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Motivation

* There are lots of low-cost, volatile grid resources,

which are attractive for applications; however,

understanding application performance is challenging

« Applications face heterogeneity in resource

« Shared resources are dynamic in nature

« Application performance suffers further from variance

in runtime prediction models

« Scheduling with different policies and parameters can
Kimpact performance by 2-5 times
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Research Questions
» Can we use volatile resources as part of
virtual grids?
* How does dynamic resource load affect
application performance?
* What scheduling policies should be used to
account for or even exploit the uncertainties
in application task runtime prediction?
» How does varying the task-to-resource ratio
\__ affect application performance?
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Goals N
« Characterize volatile grid resources

* Understand how fresh dynamic resource data needs

to be for better application performance

« Identify optimal scheduling techniques under different
resource conditions

« Identify optimal task-to-resource ratios given
scheduling policies
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* PSI-BLAST and 123D represent a class of loosely-parallel
applications typically found in production grids
¢ Run PSI-BLAST and 123D to generate actual task runtimes
¢ Create runtime prediction model by sampling task runtimes

/ Approach

« |dentify 12,096 scenarios to study, varying quality of dynamic
resource data, scheduling policies, and task-to-resource ratio
» Acquire real task runtimes and resource availability data

» Simulate workload for each scenario using real task runtimes
and resource availability data
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Ksimulation allows
controllable and
repeatable experiments
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Results
PSI-BLAST, timeout=10, « Freshness of dynamic resource data
sampling interval =30 seconds does not matter for any data fresher
than 300 seconds
12 « Application performance varies less
1 ::’:{’jj‘ than 2% within this range

2 0e Dlat=20s « Scheduling optimistically improves
T o6 Olat=60s performance as the scheduler can
2 ma=00s ) tolerate volatility both in task runtime
T :::zsg: prediction as well as in the resource
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« Performance can be further improved
by rescheduling tasks running much
longer than expected

* When resources equals or
exceeds the number of tasks,
handling of tasks that have greatly

PS-BLAST
sampling interval =200seconds

exceeded their predicted runtime is
critical

* Rescheduling such tasks can
improve performance by as much ag
2 to 3 times

* When there are more tasks than
resources, the opposite policy of
allowing a late task to run to
completion is preferred
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/ Conclusions

* We can characterize some volatile
resources (desktop grids)

» With appropriate scheduling policies
(optimistic plus rescheduling), we can
tolerate volatile resources

* We do not need the most up-to-date
dynamic resource data for good
performance

» Choosing rescheduling policies in volatile
grid resource environments is critical
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/ Future Directions \

« Utilize volatile resources for virtual grids
« Make scheduling decisions based on
monitored information for virtual grids
«Try hybrid approach of rescheduling after
longer timeouts

« Perform cost-to-benefit analysis of using
fresher dynamic resource data by
determining costs for different quality of
dynamic resource data

« Experiment with specialized scheduling

Qechniques
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