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Programming Tools
Focus: Automating critical application-development steps:

• Initiating and managing application execution
—Optimize and launch application on heterogeneous resources
—Support for fault tolerance and rescheduling/migration

• Scheduling application workflows
—Whole-workflow scheduling using performance models

• Constructing performance models
—Automatically from application binaries

– Cross-platform modeling

• Building workflow graphs from high-level scripts
—Examples: Python (EMAN), OGRE (LEAD), Matlab



Managing Application Execution

• Vision: Transparent to the User with Fault Tolerance
—Binaries shipped or preinstalled

– Reconfigured where necessary
—Data moved to computations
—Support for fault tolerance
—Support for rescheduling, migration and restart

• Research
—Separation of concerns between workflow management and virtual

grid
—Support for fault tolerance and rescheduling/migration

– Checkpointing, load projection, performance modeling
—Platform-independent application representation
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Support for Fault Tolerance and Rescheduling

• Fault tolerance
—Workflows: Recovery via Pegasus mechanisms

– Issue: support for registration of completed steps in vgES
—MPI steps: Disk-free checkpointing

– Dongarra talk
—Checkpoint scheduling (Nurmi poster ❶)

• Rescheduling
—Mechanisms for monitoring and extending virtual grids in vgES

– Under development (Huang poster ❷)
—Issue: Determining whether rescheduling will be profitable

– Models to project performance on current and alternative
resources

❶ “Optimal Checkpoint Scheduling using Automatic Resource
Characterization” by Dan Nurmi (UCSB)

❷ “Scheduling Compute Intensive Applications in Volatile, Shared
Resource (Grid) Environments” by Richard Huang (UCSD)



Platform-Independent Applications
• Supporting a Single Application Image for Different Platforms

—Translation and optimization tools that map the application onto the
hardware in an effective and efficient way
– At the high level, resource allocation and scheduling
– At the low level, optimization, scheduling, and runtime

reoptimization
—We are working with the LLVM system (from Illinois)

– Produces good code for a variety of hardware platforms

• Run-time Reoptimization
—The Idea: In response to poor performance, reoptimize
—The Vision: To reduce the runtime cost of reoptimization, move

analysis and planning to compile time
– Example: alternative blocking strategies for a loop nest, with

shift triggered by excessive cache misses



Scheduling Workflows

• Vision:
—Application includes performance models for all workflow nodes

– Performance models automatically constructed
—Software schedules applications onto Grid in two phases

– Virtual grid requirement and acquisition
– Model based scheduling on the returned vGrid

• Research
—Scheduling strategy: Whole workflow

– Dramatic makespan reduction (see Mandal-Liu poster ❶)
—Two-phase scheduling

– Exploring trade-offs
– Expectation: dramatic reduction in complexity with little loss in

performance

❶ “Performance Model-Based Scheduling of EMAN
Workflows” by Anirban Mandal (Rice) and Bo Liu (U Houston)



Workflow Scheduling Results

Dramatic makespan reduction of
offline scheduling over online
scheduling — Application: Montage

Value of performance
models and heuristics
for offline scheduling —
Application: EMAN

”Scheduling Strategies for Mapping Application
Workflows onto the Grid”
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Performance Model Construction
• Vision: Automatic performance modeling

—From binary for a single resource and execution profiles
—Generate a distinct model for each target resource

• Research
—Uniprocessor modeling

– Can be extended to parallel MPI steps
—Memory hierarchy behavior
—Models for instruction mix

– Application-specific models
– Scheduling

• Posters:
❶ “Performance Model-Based Scheduling of EMAN Workflows” by Anirban

Mandal (Rice) and Bo Liu (U Houston)
❷ “Scalable Cross-Architecture Predictions of Memory Latency for Scientific

Applications” by Gabriel Marin (Rice)



Performance Prediction Overview
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Modeling Memory Reuse Distance



Execution Behavior: NAS LU 2D 3.0



Building Workflow Graphs

• Vision:
—Application developer writes in scripting language

– Examples: Python (EMAN), OGRE (LEAD), Matlab, S-PLUS/R
– Components represent applications

—Software constructs workflow and data movement

• Research
—Related project: Telescoping languages

– Compilation of Matlab and R
– Type analysis
– Pre-optimization of components for different contexts

—Plan: Harvest this work for Grid application development
– Just getting started



Summary

• Making Grid Applications Easy to Develop
—Abstract interfaces (e.g., scripts)
—Effective (and easy) application scheduling
—Automatic performance model construction

• Building on Virtual Grid Abstraction
—Easy application launch, monitoring, and management

• Driven by Real Application Needs
—Initial foci: EMAN, LEAD, and Montage


