
Performance Model Based Scheduling of EMAN WorkflowsPerformance Model Based Scheduling of EMAN Workflows
Anirban Mandal1, Ken Kennedy1, Gabriel Marin1, John Mellor-Crummey1

Charles Koelbel1, Bo Liu2, Lennart Johnsson2

1Dept of Computer Science, Rice University, Houston TX
2Dept of Computer Science, University of Houston, Houston TX
{anirban, ken, mgabi, johnmc, chk}@cs.rice.edu, {bliu2, johnsson}@cs.uh.edu

Workflow ApplicationsWorkflow Applications

AbstractAbstract

Performance ModelingPerformance Modeling

AcknowledgmentsAcknowledgments

Future WorkFuture Work

A Workflow Application:EMANA Workflow Application:EMAN
•Software for Single Particle Analysis
and Electron Micrograph Analysis

—Open source software for the
scientific community
—Developed by Dr Wah Chiu & Dr Steve
Ludtke, Baylor College of Medicine
—http://ncmi.bcm.tmc.edu/homes/stevel
/EMAN/EMAN/doc/

•Performs 3-D reconstruction of a
particle from randomly-oriented images

—Typical particle = Virus or ion channel
—Typical images = Elctromicrographs
—Typical data set = 10K-100K particles
—Useful for particles about 10-1000nm

•GrADS/VGrADS project to put EMAN
on Grid

•This work is supported by the National Science Foundation under Grant
No.ACI 0103759(the GrADS Project) and Cooperative Agreement No. CCR-
0331654 (the VGrADS Project). This work was supported in part by the Rice
Terascale Cluster funded by NSF under Grant EIA-0216467, Intel, and HP.

•We sincerely acknowledge the help we received from Dr. Wah Chiu and Dr.
Steve Ludtke from the Baylor College of Medicine and Anshu Dasgupta, Mark
Mazina and Dr. Keith Cooper from Rice University.

We present our strategies of performance-model based, plan-ahead
scheduling of workflows for a bio-imaging application called EMAN [Electron
Micrograph Analysis]. We present our tools and strategies for constructing
computational and memory-hierarchy performance models for EMAN workflow
components. We then describe our algorithm for scheduling the workflow
components onto Grid resources using the performance models. Results of our
experiments show that our workflow scheduling strategies produce 1.5 to 2
times better makespan than existing strategies for this application. Also, we
obtain good load balance across different Grid sites using these strategies.

•Application consists of a
collection of components to be
executed in a certain partial order
for successful execution

•Several components with various
data and control dependencies

LIGO

EOL

2MASS images

Mosaic

mProject

mDiff

mFitplane
mConcat

mBgModel

mBackground

mAdd

Montage

EMAN
Refinement
Process

proc3d

volume

Seq. component

Parallel component

proc2d
make3d

make3diter

make3diter

make3diter

volume

project3d

classalign2

classalign2

classalign2

classalign2

classalign2

classalign2

classesbymra

classesbymra

classesbymra

• “Scheduling Strategies for Mapping Application Workflows onto the Grid”
Mandal, A, Kennedy, K, Koelbel, C, Marin, G, Liu, B, and Johnsson, L
14th IEEE Symposium on High Performance Distributed Computing (HPDC 2005).
IEEE Computer Society Press.
•“Resource Allocation Strategies for Workflows in Grids”
Blythe, J, Jain, S, Deelman, E, Gil, Y, Vahi, K, Mandal, A, and Kennedy, K
IEEE International Symposium on Cluster Computing and the Grid (CCGrid05)

•"Heuristics for Scheduling Parameter Sweep applications in Grid environments"
Henri Casanova, Arnaud Legrand, Dmitrii Zagorodnov and Francine Berman
Proceedings of the 9th Heterogeneous Computing workshop (HCW'2000), 2000.

.

MPI job

Input

Par Sweep

Access DB

Write DB

Result

•Problem: Map the components of the given Workflow DAG to a set of
available Grid resources

•Objective function: minimize the makespan of the whole Workflow

•Overview
—Resource Modeling using NWS and MDS
—Sophisticated Application Component Performance models that take into account
both computational performance and memory hierarchy performance
—Walk the DAG and find the components that are currently available
— Add data movement costs from the slowest predecessor in the performance
model of the successor
—Adapted known heuristics to schedule available components

•Step 1: Assign rank values
—For each component, assign rank values for each resource
—Rank values reflect the expected performance of a particular component on a
particular resource
—Convention: Lower the rank value, better is the match of the resource for the
particular component

•Step 2: Solve for final mapping
—Prepare a “Rank Matrix” from the rank values
—Use heuristics to find out final assignments of components to resources

•Used known heuristics in literature [parameter sweep applications] and adapt
them. For a set of available components, choose the next (component-
resource) mapping based on these heuristics

—Min-min
–Intuition: At each step minimally increase current makespan by choosing the
next job having the minimum estimated completion time [over all jobs]

—Max-min
–Intuition: Satisfy long jobs first with the hope that the shorter ones are
mapped in the same interval on other resources

—Sufferage
–Intuition: Give precedence to jobs who will suffer most if they are not
assigned to their respective best resources

Scheduling WorkflowsScheduling Workflows

€

Rank(compi ,res j) = EstExecTimei (size(compi),arch(res j))
+EstCommTime(compi ,res j)

• Rank of a component is total time to run it on a resource

€

EstExecTime(n,a) =
FP(n,a) + L1(n,a) + L2(n,a) + L3(n,a)

Clock(a)
FP(n,a) = FPcount(n) × FPdelay(a)

FPpipes(a)

Lk (n,a) = Lkcount(n) × Lk penalty(a), k =1,2,3

€

EstCommTime(c,r) = Lat(map(p),r)+Vol(p,c) ⋅BW (map(p),r)()
p∈Parent (c)
∑

• Communication time is latency plus bandwidth cost
—Estimated from NWS

EMAN
Refinement
Process

Object
Code

Binary
Instrumenter

Instrumented
Code

Execute

Mem
Reuse

Dist

Binary
Analyze

r

CFG

Loop nests

Post Processing Tool

Arch neutral
model

Arch
Descrip

Perf Prediction
on Target Arch

Static
Analysis

Dynamic
Analysis

Post
Processing

•Memory access time (cache miss
penalty) is estimated from black-
box analysis of object code

—Static analysis determines code
structure
—Training runs with instrumented
binary produce architecture-
independent memory reuse
distance histograms
—Fit polynomial models of reuse
distances and number of accesses
—Convolve with architecture
features (e.g. cache size) for full
model

•(Floating point) Computation time is estimated from semi-empirical models
—Form of model given by application experts

–For eg. EMAN is floating-point intensive ⇒ Count floating-point ops
–Key kernels are O(n2) ⇒ Fit to c2·n2 + c1·n + c0

—Training runs with small data sizes
—Collect floating-point operation counts from hardware performance counters

—Least-squares fit of collected data to model to determine coefficients (FPcount)
—Architecture parameters used to complete model (FPRpt)

Estimating Computation TimeEstimating Computation Time

Estimating Memory Access TimeEstimating Memory Access Time

None
GHz Only

Accurate

He
ur

is
tic

Ra
nd

om

0

200

400

600

800

1000

1200

Ti
m

e
(m

in
)

0

5

10

15

20

25

Good est, no
load

Good est,
loaded

Poor est, no
load

VGrADS
Random

<1 min1i2-58proc3d

<1 min1i2-58proc3d

47 min1i2-58make3d

45 min379i2-53 to 58classalign2

84 h. 30 min

81 h. 41 min

68 [i2-*]

42 [torc*]

i2-53 to 58

 torc1-7

classesbymra

<1 min1i2-58proc2d

1h. 48 min1i2-58project3d

<1 min1i2-58proc3d

Component
Exec. Time

#
instances

Resource(s
) Chosen

Component
Name

50550538613506050HAP
757
762
1121

makespan
(min)

41075713505258HGP
53076210345357RAP
29811219432189RNP

t(medusa)
(min)

t(RTC)
(min)

n(medus
a)

n(RTC)i(medusa)
Opteron

 i(RTC)
IA-64

•Set of resources:
—50 rtc nodes at Rice (IA-64)
—13 medusa nodes at U of Houston (Opteron)

•RDV data set: medium/large (2GB)

•Varying scheduling strategy
—RNP - Random / No PerfModel
—RAP - Random / Accurate PerfModel
—HCP - Heuristic / GHz Only PerfModel
—HAP - Heuristic / Accurate PerfModel

ResultsResults

•Our performance models were accurate
—Good Case

– rank[RTC_node] / rank[medusa_node] = 3.41
– actual_exec_time[RTC_node] / actual_exec_time[medusa_node] = 3.82

—Less good Case
– rank[acrl_node] / rank[medusa_node] = 2.36
– actual_exec_time[acrl_node] /actual_exec_time[medusa_node] = 3.01

•Accurate relative performance model values result in efficient load balance
of the classesbymra instances

1

3

32

2

4 5

6 13 14 15 16 17 18 19

20 21 22 23 24 25

26 27 28 29 30 31

•Proposed improvements
— If expected data movement cost between two components is very high, they
should be mapped to the same resource - “fusion” brings the DAG to the “right”
granularity
—The approach in the data movement reduction step is to model it as a
“weighted-fusion” problem
— Generally, some application components are key components in the DAG and the
makespan of the DAG heavily depends on whether the key steps have been
mapped to the “right” set of resources or not
— The approach in the global scheduling step is

–Conditionally map key components
–Find mapping for the rest by percolating information bottom-up and then
top-down in the DAG

ReferencesReferences

•Capture both the computation load and memory hierarchy performance
—Memory hierarchy performance is a key for the application performance models
—Including computation load modeling is necessary for the computation intensive
application

Accurate Load Balance

Value of Performance Models and Heuristics

Accuracy of Performance Models

•Small GrOEL Data Set: Effect of
Machine loads

while all availComponents not mapped do
foreach Component, j do

foreach Resource, R do
ECT(j,R)=rank(j,R)+EAT(R);

endforeach
Find minECT(j,R) over all R;
Find 2nd-minECT(j,R) over all R;

endforeach
Calculate min(minECT(j,R)) over all j; //min-min
Calculate max(minECT(j,R)) over all j; //max-min
Calculate min(2nd-minECT(j,R)-minECT(j,R))
over all j; //sufferage
Store mapping;
Update EAT(R) and makespan;

Endwhile

Algorithm 2. findBestSchedule

foreach heuristic do
while all components not mapped do

Find availComponents; // satisfy dependencies
Calculate the rank matrix;
findBestSchedule(availComponents, heuristic);

endwhile
endforeach
Select mapping with minimum makespan among three;
Output selected mapping;

Algorithm 1. Workflow Scheduling

Scheduling Heuristics

Algorithm

ECT(j,R): Estimated Completion Time

of a component, j on a resource, R
EAT(R): Estimated Availability Time

of a resource, R

Runs the three heuristics

Overall Scheduling Algorithm

