
LEAD, Workflows and Virtual Grids

Dan Reed

Dan_Reed@unc.edu

Renaissance Computing Institute (RENCI)

University of North Carolina at Chapel Hill

VGrADS Site Visit

April 28, 2005

VGrADS Collaboration Credits

• UC Santa Barbara (NWS)
—Graziano Obertelli

—Rich Wolski

• UC San Diego (vgES)
—Andrew Chien

• Rice University (Scheduling)
—Ken Kennedy

—Rob Fowler

—Anirban Mandal

—Ryan Zhang

• Illinois/NCSA (Scheduling)
—Jay Alameda

—Mark Straka

—Bob Wilhelmson

• Tennessee (Fault Tolerance)
—Jack Dongarra

—Jeffery Chen

• UNC Chapel Hill
—Emma Buneci

—Kevin Gamiel

—Min Lim

—Lavanya Ramakrishnan

—Mark Reed

—Brad Viviano

—Ying Zhang

Presentation Outline

• Linked Environments for Atmospheric Discovery (LEAD)
—computer science research drivers

– static/dynamic workflow management and scheduling

– reliability and performance optimization

—virtual grid validation and assessment

• Workflow scheduling and validation
—Rice scheduler, NWS/HAPI measurement and LEAD

• NWS/HAPI integration
—distributed system assessment for reliability

• Qualitative behavioral classification
—see also Emma Buneci’s poster

– “A Framework for Reasoning About the Temporal Behavior of
Scientific Applications”

Linked Environments for Atmospheric Discovery

• Rationale
—Each year, mesoscale weather – floods, tornadoes, hail, strong

winds, lightning, hurricanes and winter storms – causes hundreds of
deaths, routinely disrupts transportation and commerce, and results
in annual economic losses in excess of $13B.

• LEAD participants
—Oklahoma, UNC, Indiana, NCAR, Alabama, Illinois, Millersville St, …

• From “offline” to “online” forecasting
—data assimilation and adaptive evaluation

Unique LEAD Attributes

• Couple analysis and assimilation tools, forecast models, and data
repositories as dynamically adaptive, on-demand services to
—change configuration rapidly and automatically in response to weather
—continually be steered by unfolding weather
—respond to decision-driven inputs from users
— initiate other processes automatically

– dynamic, data driven workflows
—steer remote observing technologies

– to optimize data collection for the target problem

• From VGrADS perspective
—application driver with characteristics different than e.g., EMAN

– steaming data, multilevel workflow, adaptation, …

• Canonical LEAD problem three
—produce high-resolution, nested WRF ensemble forecasts
—respond dynamically to prevailing and predicted weather conditions

ESML and

Decoding

Remapping,

Gridding,

Conversion

ADAS Quality

Control

ADAS Quality

Control ADAS

Analysis

Processing

ADAS

Analysis (3-

D Gridded

Fields) +

Background

Fields

ADAS-to-WRF

Converter

3-D Gridded Fields in

WRF Mass Coordinate

+ Suite of Ensemble

Initial Conditions

WRF Gridded

Output
myLEAD

Storage

Multiple

Copies of

WRF Forecast

Model

Running

Simultaneously

Metadata

Creation &

Cataloging

Visualization &

Data Mining

STOPAdjust Forecast

Configuration and

Schedule ResourcesSTART

Define Data

Requirements

and Query for

Desired Data

Allocate Storage

and Move/Stream

Data to Appropriate

Location

Allocate

Computational

Resources

Data
Surface Observations

Upper-Air Observations

Commercial Aircraft Data

NEXRAD Radar Data

Satellite Data

Wind Profiler Data

Land Surface Data

Terrain Data

Background Model Fields

and Previous Forecasts

LEAD Canonical Problem Three

BPEL Workflow

Engine

LDM Service

GridFTP Service

WRF Service

Virtual Grid

Execution System

Information

Service

Rice Scheduler

Ensemble

Broker

Visualization

Service

Data arrives

1. Send event “Data

has arrived”

3. Next step in workflow

– Launch WRF

4. Create a WRF

ensemble

0. Possible advanced
reservation. Resources
 for the services based on
knowledge of daily forecasts

6. Move data to

compute

(virtual) nodes

5. Get resources

Resource

Broker

8. Current WRF

complete

Data Mining

7. Run WRF

10. WRF

complete

9. More WRF runs

needed? If yes

repeat 4 to 8

11. Launch

Visualization

2. Get required

resources

Start

End

LEAD Workflow Implementation

Static
Workflow

Dynamic
Workflow

LEAD Orchestration Interface (LEAD Funded)

Color coded with
execution status

Performance and
reliability metrics

(Autopilot, NWS
and HAPI)

Computing Research Drivers from LEAD

• Complex services and virtualization
—complexity management and amelioration

—virtual grid interfaces and mechanisms

—multilevel workflow management

• Measurement and monitoring techniques
—performance and system health

– large, parametric studies can run for weeks

 “spring runs” underway now at PSC

• Prediction and classification mechanisms
—failure indicators and long-term reliability

– redundancy and recovery

—application temporal classification and combination

• Integrated management policies
—performance, fault tolerance, power management, …

Unidata IDV

vgDL Specification for LEAD Workflow

LEADSpec = LDMNode = {isLDMNode} // Note the loose coupling

 far WRFNode = {memory >= 500MB, cpu > 2000, diskspace > 4GB}

 far VizNode = {memory >=4GB, cpu > 4000}

vgidLEAD = vgCreateVG(vgESsrv.renci.org, LEADspec, 1000, null);

vgRoot = vgGetRoot(vgidLEAD);

LDMNode
WRFNode

VizNode

vgRoot

WRFspec = LooseBagof<C> [1:32];

 C = Clusterof<node>[4:256];

 node = {node.memory > 500MB, node.cpu > 2000};

 C = {C.hasSharedFileSystem = true}

vgidLEAD = vgGetMyVG(); wrfNode = vgGetMyNode();

status = vgAddToVG(vgidLEAD, WRFspec, WRFNode,1000, init_WRF);

// Run WRF and await ensemble completion (repeat as needed)

…
10 32

31

1
0

255

2

…

1
0

2

1

0…

Provisioning

LEAD Workflow and vgDL Implications

• Multi-level workflow management
— static workflow (i.e., one instantiation of an execution)

– Open Grid Computing Environments Runtime Engine (OGRE)
 extension of Apache Ant (Java makefile extension)

— dynamic workflow (i.e., iterative ensemble executions)
– Business Process Execution Language for Web Services (BPEL4WS)

• VGrADS research is workflow independent, however
— EMAN and LEAD illustrate different implementation points for workflows

• Streaming data management
— Unidata Local Data Management (LDM) streams (e.g., NEXRAD2 data)
— fixed source locations that constrain task scheduling (research issue)

– redundancy and reliability sites

• Long running application suite
— Weather Research and Forecast (WRF)

– next generation weather code and multiple hours for each ensemble
— multiscale fault tolerance

– sites, clusters and data streams

Experimental LEAD Workflow

• Simple workflow
— simple LDM data push

— two ensemble model runs

– 8 and 16 nodes

— offline visualization using IDV

• Execution configuration (dante)
— 35 dual-processor compute nodes

– Intel Xeon 3.2 GHz

– 6 GB DRAM

– ~60 GB local disk

— 3 front-end nodes

— interconnect

– gigabit Ethernet and Infiniband

— node software

– ROCKS cluster distribution

– Red Hat Linux 3.2.3-42

LDM

WRF WRF

Analysis/IDV

• Test problem (~4 hour execution)
— 12 km resolution forecast

— continental United States

Streaming
Data

Rice Heuristic Scheduling Algorithm

while all components not mapped do
Find availComponents;
Calculate the rank matrix;

findBestSchedule(availComponents);
Endwhile

findBestSchedule(comps)
while all comps not mapped do

foreach Component, C do
foreach Resource, R do

ECT(C,R)=rank(C,R)+EAT(R);

endforeach
Find minECT(C,R) over all R;

Find 2nd_minECT(C,R) over all R;

endforeach
j1* = j1 with min(minECT(j1,R)); //min-min
j2* = j2 with max(minECT(j2,R)); //max-min
j3* = j3 with min(2nd_minECT(j3,R)-minECT(j3,R));

//sufferage
Store mapping for jx* for each heuristic;

Update EAT(R) and makespan for each heuristic;

endwhile
Select mapping with minimum makespan among three;

Output selected mapping;

Rice

Scheduler

WRF ensembles

with resource lists Resources

WRF ensembles

mapped to

resources

WRF Scheduler

Performance

Model

Input to OGRE script

for ensemble execution

Performance Data

WRF Ensemble Scheduling and Execution

• Execution time performance model f(x)
—as a function of number of resources (x)
—conditioned by three factors

– processor load
– node temperature (reliability)
– kernel type (uniprocessor or SMP)

• Execution phases
—start all sensors
—measure CPU utilization and temperature on the nodes

– NWS, HAPI and/or Autopilot
— invoke Rice scheduler

– identify sets of systems for WRF execution
 two sets in this example

—execute OGRE script
– pass system list to the script for job launch

Autopilot

Client

dante0

Experimental Configuration

NWS Extract

Client

OGRE

Workflow

LEAD Viz

Compute Cluster

Ensemble one (8 nodes)

Ensemble two (16 nodes)

dante1 dante2

Event Channel
WRF Rice

Scheduler

LDM Sink LDM Source

Autopilot

Sensors
NWS-HAPI

Sensors

Front-end Nodes

WRF Workflow Execution

Processor idle

0

20

40

60

80

100

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Timestep

C
P

U
 I
d

le
 (

%
)

Processor Idle

0

10

20

30

40

50

60

70

80

90

100

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Timestep

C
P

U
 I
d

le
 (

%
)

idle_dante1

idle_dante2

OGRE

Engine

LDM

Node

CPU Temperature (Node 24)

0

10

20

30

40

50

60

0 5000 10000 15000 20000 25000 30000

Timestep

T
e

m
p

e
ra

tu
re

(C
)

Autopilot Data

NWS/HAPI Data

DVCW

vgFAB

Virtual Grid Execution System

Application

vgES APIs

vgMON

vgDL

Information

Services

Resource

Managers

vgLAUNCH

VG

VG

VG
VG

vgAgent

Grid
Resources

Adaptation: Measurement and Resilience

• Intelligent monitoring
—Autopilot sensors

– performance metrics
—HAPI health and failure monitoring

– SMART, ACPI, lm_sensors

• Intelligent assessment
—failure prediction and remediation

– macroscale trend analysis
– microscale trends

—performance optimization

• Virtual grid services (vgMON)
—system health monitoring

—fault tolerance
– microscale and macroscale

—performance measurement

Rule Configuration

Assessment Rule Base

Fuzzy Logic

Decision Process

F
u

z
z
if

ie
r

D
e
fu

z
z
if

ie
r

In
p

u
ts

System
Sensors Actuators

ActuatorsSensors

O
u

tp
u

ts

Autopilot Toolkit

The Implications of Scale

• Two important drivers
— overall system size (Grids and systems)

— semiconductor component scaling

• Overall system size (macroscale)
— assume independent component failures

– an optimistic assumption

— N: the number of processors
— r: probability a component operates for 1 hour

• Semiconductor components (microscale)
— static power leakage

– temperature and reliability

— software memory errors

• Applications are susceptible to failures from both
— checkpointing is not enough!

• Daniel Nurmi poster
— Optimal Checkpoint Scheduling using Automatic Resource Characterization

NrR =

0

20

40

60

80

100

120

140

100
200
300
400
500
700
1000
2000
4000
8000
16000
32000
64000
200000

0.9999

0.99999

0.999999

1 hour reliability

System Size

M
T

T
F
 (

h
o

u
rs

)

HAPI Failure Indicator Monitor

• Health Application Programming Interface (HAPI): DOE leverage

— standard interface for health monitoring

– Advanced Configuration and Power Management (ACPI)

– Self Monitoring, Analysis and Reporting Technology (SMART)

– Intelligent Platform Management Interface (IPMPI)

 HAPI/NWS

daemon

NWS/HAPI Integration

• Rationale
— leverage extant NMI tool infrastructure

— integrate performance and failure indicator data

— support “performability” resource allocation in vgES

• Mechanism
— HAPI appears as an NWS sensor with skills and resources

– NWS statically defines skills and resources

– HAPI adds dynamically defined health measurements

— user defines measurement mapping to resources at runtime

– HAPI ingests these via its API

 HAPI

IPMI SMART
LM

Sensors

Disk

Stats

HAPIsh
HAPI-

mySQL Autopilot NWS

Outside

World

System

Hardware

N

W

S

Skills

Resources

HAPI Monitor

HAPIResource_00

…

HAPIResource_29
XML to map

HAPIResource_xx

to health

measurement

On Init

Large Scale Adaptation Examples

• Batch queue selection (Wolski)
— application fault sensitivity

— predicted partition reliability

— expected wait time

• Checkpoint frequency
— application fault sensitivity

— predicted “bag” reliability

• Redundancy application
— spare nodes (within an application)

— multiple application copies

• Power aware code optimization
— tuning for power/performance/reliability

• OS suicide hotline
— adaptive personality management

Application

MPI Interface UNIX I/O

Fault Tolerant MPI Diskless Checkpoint

MPI
Fault Detection &

Automatic

Recovery
Redundancy

Encoding

Data

Recovery

Space Optimization

S
to

ra
g

e
 C

h
o

ic
e

High Speed Interconnect

User messagesHeartbeat

Trigger

Recovery

Qualitative Behavioral Classification

• VGrADS principles
—hide unnecessary details (virtual grids)

– physical resource locations and resource location

—provide qualitative specifications (vgDL descriptions)

– e.g., near, far, loose, tight, …

• Behavioral application characterization goals

—similar, high level, qualitative descriptions for applications

– steady, periodic, random, …

—temporal specifications for long-running applications

– differentiate persistent from transient behaviors

—qualitative assessment of behavior for advertized resources

– match resource capabilities and application behaviors

– identify changes in behavioral expectations

Qualitative Behavioral Classification

• Three components
— classification of temporal behaviors

– resource metric axes
 processor, memory, network, disk

– behaviors
 steady, oscillatory, random

— temporal algebra for application interactions
– ordering, composition, …

— methodology for predicting interactions
– resource overlap

• Methodology
— application stimuli and sensitivity analysis

– metric data from NWS/HAPI/Autopilot
— hierarchical/k-means clustering for phases

– qualitative equivalence identification
— online behavioral monitoring and remediation

– virtual grid execution system

B
A During B

A

(A Before B) Interacts C

Qualitative
Behavior
Database Behavioral

Classifier

Temporal
Performance

Validator

Behavior
Interaction
Analyzer

Qualitative
Solution

Generator

vgMON &
vgAgent

vgMON &
vgFAB

WRF Time Series Behavior

• Clustering (for each metric)
— mean and variance

— first auto-correlation coefficient

• Behavioral classes
1. periodic

2. steady with variability

3. steady

Node 0 (Periodic) Node 1 (Steady)

Research Challenges and Goals

• LEAD workflow validation and testing
—vgDL specification and execution
—“real world” driver for virtual grid development

– dynamic workflows, streaming data, …

• Multivariate execution system constraints (vgMON)
—reliability and fault tolerance

– failure prediction, over provisioning, performanbility
—performance and power
—microscale and macroscale management

• Tunable constraints and incomplete resource specification
—balancing choices

• Behavioral classification (vgFAB)
—resource selection
—application behavioral validation

VGrADS Summary: A Holistic Approach

• What justifies a Large ITR?
— community, no one institution covers everything

— project vision

— shared infrastructure

— integration would not happen without a unified project

• VGrADS
— Built on GrADS insights and experiences

– community of leading researchers who work together effectively

– broad coverage of requisite topics

— vision for extremely simple application development interface

– grid virtualization to hide complexity

— shared software stack and testbed

– vgES toolkit, policies and application drivers

— many interrelated layers require integrated effort

– program tools, provisioning, scheduling, measurement

– prediction, fault tolerance, infrastructure, applications

