### VGrADS Programming Tools Research: Vision and Overview

#### Ken Kennedy Center for High Performance Software Rice University

http://vgrads.rice.edu/site\_visit/april\_2005/slides/kennedy-tools



# **Programming Tools Contributors**

- Rice University
  - Ken Kennedy, PI
  - Keith Cooper, Chuck Koelbel (co-PIs)
  - Rob Fowler, Mark Mazina, John Mellor-Crummey, Tim Harvey (faculty/staff)
  - Raj Bandyopadhyay, Adam Bordelon, Jason Eckhardt, Anshuman Das Gupta, Anirban Mandal, Gabriel Marin, Ryan Zhang (students)
- University of Houston
  - Lennart Johnson, co-PI
  - Nils Smeds (staff)
  - Bo Liu, Mitul Patel (students)
- University of California San Diego
  - Fran Berman, Henri Casanova, Andrew Chien (co-PIs)
  - Yang-Suk Kee, Ken Yocum (staff)
  - Jerry Chou, Richard Huang, Dennis Logothetis (students)

- <sup>•</sup> University of California Santa Barbara
  - Rich Wolski (co-PI)
  - Graziano Obertelli (staff)
  - Dan Nurmi (student)
- University of North Carolina
  - Dan Reed (co-PI)
  - Lavayna Ramakrishnan (staff)
  - Emma Buneci, Min Lim (students)
- University of Tennessee
  - Jack Dongarra (co-PI)
  - Asim YarKhan (staff)
  - Zhiao Shi (student)
- University of Southern California
  - Carl Kesselman (co-PI)
  - Ewa Deelman, Gurang Mehta (staff)
  - Gurmeet Singh (student)

Note : Baylor College of Medicine collaborators not included

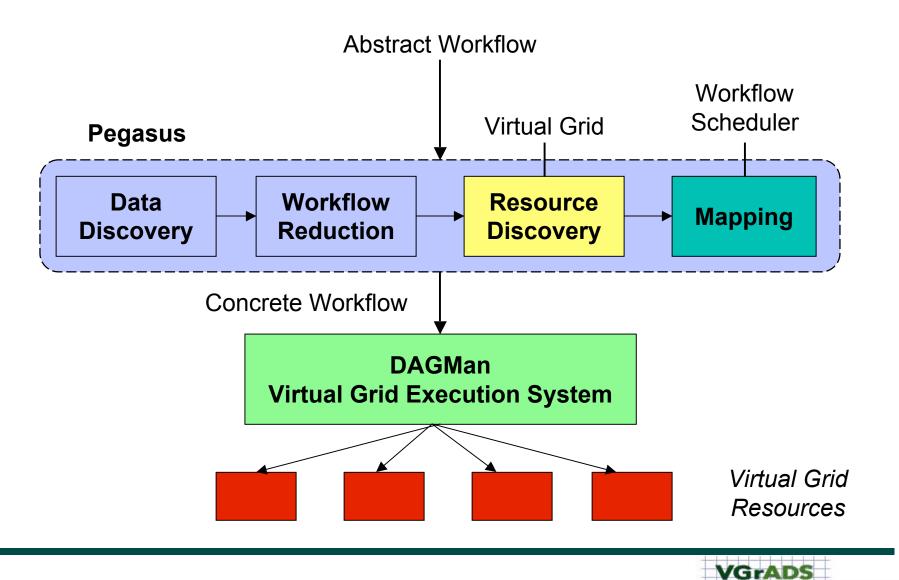
Virtual Grid Application Development Software Project

# **Programming Tools**

Focus: Automating critical application-development steps:

- Initiating and managing application execution
  - -Optimize and launch application on heterogeneous resources
  - -Support for fault tolerance and rescheduling/migration
- Scheduling application workflows
  - -Whole-workflow scheduling using performance models
- Constructing performance models
  - -Automatically from application binaries
    - Cross-platform modeling
- Building workflow graphs from high-level scripts

-Examples: Python (EMAN), OGRE (LEAD), Matlab




# **Managing Application Execution**

- Vision: Transparent to the User with Fault Tolerance
  - -Binaries shipped or preinstalled
    - Reconfigured where necessary
  - -Data moved to computations
  - -Support for fault tolerance
  - -Support for rescheduling, migration and restart
- Research
  - -Separation of concerns between workflow management and virtual grid
  - -Support for fault tolerance and rescheduling/migration
    - Checkpointing, load projection, performance modeling
  - -Platform-independent application representation



### **Application Initiation and Management**



Virtual Grid Application Development Software Project

# **Support for Fault Tolerance and Rescheduling**

- Fault tolerance
  - -Workflows: Recovery via Pegasus mechanisms
    - Issue: support for registration of completed steps in vgES
  - -MPI steps: Disk-free checkpointing
    - Dongarra talk
  - -Checkpoint scheduling (Nurmi poster  $\mathbf{0}$ )

• "Optimal Checkpoint Scheduling using Automatic Resource Characterization" by Dan Nurmi (UCSB)

Rescheduling

- -Mechanisms for monitoring and extending virtual grids in vgES
  - Under development (Huang poster 🕗)
- -Issue: Determining whether rescheduling will be profitable
  - Models to project performance on current and alternative resources



## **Platform-Independent Applications**

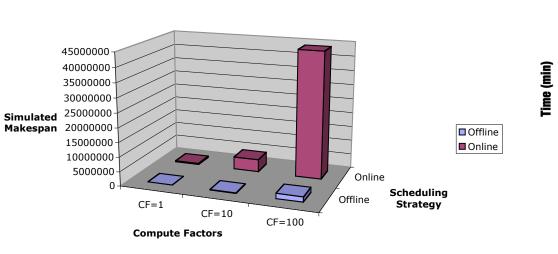
- Supporting a Single Application Image for Different Platforms
  - Translation and optimization tools that map the application onto the hardware in an effective and efficient way
    - At the high level, resource allocation and scheduling
    - At the low level, optimization, scheduling, and runtime reoptimization
  - -We are working with the LLVM system (from Illinois)
    - Produces good code for a variety of hardware platforms
- Run-time Reoptimization
  - -The Idea: In response to poor performance, reoptimize
  - -The Vision: To reduce the runtime cost of reoptimization, move analysis and planning to compile time
    - Example: alternative blocking strategies for a loop nest, with shift triggered by excessive cache misses



# **Scheduling Workflows**

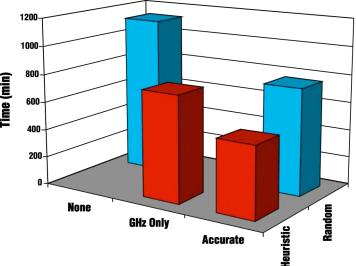
- Vision:
  - Application includes performance models for all workflow nodes
    - Performance models automatically constructed
  - -Software schedules applications onto Grid in two phases
    - Virtual grid requirement and acquisition
    - Model based scheduling on the returned vGrid
- Research
  - -Scheduling strategy: Whole workflow
    - Dramatic makespan reduction (see Mandal-Liu poster  $\mathbf{0}$ )
  - -Two-phase scheduling
    - Exploring trade-offs
    - Expectation: dramatic reduction in complexity with little loss in performance

• "Performance Model-Based Scheduling of EMAN Workflows" by Anirban Mandal (Rice) and Bo Liu (U Houston)




## **Workflow Scheduling Results**

Dramatic makespan reduction of *offline* scheduling over *online* scheduling — Application: **Montage** 


Online vs. Offline - Heterogeneous Platform (Compute Intensive Case)

Value of *performance models* and *heuristics* for offline scheduling — Application: **EMAN** 



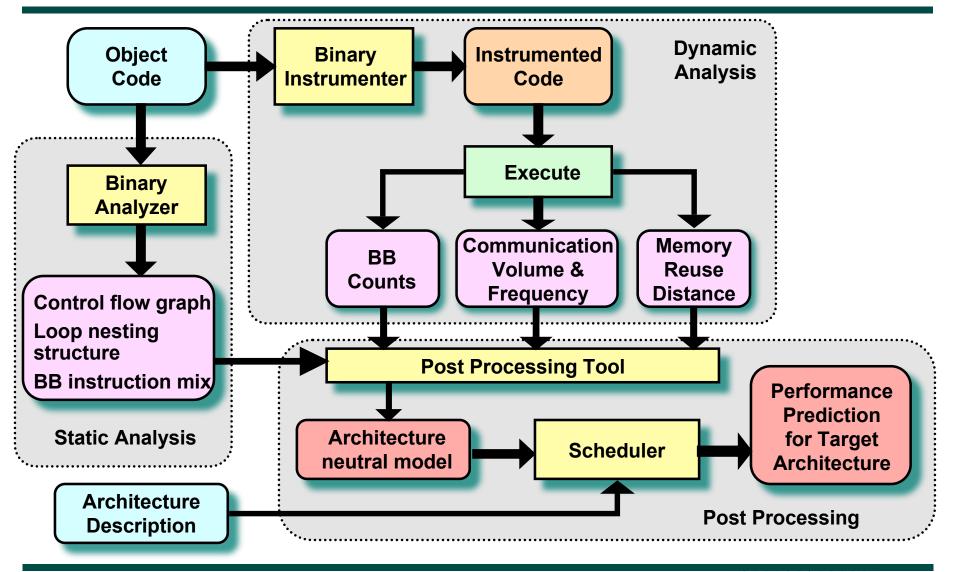
"Resource Allocation Strategies for Workflows in Grids"

CCGrid'05



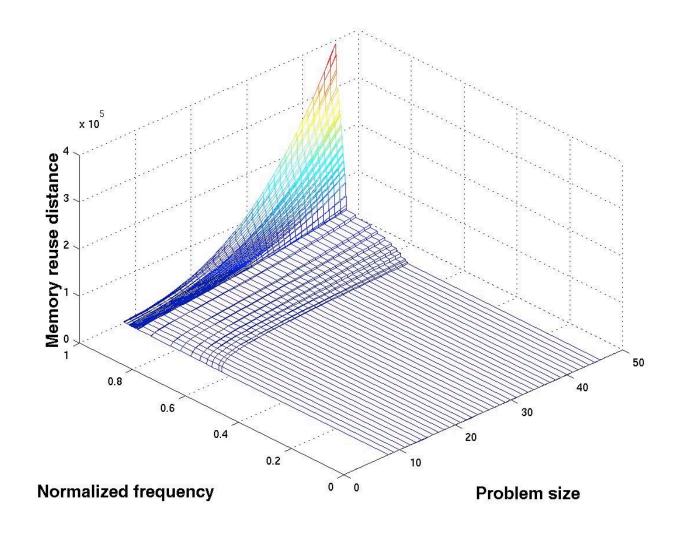
"Scheduling Strategies for Mapping Application Workflows onto the Grid"

HPDC'05




## **Performance Model Construction**

- Vision: Automatic performance modeling
  - -From binary for a single resource and execution profiles
  - -Generate a distinct model for each target resource
- Research
  - -Uniprocessor modeling
    - Can be extended to parallel MPI steps
  - -Memory hierarchy behavior
  - -Models for instruction mix
    - Application-specific models
    - Scheduling
- Posters:
  - Performance Model-Based Scheduling of EMAN Workflows" by Anirban Mandal (Rice) and Bo Liu (U Houston)
  - © "Scalable Cross-Architecture Predictions of Memory Latency for Scientific Applications" by Gabriel Marin (Rice)




### **Performance Prediction Overview**






#### **Modeling Memory Reuse Distance**





#### **Execution Behavior: NAS LU 2D 3.0**



VGrADS Virtual Grid Application Development Software Project

## **Building Workflow Graphs**

- Vision:
  - Application developer writes in scripting language
    - Examples: Python (EMAN), OGRE (LEAD), Matlab, S-PLUS/R
    - Components represent applications
  - $-\operatorname{Software}$  constructs workflow and data movement
- Research
  - -Related project: Telescoping languages
    - Compilation of Matlab and R
    - Type analysis
    - Pre-optimization of components for different contexts
  - -Plan: Harvest this work for Grid application development
    - Just getting started



### Summary

- Making Grid Applications Easy to Develop
  - Abstract interfaces (e.g., scripts)
  - -Effective (and easy) application scheduling
  - -Automatic performance model construction
- Building on Virtual Grid Abstraction
  - -Easy application launch, monitoring, and management
- Driven by Real Application Needs
  - -Initial foci: EMAN, LEAD, and Montage

