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Fault Tolerance: Motivation
• Interested in using the VGrADS                                  

framework to find resources to solve                            
problems and increase the ease of use                           
in a fault prone system.
— Application driven adaptation

• With Grids and some parallel systems                            
there’s an increased probability of a                                 
system or network failure
— Mean Time to Failure is growing shorter                         

as system’s size increase.

• By monitoring, one can identify
— Performance problems
— Failure probability

– Fault prediction
– Migration opportunities.

— Prepare for fault recovery

• Large-scale fault tolerance
—Self adaptation: resilience  

and recovery
—Predictive techniques for 

probability of failure
– Resource classes and 

capabilities
– Coupled to application 

usage modes
—Resilience implementation 

mechanisms
– Adaptive checkpoint 

frequency
– In memory checkpoints



Fault Tolerance - Diskless Checkpointing          
Built into Software
• Checkpointing to disk is slow.

— May not have any disks on the system.

• Have extra checkpointing processors allocated.
• Use “RAID like” checkpointing to processor.
• Maintain a system checkpoint in memory.

— All processors may be rolled back if necessary.
— Use k extra processors to encode checkpoints so that 

if up to k processors fail, their checkpoints may be 
restored (Reed-Solomon encoding).

• Idea to build into library routines.
— We are developing this for iterative solvers, Ax=b.
— Not transparent, has to be built into the algorithm.

• Use VGrADS virtualization to hide complexity



How Raid for a Disk System Works

• Similar to RAID for disks.

• If X = A XOR B then this is true:
X XOR B = A
A XOR X = B



Diskless Checkpointing

• The N application processors 
(4 in this case) each maintain 
their own checkpoints locally.

• K extra processors maintain 
coding information so that if 
1 or more processors fail, 
they can be replaced.

• Here described for k=1
(parity).

• If a single processor fails, 
then its state may be 
restored from the remaining 
live processors.
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P4

P4 = P0 ƒ P1 ƒ P2 ƒ P3 

Parity
processor

Application
processors



Diskless Checkpointing

P0 P1

P3P2

P4

P0

P3P2

P4

P0

P3P2

P4
P1

P4 takes on the identity of P1
and the computation continues.

• When failure occurs:
— Control passes to user supplied 

handler
— “XOR” performed to recover 

missing data
— P4 takes on role of P1
— Execution continue



A Fault-Tolerant Parallel CG Solver

• Tightly coupled computation.
—Not expecting to do wide area distributed computing.
—Cluster based is ideal.
—Issues on how many processors and checkpoint processors 

“optimal” for given problem, including failure scenario. May 
vary from run to run.

• Do a “backup” (checkpoint) every j iterations for changing 
data.
—Requires each process to keep copy of iteration changing 

data from checkpoint.

• First example can survive the failure of a single process.
• Dedicate an additional process for holding data, which 

can be used during the recovery operation.
• For surviving k process failures (k << p) you need k

additional processes (second example).



CG Data Storage
Think of the data like this

A b 3 vectors

Checkpoint A and b 
Initially, data is fixed 
throughout the iteration

3 vectors change 
every iteration



Parallel Version
Think of the data like this Think of the data like this

on each processorA b 3 vectors

A b 3 vectors

.

.

.

.

.

.

No need to checkpoint
each iteration, say every j
iterations. 
Need a copy of the 3 vectors 
from checkpt in each processor.



Diskless Version

P0 P1

P3P2

P4

P0

P1

P2

P3 P4

Extra storage needed on 
each process from the data 
that is changing.
Actually don’t do XOR, add 
the information.



FT PCG Algorithm Analysis

Global operation in PCG: three dot product, one preconditioning, and one matrix 
vector multiplication. 

Global operation in Checkpoint: encoding the local checkpoint.

Global Operations



FT PCG Algorithm Analysis

Global operation in PCG: three dot product, one preconditioning, and one matrix 
vector multiplication. 

Global operation in Checkpoint: encoding the local checkpoint.
Global operation in checkpoint can be localized by sub-group.

Global Operations

Checkpoint x, r, and p
every k iterations



PCG: Performance with Different MPI Implementations

http://icl.cs.utk.edu/ft-mpi/
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Sparsity:

39 non-zeros per row
on average

Source:
Linear equation from 
elevated pressure
vessel
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Protecting for More Than One Failure:       
Reed-Solomon (Checkpoint Encoding Matrices)

• In order to be able to recover from any k   ( ≤ number of 
checkpoint processes ) failures, need a checkpoint encoding.

• With one checkpoint process we had:
—P sets of data and a function A such that 
—C=A*P where P=(P1,P2,…Pp)T; 

– C: Checkpoint data (C and Pi same size)
– With A = (1, 1, …, 1)
– C = a1P1 + a2P2 + …+ ap Pp; C = A*P
– To recover Pk; 

solve Pk = (C-a1P1-ak-1Pk-1–ak+1Pk+1–apPp)/ak

• With k checkpoints we need a function A such that 
C=A*P where P=(P1,P2,…Pp)T; 
– C: Checkpoint data C = (C1,C2,…Ck)T (Ci and Pi same size).
– A: Checkpoint-Encoding matrix A is k x p (k << p);

• When h failures occur, recover the data by taking the           
h x h submatrix of A, call it A’, corresponding to the failed 
processes and solving A’P’ = C’; to recover the h “lost” P’s.
—A’ is the h x h submatrix.
—C’ is made up of the surviving h checkpoints.

Could use GF(2). Signal processing aps
do this. In that case, A is Vandermonde
or Cauchy matrix. (Need to have any 
subset of A be non singular.)
We use A as a random matrix.

k x pA=



PCG: Performance Overhead of Performing Recovery

638.0 (12.0)
555.7 (8.2)
538.5 (5.7)
522.9 (3.7)
4 proc

637.1 (10.5)
554.2 (6.9)
537.5 (4.5)
521.7 (2.8)
1 proc

637.2 (11.1)
554.8 (7.4)
537.7 (4.9)
522.1 (3.2)
2 proc

637.7 (11.5)
555.2 (7.6)
538.1 (5.3)
522.8 (3.3)
3 proc 5 proc0 procT (ckpt T)

638.5 (12.5)622.9120 comp 
556.1 (8.7)546.560 comp
538.6 (6.1)532.230 comp
523.1 (3.9)517.815 comp

Run PCG for 20000 iterations and take checkpoint every 2000 iterations (about 1 minute)
Simulate a failure by exiting some processes at the 10000-th iteration

PCG Performance Overhead for Performaning Recovery

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

15 30 60 120

Number of Computation Processors

R
ec

ov
er

y 
O

ve
rh

ea
d 

(%
) 1 failed proc

2 failed proc
3 failed proc
4 failed proc
5 failed proc



v

GridSolve Architecture

Agent

server list

server

data

server

request

server

server
result

Client

[x,y,z,info] = gridsolve(‘solver’, A, B)

`

Resource discovery
Scheduling
Load balancing
Fault tolerance



GridSolve Usage with VGrADS

• Simple-to-use access to complicated software 
libraries

• Selection of best machine in your grid to service 
user request

• Portability 
—Non-portable code can be run from a client on an 

architecture as long as there is a server 
provisioned with the code

• Legacy codes easily wrapped into services

• Plug into VGrADS Framework
• Using the vgES for resource              

selection and launching of application:
—Integrated performance information 
—Integrated monitoring 
—Fault prediction
—Integrating the software and resource information 

repositories



VGrADS/GridSolve Architecture

Agent

request

Client

[x,y,z,info] = 
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Agent

• Agent is specific for the client
—Initially agent contains no resource information; obtained from vgES

• Agent requests information from the service catalog about the 
possible services and their complexity in order to estimate the 
resources required (vgDL)

• For each service request
—Estimates resources required

– vgDL spec: vgdl = Clusterof<node>[N]; node = {node.memory > 
500MB,  node.speed > 2000};

– vgid = vgCreateVG(vgserver, vgdl, 1000, ns-server-script)
—Return the set of resources to the client
—The ns-server-script fetches and deploys needed services on 

selected VGrADS resources



Next Steps
• Software to determine the checkpointing interval and number of 

checkpoint processors from the machine characteristics.
—Perhaps use historical information.
—Monitoring
—Migration of task if potential problem

• Local checkpoint and restart algorithm.
—Coordination of local checkpoints.
—Processors hold backups of neighbors.

• Have the checkpoint processes participate in the computation 
and do data rearrangement when a failure occurs.
—Use p processors for the computation and have k of them hold 

checkpoint.

• Generalize the ideas to provide a library of routines to do the 
diskless check pointing.

• Look at “real applications” and investigate “Lossy” algorithms.



Additional Details and Related Posters
• VGrADS and GridSolve

— Zhiao Shi, UTK

• Optimal Checkpoint Scheduling
— Dan Nurmi, UCSB

• Scheduling Compute Intensive Apps in Volatile Env.
— Richard Huang, UCSD

• Adaptive Resource Environments for HPG Apps
— Jerry Chou, UCSD

• Condition Numbers of Gaussian Random Matrices, Zizhong Chen and 
Jack Dongarra, to appear SIAM Matrix Analysis and Applications.

• Building Fault Survivable MPI Programs with FTMPI Using Diskless
Checkpointing, Zizhong Chen, Graham E. Fagg, Edgar Gabriel, Julien 
Langou, Thara Angskun, George Bosilca, and Jack Dongarra, accepted 
PPoPP 2005.
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