Scheduling Compute Intensive Applications in Volatile, Shared Resource (Grid) Environments
Richard Huang, Henri Casanova, and Andrew A. Chien
Computer Science & Engineering and Center for Networked Systems, University of California — San Diego

4 N

Motivation

* There are lots of low-cost, volatile grid resources,

which are attractive for applications; however,

understanding application performance is challenging

« Applications face heterogeneity in resource

« Shared resources are dynamic in nature

« Application performance suffers further from variance

in runtime prediction models

« Scheduling with different policies and parameters can
Kimpact performance by 2-5 times

-

-

~

Research Questions
» Can we use volatile resources as part of
virtual grids?
* How does dynamic resource load affect
application performance?
* What scheduling policies should be used to
account for or even exploit the uncertainties
in application task runtime prediction?
» How does varying the task-to-resource ratio
__ affect application performance?

-

Goals N
« Characterize volatile grid resources

* Understand how fresh dynamic resource data needs

to be for better application performance

« Identify optimal scheduling techniques under different
resource conditions

« Identify optimal task-to-resource ratios given
scheduling policies

\

; ~~(Volatile
* (Resource /

FUjiTSu

Fuptus Ganeral Amarica, inc

Biglsancwior

Experiments

Applications (workload)

Individual NR database

Sequences

4 N

Input
Genome

iGAP
script

Profile

* PSI-BLAST and 123D represent a class of loosely-parallel
applications typically found in production grids
¢ Run PSI-BLAST and 123D to generate actual task runtimes
¢ Create runtime prediction model by sampling task runtimes

/ Approach

« |dentify 12,096 scenarios to study, varying quality of dynamic
resource data, scheduling policies, and task-to-resource ratio
» Acquire real task runtimes and resource availability data

» Simulate workload for each scenario using real task runtimes
and resource availability data

/

! Quality of Dynamic Scheduling Policies

Resource Data

{ Timeout

Latency i i [2epoch
0s | 100s
i | 2 epochs.
30s | 200s
3 epochs
s _| 3005 | [depochs
5 epochs
Sampling interval 10 epochs
[30s_[100s 20 epochs
[60s_[2005 40 epochs
100 epochs

\J

Ksimulation allows
controllable and
repeatable experiments
« Use actual task

Compare to
actual
runtimes from PSI- e X
Can
BLAST and 123D e p— Hande
*Use real resource more tasks Tasks ey
availability from trace ves
— @
e ==

data
* Use Max-min
No Output:
epochs ran

scheduling algorithm to
% CPU used
Qohedule tasks e

Simulator

Done

Supported in part by the National Science Foundation under awards NSF Cooperative Agreement ANI-0225642 (OptIPuter), NSF CCR-0331645 (VGrADS), NSF ACI-0305390, and NSF Research

Infrastructure Grant EIA-0303622. Support from the UCSD Center for Networked Systems, BigBangwidth, and Fujitsu is also gratefully acknowledged. '—M:

Wi -rullul' ‘I"r\+d' .JI ur]lb'a'\hﬁllad ¥}

Results
PSI-BLAST, timeout=10, « Freshness of dynamic resource data
sampling interval =30 seconds does not matter for any data fresher
than 300 seconds
12 « Application performance varies less
1 ::’:{’jj‘ than 2% within this range

2 0e Dlat=20s « Scheduling optimistically improves
T o6 Olat=60s performance as the scheduler can
2 ma=00s) tolerate volatility both in task runtime
T :::zsg: prediction as well as in the resource

02 Duatasoos || @vailability

Rescheduled Continued Rescheduled Continued

Pessimistic Optimistic

« Performance can be further improved
by rescheduling tasks running much
longer than expected

* When resources equals or
exceeds the number of tasks,
handling of tasks that have greatly

PS-BLAST
sampling interval =200seconds

exceeded their predicted runtime is
critical

* Rescheduling such tasks can
improve performance by as much ag
2 to 3 times

* When there are more tasks than
resources, the opposite policy of
allowing a late task to run to
completion is preferred

Pessinistic Reschedued
Tesk-to-Resource Retio

Pessimistic Continued

/ Conclusions

* We can characterize some volatile
resources (desktop grids)

» With appropriate scheduling policies
(optimistic plus rescheduling), we can
tolerate volatile resources

* We do not need the most up-to-date
dynamic resource data for good
performance

» Choosing rescheduling policies in volatile
grid resource environments is critical

N

/

/ Future Directions \

« Utilize volatile resources for virtual grids
« Make scheduling decisions based on
monitored information for virtual grids
«Try hybrid approach of rescheduling after
longer timeouts

« Perform cost-to-benefit analysis of using
fresher dynamic resource data by
determining costs for different quality of
dynamic resource data

« Experiment with specialized scheduling

Qechniques

Reference

Richard Huang. Scheduling Compute Intensive Applications in Volatile, Shared Resource
(Grid) Environments. Master’s thesis, University of California, San Diego, 2005.

i i Software Profect

