation is that the underlying graph partitioner METIS 
does a better job for smaller graphs, since reduced graphs 
have many fewer vertexes. 
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Figure 8. Load Imbalance on the Single-AS Network 

Parallel Efficiency 
The parallel efficiency of both applications is shown in Figure 
9. While the overall efficiency of network simulation at this 
scale does not reach 100%, these values are excellent for 
parallel discrete event simulations on irregular loads.  The 
HPROF for ScaLapack achieves about 40% parallel efficiency, 
a dramatic 64% improvement over TOP2.  These levels of 
parallel efficiency enable effective large-scale network 
simulations. 
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Figure 9. Parallel Efficiency on Single-AS Network 

5. Simulation of Large Multi-AS Network 
In Section 4 we demonstrate that the MaSSF and HPROF, a 
hierarchical profile-based partitioning algorithm, can produce 
scalable simulations for large single-AS networks. However, 
the Internet is not a flat network with shortest path routing. 
Instead, it is organized as a collection of ASes with traffic 
shaped by BGP policy routing. In such networks, connectivity 
does not mean reachability and the real dynamics are quite 
different from single-AS network. Such networks present 
greater challenges to achieving load balance because the 
traffic load is less coupled to network topologies.  Despite its 
importance, to our knowledge multi-AS networks have never 
been simulated in large-scale because of the complexity 
involved. 

5.1 Realistic BGP Routing Configuration 
While there is much research on Internet-like topology 
generation [28-30], these studies focus on physical 
connectivity and pay little attention to routing configuration 
(particularly BGP). There are two major reasons for this 
situation. First of all, prior to our MaSSF simulator, no 
existing network simulator supports large scale simulation 
with detailed BGP routing. Simulators either have no support 
for BGP routing (DaSSFNet[31], ModelNet[9]), or they are 
limited by scalability to such a degree that BGP policy routing 
is less relevant (NS2[32], SSFNet[18, 33]). Second, real 
Internet BGP routing configurations are not publicly available, 
since the routing policy are closely tied to commercial 
contract terms that are considered highly confidential by ISPs.  
Fortunately, recent research has explored inferring AS 
relationships and BGP routing policy from publicly available 
information, such as BGP routing tables. Several of these 
efforts have made significant progress [34], making it 
possible for us to automatically generate realistic BGP routing 
policies into our network generator. 

5.1.1 BGP Routing Policies  
To generate realistic BGP routing, let us first check how the 
Internet routing is setup. One of the key features of BGP 
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protocol is policy, which allows each AS to choose its own 
policy in accepting routes, selecting the best route, and 
announcing routes to its neighbors. Two kinds of routing 
policies are as follows: Import Policy and Export Policy.  
 
Import Routing Policy: When receiving a route 
announcement from its neighbor, a router applies its import 
policies to the route, which include denying, or permitting a 
route, and assigning a local preference to indicate how 
favorable the route is.  Local preference is used to 
differentiate routes received from different neighbors, since a 
BGP router may receive routes to the same destination from 
different neighbors and it must choose the best route to be 
used in its local routing table. BGP incorporates a sequential 
decision process to pickup the best route from a set of 
candidates to a given prefix.  For example, the highest local 
preference, the shortest AS path, the lowest origin type, and 
the smallest MED for routes with the same next hop AS. 
There is a long list of criteria to set the preferential order of 
routes, and the first and the most important rule is the local 
preference. In practice, network administrators usually use 
local preference to enforce their import routing policies. 
According to [34], there are two general rules: 
• Route Preference between Provider, Customers, and 

Peers: Network operators usually assign different local 
preferences to route learned from provider, customers, 
and peers. Customer routes have the highest local 
preference, and peer routes have higher local preference 
than providers. 

• Consistency of Local Preference with Next Hop ASes: 
Operators may set local preference configuration based 
on prefix level or next hop AS level. Since it is easier to 
maintain the provider, customers, and peers preference 
based on next hop AS level, most ISPs use this approach 
in practice. 

 
Export Routing Policy: BGP routers use export policies to 
decide which routes to be propagated to their neighbors. The 
policies usually are directly transformed from ASes 
relationships. 
• Exporting to a Provider: An AS can export its local 

routes and routes of its customers, but can not export 
routes learned from its peers or providers 

• Exporting to a Peer: An AS can export its local routes 
and routes of its customers, but can not export routes 
learned from its peers or other providers 

• Exporting to a Customer: An AS should export all 
routes it knows to its customers 

 
These basic export policy rules are the direct requirement of 
commercial agreements. For example, the first rule guarantees 
that a provider will not use its customer network to transit 
traffic, and the last rule guarantees that the customer can get 
full Internet access through its provider. 

5.1.2 Using Heuristic Rules for Automatic Routing 
Configuration  

Following the heuristic rules above, we automatically 
configure Internet-like network topologies with realistic 
routing configuration, and expect to get similar routing 
pattern of real Internet. The procedure of network topology 
generation and automatic routing configuration are shown in 
the following: 
 
1) Generate AS level topology following the Power Law 
2) Classify ASes according connection degrees.  

a. Core: ASes with connection degrees of top 2 
b. Stub: ASes with connection degree of 1 or 2 
c. Regional ISP: all the other ASes 

3) Decide AS relationships 
a. Provider-and-Customer: 

i. Core -- Stub,  
ii. Regional ISP – Stub,  

iii. Core – Regional ISP 
b. Peer-and-Peer: between all ASes in the same level 

4) Setup Import Routing Policy 
a. Accept all incoming routes 
b. Set Local Preference according to Next Hop AS, 

which prefer routes from Customer, over routes from 
Peer, and over routes from Provider 

5) Setup Export Routing Policy 
a. To Provider: Export local and Customer routes 
b. To Peer: Export local and Customer routes 
c. To Customer: Export all routes 

6) Create topology for every Stub AS  
a. Follow the Power Law 
b. Use OSPF routing inside the AS 
c. Use default routing to hosts outside local AS 
d. Pickup  default/backup routers for multi-homed ASes 

 
This is just a high level abstract of our implementation in the 
maBrite1 topology generator, which is based on BRITE tool. 
To create a real functional topology, there are more details 
need to be addressed. For example, at Step 3, we must 
guarantee that every non-Core AS has a path including 
Provider-and-Customer links to a Core AS so that this AS has 
full connection to the whole network. Furthermore, we should 
also guarantee that the Core ASes form a clique as observed 
for the Dense Cores, and additional links between Core ASes 
are added when necessary.  
 
After the AS relationships are defined, the routing policy 
setup is straightforward.  The only problem is how these 
policies can be expressed in the simulator input Domain 
Model Language (DML) file.  For a detailed discussion of this, 
the interested reader is referred to the MicroGrid user manual.  
 
The last thing we want to emphasize is the default routing 
embodied in Step 6. It is very important to use default routing 

                                                             
1 The maBrite package is available at http://www-
csag.ucsd.edu/projects/grid/microgrid.html 
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in Stub ASes so the huge external BGP routes need not be 
injected into the OSPF routing tables. This approach can 
reduce the overhead of Stub AS routers greatly and is widely 
used in real world practice. 

5.2 Hierarchical Network Simulation Results  
These experiments evaluate both flat and hierarchical load 
balance approaches for large-scale multi-AS networks with 
Internet-like routing configurations. 

5.2.1 Experiments Setup 
The network topology is created by our maBrite topology 
generator with BGP routing configuration as described above. 
It includes 100 ASes, each containing 200 routers. In addition, 
10,000 hosts are randomly attached to Stub ASes for 
background traffic generation and live traffic agent. All these 
routers and hosts are spread to a geographic area of 
5000milex5000mile.  
 
We use the same background traffic and the same application, 
ScaLapack and GridNPB, in the experiments as described in 
Section 4.  We also use the same TeraGrid Itanium-2 cluster, 
90 nodes as the simulation engines, and 7 nodes for 
application execution. 

5.2.2 Results 
Application workloads are executed on the multi-AS network 
with moderate background traffic, and we evaluate the 
performance of four mapping approaches: TOP, PROF, 
HTOP, and HPROF.  Again, both TOP2 and PROF2 
mappings are tuned for the large scale network simulation. 

Application Simulation Time 
The simulation time of both applications is shown in Figure 
10. For ScaLapack, the use of PROF2 mapping reduces 
overall simulation time of TOP2 mapping by 21%, and the 
use of the hierarchical mapping (HPROF) further reduces the 
simulation time up to 41%. The GridNPB has less 
improvement, since it has less communication compared to 
ScaLapack. 
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Figure 10. Simulation Time on the Multi-AS Network 

Achieved Minimal Link Latency 
The achieved MLL is shown in Figure 11. Like on the Single-
AS network, the original TOP and PROF produce small 
MLL’s and our data reflects the resulting poor simulation 
efficiency. The hierarchical approaches achieve much larger 
MLL’s, in some cases ten times larger.  MLL’s of this size 
support good simulation efficiency.  
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Figure 11. Achieved MLL on the Multi-AS Network 

Load Imbalance 
The measured load imbalance for ScaLapack and GridNPB is 
shown in Figure 12. The figure reports the normalized load 
imbalance across the physical simulation engine nodes for 
each combination of mapping approach and network topology.  
Each mapping approach produces significantly different 
results. Compared to the TOP2 mapping, the PROF2 mapping 
improves the load imbalance by about 15%. The HPROF 
mapping improves the load imbalance over HTOP by 31%.   
 
As we anticipated, the load imbalance for this multi-AS 
network is much larger than the single-AS network due to the 
use of BGP routing, and it makes the improvement from 
profile-based techniques significant compared to that of the 
single-AS network in Section 4.3.  
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Figure 12. Load Imbalance on the Multi-AS Network 
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Parallel Efficiency 
The parallel efficiency of the simulation of both applications 
is shown in Figure 13. While the overall efficiency of network 
simulation does not approach 100%, HPROF for ScaLapack 
can achieve about 40% parallel efficiency, about a 64% 
improvement from TOP2.  This level of parallel efficiency 
enables simulation of large-scale Multi-AS networks. 
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Figure 13. Parallel Efficiency on Multi-AS 
 
In summary, these experiments show that our hierarchical 
load balance approaches still work well for large multi-AS 
networks with realistic BGP routing configuration.  

6. Discussion and Related Work 
Several recent research efforts are most related to the 
MicroGrid/MaSSF, including Albatross[35], Emulab[8], and 
ModelNet[9].  While these systems also support execution of 
real application over a modeled network, there are significant 
differences between these efforts and the MicroGrid. The 
network modeling in these systems either use approximation 
models[36] or have limited scalability[32]. These 
approximations reduce the simulation accuracy (compared to 
MicroGrid’s global synchronized packet-level simulation) to 
achieve faster execution. For example, Emulab uses a set of 
real routers, switches and configurable software routers to 
emulate wide area network. This approach has the advantage 
of speed of emulation, but provides little in the way of 
detailed control of speed and modeling to the experiment 
designer. The largest automatically-configured Emulab 
experiment[21] we are aware of has 520 virtual nodes 
(routers) mapped to 44 PCs. The ModelNet project at Duke 
University (and now also at UCSD) is a software emulator. 
Their approach to scalability simplifies both network 
topology (a network of pipes) and routing (assuming a simple 
routing protocol based on shortest path) and then maps the 
resulting network of queues onto a set of emulation cores. 
This summarized network is an approximation to actual 
detailed network behavior. Further, there is no 
synchronization between these cores, so the number of cores 
can be used without affecting accuracy is unknown.  In 

contrast, MaSSF uses full-scale detailed packet simulation 
based on a distributed discrete-event simulation (PDES) 
engine. The largest emulation on ModelNet we know has 
1120 virtual nodes (routers) on 4 cores. While there have been 
many efforts which use PDES for network simulation[37], we 
know of no other modeling efforts that achieve detailed online 
network simulation of the documented scale.  
 
Load balance is known to be an important problem for the 
scalability of distributed network simulations or emulations, 
however there are only a few efforts in network 
simulation/emulation community to solve this problem. Many 
projects use either manual partitioning or simple graph 
partitioning based on network topology. The DaSSF simulator 
uses the METIS graph partitioning package and link latencies 
for load balance.  It does not use link capacities or any further 
detailed traffic information.  ModelNet[38] uses the greedy k-
cluster algorithm: for k nodes in the core set, randomly selects 
k nodes in the virtual topology and greedily selects links from 
the current connected component in a round-robin fashion. 
They also use an approach similar to our PLACE mapping, 
but it is focused on minimizing Network traffic between cores.  
Emulab's assign maps virtual topologies which include 
endpoint resources as well as network structures onto a 
heterogeneous combination of routers, switches, and 
computers. Critical issues are time to compute mapping, 
physical resources used, and sufficient link capacity.  Thus, 
assign chooses specific endpoint and network resources to 
optimize their quantity subject to the constraints.  Load 
balance is not a direct focus.  
 
Realistic topologies are of considerable importance to 
network and Grid application studies. There are mainly two 
types of topology generators in use, hierarchical and degree-
based. Hierarchical generator like Tiers and Transit-Stub are 
more close to the logical structure of the Internet. The degree-
based generators like Inet[29], BRITE[28], and PLRG[39] 
generate graph that follow the Power-Law and are more close 
to the physical connectivity of real Internet, but have less 
clear hierarchical structure. The latest GridG[40] generator 
tries to combine both approaches by enhancing a hierarchical 
graph to following Power-Law. The goal is quite similar to 
our approach to topology, but we achieve it by setting up 
hierarchical relationship out of a graph created from the 
Power-Law. However, all previous efforts focus on physical 
connectivity generation, and none of them provide realistic 
routing configurations based on BGP4 policy-based inter-
domain routing.  Exploiting recent research which infers AS 
relationship and BGP routing policy from publicly available 
information such as BGP routing tables [34, 41] our maBrite 
generator automatically builds realistic BGP routing policy in 
topology generator. To the best of our knowledge, we are the 
first to provide this kind of topology generator. These 
heuristic rules can also be used to enhance other topology 
generators. 
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7. Summary and Future Work 
Large-scale and realism are two critical requirements for 
network simulation for Grid application studies. In this paper, 
we first study networks 100x larger than in our previous 
studies (20,000 routers).  Then, at this scale, we study realistic 
network structures (100 AS’s, BGP4 and OSPF routing) 
versus flat OSPF routing.  Finally, we describe and evaluate a 
new profile-based load-balancing approach called hierarchical 
profile-based load balance (HPROF).  These load balance 
approaches are evaluated against large-scale networks, 
including both single-AS network and multi-AS network. The 
best of these, HPROF, can improve the load imbalance by 
40% and reduces the simulation time by about 50%. This 
provides a great chance for scalable network simulation. We 
also provide an Internet-like topology generation with 
realistic BGP routing configuration. Combining with our 
packet-level hop-by-hop network simulator and detailed 
BGP4 protocol support, we demonstrate that we can provide 
realistic large-scale network simulation for networks 
including about 20,000 routers. 
 
Our automatic BGP configuration is based on a set of 
heuristics used in by many network administrators. While we 
believe our method captures the major components of realistic 
BGP configuration and routing, a natural next step is to 
validate it directly.  One such approach would be to use the 
AS level topology of the real Internet [25] and feed it into our 
BGP configuration procedure, allowing direct comparison of 
routing in the Internet and our generated configuration. Two 
types of studies will be valuable for the validation. The first is 
to compare the static status of BGP routing, such as the 
similarity of route ent ries in BGP routing table. The second is 
to compare the dynamic behavior of BGP. For example, there 
is a Beacon project [42] which automatically 
announces/withdraws a prefix at a given time every day. And 
we can observe what real BGP does to beacon activities from 
a public observation point. Both of these studies can be 
simulated in MaSSF. 
  
Due to physical resource limitation, we only use a 128-node 
cluster in our experiments. However, it is clear that there is 
still more parallelism in the large-scale network simulation. In 
future work, we will use MicroGrid to study larger networks 
and application, specifically using a 256-node Itanium-2 
Linux cluster to simulate a network with 100,000 network 
entities, which can be taken as a significant fraction of the real 
Internet with hundreds of ASes. Under this scale of a network, 
we expect to experience much larger load balance challenge 
and we have to develop a traffic-based load balance solution 
for better scalability. While we selected the GridNPB 
benchmarks for our experiments, our evaluation could be 
improved by studies with better benchmarks suites or larger 
real grid applications.  In the future, we will also use 
MicroGrid to study larger scale real Grid applications, 
including resources scheduling and overlay network behaviors.  
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