
EMAN, Scheduling, Performance
Prediction, and Virtual Grids

Charles Koelbel
chk@cs.rice.edu

http://vgrads.rice.edu/site_visit/april_2005/slides/koelbel

Credits

• Baylor College of Medicine -
EMAN research group
— Wah Chiu, Director - National

Center for Macromolecular
Imaging

— Steve Ludtke, Principal author
— Wen Jiang, Liwei Peng, Phil

Baldwin, Shunming Fang, Htet
Khant, Laurie Nason

• Rice University - VGrADS group
— Ken Kennedy and Chuck Koelbel,

Principal Investigators
— Mark Mazina, Research Staff
— Anirban Mandal, Anshu

DasGupta, Gabriel Marin, Ryan
Zhang

• University of Houston - VGrADS
group
— Lennart Johnsson, Principal

Investigator
— Bo Liu, Mitul Patel

• University of Southern California
- VGrADS Group
— Carl Kesselman, Principal

Investigator
— Gurmeet Singh

• University of California, San
Diego - VGrADS Group
— Andrew A. Chien and Henri

Casanova, Principal Investigators
— Yang-suk Kee, Postdoc
— Jerry Chou, Richard Huang,

Dennis Logothetis

Outline
• Overview of EMAN !

• Scheduling EMAN execution !

• Predicting EMAN performance ! "

• Future directions # $

• Related posters
! “Performance Model-Based Scheduling of EMAN Workflows” by

Anirban Mandal (Rice) and Bo Liu (U Houston)
" “Scalable Cross-Architecture Predictions of Memory Latency for

Scientific Applications” by Gabriel Marin (Rice)
“Scheduling Compute Intensive Applications in Volatile, Shared

Resource (Grid) Environments” by Richard Huang (UCSD)
$ “Optimizing Grid-Based Workflow Execution” by Gurmeet Singh

(ISI)

EMAN - Electron Micrograph Analysis

• Software for Single Particle Analysis
and Electron Micrograph Analysis

— Open source software for the scientific
community

— Developed by Wah Chiu & Steve
Ludtke, Baylor College of Medicine

— http://ncmi.bcm.tmc.edu/homes/stevel/
EMAN/EMAN/doc/

• Performs 3-D reconstruction of a
particle from randomly-oriented
images

— Typical particle = Virus or ion channel
— Typical images = Electromicrographs
— Typical data set = 10K-100K particles
— Useful for particles about 10-1000nm

• GrADS/VGrADS project to put EMAN
on Grid

EMAN
Refinement

Process

All electron micrograph and 3-D reconstruction images courtesy of
Wah Chiu & Steven Ludtke, Baylor College of Medicine

EMAN from a CS Viewpoint
• EMAN is a great workflow application for VGrADS

— Represented as a task graph
— Heterogeneous tasks, some parallel & some sequential
— Parallel phases are parameter sweeps well-suited to parallelism
— Implemented with Python calling C/C++ modules (now)

• Technical issues
— Computational algorithms for guiding the refinement

– Currently fairly brute-force, subtler algorithms under development
— Scheduling task graph on heterogeneous resources

– Computation cost depends on processor characteristics, availability
– Communication cost depends on network characteristics, file systems
– We want pre-computed schedules (on-line schedules = future work)

— And many, many, many little details

• More detail in poster session
! “Performance Model-Based Scheduling of EMAN Workflows” by Anirban

Mandal (Rice) and Bo Liu (UH)

EMAN
Refinement

Process

Start

proc3d

volume

Seq. component

Parallel component

proc2d
make3d

make3diter

make3diter

make3diter

volume

project3d

classalign2

classalign2

classalign2

classalign2

classalign2

classalign2

classesbymra

classesbymra

classesbymra

Outline
• Overview of EMAN

• Scheduling EMAN execution

• Predicting EMAN performance

• Future directions

Heuristic Scheduling Algorithm
foreach heuristic do

while all components not mapped do
Find available comps;
Calculate rank(comp,R) for all comps,R;
findBestSchedule(comps,heuristic);

endwhile
endforeach
Select heuristic with minimum makespan;
Output selected mapping;

findBestSchedule(comps,h))
while all comps not mapped do

foreach Component, C do
foreach Resource, R do

ECT(C,R)=rank(C,R)+EAT(R);
endforeach
Find minECT(C,R) over all R;
Find 2nd_minECT(C,R) over all R;

endforeach
if (h==min-min) j* = j1 with min(minECT(j1,R));
if (h==max-min) j* = j2 with max(minECT(j2,R));
if (h==sufferage) j* = j3 with

min(2nd_minECT(j3,R)-minECT(j3,R));
Store mapping for j*;
Update EAT(R) and makespan;

endwhile

proc3d

volume

project3d

proc2d

make3d

volume

classesbymra

classalign2

make3diter

Fast Slow Really
Slow

proc3d

volume

project3d

proc2d

cbymra

cbymra
cbymra

cbymra

calign

calign
calign

calign

make3d

m3diter

m3diter
m3diter

m3diter

volume

Processors
! “Performance Model-Based Scheduling of EMAN Workflows” by Anirban
Mandal (Rice) and Bo Liu (UH)

proc3d
project3d
proc2d
classesbymra
classalign2
make3d
make3diter
proc3d

EMAN Scheduling: Large Data, Small Grid

• Set of resources:
— 6 i2 nodes at U of Houston (IA-64)
— 7 torc nodes at U of Tennessee @

Knoxville (IA-32)

• Data set: RDV
— Medium/large (2GB)

• Key was load-balancing classesbymra
component using performance models

Hereafter, we only show classesbymra in the timings

1111proc3d
1010101make3diter

474711make3d
45045060379classalign2

5070
1

108
1

Overall
makespan

(min)

49015070764268classesbymra
111proc2d

10811project3d
111proc3d

Execution
time at

torc (min)

Execution
time at i2

(min)

nodes
picked at

torc

nodes
picked
at i2

instances
mapped to

torc (IA-32)

instances
mapped to
i2 (IA-64)

EMAN
component

EMAN Scheduling:
Varying Performance Models

None
GHz Only

Accurate

He
ur

is
tic

Ra
nd

om

0

200

400

600

800

1000

1200

Ti
m

e
(m

in
)

• Set of resources:
— 50 rtc nodes at Rice (IA-64)
— 13 medusa nodes at U of Houston (Opteron)

• RDV data set

• Varying scheduling strategy
— RNP - Random / No PerfModel
— RAP - Random / Accurate PerfModel
— HGP - Heuristic / GHz Only PerfModel
— HAP - Heuristic / Accurate PerfModel

50550538613506050HAP

757

762

1121

Overall
makespan

(min)

41075713505258HGP

53076210345357RAP

29811219432189RNP

Execution
time at
medusa
(min)

Execution
time at rtc

(min)

nodes
picked at
medusa

nodes
picked at

rtc

instances
mapped to
medusa

(Opteron)

instances
mapped to
rtc (IA-64)

Scheduling
method

EMAN Scheduling: Small Data, Small Grid

10:2810:289:385444
Random
placement

16:417:5116:413860
VGrADS
heuristics

Overall
makespan
(min:sec)

Execution
time on torc
(min:sec)

Execution
time on i2
(min:sec)

instances
mapped to

torc (IA-32)

instances
mapped to i2

(IA-64)

Run

• Set of resources:
— 5 i2 nodes at U of Houston (IA-64)
— 7 torc nodes at U of Tennessee (IA-32)
— All nodes used

• GroEl data set
— 200MB

• Major load imbalance
— External load on i2 nodes invalidated

VGrADS performance model
— Random scheduler too dumb to notice torc clusteri2 cluster

Pr
ed

ic
te

d

torc clusteri2 cluster

A
ct

ua
l

torc clusteri2 cluster

Predicted
Performance

torc clusteri2 cluster

V
Gr

A
DS

 S
ch

ed
ul

er

i2 cluster torc cluster

Ra
nd

om
 S

ch
ed

ul
er

EMAN Scheduling:
Predicted and Actual Load Balance

Outline
• Overview of EMAN

• Scheduling EMAN execution

• Predicting EMAN performance

• Future directions

EMAN Performance Modeling

†

EstExecTime(n,a) =
FP(n,a)+ L1(n,a)+ L2 (n,a)+ L3(n,a)

Clock(a)

FP(n,a) = FPcount(n)¥ 1+FPstalled(n ,a)
FPpipes(a)

Lk (n,a) = Lkcount(n)¥ Lk penalty(a), k = 1,2, 3

• Execution time is computation time and memory access times

†

EstCommTime(c,r) = Lat(map(p),r)+ Vol(p,c) ⋅ BW (map(p),r)()
pŒParent(c)

Â

• Communication time is latency plus bandwidth cost
—Estimated from NWS

†

Rank(compi ,res j) = EstExecTimei (size(compi),arch(res j))
+EstCommTime(compi ,res j)

• Rank of a component is total time to run it on a resource

EMAN Performance Modeling:
Computation Time (FP)

• (Floating point) Computation time is estimated from semi-
empirical models
—Form of model given by application experts

– EMAN is floating-point intensive fi Count floating-point ops
– Classesbymra is based on FFT fi is O(n2+n2 log2(n)) fi

Fit to c5⋅n2⋅log2(n) + c4⋅n2 + c3⋅log2(n) + c2⋅n + c1

—Training runs with small data sizes
—Collect floating-point operation counts from hardware performance

counters

—Least-squares fit of collected data to model to determine
coefficients (FPcount, FPstalled)

—Architecture parameters used to complete model (FPpipes)

EMAN Performance Modeling:
Memory Access Time (L1, L2, L3)

• Memory access time (cache
miss penalty) is estimated
from black-box analysis of
object code
— Static analysis determines

code structure
— Training runs with

instrumented binary
produce architecture-
independent memory reuse
distance histograms

— Fit polynomial models of
reuse distances and number
of accesses

— Convolve with architecture
features (e.g. cache size)
for full model

Object
Code

Binary
Instrumenter

Instrumented
Code

Execute

Mem
Reuse

Dist

Binary
Analyze

r

CFG

Loop nests

Post Processing Tool

Arch neutral
model

Arch
Descrip

Perf Prediction
on Target Arch

Static
Analysis

Dynamic
Analysis

Post
Processing

project3d

0

50

100

150

200

48 60 64 72 80 96 100 120 128 144

Image size

M
is

s
co

un
t

/ p
ix

el L2 measured
L2 predicted fully
L2 predicted 8-way
L3 measured
L3 predicted fully
L3 predicted 6-way

" “Scalable Cross-Architecture Predictions of Memory Latency for
Scientific Applications” by Gabriel Marin (Rice)

Accuracy of EMAN Performance Models

• Machine-neutral performance prediction models were accurate
on unloaded systems
—Combining application knowledge, static analysis, dynamic

instrumentation gave accurate results
– Good case: rank[RTC] / rank[medusa] = 3.41;

actual_time[RTC] / actual_time[medusa] = 3.82
– Less good case: rank[acrl] / rank[medusa] = 2.36;

 actual_time[acrl] /actual_time[medusa] = 3.01
—Caveat: It’s still an art, not a science

• Adjustment is required for (possibly) loaded systems
—NWS load predictions should provide an appropriate scaling factor

Outline
• Overview of EMAN

• Scheduling EMAN execution

• Predicting EMAN performance

• Future directions

EMAN Lessons for Virtual Grids
• Scheduling support is important

—Requires performance information from vgES
—Would benefit from performance guarantees from vgES

• Resource selection is key
—New VG request allows good resource provisioning …
—… if you know what you want

– Great topic for a thesis

• Scalability requires new thinking
—Hierarchy of VGs should be helpful
—Virtual grid summarization allows scalable information collection

– But we still need algorithms to take advantage of vg

Ongoing Research

• Multi-level scheduling
— Rice / UCSD collaboration
— Separate concerns between resource selection and mapping
— Key question: Do we lose information, and if so how much?
“Scheduling Compute Intensive Applications in Volatile, Shared Resource

(Grid) Environments” by Richard Huang

• Application management
— ISI / Rice / UCSD collaboration
— Leverage Pegasus framework for workflow management, optimization, …
— Key question: How do we separate concerns?
$ “Optimizing Grid-Based Workflow Execution” by Gurmeet Singh (ISI)

• Scripting language support
— Rice project
— Telescoping languages tie-in
— Key question: How can we leverage high-level language/application knowledge

in a Grid environment?

Multi-level Scheduling

• Current VGrADS scheduler is limited
—O(components*resources) complexity limits scalability
—Look-ahead scheduling limited

• vgES offers improvements
—Separate concerns between resource selection and resource mapping
—Fast VG Finding reduces universe of resources to search
—VG Binding limits uncertainty and complexity

– Provide performance guarantees
—Natural hierarchy of schedulers

– Schedule work between clusters
– Schedule work within a cluster (perhaps recursively)

• But…
—Can we select the best resources without scheduling them?

$ “Scheduling Compute Intensive Applications in Volatile, Shared Resource
(Grid) Environments” by Richard Huang

Multi-level Scheduling: An Illustration

• First experiment
— Schedule EMAN with rdv data on

notional (large) grid using
VGrADS scheduler

— Generate VG and schedule on it
— Compute total time for each

– Wall-clock time for
scheduler

– Predicted makespan for
computation

— Repeat for many grids

• Partial, preliminary results
— Ran out of time to integrate

vgES and scheduler
— Still clearly shows limits of full

scheduler on large grid
m

ar
rr

m
aa

rr

m
aa

ar

m
m

ar
r

m
m

aa
r

m
m

m
ar 10

25

50

75

100

200

400

600

800

1000

2000

5000

0

20

40

60

80

100

120

Chosen Grids

Total Time

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

10 100 1000 10000

Resources

Ti
m

e
(s

ec
)

Full Sched
VG Sched
mmmar+full
mmmar+VG

Application Management

• We are experimenting with
Pegasus (from GriPhyN project)
as a framework for EMAN
— http://pegasus.isi.edu/

• Pegasus supports
— Workflow execution based on

“abstract” DAGs
— Data discovery, replica

management, computation
scheduling, and data management

— Fault tolerance and component
launch (through DAGMAN and
Condor-G)

• Pegasus needs
— Link to vgES

Data
Discovery

Workflow
Reduction

Resource
Discovery

Mapping

Pegasus

Grid Execution Services
Condor-G, DAGMan

Grid
Resources

Abstract
Workflow

a

i

c
b

d e f

g
h

Concrete
Workflow

do

i

f

g
h

bo

fp

rls

eo

hp

rls
ip

rls

gp

rls

node1

node0

vgFAB? vgFAB? Scheduler

vgRUN

Scripts

“Optimizing Grid-Based Workflow Execution” by Gurmeet Singh (ISI)

Application Management: First Experiments

• Successfully ran EMAN with GroEl data under Pegasus
—Create abstract workflow (XML file) manually from EMAN script
—Generated concrete workflow (Condor submit files) using Pegasus
—Executed on ISI Condor pool (20 machines)
—Now porting to Teragrid

– Same abstract workflow, but new binaries needed
- <job id="ID000001" name="proc3d" level="1" dv-name="proc3d_1">

- <argument><filename file="threed.0a.mrc" /> <filename file="x.0.mrc" />
clip=84,84,84 mask=42 </argument>

! <uses file="threed.0a.mrc" link="input" dontRegister="false"
dontTransfer="false" />

! <uses file="x.0.mrc" link="output" dontRegister="true" dontTransfer="true" />

! </job>

- <job id="ID000002" name="volume" level="2" dv-name="volume_2">

- <argument><filename file="x.0.mrc" /> 2.800000 set=800.000000 </argument>

! <uses file="x.0.mrc" link="inout" dontRegister="true" dontTransfer="true" />

! </job>

- <job id=…….

Abstract Workflow

Concrete
Workflow

