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Motivation
• There are lots of low-cost, volatile grid resources, 
which are attractive for applications; however, 
understanding application performance is challenging
• Applications face heterogeneity in resource
• Shared resources are dynamic in nature 
• Application performance suffers further from variance 
in runtime prediction models
• Scheduling with different policies and parameters can 
impact performance by 2-5 times 

Research Questions
• Can we use volatile resources as part of 
virtual grids?
• How does dynamic resource load affect 
application performance?
• What scheduling policies should be used to 
account for or even exploit the uncertainties 
in application task runtime prediction?
• How does varying the task-to-resource ratio 
affect application performance?

Results

PSI-BLAST, timeout=10, 
sampling interval = 30 seconds
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• Freshness of dynamic resource data 
does not matter for any data fresher 
than 300 seconds
• Application performance varies less 
than 2% within this range
• Scheduling optimistically improves 
performance as the scheduler can 
tolerate volatility both in task runtime 
prediction as well as in the resource 
availability
• Performance can be further improved 
by rescheduling tasks running much 
longer than expected

• When resources equals or 
exceeds the number of tasks, 
handling of tasks that have greatly 
exceeded their predicted runtime is 
critical
• Rescheduling such tasks can 
improve performance by as much as 
2 to 3 times
• When there are more tasks than 
resources, the opposite policy of 
allowing a late task to run to 
completion is preferred
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Experiments
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• Simulation allows 
controllable and 
repeatable experiments
• Use actual task 
runtimes from PSI-
BLAST and 123D
•Use real resource 
availability from trace 
data
• Use Max-min 
scheduling algorithm to 
schedule tasks
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Applications (workload)

• PSI-BLAST and 123D represent a class of loosely-parallel 
applications typically found in production grids
• Run PSI-BLAST and 123D  to generate actual task runtimes
• Create runtime prediction model by sampling task runtimes

Goals
• Characterize volatile grid resources 
• Understand how fresh dynamic resource data needs 
to be for better application performance
• Identify optimal scheduling techniques under different 
resource conditions
• Identify optimal task-to-resource ratios given 
scheduling policies Future Directions

• Utilize volatile resources for virtual grids
• Make scheduling decisions based on 
monitored information for virtual grids 
•Try hybrid approach of rescheduling after 
longer timeouts
• Perform cost-to-benefit analysis of using 
fresher dynamic resource data by 
determining costs for different quality of 
dynamic resource data
• Experiment with specialized scheduling 
techniques
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Approach
• Identify 12,096 scenarios to study, varying quality of dynamic 
resource data, scheduling policies, and task-to-resource ratio
• Acquire real task runtimes and resource availability data
• Simulate workload for each scenario using real task runtimes 
and resource availability data
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Conclusions
• We can characterize some volatile 
resources (desktop grids)
• With appropriate scheduling policies 
(optimistic plus rescheduling), we can 
tolerate volatile resources
• We do not need the most up-to-date 
dynamic resource data for good 
performance
• Choosing rescheduling policies in volatile 
grid resource environments is critical


