
VGrADS Programming Tools Research:
Vision and Overview

Ken Kennedy
Center for High Performance Software

Rice University

http://vgrads.rice.edu/site_visit/april_2005/slides/kennedy-tools



Programming Tools Contributors

• Rice University
— Ken Kennedy, PI
— Keith Cooper, Chuck Koelbel (co-PIs)
— Rob Fowler, Mark Mazina, John Mellor-

Crummey, Tim Harvey (faculty/staff)
— Raj Bandyopadhyay, Adam Bordelon,

Jason Eckhardt, Anshuman Das Gupta,
Anirban Mandal, Gabriel Marin, Ryan
Zhang (students)

• University of Houston
— Lennart Johnson, co-PI
— Nils Smeds (staff)
— Bo Liu, Mitul Patel (students)

• University of California San Diego
— Fran Berman, Henri Casanova, Andrew

Chien (co-PIs)
— Yang-Suk Kee, Ken Yocum (staff)
— Jerry Chou, Richard Huang, Dennis

Logothetis (students)

• University of California Santa
Barbara

— Rich Wolski (co-PI)
— Graziano Obertelli (staff)
— Dan Nurmi (student)

• University of North Carolina
— Dan Reed (co-PI)
— Lavayna Ramakrishnan (staff)
— Emma Buneci, Min Lim (students)

• University of Tennessee
— Jack Dongarra (co-PI)
— Asim YarKhan (staff)
— Zhiao Shi (student)

• University of Southern California
— Carl Kesselman (co-PI)
— Ewa Deelman, Gurang Mehta (staff)
— Gurmeet Singh (student)

Note : Baylor College of Medicine collaborators not included



Programming Tools
Focus: Automating critical application-development steps:

• Initiating and managing application execution
—Optimize and launch application on heterogeneous resources
—Support for fault tolerance and rescheduling/migration

• Scheduling application workflows
—Whole-workflow scheduling using performance models

• Constructing performance models
—Automatically from application binaries

– Cross-platform modeling

• Building workflow graphs from high-level scripts
—Examples: Python (EMAN), OGRE (LEAD), Matlab



Managing Application Execution

• Vision: Transparent to the User with Fault Tolerance
—Binaries shipped or preinstalled

– Reconfigured where necessary
—Data moved to computations
—Support for fault tolerance
—Support for rescheduling, migration and restart

• Research
—Separation of concerns between workflow management and virtual

grid
—Support for fault tolerance and rescheduling/migration

– Checkpointing, load projection, performance modeling
—Platform-independent application representation



Application Initiation and Management

Data
Discovery

Workflow
Reduction

Resource
Discovery Mapping

Pegasus

Abstract Workflow

Concrete Workflow

DAGMan
Virtual Grid Execution System

Virtual Grid
Resources

Virtual Grid
Workflow
Scheduler



Support for Fault Tolerance and Rescheduling

• Fault tolerance
—Workflows: Recovery via Pegasus mechanisms

– Issue: support for registration of completed steps in vgES
—MPI steps: Disk-free checkpointing

– Dongarra talk
—Checkpoint scheduling (Nurmi poster ❶)

• Rescheduling
—Mechanisms for monitoring and extending virtual grids in vgES

– Under development (Huang poster ❷)
—Issue: Determining whether rescheduling will be profitable

– Models to project performance on current and alternative
resources

❶ “Optimal Checkpoint Scheduling using Automatic Resource
Characterization” by Dan Nurmi (UCSB)

❷ “Scheduling Compute Intensive Applications in Volatile, Shared
Resource (Grid) Environments” by Richard Huang (UCSD)



Platform-Independent Applications
• Supporting a Single Application Image for Different Platforms

—Translation and optimization tools that map the application onto the
hardware in an effective and efficient way
– At the high level, resource allocation and scheduling
– At the low level, optimization, scheduling, and runtime

reoptimization
—We are working with the LLVM system (from Illinois)

– Produces good code for a variety of hardware platforms

• Run-time Reoptimization
—The Idea: In response to poor performance, reoptimize
—The Vision: To reduce the runtime cost of reoptimization, move

analysis and planning to compile time
– Example: alternative blocking strategies for a loop nest, with

shift triggered by excessive cache misses



Scheduling Workflows

• Vision:
—Application includes performance models for all workflow nodes

– Performance models automatically constructed
—Software schedules applications onto Grid in two phases

– Virtual grid requirement and acquisition
– Model based scheduling on the returned vGrid

• Research
—Scheduling strategy: Whole workflow

– Dramatic makespan reduction (see Mandal-Liu poster ❶)
—Two-phase scheduling

– Exploring trade-offs
– Expectation: dramatic reduction in complexity with little loss in

performance

❶ “Performance Model-Based Scheduling of EMAN
Workflows” by Anirban Mandal (Rice) and Bo Liu (U Houston)



Workflow Scheduling Results

Dramatic makespan reduction of
offline scheduling over online
scheduling — Application: Montage

Value of performance
models and heuristics
for offline scheduling —
Application: EMAN

”Scheduling Strategies for Mapping Application
Workflows onto the Grid”

HPDC’05

CF=1
 CF=10

 CF=100

Offline

Online
0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

45000000

Simulated 
Makespan

Compute Factors

Scheduling 
Strategy

Online vs. Offline - Heterogeneous Platform (Compute 
Intensive Case)

Offline

Online

”Resource Allocation Strategies for Workflows in Grids”

CCGrid’05



Performance Model Construction
• Vision: Automatic performance modeling

—From binary for a single resource and execution profiles
—Generate a distinct model for each target resource

• Research
—Uniprocessor modeling

– Can be extended to parallel MPI steps
—Memory hierarchy behavior
—Models for instruction mix

– Application-specific models
– Scheduling

• Posters:
❶ “Performance Model-Based Scheduling of EMAN Workflows” by Anirban

Mandal (Rice) and Bo Liu (U Houston)
❷ “Scalable Cross-Architecture Predictions of Memory Latency for Scientific

Applications” by Gabriel Marin (Rice)



Performance Prediction Overview

Object
Code

Binary
Instrumenter

Instrumented
Code

Execute

BB
Counts

Communication
Volume &
Frequency

Memory
Reuse

Distance

Binary
Analyzer

Control flow graph
Loop nesting
structure
BB instruction mix

Post Processing Tool

Architecture
neutral model Scheduler

Architecture
Description

Performance
Prediction
for Target

Architecture
Static Analysis

Dynamic
Analysis

Post Processing



Modeling Memory Reuse Distance



Execution Behavior: NAS LU 2D 3.0



Building Workflow Graphs

• Vision:
—Application developer writes in scripting language

– Examples: Python (EMAN), OGRE (LEAD), Matlab, S-PLUS/R
– Components represent applications

—Software constructs workflow and data movement

• Research
—Related project: Telescoping languages

– Compilation of Matlab and R
– Type analysis
– Pre-optimization of components for different contexts

—Plan: Harvest this work for Grid application development
– Just getting started



Summary

• Making Grid Applications Easy to Develop
—Abstract interfaces (e.g., scripts)
—Effective (and easy) application scheduling
—Automatic performance model construction

• Building on Virtual Grid Abstraction
—Easy application launch, monitoring, and management

• Driven by Real Application Needs
—Initial foci: EMAN, LEAD, and Montage


