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I. Motivation and Objectives 
 
While the success and acceptance of Grids continues in the scientific and commercial 
computing communities, the technology required to achieve the grid vision -- flexible, 
adaptive computing on demand for a wide range of applications -- is still in its infancy.  
In fact, the applications that are easily portable into the grid environment while 
numerous, are mostly limited to a few paradigms (loosely-coupled parallel, asynchronous 
workflow, and multi-tier web-appserver-database applications).  Applications that require 
more tightly-coupled coordination, high performance data movement coordinated with 
computation, and real-time coupling of instruments remain difficult to design, implement, 
and manage to run well.  Broadening the class of application types viable on grids is the 
focus of the VGrADS effort, and the motivation behind our discussion here on virtual 
grids. 

 
We are interested in the following questions and metrics and how their consideration 
affects the approachability and utility of the grid for a broad class of applications.    An 
important issue is resource scale -- grid infrastructures are only in early stages today and 
will grow in the future to consist of millions, even billions of devices.  Such growth will 
stretch our capabilities to scale grid mechanisms, services, and properties to the limit. 

 
- What application development effort is required to run on the grid in a way that is 

functional, robust, adaptive, and efficient? 
- What application semantics and structure must be exploited to make the above 

possible?  
- What assumptions or knowledge of the resource environment should be embedded in 

the design of distributed grid application?  
- What resource models are sufficient to enable expression by the programmer or 

automated optimization of the critical performance factors? 
- What technologies and techniques are needed for initial resource selection and 

subsequent resource adaptation?   
- What information is needed to support these techniques (static resource attributes, 

long-term resource characterization, and short term dynamic resource information)? 
- How can we scale the virtual grid abstraction to future resource environments of 

billions of devices with radical heterogeneity? 
- How can the desire of applications to choose optimal resource sets for performance 

be reconciled with shared resource environments (unavailability) and vast future grid 
environments (scalability)? 

- What are the error and failure models that applications can expect to be universally 
implemented? 
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To explore these questions, we are developing a set of abstractions that enable expression 
of critical application structure, yet describe the resource needs simply, enabling a 
multitude of possible solutions, scale to millions of resources, and achieve quantifiably 
good solutions.  We term these abstractions Virtual Grids. Our methodology is to use 
application case studies to both motivate and evaluate our designs, ensuring that the 
resulting simple abstractions meet the real needs of real applications.  This document 
includes the following elements summarizing our current design status: 

• an overview of the virtual grid abstraction and design,  

• a design of the virtual grid resource specification language, vgDL, and 

• a set of application examples using progressively more complex descriptions in 
the virtual grid resource specification language, complete with a  rationale for 
why the application uses particular features in each case, and 

 
II. Design Assumptions 
 
Our fundamental assumptions are that Grid platforms are dynamic, shared resource 
environments of massive scale.  This implies a range of limitations. 

First, applications cannot individually scan or select from all of the resources, as the 
number is too vast.  As a foundation, we presume a scalable resource information service.  
Some mechanism for focusing the search, selection, and binding activity is required; 
initial concepts we are using to address this are virtual grids and resource classes. 

Second, resources are shared, widely distributed, and heterogeneous, so they may be 
unavailable for a wealth of reasons (other use, network disconnection, machine failure, 
network failure, network attack, etc.).   

Third, scaling and robustness for high load factors in the grid are desirable; both for good 
resource behavior and for reasonable turnaround times for applications.   

Fourth, we believe a separation of the application and resource management system is 
desirable, allowing the sharing of effort in the resource management system across 
multiple applications.  Further, this allows applications to be designed, optimized, and 
evolved independent of idiosyncrasies of the current resource environment, current 
resource management policies, or other details. 

 
III. Virtual Grids 
 
Virtual grids are described by a virtual grid resource specification that is presented by the 
application to acquire resources for execution.  A virtual grid resource specification 
captures the desired resources for an application, and its explicit resource structure can be 
used by the application designer to express parallelism, communication, and other forms 
of optimization.   Virtual grid resource specifications are designed to be simple and 
flexible, maximizing the opportunity to match resources.  To enable applications to guide 
detailed choice amongst resources that can make large factors performance difference, 
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applications provide a “ranking function” which is used by the execution system to select 
amongst identified candidates. 

III.A.  Obtaining a Virtual Grid 
Applications present virtual grid specifications to the Virtual Grid Execution System 
(vgES).  The execution system returns a resource collection that satisfies the request (or a 
partial solution with the unmatched part indicated) 1

After the virtual grid specification is matched and instantiated with available physical 
resources, it is presented to the application as a resource description request, annotated 
with the list of resources, along with information sufficient to access the associated 
resource access mechanisms.   

There are two ways in which the application can submit a virtual grid specification to the 
virtual grid system: search and binding, or search only.  Binding of resources into a 
virtual grid means they are committed to the application (at the level they are specified).  
For example, a 100Mbit slice of a faster network pipe, a 50% fraction of a 1Ghz machine, 
or a 1Ghz desktop machine with 50% availability. In search and binding, the virtual grid 
system returns an instantiated virtual grid specification in which the resources have been 
discovered and bound in an atomic fashion from the application’s perspective. With 
search only, the resources have not been bound and it is the responsibility of the 
application to acquire the resources. In this case it may be that resources returned by the 
search are no longer available by the time resource acquisition is attempted.  

Once resources have been acquired, applications can configure, instantiate, and execute 
their constituent processes across the resources as they see fit.  Typical operations include 
primitive communication, computation, and storage access.  Also, the application may 
decide to obtain additional information about the resources via active probing and 
detailed queries to Grid information services.  

 

III.B. Evolving a Virtual Grid 
Virtual grids can be evolved by reconfiguring (requesting additional or releasing 
resources) and this activity can be triggered through notification hooks for resource 
failure, revocation, etc.   Examples of reconfiguration scenarios include: 

• the virtual grid system sends a notification to the application to signal that the 
resource environment (i.e. resources used by the application) has changed, 

• application notifies the virtual grid implementation that there is an opportunity or 
need to exploit new resources, and includes with that some type of incremental 
resource specification (new or incremental to the current one), and  

• entirely new application requests for resources are initiated based on a change in 
application workload. 

                                                 
1 Because there is a value in returning more information in the case of failure, we include the second 
option, but returning the most useful information is a difficult problem. 

 VGrADS Project   Page 3 of  21 



Virtual Grids: Resource Abstractions for Grid Applications 8/9/2004 

Virtual grid reconfiguration can be performed relative to the current virtual grid 
configuration by passing in a description of the current resources explicitly, or by 
decorating a future resource request with hostnames or other attributes derived from the 
current virtual grid configuration. 

III.C. Implementing Virtual Grids 
Each class of virtual grid (e.g. a bag, a cluster, etc.) may in fact have a different 
specialized implementation, but these implementations will share a set of technologies 
which include scheduling, performance monitoring, information services, resource 
selection, checkpointing, etc.  It’s unclear at present if these implementations are separate 
(and composable) or if there are separate implementations for common combinations of 
resource structures (e.g. LooseBagof (Clusters)). 

III.D. Virtual Grid Execution System Design 
 

ApplicationApplication

vgES APIs

vgMON

vgDL
Information

Services

Resource
ManagersvgLAUNCH

vgFAB
VG

vgID

VGVG

 

Figure 1. vgES overall architecture 

 
The virtual grid vision is realized as part of the Virtual Grid Execution System (vgES). 
This work builds on and is informed by a four-year effort to build development tools for 
adaptive grid applications, the Grid Application Development Software Project (GrADS). 
Our current vgES prototype architecture builds on a key insight from GrADS that 
application participation (knowledge, expectations) is needed to effectively manage 
performance in a dynamic grid resource environment. A major innovation here is the 
attempt to couple applications and underlying grid resource management together 
through an application-oriented resource specification and an active entity (the virtual 
grid) that is the reification or instantiation of the application’s resource environment. The 
application-oriented language insulates the application from the full complexity of the 
resource environment, and the lifecycle coupling of the application and underlying 
resource environment (resources and managers) enables flexible application management 
of resources at a high level.  Note that a virtual grid does not define how the application 
uses resource with the virtual grid, nor does it provide a functional virtualization as in a 
virtual machine. 

The interaction of an application with the vgES is illustrated in Figure 1.  The Virtual 
Grid execution system (vgES) is realized in the following key elements:  
z vgDL – a structured hierarchical language for application resource abstractions that 

is used to identify appropriate resources.  
z vgFAB – the “finder and binder” that performs integrated resource selection and 

binding, which enables optimized resource choices in a high load resource 
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environment. VgFAB obtains resource information from extent information services 
and acquires resources by interacting with autonomous resource managers. This 
returns a virtual grid that communicates resource information to application in terms 
of application-level resource abstractions. 

z vgLAUNCH and vgMON – scalable application launcher and a distributed 
monitoring service based on  application expectations. 

 
Virtual grids allow users to configure their own resources and change configurations 
according to evolving application requirements and/or resource conditions. Note that a 
virtual grid does not define how the application uses the resources but what should be 
provided and how they are managed for the application. As shown in Figure 1, users 
create a virtual grid by specifying application requirements in virtual grid description 
language (vgDL) and passing to the vgFAB. Then, vgFAB instantiates a response to the 
request, returns a handle (vgID) to a virtual grid instance that consists of an explicit 
representation (annotated tree of resources that matches the vgDL structure), and 
provides an interface to dynamic information about those resources. This realized virtual 
grid goes beyond traditional resource selection. Indeed, it consists of bound resources on 
which the application has been launched by vgLAUNCH and on which vgMON monitors 
application execution, triggering possible adaptation to changing resource/application 
conditions. In this sense, a VG is a “living entity” that continuously matches a (possibly 
evolving) vgDL specification.   Part of this design has already been prototyped (see other 
documents on the project’s Web page), and in this document we solely focus on the 
design and usage of the vgDL language. 
 
IV. Specifying Virtual Grids in vgDL 
 
A vgDL virtual grid specification consists of a core resource description and a ranking 
function.  In this section, we describe each of these, followed by a discussion of the 
philosophy of our design choices and a number of the remaining open questions. 
 
IV.A. Core Resource Description in vgDL 
 
We provide a BNF description of the Virtual Grid Description Language (vgDL) 
grammar in Figures 2.1 and 2.2, which we describe hereafter. 
 

Redline expression ::= Identifier‘=‘ 
Arithmatic_expr | Logic_expr | Predicate 
Arithmatic_expr ::= A_operand [A_op 
A_operand]* 
A_opearnd ::= Integer | Real 
A_op ::= "+" | "-" | "*" | "/" | "^" 
Logic_expr::= L_operand [L_op L_operand]* 
L operand ::= Integer | Real | Boolean |

Figure 2-1. BNF grammar for Redline 
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Vgrid ::= Identifier = Rdl-expression [ at time/event ] 
Rdl-expression ::= Rdl-subexpression | [ “(“ Rdl-expression “)” op “(“ Rdl-expression “)” ]*
Rdl-subexpression ::= Associator-expression | Node-expression 
Associator-expression ::= Bag-of-expression | Cluster-of-expression 
Bag-of-expression ::= LooseBagof "<" Identifier ">" "[" MinNode ":" MaxNode "]" [ "[" 
Number [ “su” | “sec” ] "]" ] ";" Node-expression | 
TightBagof "<"Identifier ">" "[" MinNode ":" MaxNode "]" [ "[" Number [ “su” | “sec” ] "]" ] 
";" Node-expression 
Identifier ::= String 
Min ::= Integer 
Max ::= Integer 
Node-expression ::= Identifier "=" Node-constraint 
Node-constraint ::= "{" Attribute-constraint | Rdl-expression "}" | Rdl-expression 
Attribute-constraint ::= Redline expression for attribute and constraint [see Figure 3-2] 
Cluster-of-expression ::= Clusterof "<" identifier ">" "[" MinNode ":" MaxNode [ “,” 
MaxTime “:” “MinTime”] "]" ";" Node-expression 
op := close | far | highBW | lowBW 

Figure 2-2.  BNF for Virtual Grid Description Language (vgDL) 

 
A vgDL specification (Vgrid) consists of a resource description and of an optional 
specification of when the Virtual Grid is needed (via the at keyword). If no at value is 
specified, then the Virtual Grid is needed immediately. Otherwise, the application can 
specify a value as an absolute date in time, or as an event that triggers the acquisition of 
the virtual grid (e.g., a critical resource becomes available). The exact syntax for the at 
value specification is still to be determined. The resource description can be the 
application of an operator between two descriptions (with possibly multiple levels of 
parenthesization). Each such description can be just a node specification (Node-
expression) that specifies requirements for a single resource, or an association 
(Associator) between node specifications or resource descriptions. At the moment we 
have three associators:  

• LooseBagOf: Set of heterogeneous processors with possibly “poor” connectivity 
• TightBagOf: Set of heterogeneous processors with “good” connectivity  
• Clusterof: A set of homogeneous processors with “good” connectivity 

 
Each such associator specifies a range for the number of associated elements (between 
MinNode and MaxNode). In addition, the user can optionally specify a notion of how 
long the resources are needed for. This is done be specifying a Number of either (i) 
service units, as defined in the traditional sense by, for instance, supercomputer centers, 
or as defined as number of cycles on a reference machine, or (ii) units of time, such as 
seconds. In the syntax defined above, a virtual grid specification could thus ask for a  
cluster for 100su (i.e., 100 service units), or for 100sec (i.e., 100 seconds). Finally, one 
can specify constraints of the individual resource that make up these elements with a 
node specification.  
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Aggregate properties were later added to the design. 
 
Note that with the at keyword and the specification of needed work units or number of 
seconds, the Virtual Grid system can interact with resources that enable advanced 
reservation. If resources do not provide such capabilities, then the Virtual Grid system 
must rely on statistical estimates and predictions of resource availability and pick 
resources that can match the desired application needs with highest confidence, knowing 
that there can be no guarantees.  
 
 At the moment we provide 4 operators that can be applied between resource descriptions 
(close, far, highBW, lowBW). These operators indicate coarse notions of network 
proximity in terms of latency and bandwidths.  
 
Note that the philosophical approach here is to make it possible to specify associators and 
operations among associators at a high and qualitative level. The implementation will use 
specific values to determine what qualifies as “close” and “far”, and these values will 
evolve throughout years due to technology advances. Note again that applications that 
wishes to use quantitative measurements of, say, bandwidth, can query the grid 
information systems once Virtual Grid resources have been bound in order to apply 
possibly sophisticated scheduling algorithms and other optimizations. The point is that 
taking such qualitative data during resource selection among the vast numbers of 
available resources may be impractical and may in fact be of dubious overall benefit, 
hence a qualitative approach. This last point is up for debate and part of the VGrADS 
research will consist in validating or invalidating it. 
 
The following are examples of possible virtual grid specifications written with the above 
language, based on our initial group discussion of virtual grids and our past GrADS 
experience: 
 

• Iter =  Clusterof<Node1>[8:32] ; Node1 = {constraint1, constraint2,...} at 
01/05/2004:12AM 

• Scalapack = Clusterof<Node2>[8:32] [3600sec]; Node2 = {constraint1, 
constraint2,...} 

• Fasta = LooseBagof<Node3>[8:32]; Node3 = {have database, ...} 
• EMAN = LooseBagof<Node4>[1:64]; Node4 = Clusterof<Node5>[8:32]; Node5 = 

{constraint1, constraint2,...} 
• SAT = LooseBagof <Node6>[1:100000]; Node6 = {} 
• LEAD/MEAD = Clusterof<Node7>[64:10000] [400su]; Node7 = {contraint1, 

constraint2,...} 
• EOL = LooseBagof<Dnode>[8:32]; Dnode = {have database parts, ...} far 
• LooseBagof <Wnode>[32:4096]; Wnode = {constraint1, constraint2,...} 
• EOL2 = LooseBagof<LumpedNode>[1:100]; LumpedNode = (Dnode={have 

database parts, …} highBW LooseBagof<Wnode>[32:1024]; Wnode = 
{constraint1, constraint2,...}) 

 
We provide case-studies in Section V in which we develop Virtual Grid abstractions and 
explain how they related to different application execution scenarios. 
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IV.B Ranking Functions 
 
Applications provides a “ranking function”, which can be applied at each level—node 
choice, cluster size & configuration choice, bag size, etc.  The ranking function therefore 
takes inputs like: cluster size, bag size, network speed, node configuration, and can also 
include predicates on elements of clusters or bags.  The ranking function can be 
expressed as a function of the resources using the variable names. At the moment, we 
envision this function to be using arithmetic and boolean operators. Its specific syntax is 
still to be designed based on feedback from application studies.  
 
IV.C. Discussion 
 
Our simple virtual grid description is designed to facilitate rapid resource selection.  The 
ranking function allows applications to express their preferences for specific resources.  
Virtual grids do not prevent an application from significant further optimization at 
runtime based on the actual resources selected and bound (e.g. custom code generation 
for the processor pipeline or custom scheduling and data decomposition based on the 
actual dynamic network performance).  Further, the notion here is to avoid capturing the 
full complexity of the application’s resource use in the resource description.  Rather, the 
ideal is to move to simplified views of typical resource request structures and ultimately a 
notion of “classes of service”. 

A particular application can reasonably choose several different virtual grid 
abstractions—and are expected to do so.  Such choices reflect the needs of applications 
developers to manage their application complexity and the effort needed to “port and 
optimize” their application for the execution environment.  For example, in the 
subsequent sections which detail application examples, an evolution of possible virtual 
grid descriptions is given for each application. 

Our current virtual grid language is performance-centric, and could be extended naturally 
by attributes such as reliability, availability, failure domain, etc.  However, adding such 
attributes may not be the right approach – as orthogonality is not required.  Rather, an 
approach based on classes of service that couple these attributes is likely to be most 
manageable. 

 
V.  Application Case Studies  
 
We use several application case studies to demonstrate the flexibility and use of virtual 
grid abstractions in specific contexts.  For the moment these applications are: 
Encyclopedia of Life, EMAN, and GridSAT. 
 
V.A  Encyclopedia of Life 
 
The EOL application can be run with different levels of abstraction for the underlying 
resources. The lower-level the abstraction, the more sophisticated the application 
scheduling strategy can be, with both a bigger hope of extracting the best performance 
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out of the underlying resources and a bigger burden placed on the application developers. 
When referring to EOL, we specifically refer to the computationally intensive portion, 
which is the iGAP (integrated Genome Annotation Pipeline) described in the EOL 
document located on the VGrADS Website. Below we outline several scenarios that 
correspond to increasing levels of sophistication for EOL, as well as what the Virtual 
Grid user needs to specify in terms of a desired virtual grid abstraction. This virtual grid 
abstraction is expressed with the language presented in Section IV.A. Note that in all that 
follows we omit extraneous details concerning the logistical requirements of application 
execution (i.e., software is installed, is installable, software licenses are available, which 
binaries are available for which architectures). Indeed, our goal is to illustrate the 
expressive power of the virtual grid abstraction and how it affects expected application 
performance. Further details about application requirements can be easily added.  
 
Sequential EOL (EOL1) 
 
This is just a sequential execution of EOL on a single machine. All databases needed for 
running EOL are local to the machine, which is the only knowledge required for the 
virtual grid user writing the abstraction specification.  In the specification below we 
assume that the user requires some amount of RAM on the machine (for instance so that 
each database can be loaded entirely in RAM to avoid repeated access to disk, which is 
typical with bioinformatics applications). 
 
EOL1 =  Node = { has databases; memory >= 1GB} 
 
Rank(Node)=cpu; 
 
 

iGAP

Execution

Databases 
Node 

 
 
 
 
 
 

Figure 3. Sequential EOL (EOL1) 
 
 
Parallel Workers EOL (EOL2) 
 
In this scenario, the virtual grid user wished the EOL application to run on a collection of 
individual machines, or computational nodes (the CNodes below). The databases 
necessary for execution of the application are located on one machine (the SNode below). 
Given that the EOL databases are not very large and that the application is compute-
intensive (at least the part of the iGAP pipeline that we are considering in this project), 
the user specifies that the database node can be “far” from the bag of nodes. (Of course, 
the Virtual Grid system may return a Virtual Grid binding in which the SNode is close to 
all the CNodes). The abstraction is specified as follows: 
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EOL2 = SNode ={has databases} far LooseBagOf<CNode>[32:4096];CNode = 
{memory >= 1GB} 
 
Rank(CNode)=cpu; 
 
 

 VGrADS Project   Page 10 of  21 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
LooseBag 

CNode 

iGAP 

CNode 

Execution

CNode 

Execution

CNode 

Execution

       SNode 

Databases 

Figure 4.  Parallel Workers EOL (EOL2) 
 
 
Parallel Workers and Databases EOL (EOL3) 
 
In this scenario, databases are fully replicated onto several nodes. This makes it possible 
to take advantage of greater range of resources. As in the previous scenario, the worker 
compute nodes, CNodes, can execute EOL in parallel by accessing the database remotely 
from SNodes. To each bag of CNodes is associated a SNode containing the databases, 
and the virtual grid consists of several such “LumpedNodes”. The programmers need not 
know anything about grid or virtual grid abstractions to run in this mode, other than there 
can be separate database and worker nodes, but will need to split execution of the iGAP 
pipeline among LumpedNodes This is the default behavior of EOL when run on more 
than one servers or clusters. 
 
 
EOL3 = LooseBagOf<LumpedNode>[1:32];LumpedNode = (SNode={has 
databases} far LooseBagOf<CNode>[8:128] CNode = {memory >= 1GB}) 
 
Rank(CNode)=cpu; 
Rank(LumpedNode)=count(LumpedNode[]) 
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Figure 5. Parallel Workers and Databases EOL (EOL3) 
 
 
Smart-Distributed EOL (EOL4) 
 
Currently EOL is deployed using the APST software, which uses scheduling heuristics 
that have been shown to work well in practice. By contrast to EOL3, EOL4 expresses no 
fixed association between database nodes and particular worker pools.  The application 
does database replica selection based on network latency and bandwidth. Additionally, 
APST would divide and map the workload based on the characteristics of the worker 
nodes to balance the workload. To use a virtual grid and optimize in this fashion,  the 
programmer should understand how the placement of databases in relation of the worker 
nodes affects the performance of EOL.   
 
 
EOL4 = LooseBagOf<SNode>[8:32]: SNode = {has databases} far 
LooseBagOf<CNode>[32:1024]: CNode = {memory >= 1GB} 
 
Rank(CNode)=count(Cnode[]); 
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Figure 6. Smart-Distributed EOL (EOL4) 
 
 
Data Smart Distributed EOL (EOL5) 
 
EOL5 has all the advantages of EOL4, plus a notion of partial distribution of database 
parts (which is meaningful for many bioinformatics codes). This partial distribution 
admits more resource configurations and requires optimized workload division so that 
worker nodes are assigned load specific to a partial or full database and the results. In 
some cases, machines with smaller memories that can’t hold a full database in memory 
can be employed.  With only partial database replication, the application must manage 
load balance across servers and managing result aggregation.  The current version of 
EOL cannot be deployed in such a fashion and would need to be modified to support 
splitting workloads among different partial databases. The virtual grid abstraction 
specification then corresponds to a flat structure in which there are storage nodes and 
compute nodes, as well as nodes that hold databases. The databases can then be split and 
moved to storage nodes when/if needed. 
 
EOL5 = DBNode = {has all databases} HighBW LooseBagOf<SNode>[8:32]: 
SNode = {disk > 100GB} far LooseBagOf<CNode>[32:1024] CNode = {memory 
>= 500MB, disk >= 10GB}) 
 
Rank(CNode)=count(Cnode[]); 
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Figure 7. Data Smart Distributed EOL (EOL5) 

 
 
V.B  EMAN 
 
The EMAN application can be run with different levels of abstraction for the underlying 
resources. The lower-level the abstraction, the more sophisticated the application 
scheduling strategy can be, with both a bigger hope of extracting the best performance 
out of the underlying resources and a bigger burden placed on the application developers. 
Below we outline several scenarios that correspond to increasing levels of sophistication 
for EMAN, as well as what the Virtual Grid user needs to specify in terms of a desired 
virtual grid abstraction. This virtual grid abstraction is expressed with the language 
presented in Section IV. Note that in all that follows we omit extraneous details 
concerning the logistical requirements of application execution (i.e., software is installed, 
is installable, software licenses are available, which binaries are available for which 
architectures). Indeed, our goal is to illustrate the expressive power of the virtual grid 
abstraction and how it affects expected application performance. Further details about 
such application requirements can be easily added.  
 
Sequential EMAN (EMAN1) 
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This is just a sequential execution of EMAN on a single host. The input to the EMAN 
DAG should be stored on the host. The below example assumes that EMAN required 
500MB of RAM to run, and that the input data + temporary data requires 1GB or storage 
(which is well above the current requirements of EMAN as it is ran for VGrADS).  
 
EMAN1 =  Node = { RAM > 500MB, Disk > 1GB }  
 
Once acquired, it is the responsibility of the EMAN application to ship the initial input 
data to the host.  
 
Single Cluster EMAN  (EMAN2) 
 
The EMAN application consists of a linear DAG of 8 tasks (in its current incarnation). 4 
of the nodes are sequential, and 4 are parameter sweep nodes and can (conceptually) be 
executed on collection of loosely connected hosts. However, out of these last 4 nodes, 
some require a shared file system among all hosts (as in an actual cluster). So one easy 
way to run EMAN is just to run it on a single cluster that has a shared file system: 
 
EMAN2 =  Clusterof <Node> [32:128]; Node = { RAM > 500MB, Disk > 1GB} 
 
In this scenario, a node in the cluster is picked to run the sequential tasks of the EMAN 
DAG.  
 
Multiple Cluster EMAN (EMAN3) 
 
Some of the parameter sweep tasks in the EMAN DAG can be run across multiple 
clusters. Given the fact that EMAN is compute-intensive (see the VGrADS EMAN 
document), it is not required that these clusters be close to each other.   
 
EMAN3 =  LooseBagof<Cluster>[1:4]; Cluster = Clusterof<Node>[8:32]; Node =  
{RAM > 500MB, Disk > 1GB} 
 
This is the way in which EMAN is currently being executed. The application could pick 
the “best” cluster to run the tasks that require a cluster, and the other potential clusters 
can be used for those tasks that can be executed over multiple clusters.  
 
Evolved EMAN (EMAN4) 
 
 It is expected that EMAN will evolve to encompass the execution of a non-linear DAG, 
with parameter sweep tasks as well as sequential tasks, and with portions of the DAG that 
are data-intensive. This corresponds to a restricted case of mixed-parallel applications. 
The general specification below: 
 
EMAN4 = LooseBagOf<Node>[1:512]: Node = {RAM > 500MB, Disk > 1GB} far 
LooseBagOf<Cluster>[1:8]: Cluster = ClusterOf<Node>[8:64]: Node = {RAM > 
500MB, Disk > 1GB} 
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would make it possible to use sophisticated scheduling heuristics for mixed-parallelism 
over a number of individual nodes and a few clusters. More refined descriptions could be 
written that specify that some of the resource should be close to each other.  
 
 
 
V.C. GridSAT 
 
GridSAT is a parallel and complete satisfiability solver used to solve non-trivial SAT 
problems is a grid environment (large number of widely distributed, heterogeneous 
resources).  The application uses a parallel solver algorithm based on Chaff to essentially 
attempt to solve SAT problems of the form ‘given a large, non-trivial Boolean 
expression, is there a variable configuration (and what are the variable values) which 
results in the expression evaluating to TRUE?’ 
 
GridSAT was designed explicitly to run in grid environments and has built in intelligent 
acquisition of additional resources, scheduling, and even migration/load balance 
mechanisms.  GridSATuses of tightly-coupled bags of nodes for local load balancing, and 
depends on sparse high bandwidth connectivity amongst these bags for higher level work 
spreading (finding new resources and increasing parallelism).  Beyond resource 
acquisition, GridSAT also uses sophisticated application and network performance 
information to make scheduling decisions. 
 
GridSAT Resource Selection 
 
To request the initial set of resources, GridSAT simply requests a loose bag of tight bags 
with particular node counts and node requirements. 
 
GridSAT1 = LooseBag<BagNode>[16:1024]{BagNode = 
TightBagof<Node>[8:32]{Node = memory > 128MB, cpu > 1Ghz} 
 
Rank(Node) = cpu 
 
Because connectivity amongst the BagNodes is important for load balance and work 
distribution, there needs to be some way to express desired connectivity.  GridSAT wants 
BagNodes in the LooseBag to have high bandwidth connections to the other BagNodes, 
the following ranking function might be added. 
 
GridSAT2 = LooseBag<BagNode>[16:1024]{BagNode = 
TightBagof<Node>[8:32]{Node = memory > 128MB, cpu > 1Ghz} 
 
Rank(Node) = cpu 
Rank(BagNode) = count(BN in BagNode[] | BN HighBW BagNode) 
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In this case, the ranking function for the BagNodes expresses that the better they are 
connected, the higher the desirability.  The current design of virtual grids does not 
support a full range of capabilities for augmenting an existing virtual grid with additional 
resources, but this can be done simply by equating the current BagNodes with the term 
BagNode[] in the above ranking and requesting an additional set of new BagNodes, 
something like the following: 
 
GridSAT2-extension = NewBagNode = TightBagof<Node>[8:32]{Node = memory 
> 128MB, cpu > 1Ghz} 
 
Rank(Node) = cpu 
Rank(NewBagNode) = count(BN in BagNode[] | BN HighBW NewBagNode) 
 
GridSAT Scheduling 
 
In addition to using connectivity information to select initial resources, GridSAT uses 
network connectivity to perform scheduling and migration (mapping of dynamic load to 
resources) in the course of its execution.  To do so, GridSAT uses a number of carefully 
tuned decision procedures that trade the expected cost of data movement against the 
expected increase in computational speed resulting from a migration or work spreading 
action.  To support these decisions, it seems natural that a virtual grid might provide 
some information service interfaces.  While there are many possibilities to address this, 
one approach would be to express this information as a hierarchical labeling on the 
LooseBag and the TightBags which can be used to identify candidate resources.  For 
example: 
 
Candidates = enumerate (BN in BagNode[] | BN HighBW currentHost 
 
Or a more comprehensive system that presents a full topology of the LooseBag such as: 
 
Forall BN1,BN2 in BagNode[] LooseBagHighBWTopology[BN1,BN2] = (BN1 
HighBW BN2)) 
  
Armed with operations on the topology, it is then possible for a scheduler to adapt 
GridSAT’s execution appropriately to the underlying resource structure.  These labels or 
properties on the bound and prospective resources could be provided by an underlying 
resource characterization system such as NWS or OpenView. 
 
VI. Issues and Future Work 
 
The Virtual Grid descriptions defined in this document have the goal of being simple and 
yet expressive. As a result we have made a number of initial choices that attempt at 
striking a balance between simplicity and expressivity. Some of the open issues are 
summarized here: 
 

• No means of dealing with aggregate resource properties 
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• Better way to deal with data properties of resources  

• Ri
• No
• No

 
VII. Inter
 
This sectio
program, P
with the fu
 
VII.A Inte
 
This figure
of resource
appropriate
○1  PPS ac
○2  The vi
launches t
VG_MOD
○3  PPS de

 VGrADS
PPS Resource broker

Information
Service

Resource

VGcreateBroker

search
bind

launch

Resource specification

Annotated specification

1

Yes

No

VGmanage2

VGterminateBroker3

 

Figure 8: Integrated Selection and Binding  
cher set of network properties / proximity relationships (quantitative?) 
 full set of attributes (limited list) 
 treatment of fault-tolerance, statistical properties, security properties, … 

action Diagrams 

n includes a set of diagrams, which illustrate the interactions between application 
PS, and the various parts of the execution system.  Each of the interactions is labeled 
nction name (defined in the Virtual Grids API document). 

grated Selection and Binding 

 illustrates the simplest use of the Virtual Grid system.  The application requests a set 
s, and the execution system (the resource broker in this case) selects and binds an 
 configuration, returning it to the application. 
tivates the virtual grid broker. 
rtual grid execution system searches a resource collection, instantiates on it, and 
he script on each resource in the virtual grid by using VGmanage with a 
E_SEARCH_BIND or VG_MODE_BIND_ON_EXISTING mode. 
activates the virtual grid broker. 

 Project   Page 17 of  21 



Virtual Grids: Resource Abstractions for Grid Applications 8/9/2004 

 
VII.B Separate Selection and Binding  

 
This figure illustrates separate use of Virtual Grid  resource selection and binding.  First the 
application requests a set of resources, and the execution system (the resource broker in this case) 
returns a set that matches the request.  Subsequently, the application requests that the set of 
resource be bound for the application.  However, because there are other resource consumers in 
the system, success in binding those resources is not ensured.  If the finding process fails, the 
application may need to return to the selection step to identify new resources. 
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Figure 9: Separate Selection and Binding 

 
○1  PPS activates the virtual grid broker. 
○2  The virtual grid execution system searches a resource collection satisfying the virtual 
grid specification by using VGmanage with a VG_MODE_SEARCH mode. 
○3  The virtual grid execution system launches the script on each resource in the virtual 
grid. 
○4  PPS deactivates the virtual grid broker. 
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VII.C Application-Controlled Dynamic Resource Change 
After a virtual grid has been created, adaptation of the resources can be achieved under 
application control.  The resource monitoring can trigger callback to the application, which then 
requests the replacement of some resources or the application can of its own initiative request that 
a set of resources be replaced.   
○1  PPS activates the virtual grid broker and creates a resource monitor for this 
application. 
○2  The virtual grid execution system searches a resource collection, instantiates on it, and 
launches the script on each resource in the virtual grid. 
○3  When the resource monitor detects any significant changes of resources, it invokes a 
callback of the application. 
○4  In response to the callback, the application initiates a change of resource. For 
example, the application can replace the resource with poor performance with another 
resource with better performance.  Alternatively, the application could initiate a change 
of resources of its own volition at any time. 

○5  PPS deactivates the virtual grid broker and terminates the resource monitor. 
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Figure 10. Application-controlled Dynamic Resource Change 
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VII.D Transparent Dynamic Resource Change 
 
It is also possible to design Virtual Grids that transparently adapt resources beneath an 
application.  Because it is not our direct resource objective to create the virtualization required for 
transparent substitution, we presume those issues are addressed in a virtualization or 
checkpointing system layer or at the application level.  In this scenario, replacement happens and 
is followed by a callback notifying the application. 
○1  PPS activates the virtual grid broker and creates a resource monitor for this 
application. 
○2  The virtual grid execution system searches a resource collection, instantiates on it, and 
launches the script on each resource in the virtual grid. 

○3  When the resource monitor detects any significant changes of resources, it invokes 
internal routines to handle this. 
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Callback
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launch

3
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Figure 10: Transparent Dynamic Resource Change 

○4  The execution system can replace the resource with poor performance with another 
resource with better performance. The resource monitor notifies the application that there 
was resource reconfiguration. 
○5  PPS deactivates the virtual grid broker and terminates the resource monitor. 
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