
Pegasus on Virtual Grid: A Case Study of Workflow Planning over
Captive Resources

Yang-Suk Kee
Oracle USA Inc.

yang.seok.ki@oracle.com
Eunkyu Byun

Division of Computer Science, Korea Advanced Institute of Science and Technology
ekbyun@camars.kaist.ac.kr
Ewa Deelman, Karan Vahi

Information Sciences Institute, University of Southern California
{deelman, vahi }@isi.edu

Jin-Soo Kim
School of Information and Communication Engineering, Sungkyunkwan University

jinsookim@skku.edu

Abstract

As scientific applications in a variety of disciplines
are being actively studied and computing environments
become more complicated and dynamic, a challenge is
how to leverage existing cyber-infrastructures and
achieve robust and efficient computing. This paper
presents a case study on planning and executing appli-
cation workflows over provisioned resources. This
work integrates the Pegasus workflow framework with
the Virtual Grid resource provisioning system.
Through this preliminary study, we have identified two
key issues that need to be addressed: 1) resource ca-
pacity estimate which synthesizes efficient resource
descriptions for Virtual Grid from application work-
flows and 2) execution site information publication
which generates resource configurations for Pegasus
through the devirtualization of provisioned resources.
In addition, we discuss the challenges and research
opportunities that we need to explore in order to ex-
ploit the advanced features of the systems.

1. Introduction

The advance of cyber-infrastructures has enabled
scientists to explore complicated natural phenomena
and many success stories inspire them to challenge
more complex problems in a variety of disciplines [1-
5]. One of key challenges in this exploration is how to

transition their knowledge and legacy software to new
computing environments. A solution gaining its popu-
larity is to use the high-level application descriptions
such as workflow which can specify the structure and
overall behavior of applications in a platform-
independent manner. Typically, a workflow is repre-
sented as a Directed Acyclic Graph (DAG) that con-
sists of nodes, which represent tasks, and edges, which
denote data/control dependencies between tasks. When
an application is specified via workflow, workflow
management systems such as Pegasus [6], Askalon [7],
Triana [8], and others can deal with the complexity of
application management and execute the application
workflows on distributed resources.

In the meantime, the coordination and management
of distributed resources have been challenging issues
for a number of communities in computer science. The
noticeable achievements in distributed computing are
the state-of-art resource virtualization technologies
such as Virtual Grid [9], virtual cluster [10], and com-
pute clouds [11], which take into account of a variety
of factors such as availability, performance, cost, etc
and enable on-demand resource provisioning. Regard-
less of the base technology that implements virtualiza-
tion, these technologies commonly encapsulate the
complexity of resource management and provide the
uniform interfaces to resources.

The workflow management systems can potentially
benefit from these resource provisioning technologies.
First, the workflow management systems can be insu-

lated from the resource management complexity,
which subsequently reduces the design complexity of
workflow management systems. Second, the workflow
management systems can take advantage of the bene-
fits of efficient resource management of provisioning
systems since the provisioning systems can optimize
resource allocations and assure the quality of resources
in terms of computing and communication perform-
ance, reliability, availability, and so on. Finally, the
workflow management systems can exploit an ex-
tended resource universe with minimal efforts through
resource provisioning. On the other hand, the provi-
sioning systems can have well-defined interfaces to
applications via the workflow management systems. In
addition, the provisioning systems can experience a
variety of structural and behavioral characteristics of
applications via the workflow management systems
which can contribute to improving the provisioning
systems themselves. Finally, the provisioning systems
can extensively evaluate their performance and the
quality of provisioning techniques in real settings
against the applications already supported by the work-
flow management systems.

Specifically, we are interested in two representative
achievements for workflow management and resource
provisioning. Pegasus [6] is a workflow management
framework which conducts workflow planning with
the detailed information about computation and data
against given resource sets. Virtual Grid (VG) [9] is a
programmable resource provisioning framework,
which enables the users to instantiate resources of
quality on demand. We believe that the integration of
Pegasus with Virtual Grid can not only deliver the
aforementioned benefits but also have significant syn-
ergetic effects on scientific computing. As a result,
Pegasus can conduct more efficient workflow planning
in terms of cost, performance, quality with the re-
sources provisioned by Virtual Grid.

As a preliminary study, however, this paper focuses
only on a basic integration and discusses two critical
issues to be solved. We have identified two core inter-
faces for the interactions between Pegasus and Virtual
Grid: resource capacity estimate and execution site
information publication. We implement these inter-
faces in a proxy system named Pegasus-VG proxy
which orchestrates Pegasus and Virtual Grid and en-
ables workflow execution over provisioned resources.
Finally, we present several challenges and the new
research opportunities indentified through this study.

The rest of this paper is organized as follows. In
Section 2, we give a brief overview of Pegasus and
Virtual Grid. Then, we discuss a simple working sce-
nario and the integration issues in Section 3. We sum-
marize the related studies in Section 4 and finally con-

clude this paper, discussing the future research direc-
tions in Section 5 and 6.

2. Background

The common design philosophy of Pegasus and
Virtual Grid is that separation of concerns can simplify
complex problems and can provide feasible or even
better solutions. Specifically, Pegasus pursues that an
application can be developed and executed independ-
ently of target execution systems using a high-level
representation (i.e., application workflow) while Vir-
tual Grid aims for that resource management can be
encapsulated from application and be virtualized via a
resource abstraction (i.e., Virtual Grid). Since these
two systems are compliment to each other, the integra-
tion of the two systems can simplify the overall design
complexity of scientific computing, make applications
portable, and achieve high performance. In the follow-
ing subsections, we give a brief overview of Pegasus
and Virtual Grid.

2.1. Pegasus

Pegasus [6] is a workflow management framework

which maps abstract workflows, which describe the
logical topology and functionality of applications, onto
distributed resources through workflow planning, and
executes workflow tasks using Condor’s DAGMan
[12]. In essence, Pegasus itself automates the process
of mapping from an abstract workflow to an executa-
ble workflow. Figure 1 illustrates a typical lifecycle of
application workflow in the Pegasus framework. Pega-
sus takes an abstract workflow, maps it onto the avail-
able resources, and invokes DAGMan to execute the
workflow. DAGMan then walks through the workflow
and releases the workflow tasks to Condor-G [12]
which subsequently submits them to the remote re-
sources (via Globus [13]) for execution.

2.1.1. Creation. The first phase of the workflow life-
cycle is to create an abstract workflow for application.
An abstract workflow [6] is a logical representation of
control and data flow of application, independent of
resources. An abstract workflow is composed of the
tasks described in terms of logical transformations and
logical input and output filenames. Depending on their
backgrounds, circumstances, expertise on the work-
flow technologies, scientists can create abstract work-
flows, directly using predefined schemas, using the
Pegasus Java API, or using the intelligent workflow
editor, Wings [14].

2.1.2. Planning. The goal of Pegasus is to find a good
mapping of workflow tasks to available resources for
execution. Pegasus transforms an abstract workflow
through a series of refinements to a concrete workflow
which is executable on resources. Pegasus first indenti-
fies the resources in production that the user can access
to. Second, Pegasus simplifies the workflow with the
historic computation results that Pegasus keeps track
of. In case that the computing results of workflow
tasks are already available (for example when the data
were previously computed and stored), such computa-
tions can be replaced with simple data transfers. Pega-
sus then conducts a planning by selecting appropriate
resources, based on the available resources and their
characteristics as well as the location of input data.
Pegasus relies on information services such as MDS
(Meta-computing Directory Service) [15] to retrieve
resource characteristics and RLS (Replica Location
Service) [16] to locate historic data. For efficient exe-
cution, Pegasus can cluster jobs together in cases
where a number of small granularity jobs are destined
for a same computing resource. Next, Pegasus aug-
ments the workflow with the tasks that explicitly per-
form data transfers. The final step is to write out the
mapping results in a Condor input file and the associ-
ated submit files which can be interpreted by Condor
DAGMan [12].

2.1.3. Execution. Pegasus uses DAGMan for work-
flow execution. DAGMan is a workflow execution
engine which submits jobs to Condor in an order rep-
resented by a Condor DAG. DAGMan processes a
DAG input file and the associated Condor submit

file(s) for an executable workflow. At the same time, it
is responsible for scheduling, recovery, and reporting
on the set of programs submitted to Condor.

Figure 1. Workflow lifecycle in the Pegasus frame-
work

Cloud

A

B C

D

Application

Virtual Grid
Resource Abstraction VG

Cloud

Batch
VGES

PBS

P4 P4

VGDL

vgdl=clusterof (node) [2] {
node = [Processor==“P4”]

}
program run

A
B C

D

Classification Selection Linking Environment

ok

Lease

Figure 2. Scientific Computing via Virtual Grid

For the distributed resources like Grids, DAGMan
submits jobs to Condor-G. Condor-G [12] is a job
management system which locates resources and sub-
mits, cancels, and monitors jobs on the behalf of the
users. Condor-G provides a uniform resource space
over heterogeneous resources via a Condor pool and
enables the users to transparently access resources and
manage jobs. For remote execution, Condor-G relies
on Globus Toolkits [13] which enables secure accesses
to resources, uniform accesses to a variety of batch
systems, file staging, status monitoring, and so on.

2.2. Virtual Grid

Virtual Grid (VG) [9, 17] is a high-level resource
abstraction enabling virtualized distributed computing
across heterogeneous resources. Separated by the VG
abstraction layer, a user specifies the characteristics of
desired execution target while the Virtual Grid execu-
tion system (VGES) [17, 18] reifies the abstraction.
VGES manages the uncertainty and dynamics associ-
ated with queuing delays, failures, and contention ef-
fects underneath the abstraction. As such, Virtual Grid
can isolate application development, scheduling, and
optimization procedures from the complexity of man-
aging resources.

Figure 2 illustrates a computing scenario in the con-
text of VG. First, the users abstract their resource re-
quirements and program the structure and properties of
desired execution target in the resource description
language named VGDL [17]. VGES then analyzes the
VGDL description and compiles a resource collection
of quality into a VG instance through resource selec-
tion, binding, and environment setup. Once a VG is
created, users can operate on the VG to retrieve the

resource information, to execute the application tasks,
and to manage the resource collection. In the following
sections, we highlight three components that imple-
ment the Virtual Grid concept.

2.2.1. Resource description language. VGDL (Vir-
tual Grid Description Language) [17] is a resource
description language, which provides constructs for
expressing constraints on the attributes associated with
computing resources. The users can describe resources
requirements in terms of desired values of attributes
(e.g., process type, memory capacity). The key ad-
vances of VGDL are the capability of hierarchical
qualitative specification of resource aggregates and
network proximity. The qualitative approach enables
applications to construct simple and robust specifica-
tions regardless of technology advances.

The users can capture simple resource abstractions
widely used to achieve the portability in design and to
manage the complexity of resource environments via
the VG resource aggregates. Moreover, the VG con-
nectivity operators express the coarse notions of net-
work proximity between aggregates in terms of latency
and bandwidth. The resource aggregates and network
connectivity operators enable the users to compose
individual resources into an arbitrary structure. At the
same time the users can specify application-specific
resource quality in a user-defined resource ranking
function. The users can specify the temporal resource
availability for time-constrained applications [9].
Moreover, the users can specify the availability prob-
ability of resources at a certain time (i.e., start time)
and the reliability probability of resources for a certain
duration.

Figure 3 illustrates how a program that consists of a
pair of a producer and a consumer can be described in
VGDL. In this example, the user needs two tightly
coupled clusters in a temporal order, each of which has
16 Itanium processors and 4 Opteron processors, re-
spectively. In addition, the user requires a high level
confidence that the resources will be timely allocated

and should be highly reliable while the application is
running. Two ClusterOf aggregates are used to repre-
sent clusters and a HighBW connectivity operator is
used to tightly couple two clusters.

Producer
(16 x Itanium2)

Consumer
(4 x Opteron)

High BW

From 10:00 A.M. to 11:00 A.M. From 11:00 A.M. to 11:30 A.M.

Producer-consumer =
 Producer = ClusterOf (nd1) [16]
 <12/12/2006@10:0:0[EXEL], 1:0:0[EXEL]>
 { nd1 = [Processor == “Itanium 2”] }
 HighBW
 Consumer = ClusterOf (nd2) [4]
 <12/12/2006@11:0:0[EXEL], 0:30:0[EXEL]>
 { nd2 = [Processor == “Opteron”] }

(a) Resource requirement (b) Resource specification

Figure 3. An example of resource specification in VGDL
(ClusterOf denotes a set of homogeneous resources; HighBW represents a high bandwidth network; <xx/xx/xx@xx:xx:xx[avail_prob],
xx:xx:xx[rel_prob]> describes the start time and the availability of resource arrival and the duration and the reliability of resource allocation.)

2.2.2. Resource compilation. Compiling a VG in-
stance from a VGDL specification is the process of
configuring a network of resources for the specifica-
tion [9]. A VG compilation consists of selection and
binding. Selection is to identify the possible resources
satisfying the specification in the resource universe
while binding is to secure the resource allocation with
a certain confidence.

Virtual Grid reformulates the resource selection
problem through a resource classification and an
online search for efficient selection and implements the
fast resource selection by exploiting the relational da-
tabase technology [18]. On the other hand, the likeli-
hood of binding success is contingent upon the re-
source management policy of resource manager. Vir-
tual Grid exploits the compositional structure of re-
source specification and identifies the components that
can be allocated independently. Virtual Grid guaran-
tees the success of resource binding probabilistically
by identifying multiple solutions for each component
[18].

2.2.3. Personal cluster. A personal cluster is a virtual
cluster instantiated on demand from physical re-
sources, which gives an illusion to the user as if the
instant cluster is dedicated to the user for a certain time
period [20]. A personal cluster reserves a partition of
resources and enables a uniform, cost-effective use of
batch resources. The user has a dedicated cluster under
the control of a private resource manager. As such a
personal cluster can provide a uniform job/resource
management environment over heterogeneous re-
sources regardless of system-level resource manage-
ment paradigms.

The current implementation is based on WS-based
Globus Toolkits [22] and a PBS [21] installation. Per-

sonal cluster uses the similar mechanism to Condor
glidein [12]. Once a system-level resource manager
allocates a partition of resources, a user-level PBS
scheduled on the resources holds the resources for a
user-specified time and a user-level WS-GRAM con-
figured at runtime for the partition accepts jobs from
the user and relays them to the user-level PBS. As a
result, the users can bypass the system-level resource
manager and benefit from the low scheduling overhead
with the private scheduler.

3. Pegasus on Virtual Grid

The intuition behind integrating Pegasus with Vir-
tual Grid is that a workflow planning system can bene-
fit from the advanced resource management services of
provisioning system and consequently enable robust
and efficient computing. However, the scope of this
paper is limited to a simple scenario of interactions
between Pegasus and Virtual Grid. To minimize im-
pacts on both the systems and enable independent de-
velopments, we propose a proxy system named Pega-
sus-VG proxy which implements the interfaces and the
services required for integration, insulating the systems
from each other. In this section, we present our com-
puting scenario and detail the issues of this study.

3.1. Computing Scenario

As discussed in Section 2.1, a workflow basically

goes through three phases in the Pegasus framework:
creation, planning, and execution. Workflow creation
is a wholly application-specific phase, independent of
target resources. Rather, Pegasus interacts with Virtual
Grid at the planning and execution phases. An issue
here is that the resources in Virtual Grid are presented
in a virtualized manner even though Pegasus needs
concrete resource information such as hostname, port
number, directory name, and so on. Therefore, the
Pegasus-VG proxy devirtualizes the provisioned re-
sources and allows Pegasus to follow the normal plan-
ning and execution processes without modifying the
Pegasus internals.

Figure 4 illustrates how Pegasus interacts with Vir-
tual Grid in a simple devirtualization scenario. First,
the user would specify application-specific knowledge
about resource requirements (e.g., processor type,
memory capacity) and the application-level informa-
tion (e.g., locations of executable, data, and replica)
needed to run his/her application in the Pegasus frame-
work at the creation phase. When the user conducts
planning with this abstract workflow, a wrapper pro-
gram for the Pegasus planning command intercepts the

resource information before the ordinary planning of
Pegasus takes place and contacts the Pegasus-VG
proxy. The proxy then synthesizes a vgDL description
through a resource capacity estimate and instantiates a
VG on the behalf of Pegasus. The proxy devirtualizes
the VG instance and generates a new site catalog
which is a formal input of Pegasus describing the in-
formation of the provisioned resources from VG. The
site catalog is then sent back to the wrapper and finally
the wrapper invokes the ordinary Pegasus planner with
the site catalog. Pegasus now continues its normal
planning process. Since a site catalog contains the de-
tailed information about how to access resources such
as hostname, GRAM port number, scheduling adaptor,
and so on, Pegasus can run applications directly on the
resources via DAGMan as usual.

Creation

Planning

Scheduling/
Execution

A

B C

D

CC

A

B C

D

CC

Executable
workflow

Abstract
workflow BTS

VGVG

Virtual G
rid

Virtual G
rid

VGDL

Devirtualization
S

ite catalog

vgdl =
ClusterOf (nd) [2] {

nd = [Proc==“Xeon”]
}

GT4+PBS

Pegasus VG-Pegasus Proxy

Figure 4. Pegasus on Virtual Grid

3.2. Issues

3.2.1. Resource capacity estimation. A critical capa-
bility required for this integration is to synthesize a
vgDL specification from application workflow(s). The
most important attribute from the perspective of high-
level workflows is the number of processors required
by the application because the resource size is one of
the important factors in determining the makespan of
workflow application and the cost of resource alloca-
tion. If the number of resources is large, the parallel
execution of independent tasks can reduce the execu-
tion time while too many resources can cause low re-
source utilization, high scheduling overhead, and high
cost. On the other hand, if the number of resources is
too small, the execution time of workflow can increase.
Therefore, it is important to estimate the number of
resources as small as possible so as to complete a
workflow within a given deadline. This problem is
different from the conventional workflow scheduling
or cost-optimization problems, which aim at minimiz-

ing the application’s runtime against a fixed set of re-
sources.

This issue was already addressed by several studies
[23, 24]. In particular, the BTS algorithm estimates the
resource capacity very efficiently [24]. The algorithm
scales well even with very complex workflows and
provides good estimate of resources needed which is
close to the optimal for a variety of workflows. More-
over, the resource estimate is abstract and independent
of description languages and selection mechanisms so
it can be easily integrated with any resource descrip-
tion languages and provisioning systems.

The Pegasus-VG proxy has a wrapper of BTS
which takes abstract workflows (DAX) from Pegasus
and generates a vgDL description. For example, Figure
5 (a) depicts a black-diamond application. The user
can describe the structure and behavior of the applica-
tion in a DAX as shown in Figure 5 (b). Then, the BTS
wrapper extracts the workflow information (e.g. task
and link) and invokes BTS. BTS then estimate the
number of processors required for the workflow and
synthesizes a vgDL description as shown in Figure 5
(c) using the resource requirements (e.g., processor
type, clock rate, memory capacity) given by client. In
this example, the user can have a cluster consisting of
2 Xeon processors. The processor requirements are

embedded into the node definition while the cluster
size is determined automatically by BTS.

preprocess

findrange findrange

analyze

f.input

f.output

<!-- part 1: list of all files used (may be empty) -->
<filename file="f.input" link="input"/>
<filename file="f.intermediate" link="input"/>
<filename file="f.output" link=”output"/>
<filename file=“keg” link=“input”>

<!-- part 2: definition of all jobs (at least one) -->
<job id="ID000001" namespace=”pegasus" name="preprocess" version="1.0" >
<argument>
 -i <filename file=”f.input"/> -o <filename file=”f.intermediate"/>
</argument>
<uses file=”f.input" link="input" register="false" transfer=”true"/>
<uses file=”f.intermediate" link="output" register=”false" transfer=“false”>
</job>

<job id="ID000002" namespace=”pegasus" name=”analyze" version="1.0" >
<argument>
 -i <filename file=”f.intermediate"/> -o <filename file=”f.output"/>
</argument>
<uses file=”f.intermediate" link="input" register="false” transfer=”true"/>
<uses file=”f.output” link="output" register=”true" transfer=”true"/>
</job>
…

(a) Black-diamond workflow

(b) A fragment of Pegasus DAX

Diamond = ClusterOf [2] (nd) [, 01:00:00]{ nd = [Processor == “Xeon”] }

(c) A synthesized vgDL description requesting a cluster consisting of 2 Xeon processors

Figure 5. vgDL synthesis for a black-diamond application workflow

3.2.2. Site catalog publication. Pegasus conducts a
workflow planning against the resources described in
site catalogues. The BTS wrapper generates a complete
vgDL specification through the resource capacity esti-
mate and then the proxy acquires resources via Virtual
Grid. Once a VG instance is successfully created, the
proxy devirtualizes the VG and creates a site catalog
describing the provisioned resources.

Figure 6 (a) is a site catalog created for the vgDL
specification presented in Figure 5 (c). As discussed in
Section 2.3, Virtual Grid deploys a personal cluster
based on Globus Web Services and PBS to the provi-
sioned resources. The key information that the proxy
retrieves is the information related to the WS-GRAM
service such as Globus version, service endpoint, batch
scheduler type, and so on. In this example, the cluster
has 2 processors and provides a GRAM web service
for PBS available at https://cat7.kaist.ac.kr:9000.

Pegasus then generates a Condor input file and the
associated Condor submit files. The key information in
a submit file is universe, grid_type, globusscheduler,
and jobmanager_type. Universe specifies the Condor
execution environment, grid_type, the Globus version

installed on the remote resource, globusscheduler, the
end point information to access the GRAM web ser-
vice, and jobmanager_type, the batch scheduler name
of remote resource manager. Figure 6 (b) illustrates a
Condor submit file generated by Pegasus 2.1.0 version.
In this example, universe is grid, grid_type is gt4,
globusscheduler is https://cat7.kaist.ac.kr:9000/wsrf/
services/ManageJobFactoryService, and jobman-
ager_type is PBS; this information is extracted from
the site catalog presented in Figure 6 (a).

Pegasus can conduct a normal planning for the
DAX presented in Figure 5 (b) with this site catalog

and generate an executable workflow (Condor DAG)
as shown in Figure 6 (b). Since the Globus Web Ser-
vices and a PBS job manager are already deployed to
the provisioned resources, Condor DAGMan can run
the workflow tasks directly on the resources by using
the GT4 options of Condor submit command.

<sitecatalog xmlns="http://pegasus.isi.edu/schema/sitecatalog" …>
<site handle="cat7" gridlaunch="/home/globus/pegasus-2.1.0/bin/kickstart" sysinfo="INTEL32::LINUX">
<profile namespace="env" key="PEGASUS_HOME">/home/globus/pegasus-2.1.0</profile>
<profile namespace="env" key="GLOBUS_LOCATION">/usr/local/globus-4.0.7</profile>
<profile namespace="env" key="LD_LIBRARY_PATH">/usr/local/globus-4.0.7/lib</profile>
<profile namespace="env" key="JAVA_HOME">/opt/jdk</profile>
<profile namespace="condor" key="grid_type">gt4</profile>
<profile namespace="condor" key="jobmanager_type">PBS</profile>
<lrc url="rlsn://cat7.kaist.ac.kr" />
<gridftp url="gsiftp://cat7.kaist.ac.kr:2811" storage="/home/globus" major="4" minor="0" patch="7" />
<jobmanager universe="transfer" url="https://cat7.kaist.ac.kr:9000/wsrf/services/ManagedJobFactoryService" major="4" minor="0"
patch="7" total-nodes="2" />
<jobmanager universe="vanilla" url="https://cat7.kaist.ac.kr:9000/wsrf/services/ManagedJobFactoryService" major="4" minor="0" patch="7"
total-nodes="2" />
<workdirectory>$HOME/workdir</workdirectory>
</site>
…
</sitecatalog>

(a) A simplified site catalog published for the provisioned cluster consisting of 2 Xeon processors

environment = GLOBUS_LOCATION=/usr/local/globus-4.0.7;JAVA_HOME=/opt/jdk;PEGASUS_HOME=/home/globus/pegasus-2.1.0;
LD_LIBRARY_PATH=/usr/local/globus-4.0.7/lib;
arguments = "-n black::preprocess:1.0 -N black::top:1.0 -R cat7 /home/globus/pegasus-2.1.0/…/black-preprocess-1.0 -a top -T60 -i f.a -o f.b1
f.b2"
error = /home/globus/pegasus-2.1.0/temp/dags/globus/pegasus/black-diamond/run0001/preprocess_ID000001.err
executable = /home/globus/pegasus-2.1.0/bin/kickstart
globusrsl = (jobtype=single)
globusscheduler = https://cat7.kaist.ac.kr:9000/wsrf/services/ManagedJobFactoryService
grid_type = gt4
jobmanager_type = PBS
output = /home/globus/pegasus-2.1.0/temp/dags/globus/pegasus/black-diamond/run0001/preprocess_ID000001.out
remote_initialdir = /home/globus/pegasus-2.1.0/temp/$HOME/workdir/pegasusexec/globus/pegasus/black-diamond/run0001
transfer_error = true
transfer_executable = false
transfer_output = true
universe = grid
+pegasus_generator = "Pegasus"
+pegasus_version = "2.1.0"
+pegasus_wf_name = "black-diamond-0"
+pegasus_wf_time = "20080909T182531+0900"
+pegasus_job_id = "preprocess_ID000001"
+pegasus_site = "cat7"
Queue

(b) A simplified Condor submit file generated by Pegasus for the DAX against the site catalog

Figure 6. Planning of abstract workflow against provisioned resources

4. Related Work

In [25], the authors discussed on workflow planning
over provisioning resources across multiple sites or
VOs (Virtual Organization) [26]. They use Pegasus as

a workflow management framework and Condor-G
[12] as a provisioned framework. Condor-G working
with Condor [27] can be regarded as a resource provi-
sioning framework which can support advance reser-
vation [28] and dynamic resource acquisition using the
glidein mechanism [12]. Different from Condor-G,
Virtual Grid is not only a resource provisioning frame-
work but also a resource programming and virtualiza-
tion framework. In addition, Virtual Grid supports a
variety of resource management paradigms such as
best effort space-sharing, advance reservation, price-
based reservation [29], compute cloud [11], and time-
sharing resources. Moreover, Virtual Grid can deploy
any user-level job manager including PBS on demand.

In addition to the system-level integration, there
have been several studies on scheduling application
workflows on provisioned resources [30-32]. These
studies demonstrate the potential of integrating work-
flow management systems with resource provisioning
systems. A common lesson from these studies is that
provisioning resources can deliver good and predict-
able performance to applications, compared to the best
effort space-sharing resources. Virtual Grid can instan-
tiate resource collections that have specific characteris-
tics across distributed resources, which can meet the
assumption that the application-level schedulers have.

5. Conclusions & Discussions

This paper presented a case study on workflow
planning and execution over provisioned resources
through integrating the Pegasus workflow framework
with the Virtual Grid resource provisioning system.
We identified that the resource capacity estimate and
the site catalog publication through resource devirtu-
alization are two key features required for this basic
integration. As an implementation, we introduced the
Pegasus-VG proxy as a common ground where Pega-
sus interacts with the Virtual Grid. This proxy-based
implementation enables an easy integration without
changing the internals of either of the systems. We
believe this integration enables scientists to explore
their problems more efficiently over distributed re-
sources. Since resource provisioning is opaque to the
users, the application development cycle is the same
even with more advanced resource allocation.

This study is the first step for understanding the is-
sues when integrating workflow management systems
with resource provisioning systems. Furthermore, we
have identified several challenges through this integra-
tion. Pegasus can partition a workflow into multiple
subworkflows which can be planned and executed
separately over time. Since allocating a large set of

resources for long time is expensive and difficult and
exposes applications to resource failures, provisioning
resources over time can be cost-efficient and even pro-
vide better performance and reliability. For temporal
resource provisioning for multiple subworkflows, the
users can specify time constraints on their resource
specifications and let Virtual Grid allocate resources
according to the user-specified schedules. On the other
hand, the users can allocate resources on-the-fly for
each subworkflow whenever Pegasus conducts plan-
ning. In either of the cases, Virtual Grid will optimize
resource allocation, taking into account of resource
characteristics. We are going to explore to what extent
the temporal resource provisioning can improve appli-
cation performance, compared to the static resource
allocation.

Even though the resource devirtualization makes
this integration easy, it sacrifices the advanced features
of Virtual Grid. For instance, DAGMan repeats the
same computation in case of computation failures until
it reaches to the maximum retries. However, repeating
computation on the same resource is not likely to suc-
ceed if the failures do not result from transient errors.
Unless Pegasus provides multiple plans for a workflow
or a dynamic re-planning feature at failures, DAGMan
cannot handle non-transient runtime failures. Restart-
ing the failed job on different resources, on the other
hand, is more likely to succeed. Virtual Grid supports a
variety of functionalities for fault-tolerance. First of all,
Virtual Grid can provision more reliable resources so it
can proactively minimize the likelihood of failures.
Moreover, Virtual Grid can swap resources dynami-
cally after resource failures and restart the failed tasks
on the new resources.

Finally, the overall performance of application is in-
fluenced by a variety of factors such as resource qual-
ity, resource reliability, data location, etc. We are also
exploring how to improve the effective performance,
which represents not only the performance of success-
ful executions but also the penalty due to failures,
against dynamic resource environments.

Acknowledgements

The authors and research described here are supported
by the National Science Foundation under grants: OCI-
0722019 (Pegasus) and supported in part by the Na-
tional Science Foundation under NSF Cooperative
Agreement NSF CCR-0331645 (VGrADS).

References

[1] B. Plale, D. Gannon, J. Brotzge, K. Droegemeier, J. Kurose,

D. McLaughlin, R. Wilhelmson, S. Graves, M. Ramamurthy,

R. D. Clark, S. Yalda, D. A. Reed, E. Joseph, and V.
Chandrasekar, "CASA and LEAD: Adaptive Cyberinfrastruc-
ture for Real-Time Multiscale Weather Forecasting," IEEE
Computer, vol. 39, pp. 56–64, 2006.

[2] W. W. Li, R. W. Byrnes, J. Hayes, A. Birnbaum, V. M. Reyes,
A. Shahab, C. Mosley, D. Pekurovsky, G. B. Quinn, I. N.
Shindyalov, H. Casanova, L. Ang, F. Berman, P. W. Arzber-
ger, M. A. Miller, and P. E. Bourne, "The Encyclopedia of
Life Project: Grid Software and Deployment," New Genera-
tion Computing, vol. 22, pp. 127-136, 2004.

[3] W. Chrabakh and R. Wolski, "GridSAT: A Chaff-based Dis-
tributed SAT Solver for the Grid," in IEEE International Con-
ference on High Performance Computing and Communication
(SC'03): IEEE, 2003.

[4] S. J. Ludtke, P. R. Baldwin, and W. Chiu, "EMAN: Semiau-
tomated Software for High-Resolution Single-Particle Recon-
structions," Journal of Structural Biology, vol. 128, pp. 82-97,
1999.

[5] G. B. Berriman, E. Deelman, J. Good, J. Jacob, D. S. Katz, C.
Kesselman, A. Laity, T. A. Prince, G. Singh, and M.-H. Su,
"Montage: a Grid Enabled Engine for Delivering Custom Sci-
ence-Grade Image Mosaics on Demand," in SPIE Conference
on Astronomical Telescopes and Instrumentation, vol. 5493:
SPIE, 2004.

[6] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kessel-
man, G. Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity, J.
C. Jacob, and D. S. Katz, "Pegasus: a Framework for Mapping
Complex Scientific Workflows onto Distributed Systems,"
Scientific Programming Journal, vol. 13, pp. 219-237, 2005.

[7] T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, C. S. Jr, and
H.-L. Truong, "ASKALON: a Tool Set for Cluster and Grid
Computing," Concurrency and Computation: Practice and
Experience, vol. 17, pp. 143-169, 2005.

[8] D. Churches, G. Gombas, A. Harrison, J. Maassen, C. Robin-
son, M. Shields, I. Taylor, and I. Wang, "Programming Scien-
tific and Distributed Workflow with Triana Services," Con-
currency and Computation: Practice and Experience, vol. 18,
pp. 1021-1037, 2006.

[9] Y.-S. Kee and C. Kesselman, "Grid Resource Abstraction,
Virtualization, and Provisioning for Time-targeted Applica-
tions," in ACM/IEEE International Symposium on Cluster
Computing and the Grid (CCGRID'08): IEEE, 2008.

[10] D. Irwin, J. Chase, L. Grit, A. Yumerefendi, D. Becker, and K.
Yocum, "Sharing Networked Resources with Brokered
Leases," in USENIX Annual Technical Conference (USENIX):
Usenix, 2006.

[11] "Amazon Elastic Compute Cloud."
[12] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke,

"Condor-G: A Computation Management Agent for Multi-
Institutional Grids," in IEEE International Symposium on
High Performance Distributed Computing (HPDC-10): IEEE,
2001, pp. 55-63.

[13] I. Foster and C. Kesselman, "Globus: A Metacomputing Infra-
structure Toolkit," International Journal of Supercomputer
Applications, vol. 11, pp. 115-128, 1997.

[14] Y. Gil, V. Ratnakar, E. Deelman, G. Mehta, and J. Kim, "
Wings for Pegasus: Creating Large-Scale Scientific Applica-
tions Using Semantic Representations of Computational
Workflows," in The 19th Annual Conference on Innovative
Applications of Artificial Intelligence (IAAI). Vancouver, Brit-
ish Columbia, Canada, 2007.

[15] S. Fitzgerald, I. Foster, C. Kesselman, G. v. Laszewski, W.
Smith, and S. Tuecke, "A directory service for configuring
high-performance distributed computations," in International
Symposium on High Performance Distributed Computing
(HPDC '97). IEEE Computer Society Press, 1997, pp. 365-
375.

[16] A. L. Chervenak, N. Palavalli, S. Bharathi, C. Kesselman, and
R. Schwartzkopf, "Performance and Scalability of a Replica
Location Service," in Proceedings of the International IEEE
Symposium on High Performance Distributed Computing
(HPDC-13): IEEE, 2004.

[17] Y.-S. Kee, D. Logothetis, R. Huang, H. Casanova, and A. A.
Chien, "Efficient Resource Description and High Quality Se-
lection for Virtual Grids," in ACM/IEEE International Sympo-
sium on Cluster Computing and the Grid (CCGRID'05). Car-
diff, United Kingdom: IEEE, 2005, pp. 598-606.

[18] Y.-S. Kee, K. Yocum, A. A. Chien, and H. Casanova, "Im-
proving Grid Resource Allocation via Integrated Selection and
Binding," in ACM/IEEE International Conference on High
Performance Computing and Communication (SC'06). Tampa,
United States: IEEE, 2006.

[19] C. Liu and I. Foster, "A Constraint Language Approach to
Matchmaking," in IEEE International Workshop on Research
Issues on Data Engineering: Web Services for E-Commerce
and E-Government Applications (RIDE'04): IEEE, 2004, pp.
7-14.

[20] Y.-S. Kee, C. Kesselman, D. Nurmi, and R. Wolski, "Enabling
Personal Clusters on Demand for Batch Resources Using
Commodity Software," in International Heterogeneity Com-
puting Workshop (HCW'08) in conjunction with IEEE
IPDPS'08, 2007.

[21] R. L. Henderson, "Job Scheduling Under the Portable Batch
System," in Lecture Notes in Computer Science, vol. 949,
IPPS '95 Workshop on Job Scheduling Strategies for Parallel
Processing: Springer, 1995, pp. 279-294.

[22] I. Foster, "Globus Toolkit Version 4: Software for Service-
Oriented Systems," in Lecture Notes in Computer Science, vol.
3779, IFIP International Conference on Network and Parallel
Computing: Springer, 2005, pp. 2-13.

[23] R. Huang, H. Casanova, and A. A. Chien, "Automatic Re-
source Specification Generation for Resource Selection," in
ACM/IEEE conference on Supercomputing (SC'07): IEEE,
2007.

[24] E.-K. Byun, Y.-S. Kee, E. Deelman, K. Vahi, G. Mehta, and
J.-S. Kim, "Efficient Resource Capacity Estimate of Workflow
Applications for Provisioning Resources," in IEEE Interna-
tional Conference on e-Science (e-Science08). Indiana: IEEE,
2008.

[25] E. Deelman, S. Callaghan, E. Field, H. Francoeur, R. Graves,
N. Gupta, V. Gupta, T. H. Jordan, C. Kesselman, P. Maech-
ling, J. Mehringer, G. Mehta, D. Okaya, K. Vahi, and L. Zhao,
"Managing Large-Scale Workflow Execution from Resource
Provisioning to Provenance tracking: The CyberShake Exam-
ple," in IEEE International Conference on e-Science and Grid
Computing (e-Science'06): IEEE, 2006.

[26] I. Foster, C. Kesselman, and S. Tuecke, "The Anatomy of the
Grid: Enabling Scalable Virtual Organizations," International
Journal of High Performance Computing Applications, vol.
15, pp. 200-222, 2001.

[27] M. Litzkow, M. Livny, and M. Mutka, "Condor - A Hunter of
Idle Workstations," in IEEE International Conference on Dis-
tributed Computing Systems (ICDCS-8): IEEE, 1988, pp. 104-
111.

[28] L. C. Wolf and R. Steinmetz, "Concepts for Resource Reser-
vation in Advance," Multimedia Tools and Applications, vol.
4, pp. 255 - 278, 1997.

[29] G. Singh, C. Kesselman, and E. Deelman, "Adaptive Pricing
for Resource Reservations," in IEEE/ACM International Con-
ference on Grid Computing (Grid 2007). Austin, Texas, 2007.

[30] G. Singh, C. Kesselman, and E. Deelman, "Performance Im-
pact of Resource Provisioning on Workflows," University of
Southern California, Technical Report CS05-850, 2005.

[31] R. Huang, H. Casanova, and A. A. Chien, "Using Virtual
Grids to Simplify Application Scheduling," in IEEE Interna-
tional Parallel & Distributed Processing Symposium
(IPDPS'06): IEEE, 2006.

[32] Y. Zhang, A. Mandal, H. Casanova, Y.-S. Kee, A. A. Chien,
C. Koelbel, and K. Kennedy, "Scalable Grid Application

Scheduling via Decoupled Resource Selection and Schedul-
ing," in ACM/IEEE International Symposium on Cluster Com-
puting and the Grid (CCGRID'06). Singapore: IEEE, 2006.

	1. Introduction
	2. Background
	2.1. Pegasus
	2.2. Virtual Grid

	3. Pegasus on Virtual Grid
	3.1. Computing Scenario
	3.2. Issues

	4. Related Work
	5. Conclusions & Discussions
	Acknowledgements
	References

