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Abstract

A circulant graph with n nodes and jumps
j1, j2, ..., jm is a graph in which each node i, 0 ≤ i ≤
n−1, is adjacent to all the vertices i± jk mod n, where
1 ≤ k ≤ m. A binomial graph network (BMG) is a cir-
culant graph where jk is the power of 2 that is less than
or equal to n. This paper presents an optimal (short-
est path) two-terminal routing algorithm for BMG net-
works. This algorithm uses only the destination address
to determine the next hop in order to stay on the short-
est path. Unlike the original algorithms, it does not
require extra space for routing tables or additional in-
formation in the packet. The experimental results show
that the new optimal algorithm is significantly faster
than the original optimal algorithm.

1 Introduction

Recently, several high performance computing plat-
forms have been installed with more than 10,000 CPUs,
such as Blue-Gene/L at LLNL, BGW at IBM and
Columbia at NASA [1]. However, as the number of
components increases, so does the probability of failure.
To satisfy the requirements of such a dynamic environ-
ment (where the available number of resources is fluc-
tuating), a scalable and fault-tolerant communication
framework is needed. The communication framework
is important for both runtime environments of MPI li-
braries and the MPI libraries themselves. In general,
the communication framework is based on a logical net-
work topology.

There are several existing logical network topolo-
gies that can be used in high performance computing
(HPC). The fully connected topology is good in terms
of fault-tolerance, but it is not scalable because of its
high degree. The bidirectional ring topology is more
scalable, but it is not fault-tolerant. Hypercube [2] and
its variants [3–10], FPCN [11], de Bruijn [12] and its
variants [13, 14], Kautz [15] and ShuffleNet [16] have
a number of node restrictions. They are either not

scalable or not fault-tolerant. The Manhattan Street
Network (2D Torus) [17] is more flexible (no restric-
tion in numbers of node) than Hypercube-like topolo-
gies. However, it has a much higher average hop-
distance. Variants of k -ary tree, such as Hierarchi-
cal Clique (HiC) [18] and k -ary sibling tree (Hyper-
tree [19]) used in SFTP [20,21], are scalable and fault-
tolerant. They are good for both unicast and broadcast
messages. However, all nodes in their topologies are not
equal (the resulting graph is not regular). Topologies,
used in structured peer-to-peer networking based on
distributed hash tables such as CAN [22], Chord [23],
SkipNet [24], Kademlia [25], Viceroy [26], Pastry [27]
and Tapestry [28], are also scalable and fault-tolerant.
They were designed for resource discovery in highly
dynamic environments. Hence they may not be effi-
ciently used in HPC, owing to the overhead for manag-
ing highly dynamic applications.

Binomial graph (BMG) [29] provides desirable topo-
logical properties in terms of both scalability and fault-
tolerance for high performance computing such as rea-
sonable degree, regular graph (every node has the same
degree), low diameter, symmetric graph (in the sense
that an average inter-nodal distance is the same from
any source node) and low cost factor. It also has low
message traffic density, optimal connectivity, low fault-
diameter, is strongly resilient and has good optimal
probability in failure cases.

BMG is an undirected graph G :=(V,E ) where V
is a set of nodes (vertices); |V | = n; and E is a
set of links (edges). Each node i, where i∈V and
i=0,1,...,n-1, has links to a set of nodes U, where
U={i±1,i±2,...,±2k|2k ≤ n} in circular space, i.e.,
node i has links to a set of clockwise (CW) nodes
{(i+1) mod n, (i+2) mod n,..., (i+2k) mod n | 2k ≤
n} and a set of counterclockwise (CCW) nodes {(n+i -
1) mod n, (n+i -2) mod n,..., (n+i -2k) mod n | 2k ≤
n}. The structure of BMG can also be classified in
the Circulant graph family1. A Circulant graph with n
nodes and jumps j1, j2, ..., jm, where m ∈ N, is a graph

1The family of Circulant graphs includes fully connected, ring,
Recursive Circulants [30] and Midimew [31].



in which each node i, 0 ≤ i ≤ n − 1, is adjacent to all
the vertices i ± jk mod n, where 1 ≤ k ≤ m. BMG
is a Circulant graph where jk is the power of 2 that is
less than or equal to n. For a BMG of size n (having n
nodes), each node has a degree δ (number of neighbors)
as shown in Equation (1).

δ =















(2 × %log2 n&) − 1 For n = 2k,where k ∈ N

(2 × %log2 n&) − 2 For n = 2k + 2j ,
where k, j ∈ N ∧ k (= j

2 × %log2 n& Otherwise
(1)

Figure 1(a) illustrates an example of a 12-node bi-
nomial graph, where the thin lines represent all the
connections in the network. The other way to look
at the binomial graph is that it is a topology, which
is constructed from merging all necessary links being
able to create binomial trees from each node in the
graph. Figure 1(b) shows an example of a binomial
tree where node 0 is the root node. The arrows point
in the direction of the leaf nodes. Obviously, BMG is
able to deliver broadcast messages optimally from any
node within %log2(n)& steps because of its capability to
create the binomial tree out of each node.
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Figure 1. Binomial graph structure. (a) 12-
node BMG. (b) Binomial tree from node 0.

The distance d(x,y) between node x and node y in a
graph is defined as the length of the shortest path from
x to y in the graph. The diameter D of a graph is given
by max(d(x,y)) over all possible pairs (x,y) of nodes in
the graph. The diameter D is the longest of the shortest
paths between any two nodes in the graph. The average
distance d̄ of a graph is given by Equation (2).

d̄ =

∑n−1
x=0

∑n−1
y=0 d(x, y)

n × (n − 1)
, where x (= y (2)

The average distance and diameter of BMG, along with
related network topologies, are shown in Figure 2(a)
and Figure 2(b), respectively. The results indicate that

BMG has the lowest average distance (≈ log2(n)
3 ) and

diameter (O(% "log2(n)#
2 &)) among them.
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Figure 2. Distance Comparison. (a) Average
distance (d̄). (b) Diameter (D).

This paper introduces an optimal (shortest path)
two-terminal routing algorithm for BMG networks.
This algorithm uses only the destination address to de-
termine the next hop in order to stay on the shortest
path. Unlike the original algorithm, it does not require
extra space for routing tables or additional information
in the packet. In fact, the shortest-path problem for
Circulant graphs of arbitrary degree is NP-hard [32].
There are several optimal algorithms for specific types
of Circulant networks such as 2-Circulant [33, 34] and
Recursive Circulant Networks [35]. However, these al-
gorithms can not be directly applied with the BMG,
due to their restriction with constant degree. Actually,
BMG and the undirected Chord [36] are exactly the
same topology when the number of nodes is a power
of two2. Hence, the optimal routing in the undirected
Chord [36] may also be used in BMG. Figure 3(a) il-
lustrates an average distance (d̄) overhead (in percent)
of an undirected chord routing algorithm. The percent

overhead was calculated from d̄Chord−d̄Optimal

d̄Optimal
× 100.
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Figure 3. Performance of undirected chord
routing algorithm on BMG topology. (a) d̄
overhead (%). (b) D overhead (hops).

This figure indicates that an undirected chord rout-

2if the number of nodes in the undirected Chord is not power
of two, it will create roughly the same small groups of nodes such
that the number of groups is a power of two and will use their
routing algorithm [36] between those groups.



ing algorithm is not optimal for BMG unless the num-
ber of nodes is a power of 2 or middle points between
the power of 2 (e.g., 24, 48, 96, ...). Figure 3(b) illus-
trates diameter (D) overhead in the number of hops
(i.e., DChord − DOptimal).

The structure of this paper is as follows. Section 2
describes the original routing algorithm. The new opti-
mal routing algorithms are discussed in section 3. Sec-
tion 4 presents the experimental evaluations, followed
by conclusions and future work in section 5.

2 Original routing algorithms

This section presents three original two-terminal
routing algorithms [29]. One optimal routing algo-
rithm is based on breadth-first search, and the two sub-
optimal routing algorithms are called basic and variant.
Each node in the graph may run the same routing algo-
rithm because all nodes in BMG are equal (both regular
and symmetric).

2.1 Breadth-First Search Optimal Algorithm

The optimal routing algorithm can use a breadth-
first search technique with a modified graph coloring
algorithm. Although this algorithm gives the optimal
result, the complexity of the algorithm is O(δD).

Instead of recomputing the next hop in every mes-
sage transmission, the breadth-first search technique
can use a routing table to keep the result of the next
hop sorted by the shortest path from the node itself
to all other nodes in BMG. However, the routing table
requires an extra space of O(n2).

2.2 Basic Sub-Optimal Algorithm

A basic algorithm to estimate the shortest path be-
tween nodes is to use a rule-based method that sends
the unicast messages to a neighbor that has the clos-
est ID to the destination ID as shown in Algorithm 2.
The complexity of the basic unicast routing algorithm
is O(δ). The experimental results indicate that the ba-
sic is a sub-optimal algorithm (i.e., average distance
overhead (= 0) as shown in Figure 4.

2.3 Variant Sub-Optimal Algorithm

This algorithm is the variant of the basic algorithm
that allows messages to go forward to a neighbor of
which ID is not the closest ID to the destination ID
if the destination is directly connected to the neighbor.
The complexity of the variant unicast routing algorithm
is O(δ2).

Figure 4(a) and Figure 4(b) present the overhead
of both sub-optimal algorithms. They depict that the
variant algorithm is marginally better than the basic
algorithm in terms of d̄ and D.

Algorithm 1 Finding an Optimal Route with
Breadth-First Search
Require: 1 ≤ myID ≤ n ∧ 1 ≤ destID ≤ n, n ∈ N

1: for i = 0 to n do
2: State[i] ⇐ INIT
3: end for
4: State[myID] ⇐ START
5: enQueue(myID)
6: while Queue is not empty do
7: nodeID ⇐ deQueue()
8: if nodeID = destID then
9: break

10: end if
11: Get neighborID of the nodeID
12: for i = 0 to (Numbersofneighbor) − 1 do
13: if State[nodeID] = INIT then
14: State[neighborID[i]] ⇐ START
15: Parent[neighborID[i]] ⇐ nodeID
16: enQueue(neighborID[i])
17: end if
18: end for
19: State[nodeID] ⇐ DONE
20: end while
21: nodeID ⇐ destID
22: while Parent[nodeID] (= myID do
23: nodeID ⇐ Parent[nodeID]
24: end while
25: Return nodeID

Algorithm 2 Find neighborID which has the esti-
mated shortest distance to destID
Require: 1 ≤ myID ≤ n ∧ 1 ≤ destID ≤ n, n ∈ N

1: Min ⇐ ∞
2: Get neighborID of myID
3: for i = 0 to (Numbersofneighbor) − 1 do
4: Distance ⇐ |destID − neighborID[i]|
5: if Distance < Min then
6: Min ⇐ Distance
7: nextHopID=neighborID[i]
8: end if
9: end for

10: Return nextHopID

 0

 2

 4

 6

 8

 10

 12

 16  32  64  128  256  512  1024  2048  4096

%
A

v
er

ag
e-

D
is

ta
n

ce
 O

v
er

h
ea

d

Number of Nodes

Basic
Variant

(a)

 0

 1

 2

 16  32  64  128  256  512  1024  2048  4096

D
ia

m
et

er
 O

v
er

h
ea

d
 (

H
o

p
s)

Number of Nodes

Basic
Variant

0%

50%

100%

 0  1  2

Histogram

(b)

Figure 4. Sub-optimal routing performance.
(a) d̄ overhead (%). (b) D overhead (hops).



3 New routing algorithms

In order to always stay on the shortest path from
a source to a destination, messages must be delivered
through a neighbor that has the estimated shortest hop
to the destination unlike the original basic sub-optimal
algorithm that estimates the shortest distance between
neighbors and destination (i.e., a greedy algorithm).
The key to success of this algorithm is how well we
can estimate the number of hops that is used for send-
ing messages between two nodes. Several methods to
calculate the number of hops between two nodes have
been explored as follows.

3.1 Bit Counting method

The bit counting method represents the distance be-
tween a source and a destination in a binary format.
The bit-1 represents the number of hops that messages
can travel, e.g., if a distance between a source and a des-
tination (|destID−srcID) is 9 (binary is 1001), a mes-
sage is forwarded to nodes with distance 8 (1000) and
1 (0001). Hence the message can be delivered within
two hops. From the above example, it does not mat-
ter which of the distances is selected as the first hop.
Thus, load balancing of both links and neighbors can
be implemented by a node if the next neighbor is ran-
domly selected from all those candidates. Quality of
service (QOS) can also be implemented by a node sim-
ply by selecting the next hop based on the priority of
its candidate neighbors.

The bit counting method can be used to estimate
the number of hops by counting the number of bit-1
of distance between the source and the destination in
both clockwise and counter-clockwise directions. The
estimated number of hops is the minimum number of
bit of both directions. The complexity of this algorithm
is O(1).

In practice there are several fast bit counting algo-
rithms (O(1)). They can be divided into two classes.
The principal idea of the first class is to count the
number of bits in parallel fashion. These algorithms
re-arrange an original binary number into several small
groups of bits, then count the number of bits in each
group simultaneously and finally sum the results. An
example of an algorithm in this class is the MIT HAK-
MEM item 169 [37]. The second class is based on a
lookup table of pre-computed bit counting. Figure 5
illustrates an example of the 8-bit lookup table. The
LTB8 holds the number of bit-1 of every value (0-255)
for an 8-bit number. Counting the bit of a 32-bit inte-
ger can be performed by masking out four sets of eight
bits in the given integer and indexing them into the
LTB8 array. Then, the final result is the sum of results
of every set of eight bits. Methods based on the lookup
table also have complexity O(1). They might be faster

1 stat ic int LTB8 [ 2 5 6 ] =
2 {
3 0 , 1 , 1 , 2 , 1 , 2 , 2 , 3 , . . .
4 . . . , 5 , 6 , 6 , 7 , 6 , 7 , 7 , 8
5 } ;
6

7 int lookup8 (unsigned int n)
8 {
9 return LTB8[ n & 0 x f f u ] +

10 LTB8 [ ( n>>8) & 0 x f f u ] +
11 LTB8 [ ( n>>16) & 0 x f f u ] +
12 LTB8 [ ( n>>24) & 0 x f f u ] ;
13 }

Figure 5. 8-Bit Lookup Table for 32-bit Archi-
tecture

than the parallel counting techniques, however they re-
quire extra memory to store the table.

Figure 6(a) and Figure 6(b) present the d̄ and D
overhead of the bit counting method. They emphasize
that the bit counting method is sub-optimal.
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Figure 6. Performance of the bit counting
method. (a) d̄ overhead (%). (b) D overhead
(hops).

The average and maximum values of the overhead of
d̄ and D for the bit counting method in a configuration
between 16 and 4096 nodes compared with the original
algorithms, basic and variant sub-optimal are shown in
Table 1 and Table 2. Estimating the number of hops
by a simple bit counting method does not seem to be
a good idea. However, it is worth mentioning in this
section, since it will be used in the subsequent section.

3.2 Consecutive Bit Elimination Method

Estimating the number of hops using the bit count-
ing method might be too pessimistic, e.g., if a dis-
tance between a neighbor and a destination (|destID−
neighborID|) is 7 (binary is 0111), the bit counting
method will estimate the number of hops is 3, jumping



Table 1. d̄ Overhead comparison

Algorithms
Values (%)

Average Maximum
Basic 5.555140 11.3849

Variant 4.692380 10.5893
Bit Counting 25.1307 36.2324

Con. Bit Elimination 1.28199 4.43152

Table 2. D Overhead comparison

Algorithms
Values (Hops)

Average Maximum
Basic 0.454055 2

Variant 0.449155 2
Bit Counting 2.23254 5

Con. Bit Elimination 0.351139 2

to nodes with distance 4 (0100), 2 (0010) and 1 (0001),
respectively. However, by using the counter-clockwise
links we can use only 2 hops by jumping to distance 8
(1000) on one direction and 1 (0001) on the other direc-
tion (7 = 8-1). Hence we may estimate more precisely
the number of hops between two nodes by eliminating
the sets of consecutive bits before counting the number
of bits in both directions. Consecutive bits elimination
can be performed by adding the value of the least sig-
nificant consecutive bit to the distance between source
and destination in both clockwise (CW) and counter-
clockwise (CCW) directions. This procedure is repeat-
edly performed until there is no consecutive bit left
or the result after adding the values is more than jm,
where jm is a maximum power of 2 that is less than or
equal to n.

For example, a distance in clockwise direction is 110
(the binary is 1101110), i.e. CW = 110 and CCW = 0.
Consider the distance binary 1101110, the first group
of consecutive bits from the right is 1110; therefore, the
least significant, consecutive bit is 2 (binary is 10). The
first step is performed by adding 2 (10) to both CW and
CCW directions. Hence, the distance 110 can be routed
by jumping with distance 112 (binary is 1110000) in
CW and 2 (binary is 10) in CCW. Notice that the bi-
nary of 112 (1110000) still has a consecutive bit, thus
the next value to add in both directions is 16 (binary is
10000). After adding 16, distance 110 can be jumped
with distance 128 (binary is 10000000) in CW and 18
(binary is 10010) in CCW.

In conclusion, the routing for a distance of 110 in
the clockwise direction can be performed within three
hops, i.e., one jump in a clockwise direction with the
distance 128 and two jumps in a counter-clockwise di-
rection with the distance 2 respectively 16. Again, it
does not matter the order in which these jumps are un-
dertaken. Thus, the load balancing and quality of ser-
vice can be implemented as mentioned in section 3.1.

The complexity of this algorithm is O(log2(n)).
An implementation of this algorithm can be done

by simply scanning and transforming a given log2(n)
bit distance from right to left using a state diagram as
shown in Figure 7, where di is an original distance and
qi is a distance in the opposite direction. The label on
each transition between states is written in the form of
input/output (i.e., Mealy machine).

FIRST_ONE

CLUSTERDONE

OFF

di = 0 / qi = 0
di = 0 / qi = 0

di = 1 / qi = 0

di = 1 / di = 0

di = 0 / di = 1
qi = 0 

di = 1 / qi = 0, qi-1 = 1
di = 0, di-1 = 0 

di = !
di = !

di = !

Figure 7. A state diagram to perform bit trans-
formation

Unfortunately, eliminating consecutive bits is diffi-
cult to do in constant time using parallel bit transfor-
mation because of the dependency between bits. How-
ever, this method can be improved by scanning only
part of the entire log2(n) bits as shown in Figure 8.

1 stat ic i n l i n e int check 11 ( int d)
2 {
3 int p r e v l s f , l s f ;
4 p r e v l s f =−1;
5 while (d) {
6 l s f = (d & −d ) ;
7 i f ( ( p r e v l s f << 1)== l s f )
8 return p r e v l s f ;
9 d &= (d−1);

10 p r e v l s f = l s f ;
11 }
12 return 0 ;
13 }

Figure 8. Consecutive Bit Checking Function

The check 11 function checks the consecutive bits
by skipping all the bit-0s and returns a value of least
significant, consecutive bits. It is based on the fact
that (d & -d); (the statement in line six) gives the
value of the least significant bit of d and d &= (d-1);
(the statement in line nine) removes the least significant
bits. Thus, the overall performance is dependent on
numbers of bits-1.

Figure 9(a) and Figure 9(b) present the d̄ and D
overhead of the bit counting method. They portray
that the consecutive bit elimination method is also sub-
optimal. The average and maximum values of d̄ and
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Figure 9. Performance of the consecutive bits
elimination method. (a) d̄ overhead (%). (b) D
overhead (hops).

D overhead in a configuration between 16 and 4096
nodes are significantly lower than the simple bit count-
ing method as shown in Table 1 and Table 2.

3.3 Equivalence Class Method

Finding the optimal path with distance d from
source to destination in BMG size n is actually the
same as solving the following problem

∑δ
i=1 xiji ≡ d

mod n. Hence the equivalence class of distance is ap-
plied, i.e., distance d is the same as distance |d±(l×n)|,
where l is number of loops and l ∈ N.

The number of loops (l) can be limited by the di-
ameter of BMG, i.e., |d ± l × n| ≤ D × jk, where jk is
the maximum power of 2 that is less than or equal to
n. Notice that the worst case of a distance has no con-
secutive bits, e.g., 101, 10101 and 101010. Hence the
number of hops required to deliver messages for such
distance is %Number of bits

2 &. There are %log2(n)& bits for

a distance. So the diameter of BMG is O(% "log2(n)#
2 &).

Estimating the number of hops between source and
destination based on the equivalence class method is
performed by applying the consecutive bit elimination
to distance d and |d ± (l × n)| in both clockwise and
counter-clockwise direction. In practice, a number of
loops (l) more than or equal to four gives the optimal
result for BMG sized less than 4096 as shown in Fig-
ure 10(a) and Figure 10(b). The complexity of this
algorithm is O(l × log2(n)).

4 Experimental Results

This section presents the evaluation of the new
optimal routing algorithm using an equivalence class
method compared with the other routing algorithms.
The experiments have been conducted on an Intel 2.13
GHz machine with 1 GB of main memory, running on
Linux kernel 2.6.18. All experimental programs were
compiled with “gcc -O3”.

 1

 2

 3

 4  64

 256

 1024

 4096

 0.5

 1

 1.5

 2

 2.5

Numbers of Loops
Numbers of Nodes

(a)

 1

 2

 3

 4  64

 256

 1024

 4096

 1

 2

Number of Loops
Number of Nodes

(b)

Figure 10. The number of loops (l ). (a) d̄ over-
head (%). (b) D overhead (hops).

The average elapsed time of calling the function
that calculates the next hop for a given distance d
between source and destination in BMG size n has
been measured. The elapsed time was calculated from
Tickafter−Tickbefore

Hz
, where the CPU tick was read with

an assembly code (RDTSC instruction). The tick be-
fore and after the functions has been recorded. The Hz
is the CPU frequency (i.e., the timer precision is up to
10−9 seconds on a GHz machine).

Figure 11 illustrates that the new optimal rout-
ing algorithm (Equi-Class) is significantly faster than
the original optimal routing algorithm (BFS). It is
even faster than the basic sub-optimal algorithm.
Although the complexity of the Equi-Class method
(O(4 × log2(n))) is more than the basic algorithm
(O(2× log2(n))), the actual performance of Equi-Class
is slightly better. This is the result of the implemen-
tation technique that does not transform the entire
log2(n) bits for a given distance. It always skips all
bit-0s as mentioned in section 3.2.
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5 Conclusions and Future Work

This paper presents an optimal (shortest path), two-
terminal routing algorithm for BMG networks. This
algorithm uses only the destination address to deter-
mine the next hop in order to stay on the shortest
path. Unlike the original algorithm, it does not require



extra memory for routing tables nor additional infor-
mation in the packet. The experimental results show
that the new optimal routing algorithm is significantly
faster than the original optimal algorithm. It is even
faster than an original sub-optimal algorithm.

There are several improvements that we plan for the
near future. Making the routing algorithm aware of
the underlying network topology (in both the LAN and
WAN environments) will greatly improve the overall
performance for both the unicast and broadcast mes-
sage transmissions. This is equivalent to adding a func-
tion cost on each possible path and integrating this
function cost to the computation of the shortest path.
Over the longer term, we hope that BMG will become
the basic logical topology of the runtime environments
within the FT-MPI and Open MPI libraries.
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