
Efficient Auction-Based Grid Reservations using
Dynamic Programming

Andrew Mutz #1, Rich Wolski #2

#Department of Computer Science, University of California Santa Barbara
Santa Barbara, CA 93106

U.S.A.
1amutz@cs.ucsb.edu
2rich@cs.ucsb.edu

Abstract— Auction mechanisms have been proposed as a means
to efficiently and fairly schedule jobs in high-performance com-
puting environments. The Generalized Vickrey Auction has long
been known to produce efficient allocations while exposing users
to truth-revealing incentives, but the algorithms used to compute
its payments can be computationally intractable. In this paper
we present a novel implementation of the Generalized Vickrey
Auction that uses dynamic programming to schedule jobs and
compute payments in pseudo-polynomial time. Additionally, we
have built a version of the PBS scheduler that uses this algorithm
to schedule jobs, and in this paper we present the results of our
tests using this scheduler.

I. INTRODUCTION

Current high performance computing centers rely primarily
on batch queues to allocate resources. These centers use
complex scheduling algorithms to multiplex multiple queues
of varying priorities onto computing resources. Reservations
are also used in these environments, although less frequently,
and can involve direct contact with administrators. The goal
of both of these types of allocation schemes is to balance
notions of fairness, prioritization and maximization of system
utilization.

In order to accomplish these goals, these mechanisms use
information about the type of work being performed to make
scheduling decisions. This information can be implicit, such
as a job being submitted to batch queue of high priority, or
explicit, such as stating the requested running time of a job.
Implicit or explicit, this information affects scheduling deci-
sions. Because schedulers are using this type of user-specified
information in scheduling, it is important that this information
is accurate. We have previously looked at getting accurate
information from users in a batch queued environment [1].
In this paper we present a solution for eliciting honest infor-
mation from users in a reservation-based environment.

Eliciting honest information from users is not simple or
straightforward. If users are simply asked, for example, to
gauge how important the job they are submitting is, many
users will exaggerate the importance of their work in order to
influence scheduling decisions in a manner that benefits them.
Previous publications have described the extensive lengths to
which users will go to increase their allocative satisfaction

by distorting the preferences they report to an allocation
mechanism [2].

In order to make sound scheduling decisions based on user-
submitted information, one approach is to employ a pricing
mechanism that is incentive compatible. Incentive compatible
pricing mechanisms use game-theory to ensure that users’
self-interests are maximized when they honestly reveal their
preferences to the allocation mechanism. These mechanisms
can provide powerful guarantees about optimal user behavior
and can deliver highly efficient allocations, but come at a cost.
A Generalized Vickrey Auction with combinatorial bidding,
for example is very efficient and elicits honest information
from participants, but computing the payments involved can
require the solution of NP-Complete problems [3]. At the
other end of the design spectrum, approximately-strategyproof
mechanisms have been proposed, which provide computational
tractability but are only able to provide approximate incentive
compatibility (i.e. the gains seen by a user from distorting his
preferences can be bounded) [4].

These mechanisms use combinatorial bidding which, while
powerful, is perhaps more heavyweight a mechanism than is
necessary for scheduling jobs on grid resources. It is possible
to step back slightly from these powerful combinatorial bids in
order to deliver much of the same desirable properties, but in
a computationally tractable manner. In this paper, we present
our exploration of this sweet-spot in the design space of
incentive compatible grid scheduling mechanisms. We use this
auction mechanism to deliver a tractable, incentive-compatible
reservation system, which we have integrated with the Portable
Batch System (PBS). We have named our allocation mecha-
nism the Dynamic Programming Generalized Vickrey Auction
mechanism or DPGVA mechanism.

A. Why is incentive compatibility important?

The DPGVA mechanism gives us guarantees that users are
properly incentivized to honestly reveal their private informa-
tion to the scheduling mechanism. These guarantees are useful
in many ways.

First, as mentioned above, scheduling decisions that are
made based on this information can be improved with more ac-
curate information. Batch schedulers use information reported

by users to implement utilization maximizing algorithms (such
as backfilling). If users are distorting the information they
report to schedulers, these decisions can become less and less
reliable. In short, if we cant trust the information that is being
fed to the scheduler, then we cant trust the desirability of the
schedules that are being produced.

Second, usability increases when users don’t have to worry
about gaming the system. Users who are presented with a
system that can be gamed may feel like they need to distort
their preferences in order to get their fair share of resources.
For example, if we simply ask users how important the work
they are performing is, otherwise altruistically-minded users
may feel compelled to lie to the system, assuming that the
rest of the participants were lying. In a more complex system,
such strategization may require more complex thinking, thus
wasting the time of all users.

Finally, having a reliable way to measure how much useful
work is being accomplished on a resource can help adminis-
trators make planning and purchasing decisions. It may be the
case that two different hardware installations both have a very
high level of system utilization, but are being used for very
different applications. System administrators planning future
purchases can use aggregate ”job value” throughput as another
metric with which to plan. Without a reliable way to gather
information about ”job value”, this is much harder.

II. RELATED WORK

The observation that the problem of allocating time on
computational grids shares much with the field of economics
is not new, and much work has been published in this area.
A variety of markets and auctions (two broad and overlapping
classes of economic mechanisms) have been proposed to
determine which jobs will have access to which grid resources,
and for how long [5], [6], [4], [7], [8]. The advantage normally
associated with using economic mechanisms is that by provid-
ing currency-based consequences for resource consumption,
users are motivated to avoid inefficient resource usage. Usage
that can be discouraged by such mechanisms includes, for
example, low-priority jobs being run during periods of high-
demand, or processes being run on hardware for which they
are not well-suited.

Previous work has documented the gains in user satisfaction
when job value is accounted for in scheduling decisions.
In [9], Chun and Culler simulate different scheduling sys-
tems that account for job value when making decisions and
find that aggregate user satisfaction can be increased by a
factor of between 2 and 14 over value-agnostic schedulers.
Additionally, in [10], Lee and Snavely show that users are
capable of expressing complex preferences when asked. The
authors surveyed users at the San Diego Supercomputer Center
about expected running times and about the value of different
turnaround times and found that while users generally have a
poor ability to predict running time, users are able to express
in great detail the value they see as a function of turnaround
time.

As mentioned in the previous section, previous work by
Ng, et al. [2] has shown that users will go to great lengths to
increase their share of computational resources. In their tests
of the Mirage system for allocating time on Sensor network
testbeds, the found users gaming the system in a variety of
ways: shading their bids to lower the amount they pay and
cutting large jobs up into smaller jobs, for example. The
Mirage system uses an iterative combinatorial auction that is
not incentive compatible.

The application of pricing mechanisms to batch queues
has been pursued. Previous work [1] by the authors of this
paper has attempted to use the Expected Externality Payment
mechanism to get honest information from users in a batch-
queued environment. In [9], Chun et al. compare traditional,
value-agnostic queuing systems to a scheme that reorders jobs
in the queue based on bids. In [7], Stoica et al. use a first-price
auction to determine which job in a ready list will run, and
then use a combination of those bids and price prediction to
determine how much participants pay.

Many scheduling systems for computational clusters eschew
reservations and instead distribute resources in a spot market
where jobs compete for access to computational resources.
The Generalized Vickrey Auction is commonly used in such
spot markets: both Schnizler et al in [4] and Das et al.
in [11] use an approximated version of it for spot mar-
ket distribution. Although they use different approximation
techniques, approximation of the GVA payment computation
in this fashion breaks the GVA’s theoretical guarantees of
incentive compatibility. A similar mechanism is pursued by
Lai et al. in [6], although instead of the Generalized form they
use non-combinatorial second-price auctions. The distribution
of grid resources by commodities markets are explored for this
application by Wolski et al. in [8], where both the Tatonnement
and Smale price adjustment mechanisms are compared to
auctions. An original auction mechanism is presented by Chun
et al. in [5], where rather than bidding for complete control
of a resource, jobs are allocated to resources in proportion to
the quantites of their bids.

Some scheduling systems have focused, as this paper does,
on pricing resource reservations. In [12], Bubendorfer et al.
propose a reservation system that uses the Generalized Vickrey
Auction to price resource reservations on computational grids.
Computational tractability of the scheme is not discussed. In
[3], Wellman et al discuss the strengths and weaknesses of
different auction design choices as they affect pricing generic
resource reservation slots, including in their analysis variants
of Ascending Auctions and the Generalized Vickrey Auction.
The onerous computational requirements of the GVA are
noted, but no solution is proposed.

Our work, in contrast, focuses on delivering computational
tractability without breaking the theoretical constraints that en-
sure incentive compatability. The scientific contribution of this
paper is the dynamic programming algorithm that allows us
to accomplish this in our target environment. We present this
mechanism in detail and present the results of our evaluation
of the mechanism in both simulation and on live hardware.

III. HIGH-LEVEL DESCRIPTION

In the DPGVA reservation system, users place bids for
computational time. In these bids, users specify three values:
the length of time needed (l), the deadline by which the job
must be completed (d), and the value of the work being
performed (v). Users are guaranteed one of two outcomes:
either they will get no computational time and will be charged
nothing, or they will get exactly l amount of time by the
deadline d and will pay at most v. These bids are sealed, and
must be submitted before the scheduling period begins (i.e. if
each day is scheduled at midnight, the bids must be submitted
the previous day).

A. User Interaction

In our current implementation, users place bids today for
reservations scheduled tomorrow. In our simple bidding pro-
gram, users simply indicate to the scheduler the amount of
time they need, when they need it by, and the most they are
willing to pay for it. For example, a user that wished to request
three hours (180 minutes) of computing time, ending at 6pm
on November 21st, 2008, and was willing to pay at most 500
credits for the time would submit:

$placebid 180 "2008.11.21 at 18:00:00" 500

One limitation of our scheme that will be explained at length
below is that we enforce some maximum granularity on the
length of jobs and the deadlines that can be specified. This
granularity can of course be modified by administrators. For
example, if the maximum granularity were set to 15 minutes,
allowable job lengths would be 15, 30, 45, 60... minutes and
allowable deadlines would be 1:00AM, 1:15AM, 1:30AM,
1:45AM,... etc.

The scheduler collects many such bids throughout the day,
and at midnight it computes the next day’s schedule. This
reservation schedule is communicated to PBS using the setres
command. Users can then use the PBS command showres to
find when their job’s reservation has been scheduled.

B. Computing Payments

Each user that is allocated time on the resource pays
some amount of virtual currency for that time. The payment
mechanism we use is the well-known Generalized Vickrey
Auction (GVA). The GVA has many good properties that
make it desirable in our target environment. First, it is flexible
enough to handle bids specifying the value of a range of
allocative outcomes, rather than just one. This is required
in our target environment, since users can be satisfied with
a few different running times for their job. Second, it is a
dominant strategy to be honest in your bidding in a GVA. This
means that, regardless of the bidding strategies used by other
participants, an individual advances his own interests the most
when being truthful. This allows us to completely sidestep the
challenges posed by using user inputs for scheduling decisions
when those inputs don’t honestly reflect the preferences of the
users.

The GVA accomplishes this by computing a user’s impact
on the aggregate welfare of other users and charging him
exactly the amount that his presence reduces others’ allocative
satisfaction. As a result, a user is motivated to report a bid
that maximizes the sum of his allocative satisfaction and the
negative value representing his impact on others’ satisfaction.
If the allocation function that reconciles these bids produces
perfectly optimal schedules, the bid that maximizes this is an
honest bid.

Despite these strengths, the GVA does have a weakness. In
order to deliver these properties, the GVA requires that we can
optimally solve the allocation problem at hand. Algorithms
that produce approximately-optimal solutions are unaccept-
able, as the mathematics that make honesty a dominant strat-
egy break in the face of approximations. The DPGVA system
works around this issue by employing a pseudo-polynomial
dynamic programming algorithm. This way, we can deliver
computational tractability without resorting to approximation.

The specific manner in which the GVA payments are
computed will be covered in detail in section IV.

IV. MECHANISM DETAILS

As mentioned above, the DPGVA reservation system uses
the Generalized Vickrey Auction for determining how much
each user pays for access to the resource. This auction scheme
is well known for its powerful predictions about optimal
user behavior. A common approach to this problem is to
implement the GVA as a simple combinatorial auction scheme,
which typically means that solving becomes computationally
intractable. For example, this way would reduce a bid of the
form (4hours, by noon, $5) to multiple, mutually exclusive
bids of (1AM − 5AMfor$5), (2AM − 6AMfor$5)..., etc.
This technique loses no expressiveness and would achieve
efficient allocations, but would be NP-Hard to solve.

To take this approach would be to unnecessarily reduce the
problem to one with excessive expressiveness. In the DPGVA
mechanism, bids can only request contiguous segments of time
and are indifferent between when they are (subject to the
deadline constraint). A combinatorial auction does not have
these constraints, and is a stronger tool than is required.

Instead of going this route, we have developed a special-
purpose dynamic programming algorithm for optimally solv-
ing this scheduling problem in pseudo-polynomial time.

A. Optimally Allocating using Dynamic Programming

Our dynamic programming algorithm builds a table of inter-
mediate results, starting on simpler instances of the problem
and combining them to ultimately solve the whole problem.
As can be seen in Figure 1, this table has two axes, one being
time and the other jobs. The time axis represents every time
unit granule during the discretized scheduling period. The job
axis has one entry for each job request submitted to the system.
Each cell in the table (Ji, Tk) holds the answer to the question:
what is the optimal scheduling of jobs from time Tk to time
Tn if we consider only jobs J1 through Ji (jobs are sorted
by deadline). As such, when the algorithm has completed, the

J1
J2

Jm

T1 T2 Tn...

...

Tk ...

Ji

...

Table position (Ji, Tk) contains the optimal
allocation of jobs up to Ji, if the schedule
were to start at time Tk.

Fig. 1. The structure of the table that stores intermediate results.

J1
J2

Jm

T1 T2 Tn...

...

Tk ...

Ji

...
t

Table position (Ji-1, Tk) contains the optimal allocation of jobs
up to Ji-1, if the schedule were to start at time Tk.

Table position (Ji-1, Tk-t) contains the optimal allocation of jobs
up to Ji-i, if the schedule were to start at time Tk+t.

Table position (Ji, Tk) is computed by comparing:
 - The value of the job Ji + the value of solution at (Ji-1, Tk+t)
 - The value of solution at (Ji-1, Tk)

Fig. 2. The recursion relation. Each cell in the table is computed based on
the results computed in other cells.

answer to the entire optimal scheduling problem will be held
at (Jm, T1).

We build this table by starting at (J1, Tn), and go from
right to left, and then top to bottom. The recursion relation
(as depicted in Figure 2) is as follows:

compute(t, j){
if t=n, return empty;
if j=0, return empty;

a = value(j) + table(t + length(j), j-1);
b = table(t, j-1);

if a > b,
return j + table(t + length(j), j-1);

else return table(t, j-1);
}

Each cell contains the optimal solution to the sub-problem
characterized by its cell location (i.e. a list of jobs). The
recursion relationship is simple. To determine if ji is in the
optimal solution of the sub-problem (Ji, Tk), we compare two
different sub-problems: (Ji−1, Tk) and (Ji−1, Tk+t) (where t
is the running time of job ji). If the total value of sub-problem
(Ji−1, Tk) is greater than the total value of (Ji−1, Tk+t) plus
the value of ji−1, then ji−1 is not included in the solution of
(Ji, Tk) and we use the result from (Ji−1, Tk). Otherwise, we
take the result from (Ji−1, Tk+t) and add ji−1 to it.

As a result of the order in which we build the table, when
computing each cell, the cells it relies upon have already
been computed. Consequently, the amount of time needed to
compute each cell is proportional to the size of the result
stored, and since this can be (worst-case) the number of jobs
submitted, this time scales O(m) linearly with respect to the
number of jobs submitted.

So, because the table is of size n ∗ m, and each step can
take a maximum of O(m) time, the complexity of building
the table (and solving the problem) is O(n ∗m2).

One limitation of our mechanism as it currently exists is
its inability to handle jobs that require different numbers of
machines. So the mechanism works perfectly for allocating,
say, 8-node jobs on 8-node resources, but does not currently
handle jobs of arbitrary size. This limitation is due to us cur-
rently lacking a dynamic programming algorithm that allows
arbitrarily-sized jobs.

As with other pseudo-polynomial algorithms, the actual
magnitude of inputs (e.g. job deadline, schedule size) has an
impact on the running time of the algorithm. As a result,
one parameter that must be set when using the DPGVA
algorithm is the maximum specifiable granularity. This allows
the mechanism to schedule k discrete time units in the same
amount of time, regardless of if those units are sized in seconds
or in days.

V. EVALUATION

In Section IV we the theoretical characteristics of the
DPGVA mechanism. In this section we will present the results
of our tests to experimentally verify these characteristics.
These experiments take two forms: the interaction of simulated
participants to verify the claims of truth-revelation, and load
testing on live servers to verify the claims of computational
tractability.

A. Truth Revelation

Without exhaustively testing the complete space of possible
user behavior, we can’t experimentally prove that a mechanism
always incentivizes honesty. But while we can’t prove this ex-
perimentally, we can use simulated experiments to repeatedly
verify that this is indeed the case in practice. In this section,
we’ll present the results of such simulations.

0 20 40 60 80
Announced deadline (actual is 90)

0

200

400

600

800

Pa
yo

ff

Fig. 3. The payoff seen by the simulated user over a range of possible
deadline declarations.

Figures 3, 4 and 5 show the results of one such simulation.
In these tests, we’ve created a large pool of competing jobs
and watched what happens to an individual’s satisfaction with
the allocation as we vary what he reports to the mechanism. A
user’s payoff is defined as his value of the amount of compute
time he received (in currency), minus the amount he had to
pay into the system to get it.

In all of these tests, there were 20 competing jobs. The
number of units of time that were being scheduled was 100.
The deadline for these randomly created jobs was selected
from a uniform distribution of 0 to 100. The length of these
jobs was selected from a uniform distribution of 0 to 100. The
value parameter for these jobs was selected uniformly from 1
to 1000.

Figure 3 shows the change in user satisfaction from varying
the declaration of the deadline of the job in question. This fig-
ure answers the question, “what will happen to my satisfaction
level if I were to lie about my deadline?” The deadline of the
job in question is in fact 90, and as this figure shows, reporting
a value other than 90 leads to the same or lower payoff.

Figure 4 shows the change in user satisfaction from varying
the declaration of the needed running time of the job in
question. This figure answers the question, “Do I see any
benefit if I exaggerate the amount of time I need?” The actual
length of the job is 5, and as this figure shows, reporting a
longer running time only leads to a less desirable outcome.
We don’t explore declarations smaller than 5, due to the
fact that jobs are allocated exactly their stated running time.
Declarations smaller than the actual running time would be
useless to the job owner.

Figure 5 shows the change in user satisfaction from varying
the value declared when submitting the job in question.
This figure answers the question, “Will I benefit from being
dishonest about the true value of my job?” The actual value
of the job is 950, and as this figure shows, reporting either a
higher or lower value does not improve the outcome for the
job.

These results indicate to us that the DPGVA mechanism
exhibits the strong truth incentivization properties that theory

10 20 30 40 50 60 70 80
Announced job length (actual is 5)

0

200

400

600

800

Pa
yo

ff

Fig. 4. The payoff seen by the simulated user over a range of possible job
length declarations.

0 200 400 600 800 1000
Announced job value (actual is 950)

0

200

400

600

800

Pa
yo

ff

Fig. 5. The payoff seen by the simulated user over a range of possible job
valus declarations.

predicts it should.

B. Performance

In Section IV, theory was used to predict good scaling
properties of the DPGVA mechanism. In this subsection, we
will present the results of our tests on live servers to verify
this. All of the following results were measured on a Pentium
III (Xeon) running at 2.2 GHz, with 512MB of RAM, running
Debian Linux. The DPGVA mechanism was implemented in
Java, and executed on the Java HotSpot Client, version 1.6.0.

As currently implemented, the DPGVA mechanism runs in
a separate address space from the rest of PBS. It exists as two
components: a continuously running server and briefly running
clients that submit bids. The server component listens on a
TCP port for client bid submissions throughout the day, and at
the end of the day executes the DPGVA algorithm to compute
the next day’s schedule and the corresponding user payments.
The server then constructs a series of PBS commands using the
”setres” command to communicate the next day’s reservations
to the PBS scheduler. Users can then user the PBS command
”showres” to find out when they have been granted access to
the resource. For our tests, the DPGVA software was run on
the same hardware as the rest of the PBS software. This is

20 40 60 80 100
Number of bids

0

5000

10000

15000

20000

25000

30000

Ti
m

e
to

 c
om

pu
te

 a
llo

ca
tio

n
in

 m
illi

se
co

nd
s

Fig. 6. The amount of time required to find the allocation of jobs, as we
vary the number of bids submitted.

20 40 60 80 100
Number of bids

0

500000

1x106

1.5x106

2x106

2.5x106

3x106

Ti
m

e
to

 c
om

pu
te

 p
ay

m
en

ts
 in

 m
illi

se
co

nd
s

Fig. 7. The amount of time required to find the payments of each user, as
we vary the number of bids submitted.

not necessary, however, and the DPGVA computations can be
executed on separate hardware.

Theory predicts that as we increase the number of bids
submitted to the mechanism, the amount of time necessary to
compute the schedule scales O(n2). In Figure 6, we present
the measured results of what happens to computation time as
we increase the number of bids. In these tests, we schedule a
six hour period using a maximum specifiable time granularity
of 15 minutes.

In addition to computing the schedule, the mechanism must
also compute the payments seen by each user. As discussed
above, this computation involves scheduling n different in-
stances of the problem, each one supposing a certain bid
had not been present. As a result, computing the payments
takes n times longer than computing the schedule, yielding
scaling complexity O(n3) with respect to the number of
bids. In Figure 7, the performance measurements for this
computation can be seen. It should be noted that while these
absolute numbers are somewhat high, the job schedule does
not depend this computation. So the jobs can immediately
begin running after computing the schedule, and the payments
can be computed separately in parallel.

As a demonstration of how positive these results are, we

10 20 30 40
Number of bids

0

2000

4000

6000

8000

10000

12000

Ti
m

e
to

 c
om

pu
te

 o
ut

co
m

e
in

 m
illi

se
co

nd
s

Fig. 8. Comparing the performance of a brute-force GVA implementation
to the DPGVA algorithm, while computing the outcome. The dashed line is
the brute force algorithm, while the solid line is the DPGVA results.

10 20 30 40
Number of bids

0

100000

200000

300000

400000

500000

TI
m

e
to

 c
om

pu
te

 p
ay

m
en

ts
 in

 m
illi

se
co

nd
s

Fig. 9. Comparing the performance of a brute-force GVA implementation
to the DPGVA algorithm, while computing the payments. The dashed line is
the brute force algorithm, while the solid line is the DPGVA results.

have recorded the amount of time needed to do the GVA
computations using a traditional brute-force technique, rather
than our dynamic programming solution. This brute-force
algorithm simply considers all possible orderings of jobs
(subject to deadline constraints), and selects the one with
the highest aggregate job-value. As can be seen in Figures 8
and 9, the amount of time needed for an exhaustive brute-force
computation of the GVA quickly explodes as we increase the
number of bids in the system. Even at only 44 bids in the
system, the brute-force algorithm requires almost 8 minutes to
compute the same set of payments that our DPGVA algorithm
finds in under 6 seconds.

One parameter that system administrators would likely want
to adjust is the time period over which the scheduling occurs.
Depending on the target environment, they may want to be
scheduling one day at a time, or one month at a time. The
theory presented in Section IV indicated that the running time
of the algorithm should scale O(n) linearly as we increase the
time period over which we are scheduling. As you can see in
Figures 10 and 11, we see this linear increase in practice. In
these tests, we schedule 20 jobs using a maximum specifiable

0 1x108 2x108 3x108 4x108 5x108

Schedule size in milliseconds

0

50

100

150

200

250

300
Al

lo
ca

tio
n

co
m

pu
ta

tio
n

tim
e

in
 m

illi
se

co
nd

s

Fig. 10. The amount of time required to find the allocation of jobs, as we
vary the size of the schedule.

0 1x108 2x108 3x108 4x108 5x108

Schedule size in milliseconds

0

1000

2000

3000

4000

5000

Pa
ym

en
t c

om
pu

ta
tio

n
in

 m
illi

se
co

nd
s

Fig. 11. The amount of time required to find the payments of each user, as
we vary the size of the schedule.

time granularity of 15 minutes. Figure 10 presents the running
time measured to schedule the jobs as we increase the time
period over which we are scheduling. Figure 11 presents the
running time measured to compute each users payemts as we
increase the time period over which we are scheduling. As
you can see from the results, both increase roughly linearly.

Another parameter that system administrators would likely
be modifying is the maximum time granularity used when
users submit bids. Increased granularity allows users with very
small or very predictable jobs to get no more resource than
they need, while decreased granularity allows faster schedule
computation. Figures 12 and 13 depict what happens as we
increase the size of the smallest schedulable unit. In these
tests, we are scheduling 20 jobs over a six hour period. The
smallest schedulable unit is varied from 60 seconds to 900
seconds (one minute to 15 minutes). Because the size of the
smallest unit is inversely proportional to the number of distinct
schedulable time units, we would expect this data to resemble
the reciprocal of the data presented in Figures 10 and 11. As
you can see in the data, this is indeed the case, as both figures
seem to scale O(1/n) with respect to the size of the smallest
unit.

200 400 600 800
Smallest scheduable unit

0

50

100

150

200

250

300

350

Al
lo

ca
tio

n
co

m
pu

ta
tio

n
tim

e
in

 m
illi

se
co

nd
s

Fig. 12. The amount of time required to find the allocation of jobs, as we
vary the size of the smallest scheduable unit.

200 400 600 800
Size of smallest scheduable unit

0

1000

2000

3000

4000

5000

6000

Pa
ym

en
t c

om
pu

ta
tio

n
tim

e
in

 m
illi

se
co

nd
s

Fig. 13. The amount of time required to find the payments of each user, as
we vary the size of the smallest scheduable unit.

VI. CONCLUSIONS AND FUTURE WORK

According to our examinations, the DPGVA mechanism de-
livers on its design goal: providing a computationally tractable
and incentive compatible pricing mechanism for reservations
on a computational grid. We have demonstrated through simu-
lation that the powerful truth revealing guarantees provided by
the GVA have been retained in practice. We have demonstrated
through live performance measurements that our dynamic
programming algorithm exhibits an acceptable degree of com-
putational tractability. The DPGVA algorithm has exhibited,
in our tests, a significant performance improvement over our
brute-force GVA solver. Our DPGVA mechanism is certainly
not perfect, however. The constraint that all submitted jobs
must be of the same ”width” (i.e. number of nodes), is one
that prohibits its use for many target environments.

We intend to focus on this deficiency in future work.
One solution would be to identify another pseudo-polynomial
algorithm that can solve the problem tractably without the
same-size constraint. This solution would be ideal, but difficult
to achieve. We have invested research into extending our
current algorithm in this manner, but have found it a very
hard problem. Searching previously published research on the

solution of related problems has proved similarly fruitless. We
intend to address this shortcoming in future work, however,
by attempting to measure the degree to which incentive
compatibility breaks when we replace our optimal, pseudo-
polynomial algorithm with one that is approximately optimal.

REFERENCES

[1] A. Mutz, R. Wolski, and J. Brevik, “Eliciting honest value informa-
tion in a batch-queue environment,” in Proceedings of 8th IEEE/ACM
International Conference on Grid Computing, 2007.

[2] C. Ng, P. Buonadonna, B. N. Chun, A. C. Snoeren, and A. Vahdat,
“Addressing strategic behavior in a deployed microeconomic resource
allocator,” in 3rd Workshop on the Economics of Peer to Peer Systems,
2005.

[3] M. P. Wellman, W. E. Walsh, P. R. Wurman, and J. K. MacKie-Mason,
“Auction protocols for decentralized scheduling,” Games and Economic
Behavior, vol. 35, no. 1-2, pp. 271–303, 2001. [Online]. Available:
http://citeseer.ist.psu.edu/383290.html

[4] B. Schnizler, D. Neumann, D. Veit, and C. Weinhardt, “A multiattribute
combinatorial exchange for trading grid resources,” in Proceedings of
the Research Symposium on Emerging Electronic, 2005.

[5] B. N. Chun and D. E. Culler, “Market-based proportional resource
sharing for clusters,” Computer Science Division, University of
California at Berkeley, Tech. Rep. CSD-1092, January 2000. [Online].
Available: http://citeseer.ist.psu.edu/chun99marketbased.html

[6] K. Lai, B. A. Huberman, and L. Fine, “Tycoon: A distributed market-
based resource allocation system,” 2004.

[7] I. Stoica, H. Abdel-Wahab, and A. Pothen, “A microeconomic scheduler
for parallel computers,” in Proceedings of the International Parallel
Processing Symposium (IPPS) ’95 Workshop on Job Scheduling Strate-
gies for Parallel Processing, Santa Barbara, CA, USA, 1994. [Online].
Available: http://citeseer.ist.psu.edu/stoica94microeconomic.html

[8] R. Wolski, J. S. Plank, J. Brevik, and T. Bryan,
“Analyzing market-based resource allocation strategies for the
computational grid,” International Journal of High Performance
Computing Applications, vol. 15, pp. 258–281. [Online]. Available:
http://citeseer.ist.psu.edu/wolski00analyzing.html

[9] B. N. Chun and D. E. Culler, “User-centric performance analysis
of market-based cluster batch schedulers,” in Proceedings of the 2nd
IEEE International Symposium on Cluster Computing and the Grid,
Berlin, Germany, May 2002. [Online]. Available: http://berkeley.intel-
research.net/bnc/papers/ccgrid02.pdf

[10] C. B. Lee and A. Snavely, “On the user-scheduler dialogue: Studies
of user-provided runtime estimates and utility functions,” vol. 20, pp.
495–506.

[11] A. Das and D. Grosu, “Combinatorial auction-based protocols for
resource allocation in grids,” in Proceedings. 19th IEEE International
Parallel and Distributed Processing Symposium, 2005.

[12] K. Bubendorfer, K. Chard, P. Komisarczuk, and A. Desai, “Fine grained
resource reservation and management in grid economies,” in Proceed-
ings of The 2005 International Conference on Grid Computing and
Applications, 2005.

