
Fault Tolerance For Sparse Linear Algebra
Computations Implemented In A Grid

Environment

Experiments with Fault Tolerant Linear Algebra
Algorithms

Jack Dongarra
Jeffery Chen

Zhiao Shi
Asim YarKhan

University of Tennessee

Fault Tolerance: Motivation
• Interested in using the VGrADS

framework to find resources to solve
problems and increase the ease of use
in a fault prone system.
— Application driven adaptation

• With Grids and some parallel systems
there’s an increased probability of a
system or network failure
— Mean Time to Failure is growing shorter

as system’s size increase.

• By monitoring, one can identify
— Performance problems
— Failure probability

– Fault prediction
– Migration opportunities.

— Prepare for fault recovery

• Large-scale fault tolerance
—Self adaptation: resilience

and recovery
—Predictive techniques for

probability of failure
– Resource classes and

capabilities
– Coupled to application

usage modes
—Resilience implementation

mechanisms
– Adaptive checkpoint

frequency
– In memory checkpoints

Fault Tolerance - Diskless Checkpointing
Built into Software
• Checkpointing to disk is slow.

— May not have any disks on the system.

• Have extra checkpointing processors allocated.
• Use “RAID like” checkpointing to processor.
• Maintain a system checkpoint in memory.

— All processors may be rolled back if necessary.
— Use k extra processors to encode checkpoints so that

if up to k processors fail, their checkpoints may be
restored (Reed-Solomon encoding).

• Idea to build into library routines.
— We are developing this for iterative solvers, Ax=b.
— Not transparent, has to be built into the algorithm.

• Use VGrADS virtualization to hide complexity

How Raid for a Disk System Works

• Similar to RAID for disks.

• If X = A XOR B then this is true:
X XOR B = A
A XOR X = B

Diskless Checkpointing

• The N application processors
(4 in this case) each maintain
their own checkpoints locally.

• K extra processors maintain
coding information so that if
1 or more processors fail,
they can be replaced.

• Here described for k=1
(parity).

• If a single processor fails,
then its state may be
restored from the remaining
live processors.

P0 P1

P3P2

P4

P4 = P0 ƒ P1 ƒ P2 ƒ P3

Parity
processor

Application
processors

Diskless Checkpointing

P0 P1

P3P2

P4

P0

P3P2

P4

P0

P3P2

P4
P1

P4 takes on the identity of P1
and the computation continues.

• When failure occurs:
— Control passes to user supplied

handler
— “XOR” performed to recover

missing data
— P4 takes on role of P1
— Execution continue

A Fault-Tolerant Parallel CG Solver

• Tightly coupled computation.
—Not expecting to do wide area distributed computing.
—Cluster based is ideal.
—Issues on how many processors and checkpoint processors

“optimal” for given problem, including failure scenario. May
vary from run to run.

• Do a “backup” (checkpoint) every j iterations for changing
data.
—Requires each process to keep copy of iteration changing

data from checkpoint.

• First example can survive the failure of a single process.
• Dedicate an additional process for holding data, which

can be used during the recovery operation.
• For surviving k process failures (k << p) you need k

additional processes (second example).

CG Data Storage
Think of the data like this

A b 3 vectors

Checkpoint A and b
Initially, data is fixed
throughout the iteration

3 vectors change
every iteration

Parallel Version
Think of the data like this Think of the data like this

on each processorA b 3 vectors

A b 3 vectors

.

.

.

.

.

.

No need to checkpoint
each iteration, say every j
iterations.
Need a copy of the 3 vectors
from checkpt in each processor.

Diskless Version

P0 P1

P3P2

P4

P0

P1

P2

P3 P4

Extra storage needed on
each process from the data
that is changing.
Actually don’t do XOR, add
the information.

FT PCG Algorithm Analysis

Global operation in PCG: three dot product, one preconditioning, and one matrix
vector multiplication.

Global operation in Checkpoint: encoding the local checkpoint.

Global Operations

FT PCG Algorithm Analysis

Global operation in PCG: three dot product, one preconditioning, and one matrix
vector multiplication.

Global operation in Checkpoint: encoding the local checkpoint.
Global operation in checkpoint can be localized by sub-group.

Global Operations

Checkpoint x, r, and p
every k iterations

PCG: Performance with Different MPI Implementations

http://icl.cs.utk.edu/ft-mpi/

Procs

120
60

30
15

624.4
553.0

542.9
536.3

MPICH2-
1.0

622.9
546.5

532.2
517.8

FT-MPI

624.4
547.8

533.3
518.9

FT-MPI ckpt /2000
iters

FT-MPI exit 1 proc
@10000 iters

LAM-
7.0.4

N

637.1674.31317K
554.2545.5658K

537.5532.9329K
521.7522.5165K

64 dual-processor 2.4 GHz AMD Opteron nodes

Nodes are connected with a Gigabit Ethernet.bcsstk17:
The size is:

10974 x 10974
Non-zeros:

428650
Sparsity:

39 non-zeros per row
on average

Source:
Linear equation from
elevated pressure
vessel

PCG: Performance with Different MPI Implementations

http://icl.cs.utk.edu/ft-mpi/

Procs

120
60

30
15

624.4
553.0

542.9
536.3

MPICH2-
1.0

622.9
546.5

532.2
517.8

FT-MPI

624.4
547.8

533.3
518.9

FT-MPI ckpt /2000
iters

FT-MPI exit 1 proc
@10000 iters

LAM-
7.0.4

N

637.1674.31317K
554.2545.5658K

537.5532.9329K
521.7522.5165K

64 dual-processor 2.4 GHz AMD Opteron nodes

Nodes are connected with a Gigabit Ethernet.bcsstk17:
The size is:

10974 x 10974
Non-zeros:

428650
Sparsity:

39 non-zeros per row
on average

Source:
Linear equation from
elevated pressure
vessel

Protecting for More Than One Failure:
Reed-Solomon (Checkpoint Encoding Matrices)

• In order to be able to recover from any k (≤ number of
checkpoint processes) failures, need a checkpoint encoding.

• With one checkpoint process we had:
—P sets of data and a function A such that
—C=A*P where P=(P1,P2,…Pp)T;

– C: Checkpoint data (C and Pi same size)
– With A = (1, 1, …, 1)
– C = a1P1 + a2P2 + …+ ap Pp; C = A*P
– To recover Pk;

solve Pk = (C-a1P1-ak-1Pk-1–ak+1Pk+1–apPp)/ak

• With k checkpoints we need a function A such that
C=A*P where P=(P1,P2,…Pp)T;
– C: Checkpoint data C = (C1,C2,…Ck)T (Ci and Pi same size).
– A: Checkpoint-Encoding matrix A is k x p (k << p);

• When h failures occur, recover the data by taking the
h x h submatrix of A, call it A’, corresponding to the failed
processes and solving A’P’ = C’; to recover the h “lost” P’s.
—A’ is the h x h submatrix.
—C’ is made up of the surviving h checkpoints.

Could use GF(2). Signal processing aps
do this. In that case, A is Vandermonde
or Cauchy matrix. (Need to have any
subset of A be non singular.)
We use A as a random matrix.

k x pA=

PCG: Performance Overhead of Performing Recovery

638.0 (12.0)
555.7 (8.2)
538.5 (5.7)
522.9 (3.7)
4 proc

637.1 (10.5)
554.2 (6.9)
537.5 (4.5)
521.7 (2.8)
1 proc

637.2 (11.1)
554.8 (7.4)
537.7 (4.9)
522.1 (3.2)
2 proc

637.7 (11.5)
555.2 (7.6)
538.1 (5.3)
522.8 (3.3)
3 proc 5 proc0 procT (ckpt T)

638.5 (12.5)622.9120 comp
556.1 (8.7)546.560 comp
538.6 (6.1)532.230 comp
523.1 (3.9)517.815 comp

Run PCG for 20000 iterations and take checkpoint every 2000 iterations (about 1 minute)
Simulate a failure by exiting some processes at the 10000-th iteration

PCG Performance Overhead for Performaning Recovery

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

15 30 60 120

Number of Computation Processors

R
ec

ov
er

y
O

ve
rh

ea
d

(%
) 1 failed proc

2 failed proc
3 failed proc
4 failed proc
5 failed proc

v

GridSolve Architecture

Agent

server list

server

data

server

request

server

server
result

Client

[x,y,z,info] = gridsolve(‘solver’, A, B)

`

Resource discovery
Scheduling
Load balancing
Fault tolerance

GridSolve Usage with VGrADS

• Simple-to-use access to complicated software
libraries

• Selection of best machine in your grid to service
user request

• Portability
—Non-portable code can be run from a client on an

architecture as long as there is a server
provisioned with the code

• Legacy codes easily wrapped into services

• Plug into VGrADS Framework
• Using the vgES for resource

selection and launching of application:
—Integrated performance information
—Integrated monitoring
—Fault prediction
—Integrating the software and resource information

repositories

VGrADS/GridSolve Architecture

Agent

request

Client

[x,y,z,info] =
gridsolve(‘dgesv’, A, B)

`

Service
Catalog
Service
Catalog

data

result

vgDLVirtual Grid

Software
Repository

query

software location

Tra
nsfe

r

Start server

registerServer in
fo

Agent

• Agent is specific for the client
—Initially agent contains no resource information; obtained from vgES

• Agent requests information from the service catalog about the
possible services and their complexity in order to estimate the
resources required (vgDL)

• For each service request
—Estimates resources required

– vgDL spec: vgdl = Clusterof<node>[N]; node = {node.memory >
500MB, node.speed > 2000};

– vgid = vgCreateVG(vgserver, vgdl, 1000, ns-server-script)
—Return the set of resources to the client
—The ns-server-script fetches and deploys needed services on

selected VGrADS resources

Next Steps
• Software to determine the checkpointing interval and number of

checkpoint processors from the machine characteristics.
—Perhaps use historical information.
—Monitoring
—Migration of task if potential problem

• Local checkpoint and restart algorithm.
—Coordination of local checkpoints.
—Processors hold backups of neighbors.

• Have the checkpoint processes participate in the computation
and do data rearrangement when a failure occurs.
—Use p processors for the computation and have k of them hold

checkpoint.

• Generalize the ideas to provide a library of routines to do the
diskless check pointing.

• Look at “real applications” and investigate “Lossy” algorithms.

Additional Details and Related Posters
• VGrADS and GridSolve

— Zhiao Shi, UTK

• Optimal Checkpoint Scheduling
— Dan Nurmi, UCSB

• Scheduling Compute Intensive Apps in Volatile Env.
— Richard Huang, UCSD

• Adaptive Resource Environments for HPG Apps
— Jerry Chou, UCSD

• Condition Numbers of Gaussian Random Matrices, Zizhong Chen and
Jack Dongarra, to appear SIAM Matrix Analysis and Applications.

• Building Fault Survivable MPI Programs with FTMPI Using Diskless
Checkpointing, Zizhong Chen, Graham E. Fagg, Edgar Gabriel, Julien
Langou, Thara Angskun, George Bosilca, and Jack Dongarra, accepted
PPoPP 2005.

Publications:

