LEAD Resource Requirement Notes

Suresh Marru, Lavanya Ramakrishnan <u>{smarru@cs.indiana.edu</u>, <u>lavanya@renci.org</u> } DRAFT

This document tries to capture the resource needs of the LEAD static workflow as known today. This is meant to guide discussion on resource management and scheduling for LEAD workflows.

Background:

Atmospheric modeling and weather prediction systems today are serial, static and run in fixed configurations of the numerical models. Such a system is unable to respond to dynamic changes in the weather or new data that might become available. LEAD is a National Science Foundation project that is creating an integrated, scalable cyberinfrastructure for mesoscale meteorology research and education. The goal of LEAD is to provide a service oriented architecture that allows the system to be composed as workflow components allowing the system to rapidly react to changes in the atmosphere and resource behavior.

The workflow is initiated by real-time data arriving from radars which launches a number of preprocessing steps for terrain processing, interpolation, surface preprocessing, etc. For a truly accurate forecast it is important that the next step in the workflow, composed of the numerical models, is run with different initial conditions that represent the different physical parameters that are possible. Results from low resolution analysis might launch more model runs focused on specific geographic regions where weather phenomena might be occurring. As a final step the results from the model runs are analyzed and visualized, to possibly aid emergency response workers, decision makers and others.

The atmospheric modeling workflow has unique characteristics such as large data transfer, realtime data streams, huge computational demands, strict deadlines for workflow completion, need to steer external radars to collect new data, respond to weather phenomena. Thus, we need

- timely co-ordination of different types of resources to be able to meet soft real-time guarantees
- co-ordination across the layers to allocate, monitor and adapt in real-time while meeting strict performance and reliability guarantees.
- support for access and co-ordination of high-speed network (optical control links) for large data movements
- co-allocation of real-time data streams and computational resources
- multi-layered monitoring and adaptation to support the dynamic nature of workflows

Resource Requirements Discussion:

In a typical case, the user uses a portal interface and specifies the following for a workflow

- a central location (latitude & longitude at a point)
- a three dimensional grid around the central point by specifying the X,Y,Z sizes in kilometers
- resolution for the 3D grid (number of grid points within the box). (lesser the distance between grid points meaning richer resolution and need for more computing power and data storage)

The factors that determine the run time (and hence resource requirements) are: grid size, resolution, forecast duration.

Example 1: Resource requirements for a case study of Hurricane Katrina Forecast (Aug 29th 2005) in New Orleans area

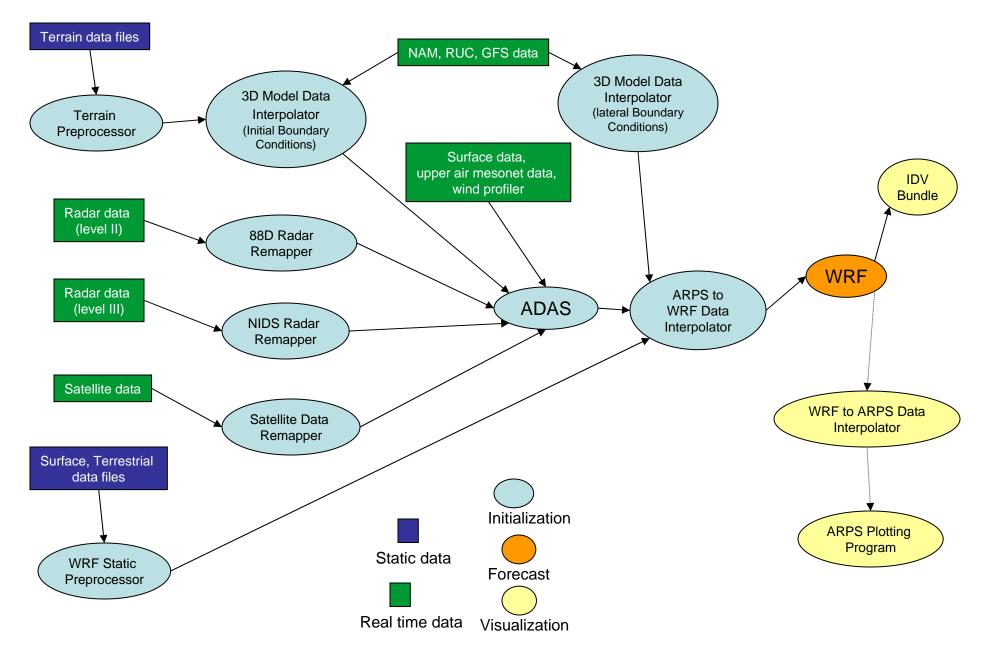
- Forecast Dimensions: 183 X 163 X 51 around latitude 28.5 deg.N, longitude =-87.0 deg.E
- Resolution: 9 km
- Forecast duration: 30 hour prediction
- Total Workflow execution time: ~ 128 mins

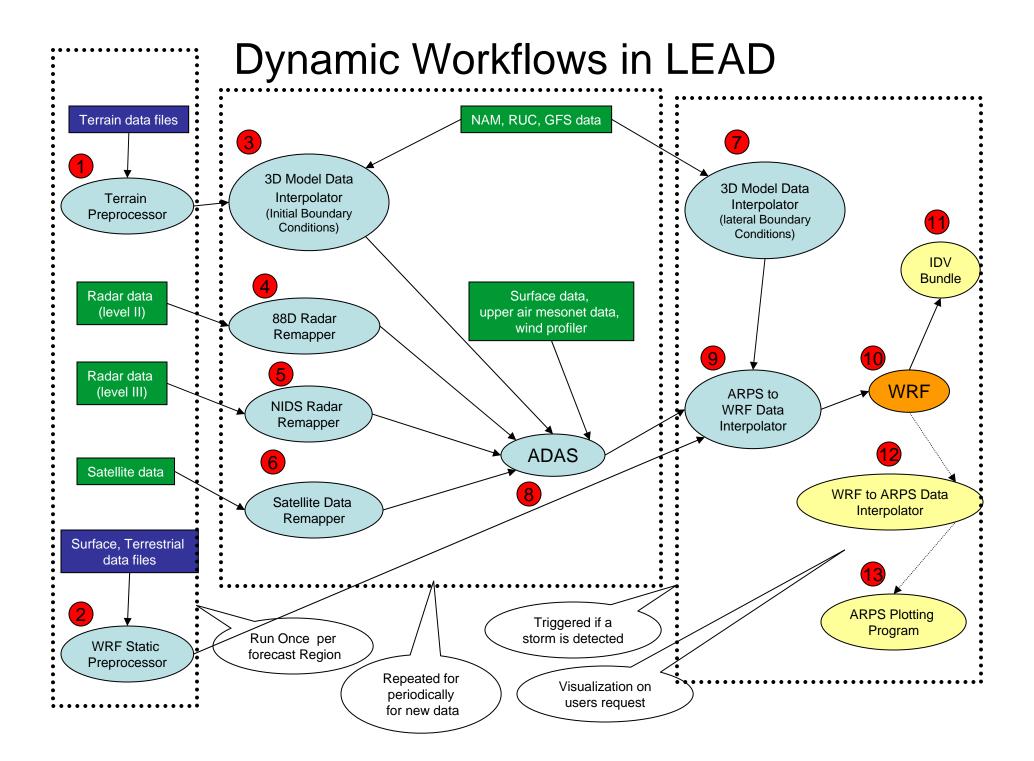
The table captures the resource and data sizes for a workflow skeleton for a typical LEAD workflow for

Service Name	Application Description	Input Data		Output Data		Execution time (minutes,	Machine Name	No of processo rs used	Machine Specifications
		Data Descrip tion	Size	Data Description	Size	seconds)			
Terrain Preproce ssor	TerrainDataPreprocessorcodenamedARPSTRNDescription:PerformsPerformsanalysisofterraindataandgeneratesa terrainfilebyinterpolatingthedatatodatatogrid.	Terrain data sets and a terrain configu ration file.	55M	Processed terrain data on forecast grid	2M	0 m, 4 secs	chinkapin. cs.indiana. edu	1	IU LEAD data testbed with - Dual 3.0 GHz processors with 2GB Memory

88D	88D Radar	Observ	N/A	Re-mapped	N/A	This	chinkapin.	1	IU LEAD
Radar	Remapper code	ed	1N/A	data files	1N/A	applicatio	cs.indiana.	1	data testbed
Remapp	named	WSR-		onto		n will be	edu		with - Dual
er	88D2ARPS	88D		forecast		parallelize	euu		3.0 GHz
CI	Description:	Level-		grid.		d this			
	Converts raw	II radar		gilu.		month so			processors with 2GB
	NEXRAD Level	data				the current			Memory 20B
	II radar data in	files				numbers			Memory
	polar coordinates	and a				will be			
	1					obsolete			
	to Cartesian coordinates and	applica tion				obsolete			
	remaps the data to	configu ration							
	the ARPS grid.	file							
NIDS	NIDS Radar Data	Observ	N/A	D	NT / A	This	-1-1	1	IU LEAD
Radar			IN/A	Re-mapped	N/A		chinkapin.	1	
	Remapper code	ed		data files		applicatio	cs.indiana.		data testbed
Remapp	named	WSR-		onto		n will be	edu		with - Dual
er	NIDS2ARPS	88D		forecast		parallelize			3.0 GHz
	Description:	Level-		grid.		d this			processors
	Converts WSR-	II radar				month so			with 2GB
	88D Level-III raw	data				the current			Memory
	velocity and	files				numbers			
	reflectivity data	and a				will be			
	and remaps it onto	applica				obsolete			
	a sigma-Z	tion							
	Cartesian ARPS	configu							
	grid.	ration							
0 . 11.		file		р ·	NT / A		1.1.1.	1	
Satellite	Satellite Data	Observ	N/A	Re-mapped	N/A	This	chinkapin.	1	IU LEAD
Data	Remapper code	ed data		data files		applicatio	cs.indiana.		data testbed
Remapp	named	from		onto		n will be	edu		with - Dual
er	MCI2ARPS	satellite		forecast		parallelize			3.0 GHz
	Description:	s and		grid.		d this			processors

	Remaps observed McIDAS GVAR AREA satellite data from the satellite-observed pixels to the ARPS grid.	applica tion configu ration file.				month so the current numbers will be obsolete			with 2GB Memory
3D Model Data Interpol ator	3D Model Data Interpolator code named EXT2ARPS Description: Extracts and interpolates pertinent fields from a National Weather Service model forecast dataset to an ARPS grid to provide an ADAS analysis background or initial conditions and boundary conditions for an ARPS/WRF forecast. Output: Processed data files with fields on ARPS grid in standard ARPS history	d data from externa l	147M B	Interpolate d data files onto forecast grid.	699 MB	11mins	Odin.cs.in diana.edu	32	272 Processor IU Research Cluster with 8 Head nodes and 128 Compute nodes of Dual 2.0 GHz Opterons with 4GB Ram


	format and external boundary conditions format.								
WRF Static Data Preproce ssor	Surface Characteristics Preprocessor code named WRFSTATIC Description: Prepares the surface characteristic data set for use in ARPS and generates surface characteristic files with soil types, vegetation types, leaf area index and surface roughness.	A configu ration file with soil type, vegetat ion type and vegetat ion fraction data files	4500 MB	Constructe d set of surface and vegetation characterist ic fields for the ARPS grid.	37M B	3 mins	chinkapin. cs.indiana. edu	1	IU LEAD data testbed with - Dual 3.0 GHz processors with 2GB Memory
ADAS- ARPS Data Analysis System	ARPSDataAnalysis System –ADASDescription:Generates3Dgriddedanalysisofthecurrentatmospherebycombining theobservedinformationfromNEXRADradars,	Process ed observa tional data from various data preproc essors and applica	170M B	ARPS history formatted analyzed data.	149 MB	19 mins	chinkapin. cs.indiana. edu	1	IU LEAD data testbed with - Dual 3.0 GHz processors with 2GB Memory


ARPS- to-WRF Data Convert er	wind profilers, satellites, surface observation networks and aircrafts with a background field created by external model data interpolator. ARPS to WRF data converter code named ARPS2WRF Description: Ingests data files in ARPS history format and generates WRF input and lateral boundary files.	tion configu ration file. Surface charact eristic files and initializ ation files in ARPS data format and a applica	714M B	WRF input file, WRF lateral boundary file and WRF initializatio n files in NetCDF format.	198 MB	16	Odin.cs.in diana.edu	32	272 Processor IU Research Cluster with 8 Head nodes and 128 Compute nodes of Dual 2.0 GHz Opterons with 4GB Ram
		tion configu ration file.							
WRF Model	WRF Model code named WRF Description: Performs storm, mesoscale and synoptic weather prediction by a	A configu ration file, ADAS analysi s data	293M B	Weather forecast output data netcdf files.	2300 GB	72 mins	Odin.cs.in diana.edu	64	272 Processor IU Research Cluster with 8 Head nodes and 128 Compute nodes of Dual

	non-hydrostatic, limited area model to study convection, baro- clinic waves, boundary layer turbulence, real- time weather phenomena.	and later bounda ry conditi ons generat ed by externa l model interpol ator.							2.0 GHz Opterons with 4GB Ram
WRF- to- ARPS Data Convert er	WRF to ARPS data converter code named WRF2ARPS Description: Converts WRF output to ARPS format to feed into ARPS post processing components.	Weathe r forecas t output data netcdf files in WRF output format	2300 MB	WRF output in ARPS history format	2500 MB	17 mins	Odin.cs.in diana.edu	64	272 Processor IU Research Cluster with 8 Head nodes and 128 Compute nodes of Dual 2.0 GHz Opterons with 4GB Ram
ARPS Plotting Program	ARPSPlottingProgramcodenamed ARPSPLTDescription:Generatescontourand vector plots of2Dcrossandverticalprofiles.Thegraphical output is	Weathe r forecas t output data netcdf files, mapdat a files and a	2700 MB	Forecast output images.	35M B	9 mins	Odin.cs.in diana.edu	32	272 Processor IU Research Cluster with 8 Head nodes and 128 Compute nodes of Dual 2.0 GHz Opterons with 4GB Ram

in format.	Postscript	tion configu				
		ration				
		files.				

LEAD Static Workflow

Dynamic and Adaptive workflows in LEAD

Lavanya Ramakrishnan, Suresh Marru

lavanya@renci.org, smarru@cs.indiana.edu

DRAFT: This document captures some of the dynamic and adaptive notions of LEAD that have been discussed. It will evolve with more discussions in the team.

Atmospheric modeling and weather prediction systems today are serial, static and run in fixed configurations of the numerical models. Such a system is unable to respond to dynamic changes in the weather or new data that might become available. The workflow is initiated by real-time data arriving from radars which launches a number of pre-processing steps for terrain processing, interpolation, surface preprocessing, etc. For a truly accurate forecast it is important that the next step in the workflow composed of the numerical models is run with different initial conditions that represent the different physical parameters that are possible. Results from low resolution analysis might launch more model runs focused on specific geographic regions where weather phenomena might be occurring. As a final step the results from the model runs are analyzed and visualized, to possibly aid emergency response workers, decision makers and others.

The LEAD workflow has dynamic and adaptive characteristics from mesoscale meteorology as well from the computer science perspective. From the weather perspective, the workflow has to adapt to changing conditions in the weather and processed or analyzed data. The goal of the LEAD system is to make sure that the workflows run so as to generate timely and accurate forecasts.

Here are *some* example situations where LEAD workflows might be dynamic and adaptive

Characteristic	Impact	Additional	Workflow	Example	Data Implications
	r	notes	Implications [e.g.	resource	P
			steps that will be	management	
			repeated/in loop	implications	
Numerical Model					
Adaptation in time:	Initial variation	Grid and	3,4,5,6,8,7, 9,10	Resource affinity	Real-time data. Data
running successive	settles down to a	resolution is	will run	from previous	pre-processed from
forecasts more	more consistent	the same. The		run, advanced	previous workflow
frequently in times of	solution	forecast		reservation	iteration for the terrain
weather phenomena		length reduces		knowing new data	can be reused
		progressively		will come	
Adaptation in space:	Used to focus on	Grid,	Child workflow	Expand resource	New data might need to
nested grid over region	suspicious regions	resolution,	with possibly all	set	be collected from
of interest		forecast	elements.		radars, etc.
		length can			
		vary			
Ensemble forecasting:	Study different initial	Grid,	10 repeated	Co-allocation of	
Multiple parallel runs	conditions	resolution,		resources	
		forecast			
		length is same			
Observing Systems					
Localized sensors:				Different resource	Sensor data
additional localized				types, data	
available		~ • •	<u></u>	streaming	
CASA Radars: steer		Grid,	Child workflow		
radar to collect localized		resolution,	with possibly all		
data		forecast	elements.		
		length will be	Subsequent		
	~	different	iterations may not		
Call and a farmation to			need all steps		
Cyberinfrastructure					

Performance:	Repeat the step and Reschedule part
Underlying resource is	possibly reschedule of or entire
not meeting the	and migrate tasks workflow
expectation and the	that come after the
deadline for entire	step in question.
workflow will not be	
met	
Reliability: Underlying	Migrate or
resource MTTF is less	overprovision a
than running time.	particular task
Web Service: The	The service needs
service managing a	to be replicated and
workflow task is	load balancing
overloaded	needs to have in
	service selection at
	the BPEL workflow
	level