LEAD, Workflows and Virtual Grids

Dan Reed Dan_Reed@unc.edu Renaissance Computing Institute (RENCI) University of North Carolina at Chapel Hill

VGrADS Site Visit April 28, 2005

VGrADS Collaboration Credits

- UC Santa Barbara (NWS)
 - —Graziano Obertelli
 - -Rich Wolski
- UC San Diego (vgES)
 Andrew Chien
- Rice University (Scheduling)
 - -Ken Kennedy
 - -Rob Fowler
 - Anirban Mandal
 - -Ryan Zhang
- Illinois/NCSA (Scheduling)
 - -Jay Alameda
 - -Mark Straka
 - -Bob Wilhelmson

- Tennessee (Fault Tolerance)
 - Jack DongarraJeffery Chen
- UNC Chapel Hill
 - Emma Buneci
 - -Kevin Gamiel
 - -Min Lim
 - -Lavanya Ramakrishnan
 - -Mark Reed
 - -Brad Viviano
 - -Ying Zhang

Presentation Outline

- Linked Environments for Atmospheric Discovery (LEAD)
 - -computer science research drivers
 - static/dynamic workflow management and scheduling
 - reliability and performance optimization
 - -virtual grid validation and assessment
- Workflow scheduling and validation
 - -Rice scheduler, NWS/HAPI measurement and LEAD
- NWS/HAPI integration
 - -distributed system assessment for reliability
- Qualitative behavioral classification
 - —see also Emma Buneci's poster
 - "A Framework for Reasoning About the Temporal Behavior of Scientific Applications"

Linked Environments for Atmospheric Discovery

Rationale

— Each year, mesoscale weather – floods, tornadoes, hail, strong winds, lightning, hurricanes and winter storms – causes hundreds of deaths, routinely disrupts transportation and commerce, and results in annual economic losses in excess of \$13B.

LEAD participants

-Oklahoma, UNC, Indiana, NCAR, Alabama, Illinois, Millersville St, ...

From "offline" to "online" forecasting

-data assimilation and adaptive evaluation

Unique LEAD Attributes

- Couple analysis and assimilation tools, forecast models, and data repositories as dynamically adaptive, on-demand services to
 - -change configuration rapidly and automatically in response to weather
 - continually be steered by unfolding weather
 - -respond to decision-driven inputs from users
 - -initiate other processes automatically
 - dynamic, data driven workflows
 - -steer remote observing technologies
 - to optimize data collection for the target problem
- From VGrADS perspective
 - -application driver with characteristics different than e.g., EMAN
 - steaming data, multilevel workflow, adaptation, ...
- Canonical LEAD problem three
 - -produce high-resolution, nested WRF ensemble forecasts
 - -respond dynamically to prevailing and predicted weather conditions

LEAD Orchestration Interface (LEAD Funded)

Computing Research Drivers from LEAD

- Complex services and virtualization
 - -complexity management and amelioration
 - -virtual grid interfaces and mechanisms
 - -multilevel workflow management
- Measurement and monitoring techniques
 - -performance and system health
 - large, parametric studies can run for weeks "spring runs" underway now at PSC
- Prediction and classification mechanisms
 - -failure indicators and long-term reliability
 - redundancy and recovery
 - application temporal classification and combination $% \left({{{\left[{{{\left[{{\left[{{\left[{{\left[{{{\left[{{{\left[{{{\left[{{\left[{{\left[{{\left[{{{\left[{{{\left[{{{\left[{{{\left[{{{}}}} \right]}}} \right. \\ n} \left({n} \right)} \right,} \right} \right,} \right]} \right]} \right]} \right.} \right.} \right.} \right.}$
- Integrated management policies
 - -performance, fault tolerance, power management, ...

Unidata IDV

vgDL Specification for LEAD Workflow

LEAD Workflow and vgDL Implications

- Multi-level workflow management
 - static workflow (i.e., one instantiation of an execution)
 - Open Grid Computing Environments Runtime Engine (OGRE) extension of Apache Ant (Java makefile extension)
 - dynamic workflow (i.e., iterative ensemble executions)
 - Business Process Execution Language for Web Services (BPEL4WS)
- VGrADS research is workflow independent, however — EMAN and LEAD illustrate different implementation points for workflows
- Streaming data management
 - Unidata Local Data Management (LDM) streams (e.g., NEXRAD2 data)
 - fixed source locations that constrain task scheduling (research issue)
 - redundancy and reliability sites
- Long running application suite
 - Weather Research and Forecast (WRF)
 - next generation weather code and multiple hours for each ensemble
 - multiscale fault tolerance
 - sites, clusters and data streams

Experimental LEAD Workflow

- 12 km resolution forecast
- continental United States

- Simple workflow
 - simple LDM data push
 - two ensemble model runs
 - 8 and 16 nodes
 - offline visualization using IDV

Execution configuration (dante)

- 35 dual-processor compute nodes
 - Intel Xeon 3.2 GHz
 - 6 GB DRAM
 - ~60 GB local disk
- -3 front-end nodes
- interconnect
 - gigabit Ethernet and Infiniband
- node software
 - ROCKS cluster distribution
 - Red Hat Linux 3.2.3-42

Rice Heuristic Scheduling Algorithm

while all components not mapped do
 Find availComponents;
 Calculate the rank matrix;
 findBestSchedule(availComponents);
Endwhile

findBestSchedule(comps) while all comps not mapped do foreach Component, C do foreach Resource, R do ECT(C,R)=rank(C,R)+EAT(R);endforeach Find minECT(C, R) over all R; Find 2nd_minECT(C,R) over all R; endforeach $j_1^* = j_1$ with min(minECT(j_1 ,R)); //min-min j_2 * = j_2 with max(minECT(j_2 ,R)); //max-min $j_3^* = j_3$ with min(2nd_minECT(j_3 ,R)-minECT(j_3 ,R)); //sufferage Store mapping for j_x^* for each heuristic; Update EAT(R) and makespan for each heuristic; endwhile Select mapping with minimum makespan among three;

Output selected mapping;

WRF Ensemble Scheduling and Execution

- Execution time performance model f(x)
 - -as a function of number of resources (x)
 - -conditioned by three factors
 - processor load
 - node temperature (reliability)
 - kernel type (uniprocessor or SMP)
- Execution phases
 - -start all sensors
 - -measure CPU utilization and temperature on the nodes
 - NWS, HAPI and/or Autopilot
 - -invoke Rice scheduler
 - identify sets of systems for WRF execution
 - two sets in this example
 - -execute OGRE script
 - pass system list to the script for job launch

Experimental Configuration

WRF Workflow Execution

VGrADS Virtual Grid Application Development Software Project

Virtual Grid Execution System

Adaptation: Measurement and Resilience

- Intelligent monitoring
 - -Autopilot sensors
 - performance metrics
 - -HAPI health and failure monitoring
 - SMART, ACPI, Im_sensors
- Intelligent assessment
 - -failure prediction and remediation
 - macroscale trend analysis
 - microscale trends
 - -performance optimization
- Virtual grid services (vgMON)
 - -system health monitoring
 - fault tolerance
 - microscale and macroscale
 - -performance measurement

VGrADS

Virtual Grid Application Development Software Project

The Implications of Scale

- software memory errors
- Applications are susceptible to failures from both — checkpointing is not enough!
- Daniel Nurmi poster

- Optimal Checkpoint Scheduling using Automatic Resource Characterization

HAPI Failure Indicator Monitor

- Health Application Programming Interface (HAPI): DOE leverage
 - standard interface for health monitoring
 - Advanced Configuration and Power Management (ACPI)
 - Self Monitoring, Analysis and Reporting Technology (SMART)
 - Intelligent Platform Management Interface (IPMPI)

VGrADS

intual Grid Application Development Software Project

NWS/HAPI Integration

Virtual Grid Application Development Software Project

Large Scale Adaptation Examples

- Batch queue selection (Wolski)
 - application fault sensitivity
 - predicted partition reliability
 - expected wait time
- Checkpoint frequency
 - application fault sensitivity
 - predicted "bag" reliability
- Redundancy application
 - spare nodes (within an application)
 - multiple application copies
- Power aware code optimization
 - tuning for power/performance/reliability
- OS suicide hotline
 - adaptive personality management

Qualitative Behavioral Classification

- VGrADS principles
 - -hide unnecessary details (virtual grids)
 - physical resource locations and resource location
 - -provide qualitative specifications (vgDL descriptions)
 - e.g., near, far, loose, tight, ...
- Behavioral application characterization goals
 - -similar, high level, qualitative descriptions for applications
 - steady, periodic, random, ...
 - -temporal specifications for long-running applications
 - differentiate persistent from transient behaviors
 - -qualitative assessment of behavior for advertized resources
 - match resource capabilities and application behaviors
 - identify changes in behavioral expectations

Qualitative Behavioral Classification

VGrADS Virtual Cirid Application Development Software Project

WRF Time Series Behavior

Virtual Grid Application Development Software Project

Research Challenges and Goals

- LEAD workflow validation and testing
 - -vgDL specification and execution
 - —"real world" driver for virtual grid development
 - dynamic workflows, streaming data, ...
- Multivariate execution system constraints (vgMON)
 - -reliability and fault tolerance
 - failure prediction, over provisioning, performanbility
 - -performance and power
 - -microscale and macroscale management
- Tunable constraints and incomplete resource specification —balancing choices
- Behavioral classification (vgFAB)
 - -resource selection
 - application behavioral validation

VGrADS Summary: A Holistic Approach

- What justifies a Large ITR?
 - community, no one institution covers everything
 - project vision
 - shared infrastructure
 - integration would not happen without a unified project
- VGrADS
 - Built on GrADS insights and experiences
 - community of leading researchers who work together effectively
 - broad coverage of requisite topics
 - $-\ensuremath{\mathsf{vision}}$ for extremely simple application development interface
 - grid virtualization to hide complexity
 - shared software stack and testbed
 - vgES toolkit, policies and application drivers
 - many interrelated layers require integrated effort
 - program tools, provisioning, scheduling, measurement
 - prediction, fault tolerance, infrastructure, applications

