
Scheduling Compute Intensive Applications in Volatile, Shared Resource (Grid) Environments
Richard Huang, Henri Casanova, and Andrew A. Chien

Computer Science & Engineering and Center for Networked Systems, University of California – San Diego

Supported in part by the National Science Foundation under awards NSF Cooperative Agreement ANI-0225642 (OptIPuter), NSF CCR-0331645 (VGrADS), NSF ACI-0305390, and NSF Research 
Infrastructure Grant EIA-0303622.  Support from the UCSD Center for Networked Systems, BigBangwidth, and Fujitsu is also gratefully acknowledged.

Motivation
• There are lots of low-cost, volatile grid resources, 
which are attractive for applications; however, 
understanding application performance is challenging
• Applications face heterogeneity in resource
• Shared resources are dynamic in nature 
• Application performance suffers further from variance 
in runtime prediction models
• Scheduling with different policies and parameters can 
impact performance by 2-5 times 

Research Questions
• Can we use volatile resources as part of 
virtual grids?
• How does dynamic resource load affect 
application performance?
• What scheduling policies should be used to 
account for or even exploit the uncertainties 
in application task runtime prediction?
• How does varying the task-to-resource ratio 
affect application performance?

Results

PSI-BLAST, timeout=10, 
sampling interval = 30 seconds

0

0.2

0.4

0.6

0.8

1

1.2

Reschedule d Cont inue d Re sc he duled Cont inued

P essimist ic Opt imist ic

Ef
fic

ie
nc

y

pe rfec t

la t =0s   

la t =30s   

la t =60s   

la t =100s

la t =200s

la t =300s

la t =1500s

• Freshness of dynamic resource data 
does not matter for any data fresher 
than 300 seconds
• Application performance varies less 
than 2% within this range
• Scheduling optimistically improves 
performance as the scheduler can 
tolerate volatility both in task runtime 
prediction as well as in the resource 
availability
• Performance can be further improved 
by rescheduling tasks running much 
longer than expected

• When resources equals or 
exceeds the number of tasks, 
handling of tasks that have greatly 
exceeded their predicted runtime is 
critical
• Rescheduling such tasks can 
improve performance by as much as 
2 to 3 times
• When there are more tasks than 
resources, the opposite policy of 
allowing a late task to run to 
completion is preferred

PSI-BLAST
sampling interval = 200 seconds

0
0.2
0.4
0.6
0.8

1
1.2

1:2 1:1 2:1 5:1 10:1 20:1 40:1 100:1 1:2 1:1 2:1 5:1 10:1 20:1 40:1 100:1

Pessimistic Rescheduled Pessimistic Continued

Task-to-Resource Ratio

Ef
fic

ie
nc

y perfect

lat=0s

lat=30s

lat=60s

lat=100s

lat=200s

lat=300s

lat=1500s

Experiments

Done

Yes
More  
Tasks

Schedule
Tasks

Compare to 
actual 
availability

Handle 
Incomplete 
Tasks

Input 
Arguments Output:

# epochs ran
% CPU used
% CPU wasted

No

Can 
schedule 

more tasks

• Simulation allows 
controllable and 
repeatable experiments
• Use actual task 
runtimes from PSI-
BLAST and 123D
•Use real resource 
availability from trace 
data
• Use Max-min 
scheduling algorithm to 
schedule tasks

Simulator

iGAP
script

123D
3-D Structural 
Map

Input 
Genome

seq6

seq4 seq5

seq1 seq2 seq3

seq7 seq8 seq9

seq6

seq4

seq5

seq1

Individual 
Sequences

.

.

.

seq9

PSI-
BLAST

NR database

Profile

3 iterations

Applications (workload)

• PSI-BLAST and 123D represent a class of loosely-parallel 
applications typically found in production grids
• Run PSI-BLAST and 123D  to generate actual task runtimes
• Create runtime prediction model by sampling task runtimes

Goals
• Characterize volatile grid resources 
• Understand how fresh dynamic resource data needs 
to be for better application performance
• Identify optimal scheduling techniques under different 
resource conditions
• Identify optimal task-to-resource ratios given 
scheduling policies Future Directions

• Utilize volatile resources for virtual grids
• Make scheduling decisions based on 
monitored information for virtual grids 
•Try hybrid approach of rescheduling after 
longer timeouts
• Perform cost-to-benefit analysis of using 
fresher dynamic resource data by 
determining costs for different quality of 
dynamic resource data
• Experiment with specialized scheduling 
techniques

Scheduling Policies
Scheduling
Aggressiveness

Pessimistic

Optimistic

Handling
Incomplete 
Tasks

Reschedule

Continue

Timeout
1 epoch
2 epochs
3 epochs
4 epochs
5 epochs
10 epochs
20 epochs
40 epochs
100 epochs

Task to 
Resource 
Ratio

1:2

1:1

40:1

5:1

10:1

20:1

2:1

100:1

Quality of Dynamic
Resource Data
Latency

0s
30s
60s

100s
200s
300s

epoch

Sampling interval
30s
60s

100s
200s
300s
epoch

Approach
• Identify 12,096 scenarios to study, varying quality of dynamic 
resource data, scheduling policies, and task-to-resource ratio
• Acquire real task runtimes and resource availability data
• Simulate workload for each scenario using real task runtimes 
and resource availability data

Richard Huang. Scheduling Compute Intensive Applications in Volatile, Shared Resource 
(Grid) Environments. Master’s thesis, University of California, San Diego, 2005.

Reference

Virtual Grid
Cluster

Cluster

Server
Server

Server

Cluster

Volatile 
Resource

Volatile 
Resource?

?

Conclusions
• We can characterize some volatile 
resources (desktop grids)
• With appropriate scheduling policies 
(optimistic plus rescheduling), we can 
tolerate volatile resources
• We do not need the most up-to-date 
dynamic resource data for good 
performance
• Choosing rescheduling policies in volatile 
grid resource environments is critical


