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• Related posters
! “Performance Model-Based Scheduling of EMAN Workflows” by

Anirban Mandal (Rice) and Bo Liu (U Houston)
" “Scalable Cross-Architecture Predictions of Memory Latency for

Scientific Applications” by Gabriel Marin (Rice)
# “Scheduling Compute Intensive Applications in Volatile, Shared

Resource (Grid) Environments” by Richard Huang (UCSD)
$ “Optimizing Grid-Based Workflow Execution” by Gurmeet Singh

(ISI)



EMAN - Electron Micrograph Analysis

• Software for Single Particle Analysis
and Electron Micrograph Analysis

— Open source software for the scientific
community

— Developed by Wah Chiu & Steve
Ludtke, Baylor College of Medicine

— http://ncmi.bcm.tmc.edu/homes/stevel/
EMAN/EMAN/doc/

• Performs 3-D reconstruction of a
particle from randomly-oriented
images

— Typical particle = Virus or ion channel
— Typical images = Electromicrographs
— Typical data set = 10K-100K particles
— Useful for particles about 10-1000nm

• GrADS/VGrADS project to put EMAN
on Grid

EMAN
Refinement

Process

All electron micrograph and 3-D reconstruction images courtesy of 
Wah Chiu & Steven Ludtke, Baylor College of Medicine



EMAN from a CS Viewpoint
• EMAN is a great workflow application for VGrADS

— Represented as a task graph
— Heterogeneous tasks, some parallel & some sequential
— Parallel phases are parameter sweeps well-suited to parallelism
— Implemented with Python calling C/C++ modules (now)

• Technical issues
— Computational algorithms for guiding the refinement

– Currently fairly brute-force, subtler algorithms under development
— Scheduling task graph on heterogeneous resources

– Computation cost depends on processor characteristics, availability
– Communication cost depends on network characteristics, file systems
– We want pre-computed schedules (on-line schedules = future work)

— And many, many, many little details

• More detail in poster session
! “Performance Model-Based Scheduling of EMAN Workflows” by Anirban

Mandal (Rice) and Bo Liu (UH)
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Heuristic Scheduling Algorithm
foreach heuristic do

while all components not mapped do
Find available comps;
Calculate rank(comp,R) for all comps,R;
findBestSchedule(comps,heuristic);

endwhile
endforeach
Select heuristic with minimum makespan;
Output selected mapping;

findBestSchedule(comps,h))
while all comps not mapped do

foreach Component, C do
foreach Resource, R do

ECT(C,R)=rank(C,R)+EAT(R);
endforeach
Find minECT(C,R) over all R;
Find 2nd_minECT(C,R) over all R;

endforeach
if (h==min-min) j* = j1 with min(minECT(j1,R));
if (h==max-min) j* = j2 with max(minECT(j2,R));
if (h==sufferage) j* = j3 with

min(2nd_minECT(j3,R)-minECT(j3,R));
Store mapping for j*;
Update EAT(R) and makespan;

endwhile
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! “Performance Model-Based Scheduling of EMAN Workflows” by Anirban
Mandal (Rice) and Bo Liu (UH)
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EMAN Scheduling: Large Data, Small Grid

• Set of resources:
— 6 i2 nodes at U of Houston (IA-64)
— 7 torc nodes at U of Tennessee @

Knoxville (IA-32)

• Data set: RDV
— Medium/large (2GB)

• Key was load-balancing classesbymra
component using performance models

Hereafter, we only show classesbymra in the timings
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EMAN Scheduling:
Varying Performance Models
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• Set of resources:
— 50 rtc nodes at Rice (IA-64)
— 13 medusa nodes at U of Houston (Opteron)

• RDV data set

• Varying scheduling strategy
— RNP - Random / No PerfModel
— RAP - Random / Accurate PerfModel
— HGP - Heuristic / GHz Only PerfModel
— HAP - Heuristic / Accurate PerfModel
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EMAN Scheduling: Small Data, Small Grid
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• Set of resources:
— 5 i2 nodes at U of Houston (IA-64)
— 7 torc nodes at U of Tennessee (IA-32)
— All nodes used

• GroEl data set
— 200MB

• Major load imbalance
— External load on i2 nodes invalidated

VGrADS performance model
— Random scheduler too dumb to notice torc clusteri2 cluster
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EMAN Performance Modeling

† 

EstExecTime(n,a) =
FP(n,a)+ L1(n,a)+ L2 (n,a)+ L3(n,a)

Clock(a)

FP(n,a) = FPcount(n)¥ 1+FPstalled( n ,a)
FPpipes( a)

Lk (n,a) = Lkcount(n)¥ Lk penalty(a), k = 1,2, 3

• Execution time is computation time and memory access times

† 

EstCommTime(c,r) = Lat(map( p),r)+ Vol(p,c) ⋅ BW (map( p),r)( )
pŒParent(c )

Â

• Communication time is latency plus bandwidth cost
—Estimated from NWS

† 

Rank(compi ,res j ) = EstExecTimei (size(compi ),arch(res j ))
+EstCommTime(compi ,res j )

• Rank of a component is total time to run it on a resource



EMAN Performance Modeling:
Computation Time (FP)

• (Floating point) Computation time is estimated from semi-
empirical models
—Form of model given by application experts

– EMAN is floating-point intensive fi Count floating-point ops
– Classesbymra is based on FFT fi is O(n2+n2 log2(n)) fi

Fit to c5⋅n2⋅log2(n) + c4⋅n2 + c3⋅log2(n) + c2⋅n + c1

—Training runs with small data sizes
—Collect floating-point operation counts from hardware performance

counters

—Least-squares fit of collected data to model to determine
coefficients (FPcount, FPstalled)

—Architecture parameters used to complete model (FPpipes)



EMAN Performance Modeling:
Memory Access Time (L1, L2, L3)

• Memory access time (cache
miss penalty) is estimated
from black-box analysis of
object code
— Static analysis determines

code structure
— Training runs with

instrumented binary
produce architecture-
independent memory reuse
distance histograms

— Fit polynomial models of
reuse distances and number
of accesses

— Convolve with architecture
features (e.g. cache size)
for full model
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" “Scalable Cross-Architecture Predictions of Memory Latency for
Scientific Applications” by Gabriel Marin (Rice)



Accuracy of EMAN Performance Models

• Machine-neutral performance prediction models were accurate
on unloaded systems
—Combining application knowledge, static analysis, dynamic

instrumentation gave accurate results
– Good case: rank[RTC] / rank[medusa] = 3.41;

actual_time[RTC] / actual_time[medusa] = 3.82
– Less good case: rank[acrl] / rank[medusa] = 2.36;

 actual_time[acrl] /actual_time[medusa] = 3.01
—Caveat: It’s still an art, not a science

• Adjustment is required for (possibly) loaded systems
—NWS load predictions should provide an appropriate scaling factor
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EMAN Lessons for Virtual Grids
• Scheduling support is important

—Requires performance information from vgES
—Would benefit from performance guarantees from vgES

• Resource selection is key
—New VG request allows good resource provisioning …
—… if you know what you want

– Great topic for a thesis

• Scalability requires new thinking
—Hierarchy of VGs should be helpful
—Virtual grid summarization allows scalable information collection

– But we still need algorithms to take advantage of vg



Ongoing Research

• Multi-level scheduling
— Rice / UCSD collaboration
— Separate concerns between resource selection and mapping
— Key question: Do we lose information, and if so how much?
# “Scheduling Compute Intensive Applications in Volatile, Shared Resource

(Grid) Environments” by Richard Huang

• Application management
— ISI / Rice / UCSD collaboration
— Leverage Pegasus framework for workflow management, optimization, …
— Key question: How do we separate concerns?
$ “Optimizing Grid-Based Workflow Execution” by Gurmeet Singh (ISI)

• Scripting language support
— Rice project
— Telescoping languages tie-in
— Key question: How can we leverage high-level language/application knowledge

in a Grid environment?



Multi-level Scheduling

• Current VGrADS scheduler is limited
—O(components*resources) complexity limits scalability
—Look-ahead scheduling limited

• vgES offers improvements
—Separate concerns between resource selection and resource mapping
—Fast VG Finding reduces universe of resources to search
—VG Binding limits uncertainty and complexity

– Provide performance guarantees
—Natural hierarchy of schedulers

– Schedule work between clusters
– Schedule work within a cluster (perhaps recursively)

• But…
—Can we select the best resources without scheduling them?

$ “Scheduling Compute Intensive Applications in Volatile, Shared Resource
(Grid) Environments” by Richard Huang



Multi-level Scheduling: An Illustration

• First experiment
— Schedule EMAN with rdv data on

notional (large) grid using
VGrADS scheduler

— Generate VG and schedule on it
— Compute total time for each

– Wall-clock time for
scheduler

– Predicted makespan for
computation

— Repeat for many grids

• Partial, preliminary results
— Ran out of time to integrate

vgES and scheduler
— Still clearly shows limits of full

scheduler on large grid
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Application Management

• We are experimenting with
Pegasus (from GriPhyN project)
as a framework for EMAN
— http://pegasus.isi.edu/

• Pegasus supports
— Workflow execution based on

“abstract” DAGs
— Data discovery, replica

management, computation
scheduling, and data management

— Fault tolerance and component
launch (through DAGMAN and
Condor-G)

• Pegasus needs
— Link to vgES
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# “Optimizing Grid-Based Workflow Execution” by Gurmeet Singh (ISI)



Application Management: First Experiments

• Successfully ran EMAN with GroEl data under Pegasus
—Create abstract workflow (XML file) manually from EMAN script
—Generated concrete workflow (Condor submit files) using Pegasus
—Executed on ISI Condor pool (20 machines)
—Now porting to Teragrid

– Same abstract workflow, but new binaries needed
- <job id="ID000001" name="proc3d" level="1" dv-name="proc3d_1">

- <argument><filename file="threed.0a.mrc" /> <filename file="x.0.mrc" />
clip=84,84,84 mask=42  </argument>

! <uses file="threed.0a.mrc" link="input" dontRegister="false"
dontTransfer="false" />

! <uses file="x.0.mrc" link="output" dontRegister="true" dontTransfer="true" />

! </job>

- <job id="ID000002" name="volume" level="2" dv-name="volume_2">

- <argument><filename file="x.0.mrc" />  2.800000 set=800.000000  </argument>

! <uses file="x.0.mrc" link="inout" dontRegister="true" dontTransfer="true" />

! </job>

-  <job id=…….

Abstract Workflow

Concrete
Workflow


