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Abstract 
 

As scientific applications in a variety of disciplines 
are being actively studied and computing environments 
become more complicated and dynamic, a challenge is 
how to leverage existing cyber-infrastructures and 
achieve robust and efficient computing. This paper 
presents a case study on planning and executing appli-
cation workflows over provisioned resources. This 
work integrates the Pegasus workflow framework with 
the Virtual Grid resource provisioning system. 
Through this preliminary study, we have identified two 
key issues that need to be addressed: 1) resource ca-
pacity estimate which synthesizes efficient resource 
descriptions for Virtual Grid from application work-
flows and 2) execution site information publication 
which generates resource configurations for Pegasus 
through the devirtualization of provisioned resources. 
In addition, we discuss the challenges and research 
opportunities that we need to explore in order to ex-
ploit the advanced features of the systems. 
 
1. Introduction 
 

The advance of cyber-infrastructures has enabled 
scientists to explore complicated natural phenomena 
and many success stories inspire them to challenge 
more complex problems in a variety of disciplines [1-
5]. One of key challenges in this exploration is how to 

transition their knowledge and legacy software to new 
computing environments. A solution gaining its popu-
larity is to use the high-level application descriptions 
such as workflow which can specify the structure and 
overall behavior of applications in a platform-
independent manner. Typically, a workflow is repre-
sented as a Directed Acyclic Graph (DAG) that con-
sists of nodes, which represent tasks, and edges, which 
denote data/control dependencies between tasks. When 
an application is specified via workflow, workflow 
management systems such as Pegasus [6], Askalon [7], 
Triana [8], and others can deal with the complexity of 
application management and execute the application 
workflows on distributed resources. 

In the meantime, the coordination and management 
of distributed resources have been challenging issues 
for a number of communities in computer science. The 
noticeable achievements in distributed computing are 
the state-of-art resource virtualization technologies 
such as Virtual Grid [9], virtual cluster [10], and com-
pute clouds [11], which take into account of a variety 
of factors such as availability, performance, cost, etc 
and enable on-demand resource provisioning. Regard-
less of the base technology that implements virtualiza-
tion, these technologies commonly encapsulate the 
complexity of resource management and provide the 
uniform interfaces to resources. 

The workflow management systems can potentially 
benefit from these resource provisioning technologies. 
First, the workflow management systems can be insu-



lated from the resource management complexity, 
which subsequently reduces the design complexity of 
workflow management systems. Second, the workflow 
management systems can take advantage of the bene-
fits of efficient resource management of provisioning 
systems since the provisioning systems can optimize 
resource allocations and assure the quality of resources 
in terms of computing and communication perform-
ance, reliability, availability, and so on. Finally, the 
workflow management systems can exploit an ex-
tended resource universe with minimal efforts through 
resource provisioning. On the other hand, the provi-
sioning systems can have well-defined interfaces to 
applications via the workflow management systems. In 
addition, the provisioning systems can experience a 
variety of structural and behavioral characteristics of 
applications via the workflow management systems 
which can contribute to improving the provisioning 
systems themselves. Finally, the provisioning systems 
can extensively evaluate their performance and the 
quality of provisioning techniques in real settings 
against the applications already supported by the work-
flow management systems. 

Specifically, we are interested in two representative 
achievements for workflow management and resource 
provisioning. Pegasus [6] is a workflow management 
framework which conducts workflow planning with 
the detailed information about computation and data 
against given resource sets. Virtual Grid (VG) [9] is a 
programmable resource provisioning framework, 
which enables the users to instantiate resources of 
quality on demand. We believe that the integration of 
Pegasus with Virtual Grid can not only deliver the 
aforementioned benefits but also have significant syn-
ergetic effects on scientific computing. As a result, 
Pegasus can conduct more efficient workflow planning 
in terms of cost, performance, quality with the re-
sources provisioned by Virtual Grid.  

As a preliminary study, however, this paper focuses 
only on a basic integration and discusses two critical 
issues to be solved. We have identified two core inter-
faces for the interactions between Pegasus and Virtual 
Grid: resource capacity estimate and execution site 
information publication. We implement these inter-
faces in a proxy system named Pegasus-VG proxy 
which orchestrates Pegasus and Virtual Grid and en-
ables workflow execution over provisioned resources. 
Finally, we present several challenges and the new 
research opportunities indentified through this study. 

The rest of this paper is organized as follows. In 
Section 2, we give a brief overview of Pegasus and 
Virtual Grid. Then, we discuss a simple working sce-
nario and the integration issues in Section 3. We sum-
marize the related studies in Section 4 and finally con-

clude this paper, discussing the future research direc-
tions in Section 5 and 6. 
 
2. Background 
 

The common design philosophy of Pegasus and 
Virtual Grid is that separation of concerns can simplify 
complex problems and can provide feasible or even 
better solutions. Specifically, Pegasus pursues that an 
application can be developed and executed independ-
ently of target execution systems using a high-level 
representation (i.e., application workflow) while Vir-
tual Grid aims for that resource management can be 
encapsulated from application and be virtualized via a 
resource abstraction (i.e., Virtual Grid). Since these 
two systems are compliment to each other, the integra-
tion of the two systems can simplify the overall design 
complexity of scientific computing, make applications 
portable, and achieve high performance. In the follow-
ing subsections, we give a brief overview of Pegasus 
and Virtual Grid. 
 
2.1. Pegasus 

 
Pegasus [6] is a workflow management framework 

which maps abstract workflows, which describe the 
logical topology and functionality of applications, onto 
distributed resources through workflow planning, and 
executes workflow tasks using Condor’s DAGMan 
[12]. In essence, Pegasus itself automates the process 
of mapping from an abstract workflow to an executa-
ble workflow. Figure 1 illustrates a typical lifecycle of 
application workflow in the Pegasus framework. Pega-
sus takes an abstract workflow, maps it onto the avail-
able resources, and invokes DAGMan to execute the 
workflow. DAGMan then walks through the workflow 
and releases the workflow tasks to Condor-G  [12] 
which subsequently submits them to the remote re-
sources (via Globus [13]) for execution. 
 
2.1.1. Creation. The first phase of the workflow life-
cycle is to create an abstract workflow for application. 
An abstract workflow [6] is a logical representation of 
control and data flow of application, independent of 
resources. An abstract workflow is composed of the 
tasks described in terms of logical transformations and 
logical input and output filenames. Depending on their 
backgrounds, circumstances, expertise on the work-
flow technologies, scientists can create abstract work-
flows, directly using predefined schemas, using the 
Pegasus Java API, or using the intelligent workflow 
editor, Wings [14]. 
 



2.1.2. Planning. The goal of Pegasus is to find a good 
mapping of workflow tasks to available resources for 
execution. Pegasus transforms an abstract workflow 
through a series of refinements to a concrete workflow 
which is executable on resources. Pegasus first indenti-
fies the resources in production that the user can access 
to. Second, Pegasus simplifies the workflow with the 
historic computation results that Pegasus keeps track 
of. In case that the computing results of workflow 
tasks are already available (for example when the data 
were previously computed and stored), such computa-
tions can be replaced with simple data transfers. Pega-
sus then conducts a planning by selecting appropriate 
resources, based on the available resources and their 
characteristics as well as the location of input data. 
Pegasus relies on information services such as MDS 
(Meta-computing  Directory Service) [15] to retrieve 
resource characteristics and RLS (Replica Location 
Service) [16] to locate historic data. For efficient exe-
cution, Pegasus can cluster jobs together in cases 
where a number of small granularity jobs are destined 
for a same computing resource. Next, Pegasus aug-
ments the workflow with the tasks that explicitly per-
form data transfers. The final step is to write out the 
mapping results in a Condor input file and the associ-
ated submit files which can be interpreted by Condor 
DAGMan [12]. 
 
2.1.3. Execution. Pegasus uses DAGMan for work-
flow execution. DAGMan is a workflow execution 
engine which submits jobs to Condor in an order rep-
resented by a Condor DAG. DAGMan processes a 
DAG input file and the associated Condor submit 

file(s) for an executable workflow. At the same time, it 
is responsible for scheduling, recovery, and reporting 
on the set of programs submitted to Condor. 

 

 
Figure 1. Workflow lifecycle in the Pegasus frame-
work 
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Figure 2. Scientific Computing via Virtual Grid 

For the distributed resources like Grids, DAGMan 
submits jobs to Condor-G. Condor-G [12] is a job 
management system which locates resources and sub-
mits, cancels, and monitors jobs on the behalf of the 
users. Condor-G provides a uniform resource space 
over heterogeneous resources via a Condor pool and 
enables the users to transparently access resources and 
manage jobs. For remote execution, Condor-G relies 
on Globus Toolkits [13] which enables secure accesses 
to resources, uniform accesses to a variety of batch 
systems, file staging, status monitoring, and so on. 

 
2.2. Virtual Grid 
 

Virtual Grid (VG) [9, 17] is a high-level resource 
abstraction enabling virtualized distributed computing 
across heterogeneous resources. Separated by the VG 
abstraction layer, a user specifies the characteristics of 
desired execution target while the Virtual Grid execu-
tion system (VGES) [17, 18] reifies the abstraction. 
VGES manages the uncertainty and dynamics associ-
ated with queuing delays, failures, and contention ef-
fects underneath the abstraction. As such, Virtual Grid 
can isolate application development, scheduling, and 
optimization procedures from the complexity of man-
aging resources. 

Figure 2 illustrates a computing scenario in the con-
text of VG. First, the users abstract their resource re-
quirements and program the structure and properties of 
desired execution target in the resource description 
language named VGDL [17]. VGES then analyzes the 
VGDL description and compiles a resource collection 
of quality into a VG instance through resource selec-
tion, binding, and environment setup. Once a VG is 
created, users can operate on the VG to retrieve the 



resource information, to execute the application tasks, 
and to manage the resource collection. In the following 
sections, we highlight three components that imple-
ment the Virtual Grid concept. 
 
2.2.1. Resource description language. VGDL (Vir-
tual Grid Description Language) [17] is a resource 
description language, which provides constructs for 
expressing constraints on the attributes associated with 
computing resources. The users can describe resources 
requirements in terms of desired values of attributes 
(e.g., process type, memory capacity). The key ad-
vances of VGDL are the capability of hierarchical 
qualitative specification of resource aggregates and 
network proximity. The qualitative approach enables 
applications to construct simple and robust specifica-
tions regardless of technology advances. 

The users can capture simple resource abstractions 
widely used to achieve the portability in design and to 
manage the complexity of resource environments via 
the VG resource aggregates. Moreover, the VG con-
nectivity operators express the coarse notions of net-
work proximity between aggregates in terms of latency 
and bandwidth. The resource aggregates and network 
connectivity operators enable the users to compose 
individual resources into an arbitrary structure. At the 
same time the users can specify application-specific 
resource quality in a user-defined resource ranking 
function. The users can specify the temporal resource 
availability for time-constrained applications [9]. 
Moreover, the users can specify the availability prob-
ability of resources at a certain time (i.e., start time) 
and the reliability probability of resources for a certain 
duration. 

Figure 3 illustrates how a program that consists of a 
pair of a producer and a consumer can be described in 
VGDL. In this example, the user needs two tightly 
coupled clusters in a temporal order, each of which has 
16 Itanium processors and 4 Opteron processors, re-
spectively. In addition, the user requires a high level 
confidence that the resources will be timely allocated 

and should be highly reliable while the application is 
running. Two ClusterOf aggregates are used to repre-
sent clusters and a HighBW connectivity operator is 
used to tightly couple two clusters.  

Producer
(16 x Itanium2)

Consumer
(4 x Opteron)

High BW

From 10:00 A.M. to 11:00 A.M. From 11:00 A.M. to 11:30 A.M.  

Producer-consumer =  
    Producer = ClusterOf (nd1) [16]  
                                        <12/12/2006@10:0:0[EXEL], 1:0:0[EXEL]>  
                { nd1 = [Processor == “Itanium 2”] }  
    HighBW 
    Consumer = ClusterOf (nd2) [4]  
                                          <12/12/2006@11:0:0[EXEL], 0:30:0[EXEL]>  
                 { nd2 = [Processor == “Opteron”] } 

(a) Resource requirement (b) Resource specification 

Figure 3. An example of resource specification in VGDL 
(ClusterOf denotes a set of homogeneous resources; HighBW represents a high bandwidth network; <xx/xx/xx@xx:xx:xx[avail_prob], 
xx:xx:xx[rel_prob]> describes the start time and the availability of resource arrival and the duration and the reliability of resource allocation.) 

 
2.2.2. Resource compilation. Compiling a VG in-
stance from a VGDL specification is the process of 
configuring a network of resources for the specifica-
tion [9]. A VG compilation consists of selection and 
binding. Selection is to identify the possible resources 
satisfying the specification in the resource universe 
while binding is to secure the resource allocation with 
a certain confidence. 

Virtual Grid reformulates the resource selection 
problem through a resource classification and an 
online search for efficient selection and implements the 
fast resource selection by exploiting the relational da-
tabase technology [18]. On the other hand, the likeli-
hood of binding success is contingent upon the re-
source management policy of resource manager. Vir-
tual Grid exploits the compositional structure of re-
source specification and identifies the components that 
can be allocated independently. Virtual Grid guaran-
tees the success of resource binding probabilistically 
by identifying multiple solutions for each component 
[18]. 
 
2.2.3. Personal cluster. A personal cluster is a virtual 
cluster instantiated on demand from physical re-
sources, which gives an illusion to the user as if the 
instant cluster is dedicated to the user for a certain time 
period [20]. A personal cluster reserves a partition of 
resources and enables a uniform, cost-effective use of 
batch resources. The user has a dedicated cluster under 
the control of a private resource manager. As such a 
personal cluster can provide a uniform job/resource 
management environment over heterogeneous re-
sources regardless of system-level resource manage-
ment paradigms.  

The current implementation is based on WS-based 
Globus Toolkits [22] and a PBS [21] installation. Per-



sonal cluster uses the similar mechanism to Condor 
glidein [12]. Once a system-level resource manager 
allocates a partition of resources, a user-level PBS 
scheduled on the resources holds the resources for a 
user-specified time and a user-level WS-GRAM con-
figured at runtime for the partition accepts jobs from 
the user and relays them to the user-level PBS. As a 
result, the users can bypass the system-level resource 
manager and benefit from the low scheduling overhead 
with the private scheduler. 
 
3. Pegasus on Virtual Grid 
 

The intuition behind integrating Pegasus with Vir-
tual Grid is that a workflow planning system can bene-
fit from the advanced resource management services of 
provisioning system and consequently enable robust 
and efficient computing. However, the scope of this 
paper is limited to a simple scenario of interactions 
between Pegasus and Virtual Grid. To minimize im-
pacts on both the systems and enable independent de-
velopments, we propose a proxy system named Pega-
sus-VG proxy which implements the interfaces and the 
services required for integration, insulating the systems 
from each other. In this section, we present our com-
puting scenario and detail the issues of this study. 

 
3.1. Computing Scenario 

 
As discussed in Section 2.1, a workflow basically 

goes through three phases in the Pegasus framework: 
creation, planning, and execution. Workflow creation 
is a wholly application-specific phase, independent of 
target resources. Rather, Pegasus interacts with Virtual 
Grid at the planning and execution phases. An issue 
here is that the resources in Virtual Grid are presented 
in a virtualized manner even though Pegasus needs 
concrete resource information such as hostname, port 
number, directory name, and so on. Therefore, the 
Pegasus-VG proxy devirtualizes the provisioned re-
sources and allows Pegasus to follow the normal plan-
ning and execution processes without modifying the 
Pegasus internals. 

Figure 4 illustrates how Pegasus interacts with Vir-
tual Grid in a simple devirtualization scenario. First, 
the user would specify application-specific knowledge 
about resource requirements (e.g., processor type, 
memory capacity) and the application-level informa-
tion (e.g., locations of executable, data, and replica) 
needed to run his/her application in the Pegasus frame-
work at the creation phase. When the user conducts 
planning with this abstract workflow, a wrapper pro-
gram for the Pegasus planning command intercepts the 

resource information before the ordinary planning of 
Pegasus takes place and contacts the Pegasus-VG 
proxy. The proxy then synthesizes a vgDL description 
through a resource capacity estimate and instantiates a 
VG on the behalf of Pegasus. The proxy devirtualizes 
the VG instance and generates a new site catalog 
which is a formal input of Pegasus describing the in-
formation of the provisioned resources from VG. The 
site catalog is then sent back to the wrapper and finally 
the wrapper invokes the ordinary Pegasus planner with 
the site catalog. Pegasus now continues its normal 
planning process. Since a site catalog contains the de-
tailed information about how to access resources such 
as hostname, GRAM port number, scheduling adaptor, 
and so on, Pegasus can run applications directly on the 
resources via DAGMan as usual. 
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Figure 4. Pegasus on Virtual Grid 

 
3.2. Issues 

 
3.2.1. Resource capacity estimation. A critical capa-
bility required for this integration is to synthesize a 
vgDL specification from application workflow(s). The 
most important attribute from the perspective of high-
level workflows is the number of processors required 
by the application because the resource size is one of 
the important factors in determining the makespan of 
workflow application and the cost of resource alloca-
tion. If the number of resources is large, the parallel 
execution of independent tasks can reduce the execu-
tion time while too many resources can cause low re-
source utilization, high scheduling overhead, and high 
cost. On the other hand, if the number of resources is 
too small, the execution time of workflow can increase. 
Therefore, it is important to estimate the number of 
resources as small as possible so as to complete a 
workflow within a given deadline. This problem is 
different from the conventional workflow scheduling 
or cost-optimization problems, which aim at minimiz-



ing the application’s runtime against a fixed set of re-
sources.  

This issue was already addressed by several studies 
[23, 24]. In particular, the BTS algorithm estimates the 
resource capacity very efficiently [24]. The algorithm 
scales well even with very complex workflows and 
provides good estimate of resources needed which is 
close to the optimal for a variety of workflows. More-
over, the resource estimate is abstract and independent 
of description languages and selection mechanisms so 
it can be easily integrated with any resource descrip-
tion languages and provisioning systems. 

The Pegasus-VG proxy has a wrapper of BTS 
which takes abstract workflows (DAX) from Pegasus 
and generates a vgDL description. For example, Figure 
5 (a) depicts a black-diamond application. The user 
can describe the structure and behavior of the applica-
tion in a DAX as shown in Figure 5 (b). Then, the BTS 
wrapper extracts the workflow information (e.g. task 
and link) and invokes BTS. BTS then estimate the 
number of processors required for the workflow and 
synthesizes a vgDL description as shown in Figure 5 
(c) using the resource requirements (e.g., processor 
type, clock rate, memory capacity) given by client. In 
this example, the user can have a cluster consisting of 
2 Xeon processors. The processor requirements are 

embedded into the node definition while the cluster 
size is determined automatically by BTS. 

preprocess

findrange findrange

analyze

f.input

f.output
 

<!-- part 1: list of all files used (may be empty) --> 
<filename file="f.input" link="input"/> 
<filename file="f.intermediate" link="input"/> 
<filename file="f.output" link=”output"/> 
<filename file=“keg” link=“input”> 
 
<!-- part 2: definition of all jobs (at least one) --> 
<job id="ID000001" namespace=”pegasus" name="preprocess" version="1.0" > 
<argument> 
    -i <filename file=”f.input"/> -o <filename file=”f.intermediate"/> 
</argument> 
<uses file=”f.input" link="input" register="false" transfer=”true"/> 
<uses file=”f.intermediate" link="output" register=”false" transfer=“false”> 
</job> 
 
<job id="ID000002" namespace=”pegasus" name=”analyze" version="1.0" > 
<argument> 
    -i <filename file=”f.intermediate"/> -o <filename file=”f.output"/> 
</argument> 
<uses file=”f.intermediate" link="input" register="false” transfer=”true"/> 
<uses file=”f.output” link="output" register=”true" transfer=”true"/> 
</job> 
… 
 

(a) Black-diamond workflow 
 

(b) A fragment of Pegasus DAX 
 

Diamond = ClusterOf [2] (nd) [, 01:00:00]{ nd = [Processor == “Xeon”] } 
 

(c) A synthesized vgDL description requesting a cluster consisting of 2 Xeon processors 
 

Figure 5. vgDL synthesis for a black-diamond application workflow 

 
3.2.2. Site catalog publication. Pegasus conducts a 
workflow planning against the resources described in 
site catalogues. The BTS wrapper generates a complete 
vgDL specification through the resource capacity esti-
mate and then the proxy acquires resources via Virtual 
Grid. Once a VG instance is successfully created, the 
proxy devirtualizes the VG and creates a site catalog 
describing the provisioned resources. 

Figure 6 (a) is a site catalog created for the vgDL 
specification presented in Figure 5 (c). As discussed in 
Section 2.3, Virtual Grid deploys a personal cluster 
based on Globus Web Services and PBS to the provi-
sioned resources. The key information that the proxy 
retrieves is the information related to the WS-GRAM 
service such as Globus version, service endpoint, batch 
scheduler type, and so on. In this example, the cluster 
has 2 processors and provides a GRAM web service 
for PBS available at https://cat7.kaist.ac.kr:9000. 

Pegasus then generates a Condor input file and the 
associated Condor submit files. The key information in 
a submit file is universe, grid_type, globusscheduler, 
and jobmanager_type. Universe specifies the Condor 
execution environment, grid_type, the Globus version 



installed on the remote resource, globusscheduler, the 
end point information to access the GRAM web ser-
vice, and jobmanager_type, the batch scheduler name 
of remote resource manager. Figure 6 (b) illustrates a 
Condor submit file generated by Pegasus 2.1.0 version. 
In this example, universe is grid, grid_type is gt4, 
globusscheduler is https://cat7.kaist.ac.kr:9000/wsrf/ 
services/ManageJobFactoryService, and jobman-
ager_type is PBS; this information is extracted from 
the site catalog presented in Figure 6 (a). 

Pegasus can conduct a normal planning for the 
DAX presented in Figure 5 (b) with this site catalog 

and generate an executable workflow (Condor DAG) 
as shown in Figure 6 (b). Since the Globus Web Ser-
vices and a PBS job manager are already deployed to 
the provisioned resources, Condor DAGMan can run 
the workflow tasks directly on the resources by using 
the GT4 options of Condor submit command. 

<sitecatalog xmlns="http://pegasus.isi.edu/schema/sitecatalog" …> 
<site handle="cat7" gridlaunch="/home/globus/pegasus-2.1.0/bin/kickstart" sysinfo="INTEL32::LINUX"> 
<profile namespace="env" key="PEGASUS_HOME">/home/globus/pegasus-2.1.0</profile>  
<profile namespace="env" key="GLOBUS_LOCATION">/usr/local/globus-4.0.7</profile>  
<profile namespace="env" key="LD_LIBRARY_PATH">/usr/local/globus-4.0.7/lib</profile>  
<profile namespace="env" key="JAVA_HOME">/opt/jdk</profile> 
<profile namespace="condor" key="grid_type">gt4</profile>  
<profile namespace="condor" key="jobmanager_type">PBS</profile>  
<lrc url="rlsn://cat7.kaist.ac.kr" />  
<gridftp url="gsiftp://cat7.kaist.ac.kr:2811" storage="/home/globus" major="4" minor="0" patch="7" />  
<jobmanager universe="transfer" url="https://cat7.kaist.ac.kr:9000/wsrf/services/ManagedJobFactoryService" major="4" minor="0" 
patch="7" total-nodes="2" /> 
<jobmanager universe="vanilla" url="https://cat7.kaist.ac.kr:9000/wsrf/services/ManagedJobFactoryService" major="4" minor="0" patch="7" 
total-nodes="2" /> 
<workdirectory>$HOME/workdir</workdirectory>  
</site> 
… 
</sitecatalog> 
 

(a) A simplified site catalog published for the provisioned cluster consisting of 2 Xeon processors 
 

environment = GLOBUS_LOCATION=/usr/local/globus-4.0.7;JAVA_HOME=/opt/jdk;PEGASUS_HOME=/home/globus/pegasus-2.1.0; 
LD_LIBRARY_PATH=/usr/local/globus-4.0.7/lib; 
arguments = "-n black::preprocess:1.0 -N black::top:1.0 -R cat7 /home/globus/pegasus-2.1.0/…/black-preprocess-1.0  -a top -T60  -i f.a -o f.b1 
f.b2" 
error = /home/globus/pegasus-2.1.0/temp/dags/globus/pegasus/black-diamond/run0001/preprocess_ID000001.err 
executable = /home/globus/pegasus-2.1.0/bin/kickstart 
globusrsl = (jobtype=single) 
globusscheduler = https://cat7.kaist.ac.kr:9000/wsrf/services/ManagedJobFactoryService 
grid_type = gt4 
jobmanager_type = PBS 
output = /home/globus/pegasus-2.1.0/temp/dags/globus/pegasus/black-diamond/run0001/preprocess_ID000001.out 
remote_initialdir = /home/globus/pegasus-2.1.0/temp/$HOME/workdir/pegasusexec/globus/pegasus/black-diamond/run0001 
transfer_error = true 
transfer_executable = false 
transfer_output = true 
universe = grid 
+pegasus_generator = "Pegasus" 
+pegasus_version = "2.1.0" 
+pegasus_wf_name = "black-diamond-0" 
+pegasus_wf_time = "20080909T182531+0900" 
+pegasus_job_id = "preprocess_ID000001" 
+pegasus_site = "cat7" 
Queue 
 

(b) A simplified Condor submit file generated by Pegasus for the DAX against the site catalog 
 

Figure 6. Planning of abstract workflow against provisioned resources 

 
4. Related Work 
 

In [25], the authors discussed on workflow planning 
over provisioning resources across multiple sites or 
VOs (Virtual Organization) [26]. They use Pegasus as 



a workflow management framework and Condor-G 
[12] as a provisioned framework. Condor-G working 
with Condor [27] can be regarded as a resource provi-
sioning framework which can support advance reser-
vation [28] and dynamic resource acquisition using the 
glidein mechanism [12]. Different from Condor-G, 
Virtual Grid is not only a resource provisioning frame-
work but also a resource programming and virtualiza-
tion framework. In addition, Virtual Grid supports a 
variety of resource management paradigms such as 
best effort space-sharing, advance reservation, price-
based reservation [29], compute cloud [11], and time-
sharing resources. Moreover, Virtual Grid can deploy 
any user-level job manager including PBS on demand. 

In addition to the system-level integration, there 
have been several studies on scheduling application 
workflows on provisioned resources [30-32]. These 
studies demonstrate the potential of integrating work-
flow management systems with resource provisioning 
systems. A common lesson from these studies is that 
provisioning resources can deliver good and predict-
able performance to applications, compared to the best 
effort space-sharing resources. Virtual Grid can instan-
tiate resource collections that have specific characteris-
tics across distributed resources, which can meet the 
assumption that the application-level schedulers have. 

 
5. Conclusions & Discussions 
 

This paper presented a case study on workflow 
planning and execution over provisioned resources 
through integrating the Pegasus workflow framework 
with the Virtual Grid resource provisioning system. 
We identified that the resource capacity estimate and 
the site catalog publication through resource devirtu-
alization are two key features required for this basic 
integration. As an implementation, we introduced the 
Pegasus-VG proxy as a common ground where Pega-
sus interacts with the Virtual Grid. This proxy-based 
implementation enables an easy integration without 
changing the internals of either of the systems. We 
believe this integration enables scientists to explore 
their problems more efficiently over distributed re-
sources. Since resource provisioning is opaque to the 
users, the application development cycle is the same 
even with more advanced resource allocation. 

This study is the first step for understanding the is-
sues when integrating workflow management systems 
with resource provisioning systems. Furthermore, we 
have identified several challenges through this integra-
tion. Pegasus can partition a workflow into multiple 
subworkflows which can be planned and executed 
separately over time. Since allocating a large set of 

resources for long time is expensive and difficult and 
exposes applications to resource failures, provisioning 
resources over time can be cost-efficient and even pro-
vide better performance and reliability. For temporal 
resource provisioning for multiple subworkflows, the 
users can specify time constraints on their resource 
specifications and let Virtual Grid allocate resources 
according to the user-specified schedules. On the other 
hand, the users can allocate resources on-the-fly for 
each subworkflow whenever Pegasus conducts plan-
ning. In either of the cases, Virtual Grid will optimize 
resource allocation, taking into account of resource 
characteristics. We are going to explore to what extent 
the temporal resource provisioning can improve appli-
cation performance, compared to the static resource 
allocation. 

Even though the resource devirtualization makes 
this integration easy, it sacrifices the advanced features 
of Virtual Grid. For instance, DAGMan repeats the 
same computation in case of computation failures until 
it reaches to the maximum retries. However, repeating 
computation on the same resource is not likely to suc-
ceed if the failures do not result from transient errors. 
Unless Pegasus provides multiple plans for a workflow 
or a dynamic re-planning feature at failures, DAGMan 
cannot handle non-transient runtime failures. Restart-
ing the failed job on different resources, on the other 
hand, is more likely to succeed. Virtual Grid supports a 
variety of functionalities for fault-tolerance. First of all, 
Virtual Grid can provision more reliable resources so it 
can proactively minimize the likelihood of failures. 
Moreover, Virtual Grid can swap resources dynami-
cally after resource failures and restart the failed tasks 
on the new resources.  

Finally, the overall performance of application is in-
fluenced by a variety of factors such as resource qual-
ity, resource reliability, data location, etc. We are also 
exploring how to improve the effective performance, 
which represents not only the performance of success-
ful executions but also the penalty due to failures, 
against dynamic resource environments.  
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