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Presentation Outline

• Linked Environments for Atmospheric Discovery (LEAD)
—computer science research drivers

– static/dynamic workflow management and scheduling

– reliability and performance optimization

—virtual grid validation and assessment

• Workflow scheduling and validation
—Rice scheduler, NWS/HAPI measurement and LEAD

• NWS/HAPI integration
—distributed system assessment for reliability

• Qualitative behavioral classification
—see also Emma Buneci’s poster

– “A Framework for Reasoning About the Temporal Behavior of
Scientific Applications”



Linked Environments for Atmospheric Discovery

• Rationale
—Each year, mesoscale weather – floods, tornadoes, hail, strong

winds, lightning, hurricanes and winter storms – causes hundreds of
deaths, routinely disrupts transportation and commerce, and results
in annual economic losses in excess of $13B.

• LEAD participants
—Oklahoma, UNC, Indiana, NCAR, Alabama, Illinois, Millersville St, …

• From “offline” to “online” forecasting
—data assimilation and adaptive evaluation



Unique LEAD Attributes

• Couple analysis and assimilation tools, forecast models, and data
repositories as dynamically adaptive, on-demand services to
—change configuration rapidly and automatically in response to weather
—continually be steered by unfolding weather
—respond to decision-driven inputs from users
— initiate other processes automatically

– dynamic, data driven workflows
—steer remote observing technologies

– to optimize data collection for the target problem

• From VGrADS perspective
—application driver with characteristics different than e.g., EMAN

– steaming data, multilevel workflow, adaptation, …

• Canonical LEAD problem three
—produce high-resolution, nested WRF ensemble forecasts
—respond dynamically to prevailing and predicted weather conditions
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LEAD Orchestration Interface (LEAD Funded)
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Computing Research Drivers from LEAD

• Complex services and virtualization
—complexity management and amelioration

—virtual grid interfaces and mechanisms

—multilevel workflow management

• Measurement and monitoring techniques
—performance and system health

– large, parametric studies can run for weeks

 “spring runs” underway now at PSC

• Prediction and classification mechanisms
—failure indicators and long-term reliability

– redundancy and recovery

—application temporal classification and combination

• Integrated management policies
—performance, fault tolerance, power management, …

Unidata IDV



vgDL Specification for LEAD Workflow

LEADSpec = LDMNode = {isLDMNode}  // Note the loose coupling

       far WRFNode = {memory >= 500MB, cpu > 2000, diskspace > 4GB}

 far VizNode = {memory >=4GB, cpu > 4000}

vgidLEAD = vgCreateVG(vgESsrv.renci.org, LEADspec, 1000, null);

vgRoot = vgGetRoot(vgidLEAD);

LDMNode
WRFNode

VizNode

vgRoot

WRFspec = LooseBagof<C> [1:32];

      C = Clusterof<node>[4:256];

      node = {node.memory > 500MB, node.cpu > 2000};

      C = {C.hasSharedFileSystem = true}

vgidLEAD = vgGetMyVG(); wrfNode = vgGetMyNode();

status = vgAddToVG(vgidLEAD, WRFspec, WRFNode,1000, init_WRF);

// Run WRF and await ensemble completion (repeat as needed)
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LEAD Workflow and vgDL Implications

• Multi-level workflow management
— static workflow (i.e., one instantiation of an execution)

– Open Grid Computing Environments Runtime Engine (OGRE)
 extension of Apache Ant (Java makefile extension)

— dynamic workflow (i.e., iterative ensemble executions)
– Business Process Execution Language for Web Services (BPEL4WS)

• VGrADS research is workflow independent, however
— EMAN and LEAD illustrate different implementation points for workflows

• Streaming data management
— Unidata Local Data Management (LDM) streams (e.g., NEXRAD2 data)
— fixed source locations that constrain task scheduling (research issue)

– redundancy and reliability sites

• Long running application suite
— Weather Research and Forecast (WRF)

– next generation weather code and multiple hours for each ensemble
— multiscale fault tolerance

– sites, clusters and data streams



Experimental LEAD Workflow

• Simple workflow
— simple LDM data push

— two ensemble model runs

– 8 and 16 nodes

— offline visualization using IDV

• Execution configuration (dante)
— 35 dual-processor compute nodes

– Intel Xeon 3.2 GHz

– 6 GB DRAM

– ~60 GB local disk

— 3 front-end nodes

— interconnect

– gigabit Ethernet and Infiniband

— node software

– ROCKS cluster distribution

– Red Hat Linux 3.2.3-42

LDM

WRF WRF

Analysis/IDV

• Test problem (~4 hour execution)
— 12 km resolution forecast

— continental United States

Streaming
Data



Rice Heuristic Scheduling Algorithm

while all components not mapped do
Find availComponents;
Calculate the rank matrix;

findBestSchedule(availComponents);
Endwhile

findBestSchedule(comps)
while all comps not mapped do

foreach Component, C do
foreach Resource, R do

ECT(C,R)=rank(C,R)+EAT(R);

endforeach
Find minECT(C,R) over all R;

Find 2nd_minECT(C,R) over all R;

endforeach
j1* = j1 with min(minECT(j1,R));  //min-min
j2* = j2 with max(minECT(j2,R)); //max-min
j3* = j3 with min(2nd_minECT(j3,R)-minECT(j3,R));

//sufferage
Store mapping for jx* for each heuristic;

Update EAT(R) and makespan for each heuristic;

endwhile
Select mapping with minimum makespan among three;

Output selected mapping;

Rice 

Scheduler

WRF ensembles

with resource lists Resources

WRF ensembles

mapped to

resources

WRF Scheduler

Performance

Model
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Performance Data



WRF Ensemble Scheduling and Execution

• Execution time performance model f(x)
—as a function of number of resources (x)
—conditioned by three factors

– processor load
– node temperature (reliability)
– kernel type (uniprocessor or SMP)

• Execution phases
—start all sensors
—measure CPU utilization and temperature on the nodes

– NWS, HAPI and/or Autopilot
— invoke Rice scheduler

– identify sets of systems for WRF execution
 two sets in this example

—execute OGRE script
– pass system list to the script for job launch
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WRF Workflow Execution

Processor idle 
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Adaptation: Measurement and Resilience

• Intelligent monitoring
—Autopilot sensors

– performance metrics
—HAPI health and failure monitoring

– SMART, ACPI, lm_sensors

• Intelligent assessment
—failure prediction and remediation

– macroscale trend analysis
– microscale trends

—performance optimization

• Virtual grid services (vgMON)
—system health monitoring

—fault tolerance
– microscale and macroscale

—performance measurement
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The Implications of Scale

• Two important drivers
— overall system size (Grids and systems)

— semiconductor component scaling

• Overall system size (macroscale)
— assume independent component failures

– an optimistic assumption

— N: the number of processors
— r: probability a component operates for 1 hour

• Semiconductor components (microscale)
— static power leakage

– temperature and reliability

— software memory errors

• Applications are susceptible to failures from both
— checkpointing is not enough!

• Daniel Nurmi poster
— Optimal Checkpoint Scheduling using Automatic Resource Characterization

NrR =

0

20

40

60

80

100

120

140

100
200
300
400
500
700
1000
2000
4000
8000
16000
32000
64000
200000

0.9999

0.99999

0.999999

1 hour reliability

System Size

M
T

T
F
 (

h
o

u
rs

)



HAPI Failure Indicator Monitor

• Health Application Programming Interface (HAPI): DOE leverage

— standard interface for health monitoring

– Advanced Configuration and Power Management (ACPI)

– Self Monitoring, Analysis and Reporting Technology (SMART)

– Intelligent Platform Management Interface (IPMPI)

 HAPI/NWS

daemon



NWS/HAPI Integration

• Rationale
— leverage extant NMI tool infrastructure

— integrate performance and failure indicator data

— support “performability” resource allocation in vgES

• Mechanism
— HAPI appears as an NWS sensor with skills and resources

– NWS statically defines skills and resources

– HAPI adds dynamically defined health measurements

— user defines measurement mapping to resources at runtime

– HAPI ingests these via its API

 HAPI
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Large Scale Adaptation Examples

• Batch queue selection (Wolski)
— application fault sensitivity

— predicted partition reliability

— expected wait time

• Checkpoint frequency
— application fault sensitivity

— predicted “bag” reliability

• Redundancy application
— spare nodes (within an application)

— multiple application copies

• Power aware code optimization
— tuning for power/performance/reliability

• OS suicide hotline
— adaptive personality management
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Qualitative Behavioral Classification

• VGrADS principles
—hide unnecessary details (virtual grids)

– physical resource locations and resource location

—provide qualitative specifications (vgDL descriptions)

– e.g., near, far, loose, tight, …

• Behavioral application characterization goals

—similar, high level, qualitative descriptions for applications

– steady, periodic, random, …

—temporal specifications for long-running applications

– differentiate persistent from transient behaviors

—qualitative assessment of behavior for advertized resources

– match resource capabilities and application behaviors

– identify changes in behavioral expectations



Qualitative Behavioral Classification

• Three components
— classification of temporal behaviors

– resource metric axes
 processor, memory, network, disk

– behaviors
 steady, oscillatory, random

— temporal algebra for application interactions
– ordering, composition, …

— methodology for predicting interactions
– resource overlap

• Methodology
— application stimuli and sensitivity analysis

– metric data from NWS/HAPI/Autopilot
— hierarchical/k-means clustering for phases

– qualitative equivalence identification
— online behavioral monitoring and remediation

– virtual grid execution system
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Performance
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WRF Time Series Behavior

• Clustering (for each metric)
— mean and variance

— first auto-correlation coefficient

• Behavioral classes
1. periodic

2. steady with variability

3. steady

Node 0 (Periodic) Node 1 (Steady)



Research Challenges and Goals

• LEAD workflow validation and testing
—vgDL specification and execution
—“real world” driver for virtual grid development

– dynamic workflows, streaming data, …

• Multivariate execution system constraints (vgMON)
—reliability and fault tolerance

– failure prediction, over provisioning, performanbility
—performance and power
—microscale and macroscale management

• Tunable constraints and incomplete resource specification
—balancing choices

• Behavioral classification (vgFAB)
—resource selection
—application behavioral validation



VGrADS Summary: A Holistic Approach

• What justifies a Large ITR?
— community, no one institution covers everything

— project vision

— shared infrastructure

— integration would not happen without a unified project

• VGrADS
— Built on GrADS insights and experiences

– community of leading researchers who work together effectively

– broad coverage of requisite topics

— vision for extremely simple application development interface

– grid virtualization to hide complexity

— shared software stack and testbed

– vgES toolkit, policies and application drivers

— many interrelated layers require integrated effort

– program tools, provisioning, scheduling, measurement

– prediction, fault tolerance, infrastructure, applications


