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Abstract. The number of processors embedded in high performance
computing platforms is growing daily to solve larger and more complex
problems. However, as the number of components increases, so does the
probability of failure. The logical network topologies must also support
the fault-tolerant capability in such dynamic environments. This paper
presents a self-healing mechanism to improve the fault-tolerant capabil-
ity of a Binomial graph (BMG) network. The self-healing mechanism
protects BMG from network bisection and helps maintain optimal rout-
ing even in failure circumstances. The experimental results show that
self-healing with an adaptive method significantly reduces the overhead
from reconstructing the networks.

1 Introduction

Recently, several high performance computing platforms have been installed
with more than 10,000 CPUs, such as Blue-Gene/L at LLNL, BGW at IBM
and Columbia at NASA [1]. However, as the number of components increases,
so does the probability of failure. To satisfy the requirements of such a dy-
namic environment (where the available number of resources is fluctuating), a
scalable and fault-tolerant communication framework is needed. The communi-
cation framework is important for both runtime environments of MPI libraries
and the MPI libraries themselves. In general, the communication framework is
based on a logical network topology.

There are several existing logical network topologies that can be used in high
performance computing (HPC). Whereas a fully connected topology is good in
terms of fault-tolerance and point-to-point performance, it does not exhibit any
scalable properties due to its high degree. The bidirectional ring topology is more
scalable, but it is hardly fault-tolerant. Hypercube [2] and its variants [3–10],
FPCN [11], de Bruijn [12] and its variants [13,14], Kautz [15] and ShuffleNet [16]
have a number of node restrictions. They are either not scalable or not fault-
tolerant. The Manhattan Street Network (2D Torus) [17] is more flexible (no
restriction in number of nodes) than Hypercube-like topologies. However, it has
a much higher average hop-distance. Variants of k -ary tree, such as Hierarchical
Clique (HiC) [18] and k -ary sibling tree (Hypertree [19]) used in SFTP [20,21],
are scalable and fault-tolerant. They are good for both unicast and broadcast



messages. However, all nodes in their topologies are not equal (i.e. the resulting
graph is not regular). Topologies, used in structured, peer-to-peer networking
based on distributed hash tables such as CAN [22], Chord [23], SkipNet [24],
Kademlia [25], Viceroy [26], Pastry [27] and Tapestry [28], are also scalable
and fault-tolerant. They were designed for resource discovery in highly dynamic
environments. Hence, they may not be efficiently used in HPC owing to the
overhead for managing highly dynamic applications.

Binomial graph (BMG) [29] provides desirable topological properties in terms
of both scalability and fault-tolerance for high performance computing such as
regular graph (every node has the same degree), low diameter, low cost fac-
tor, low message traffic density, low fault-diameter, strongly resilient and good
optimal probability in failure cases.

BMG is an undirected graph G :=(V,E ) where V is a set of nodes (vertices);
|V | = N ; and E is a set of links (edges). Each node i, where i∈V and i=0,1,...,N-
1, has links to a set of nodes U, where U={i±1,i±2,...,±2k|2k ≤ N } in circular
space, i.e., node i has links to a set of clockwise (CW) nodes {(i+1) mod N, (i+2)
mod N,..., (i+2k) mod N | 2k ≤ N } and a set of counterclockwise (CCW) nodes
{(N+i -1) mod N, (N+i -2) mod N,..., (N+i -2k) mod N | 2k ≤ N }. The structure
of BMG can also be classified in the Circulant graph family4. A Circulant graph
with N nodes and jumps j1, j2, ..., jm is a graph in which each node i, 0 ≤ i ≤
n − 1, is adjacent to all the vertices i ± jk mod N, where 1 ≤ k ≤ m. BMG
is a Circulant graph where jk is the power of 2 that ≤ N . For a BMG size N
(having N nodes), each node has a degree δ (the number of neighbors) as shown
in Equation (1).

δ =






(2× %log2 N&)− 1 For N = 2k,where k ∈ N
(2× %log2 N&)− 2 For N = 2k + 2j ,where k, j ∈ N ∧ k (= j
2× %log2 N& Otherwise

(1)

Fig. 1(a) illustrates an example of a 12-node binomial graph. The lines rep-
resent all connections in the network. The other way to look at the binomial
graph is that it is a topology, which is constructed from merging all necessary
links in order to create binomial trees from each node in the graph. Fig. 1(b)
shows an example of a binomial tree when node 0 is the root node. The arrows
point in the direction of the leaf nodes.

This paper presents a reliability analysis and self-healing capability of the
Binomial graph (BMG) networks. The reliability analysis is done using a discrete
event simulation. The result indicates a potential of network bisection when the
number of failed nodes is more than or equal to the degree δ (i.e. BMG is
δ − 1 node fault-tolerance). The self-healing BMG, introduced in this paper,
helps protect BMG from network bisection and maintain optimal routing even
in failure circumstances. The structure of this paper is as follows: Section 2
describes the reliability analysis of the BMG. The self-healing BMG algorithm

4 The family of Circulant graphs includes fully connected, ring, Recursive Circu-
lants [30] and Midimew [31].
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Fig. 1. Binomial graph structure. (a) 12-node BMG. (b) Binomial tree from node 0.

is discussed in section 3. Section 4 presents the experimental evaluations, followed
by conclusions and future work in section 5.

2 Reliability Analysis of BMG

The reliability analysis is based on a discrete event simulation. This section
presents the description of simulation as well as results from the simulation.

2.1 BMG Reliability Simulation

The reliability of BMG is defined as its ability to maintain an operation over
a period of time t, i.e., the reliability R(t)= Pr(the network is operational in
[0,t ]). The BMG is “operational”, if it can successfully deliver messages from
any source to any alive destination even in the case where some intermediary
nodes have failed. Due to the fact that multicast and broadcast messages in
failure circumstances rely on unicast messages [29], this simulation focuses on
reliability of the unicast routing.

The unicast messages in BMG size N are simulated by sending messages from
all possible sources (S ) to all possible destinations (D), where S (=D. Fortunately,
BMG is a vertex symmetric graph (i.e. a graph which looks the same viewed from
any node). Thus, the simulation cases for normal circumstances can be reduced
from N × (N −1) to (N −1) cases. During the failure circumstance, the F failed
nodes are obtained from combinations of all possible N nodes, i.e.,

(N
F

)
where

the source and destination nodes are not one of the failed nodes. Hence, there
are

(N−2
F

)
simulation cases for each unicast transmission.

The total number of simulation cases of unicast message transmission (T )
for N nodes of the BMG with F failed nodes is given by

T = (N − 1)×
(

N − 2
F

)
=

(N − 1)!
(N − F − 2)!F !

.
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Fig. 2. Percentage of unreachable and bisection in failure circumstances.

The transmission of unicast messages is considered successful if the messages can
reach the destination. This means that the network can deliver messages even
in the presence of failures in the routing path. If there are U unreachable cases
due to network bisection, the percentage of unreachable cases (P ) is defined by

P = (
U

T
)× 100.

2.2 Simulation Results and Analysis

The results were obtained by simulating all possible cases as described in the
previous section. The simulation results were obtained from BMG networks of
size 11, 13, 14, 15, 17, 18, 20 and 24. All these BMG topologies have the same
degree (δ = 8). Fig. 2(a) illustrates that destinations become unreachable when
the number of failed nodes is more than or equal to eight. However, a percentage
of unreachable cases is significant when there are more than 50% of failed nodes
as shown in Fig. 2(b) because the percentage of network bisection rapidly in-
creases when the number of failed nodes is more than 50% as shown in Fig. 2(c).
Not only did the failed nodes affect the reliability of the BMG, but they also
affect the average hop and the diameter of the BMG. Fig. 3 illustrates the effect
of failed nodes on the average hop and diameter for the remaining nodes in the
case where the logical topology is constant. It indicates that the failed nodes
have an effect on the average hop and the diameter, especially on large number
of nodes. The average hop marginally increases when the number of failed nodes
increases. While the diameter rapidly increases when the number of failed nodes
increases. Eventually, both values will reduce to one when only two nodes are
left in the BMG.

These simulations reveal potential problems of network bisection and a de-
crease in routing performance when the network has a high percentage of failed
nodes. Fortunately, these problems can be prevented by a self-healing capability
as discussed in the next section.
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Fig. 3. Average hop and diameter in failure circumstances. (a) Average hop. (b) Di-
ameter.

3 Self-healing capability of BMG

This section presents the self-healing capabilities of BMG as a solution to prevent
potential problems of network bisection and a decrease in routing performance
when the network has a high percentage of failed nodes. Section 3.1 describes
methods that are used to recover the BMG, while section 3.2 discusses the ap-
propriate time to perform the recovery.

3.1 Self-Healing Methods

There are two methods presented in this section. The first approach is called the
naive method. This method destroys the original network and reconstructs the
BMG with the remaining nodes. The second method is called adaptive method.
It only destroys and reconstructs the links that are different between the original
BMG and the BMG after excluding of all failed nodes.

Naive Method This is the simplest method to reconstruct the BMG topology.
Suppose there are F nodes in BMG size N . There are two steps involved in this
method. The first step removes all existing links. The second step establishes all
connections of BMG size N − F . For each link in the BMG, a node that has a
higher ID will initiate the connection to the node that has a lower ID. The total
number of removed links in the first step is dependent upon the location of failed
nodes. It may vary from

[
δN×N

2

]
−

[
( (F−1)×F

2 ) + ((δN − (F − 1))× F )
]

in case

of connected failed nodes, to ( δN×N
2 )− (δN ×F ) in case of completely separated

failed nodes. The total number of added links of the second step is δN−F×(N−F )
2 .

The δN is a degree of BMG size N, while the δN−F is a degree of BMG size
N − F . The total number of involved links in this method is the summation
between the number of removed links in the first step and the number of added
links in the second step. In terms of implementation, this approach requires each
node to maintain original <ID, Size>, current <ID, Size> and a list of failed
nodes. They are required in the self-healing procedure and the message routing.



5

2

8

9

3

4

6

7

0

1

(a)

5

9

6 2

4

7

8 0

1

(b)

Fig. 4. Self-healing BMG using adaptive method. (a) BMG when node ID 3 failed. (b)
BMG after the self-healing procedures.

Adaptive Method This method only removes and adds the links that are
different between BMG size N and BMG size N − F . Fig. 4(a) illustrates a
self-healing procedure of a 10-node BMG using the adaptive method when node
3 failed. When the node 3 failed, all connections that associate with node 3
(represented with dot lines) will be disconnected. A neighbor of node 3 may
start the self-healing procedure (dependent upon the frequency as discussed in
section 3.2) by broadcasting messages 5 to all nodes. Then each node calculates
the different links between BMG size N and BMG size N −F . For each connec-
tion that needs to be added (represented with thick solid lines), the higher IDs
initiate the connections to the lower IDs. All the unnecessary links (represented
with dash lines) will be removed. Fig. 4(b) illustrates the BMG topology after
the self-healing procedure is completed. All node IDs represented in this figure
are IDs according to the original BMG. This method also requires each node to
maintain original <ID, Size>, current <ID, Size>, and the list of failed nodes.
They are used in the self-healing procedure and the message routing.

A function for calculating added links and removed links of the adaptive
method is shown in Algorithm 1. The input variable of this function consists
of N, myIDorg, dead and Ndead. The N is the size of the original BMG. The
myIDorg is a node ID in the original BMG. The dead is a list of dead nodes. The
size of the dead node list is equal to Ndead. There are six steps in this function.
The first step is to calculate a new node ID from myIDorg. The new node ID is
an ID in the BMG that excludes all failed nodes. All node IDs after excluding
all failed nodes are continuous. The second step is calculating all neighbor IDs of
myIDorg in BMG size N. The third step is calculating all neighbor IDs of the
new node ID (outputs of the first step) in BMG size n− ndead. The fourth step
is to convert outputs of the third step into IDs according to the original BMG.
5 In case of failure, a broadcast message is encapsulated into a multicast message,

and then the message is sent from a parent of the failed node to its children in the
binomial spanning tree. The children will de-capsulate the multicast message and
continue to forward the initial broadcast message.
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Fig. 5. (a) Number of links used in both methods. (b) % Updated link ratio between
adaptive and naive methods.

The fifth step is to calculate the added links. All these links are linked to all
outputs of the fourth step that do not exist in outputs of the second step. On
the other hand, the last step is to calculate removed links from outputs of the
second step that do not exist in the fourth step. The added and removed links
are results of this function.

Algorithm 1 Find added and removed links when some nodes failed.
Require: N ∈ N, 1 ≤myIDorg ≤ N, {dead|∀d ∈ dead.1 ≤ d ≤ N},Ndead = |dead|
1: myIDnew ⇐ Convert my original IDs to my new IDs.
2: NeighborIDorg ⇐ Get neighbor IDs of myIDorg in BMG size N.
3: NeighborIDnew ⇐ Get neighbor IDs of myIDnew in BMG size N-Ndead.
4: Convert all IDs in NeighborIDnew to IDs in the original BMG.
5: Added ⇐ {∀a ∈ Added|a ∈ NeighborIDnew ∧ a &∈ NeighborIDorg}
6: Removed ⇐ {∀r ∈ Removed|r ∈ NeighborIDorg ∧ r &∈ NeighborIDnew}

Fig. 5(a) illustrates the number of links involved in the self-healing proce-
dures of both methods when there is a failed node. The numbers of added and
removed links of each method are roughly the same. The numbers of updated
links required by the adaptive method are 10%-30% of the naive method (as
shown in Fig. 5(b)), i.e., the adaptive method reduces the overhead from recon-
structing the networks up to 90%, especially in a large network.

3.2 Self-Healing Frequency

The frequency of recovering the network may vary from recovering when a node
in the BMG failed to recovering when a node had δ − 1 failed neighbors. The
frequency is a trade-off between recovery time and an overhead from non-optimal
routing. The BMG may be configured such that a node initiates the self-healing
procedure when the overhead of routing (in terms of hop number) is more than a
threshold. Both the number of failed nodes and the number of hops may also be
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Fig. 6. Experimental Results. (a) Performance of updated link calculation algorithm.
(b) Number of added connection per node. (c) Number of removed connection per
node.

used as a threshold to start the recovery procedures. No matter which threshold
is used, the self-healing procedure must be started before a node had δ failed
neighbors. Otherwise the BMG network will become bisectional.

4 Experimental Results

This section presents the evaluation of the algorithm that calculates the added
and removed links for the adaptive method (as described in section 3.1). The
number of connections that is required by naive and adaptive methods is also
evaluated.

The updated-link calculation algorithm has been evaluated with several num-
bers of failed nodes in BMG sized between 16 and 4096 nodes. The experiments
have been conducted on an AMD AthlonTM64 Processor 3500+ 2.2 GHz ma-
chine with 1 GB of main memory, running on Linux kernel 2.6.15. Elapsed time
of the calling function, that calculates the added and removed links, has been
measured. Fig. 6(a) illustrates that the algorithm scales quite well to the number
of nodes. The number of failed nodes has marginally affected to the performance
of this algorithm.

The number of added and removed connections affects the performance of
self-healing procedure. The performance is also dependent on other platform-
dependent factors such as time to establish a connection (e.g. three-way hand-
shake in TCP). Fig. 6(b) and Fig. 6(c) present the number of added and removed
connections per node in both naive and adaptive methods. The average (mean)
number of connections per node of the naive method is significantly higher than
that of the adaptive method because the naive method has to update more
link than the adaptive method. The standard deviation (STD) of both graphs
indicates that the adaptive method has more balance of load than the naive
method. Due to the fact that all nodes establish the connection simultaneously,
the adaptive method has more parallelism than the naive method.



5 Conclusion and Future Work

This paper presents a self-healing mechanism to improve the fault-tolerant capa-
bility of a Binomial graph (BMG) logical topology. A reliability analysis reveals
the potential of network bisection, especially when the number of failed nodes is
more than 50%. The self-healing mechanism protects BMG from network bisec-
tion and helps maintain optimal routing even under failure circumstances. When
and how to trigger the self-healing procedures are discussed. The experimental
results show that the self-healing with the adaptive method significantly reduces
an overhead from re-constructing the networks.

We plan to improve the simulation in near future by using approximation
methods (e.g. Monte Carlo) to simulate larger size of BMG. Over the longer
term, we hope that BMG will become the basic logical topology of the runtime
environments within the FT-MPI and Open MPI libraries.
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fault tolerant protocol for parallel runtime environments. In: Recent Advances in
PVM and MPI. Number 4192 in LNCS, Springer (2006) 141–149

21. Angskun, T., Fagg, G.E., Bosilca, G., Pješivac-Grbović, J., J.Dongarra, J.: Self-
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