
VGrADS Execution System Plans

February 10, 2004

Editor: Andrew A. Chien

with input from Henri Casanova, Rich Wolski, Jack Dongarra, Fran
Berman, Dan Reed, Carl Kesselman, Yang-seok Kee, Alex Olugbile,

Richard Huang

1. What is a Virtual Grid?
- something that accelerates and improves decision making about resources

o provides structure for information collection by the execution
system

o provides structure for efficient presentation to the application /
libraries / programming system

o enables the scope of resource monitoring and scheduling to be
reduced, improving scalability

o enables proactive and reactive resource monitoring, acquisition to
improve properties of performance, reliability, stability,
security, etc.

- focus is on resource management, selection, allocation, and binding
- many attributes can be represented, including security, reliability, as

well as traditional performance measures
- improved capability enables better decision making and scaling to larger

resource environments
- introduces two views of resources

o those currently being used the application/system
o those being monitored, and selected against

2. How are Virtual Grid abstractions defined?

There are many possibilities.
- top-down (from the application); prescriptive in describing a desired

virtual environment; driving the virtualization; all of the interaction
of these then managed transparently in the underlying grid system

- bottom-up (from the resources and structures); system resources organized
into virtual grids; enhanced properties with respect to those grids;
rapid selection and binding

- resource properties
- communication structure properties
- and aggregates over these such as reliability, quality of service

3. Oracle Style Example:
o Local association of a mainframe and collection of desktops
o Application needs of these associated in a virtual grid, which can

then be tied to underlying physical resources
o If no underlying resource managers couple these resources together

(a mainframe and set of workstations), the you might select from a
pool of mainframes and from a pool of units of 100’s of
workstations

o If the mainframes and workstations are precoupled together, this
may lead to overly specialized, inflexible resource organizations

4. A Straw-man Virtual Grid Abstraction

- Application / Program Preparation System Facing View
o Virtual Grid Abstraction is an abstract description of a set of

resources; this is the basis of the performance contract between
PPS and Execution System

o The application exports this view and it is realized in a Virtual
Grid to support the abstract parallel machine or abstract
component machine or another

o Examples: uniform symmetrically connected machine, uniform mesh
machine, database and cluster, big bag of processors, fully-
connected, mesh-connected, pipeline, tree, others.

ß How general a description language do we NEED? Or WANT?
o Virtual Grid Services: raw compute execution interface, high level

specification of virtual grid views, communication primitives,
and interfaces to request a new virtual grid;

o Application Required Services: callbacks for
CHECKPOINTING/SYNCH/LOGGING and RESCHEDULING

o All are exposed as SERVICES so they can be used electively
ß Can we meaningfully support use of the system and

modification at multiple levels of abstraction?
- Virtual Grid Runtime View

o Modules which implement the VG abstractions from an underlying
pool of resources that are too large, unreliable, partially
accessible, varying characteristics, and varying connectivity

o Exploit the resource classes and statistical characterization to
form complex ensembles of resources which implement the virtual
grid view required by the programming system. Certain things are
presumed not to matter. In this sense, the resource classes can
form another layer of the system – resource and resource structure
centric, they can enable the virtual grid realization systems to
achieve higher performance and capability – if they are trusted.

o Built-in performance monitoring to determine the efficacy of the
realization of the abstractions, and application callback for
CHECKPOINTING and RESCHEDULING or other forms of adaptation to the
application should imminent failure or an inability to meet the
requirements of the Virtual Grid abstraction view

ß Where do ideas of transparent fault-tolerance fit? We can
embed this technology for example in a parallel virtual
grid abstraction implementation that provides fault-
tolerance?

o Virtual Grid Runtime Implementation Requires: continuous activity
ß intelligent scoping mechanisms to focus interest and

collect relevant dynamic information
ß proactive acquisition of resources to meet current and

anticipated needs
ß planning to adapt to anticipated and unanticipated

underlying resource environment changes
- Resource Classes

o Characterization and organization of resources
o Requires short and long-term monitoring and analysis of resources
o Many Open Questions

ß What are the meaningful/useful resource classes?
ß How do we both support large-scale of resources, yet

refined classification?
ß Is this a multi-classification?
ß Is this centralized or decentralized or both?

- The Virtual Grid / VGrADS runtime lives between the Virtual Grid PPS and
Runtime View layers and implements efficient information services,
scheduling, and fault-tolerance

These are broad challenges…

5. How do We Make Progress?
- take familiar and important application/workloads and explore issues

o what type of virtual grid might an application specify
o how might we exploit these attributes for better

selection/scheduling, etc.
o Initial work on EOL and speeding critical phases

- take typical resource configurations and elicit structure
o what are the likely configuration of resources in a grid
o what are their characteristics (static, dynamic)
o do these naturally fall into structured classification with

respect to the needs
o how might we reduce the scope using a virtual grid mechanism to

reduce the number that need be considered
- explore the performance of grid information systems

o what types of information can be provided with what resolution and
accuracy

o how do these properties scale
o what techniques are there to make the gathering and distribution

of different types of information more efficient and scalable

What might these capabilities look like? How would they be presented?

What might we deliver?
- to the program preparation system team?
- In the immediate term? (next 12 months)
- For the site visit in year 3 (24 months)
- Towards the end of the project (48 months)

What are the implications of the framework?
- how do these affect the interfaces to the program preparation system?
- How to they affect the functionality needed in the program preparation

system?

How do they relate to the existing GrADS infrastructure?
- Gradsoft took a single general-purpose view
- VGrads takes a specialist view in presentation to the application
- Underlying elements may be shared
- Abstract performance model – not per application performance models

Year-by-Year Research Milestones and Tasks
a. Year 1 Milestones and Tasks:

 i. Execution System/Virtualization:
• Prototype Resource Virtualization and Abstraction

Classes [V1]
• Virtual Scheduling requirements study [V2]

 ii. Execution System/Performance Provisioning:
• Initial time-spacereasoning for contracts and

signatures [PP1]
 iii. Execution System/Grid Economy:

• Develop rudimentary simulation of VGrADS
resource allocation mechanisms. [GE1]

• Begin the exploration of Tatonnement, Smale's
method, and Continuous-Price Double auctions
using simulation. [GE2]

 iv. Execution System/Fault Tolerance:
• Experimental measurement of Grid & cluster

reliability [FT1]
•

b. Year 2 Milestones and Tasks:
 i. Execution System/Virtualization:

• Prototype Virtual Grid examples defined [V3]
• Prototype virtual scheduler [V4]

 ii. Execution System/Performance Provisioning:
• Extended time-spacereasoning for contracts and

signatures [PP2]
 iii. Execution System/Grid Economy:

• Determine initial pricing conditions and pricing
methods that prevent multiple equilibria. [GE3]

• Verify stability results using simulation environment.
[GE4]

 iv. Execution System/Fault Tolerance:
• Prototype fault tolerant library [FT2]

c. Year 3 Milestones and Tasks:
 i. Execution System/Virtualization:

• Novel resource selection and virtual scheduling
strategy experiments with application kernels on
virtual grid environments [V5]

 ii. Execution System/Performance Provisioning:
• Limited tunable performance/fault-tolerance

capabilities [PP3]
 iii. Execution System/Grid Economy:

• Begin designing experiments to test pricing
techniques using VGrADS framework. [GE5]

• Continue simulation experiments to evaluate
resource allocation efficiency. [GE6]

 iv. Execution System/Fault Tolerance:
• Consider novel techniques [FT3]

d. Year 4 Milestones and Tasks:

 i. Execution System/Virtualization:
• Improved Resource virtualization and virtual

scheduling approaches based on experiments with
additional virtual grid environments [V6]

 ii. Execution System/Performance Provisioning:
• Extended tunable performance/fault-tolerance

capabilities [PP4]
 iii. Execution System/Grid Economy:

• Convert GridSAT to use the pricing-based resource
allocation. [GE7]

• Conduct empirical investigation of pricing scheme
and its effect on resource allocation stability using
GridSAT as driving application. [GE8]

 iv. Execution System/Fault Tolerance:
• Implement novel techniques (e.g. diskless

checkpointing) [FT4]
e. Year 5 Milestones and Tasks:

 i. Execution System/Virtualization:
• Continue to improve Resource virtualization and

virtual scheduling approaches based on more
application kernel experiments [V7]

• Integrate Resource Virtualization and Abstraction
Classes into VGrADS software [V8]

• Integrate virtual scheduling strategies into VGrADS
software [V9]

 ii. Execution System/Performance Provisioning:
• Limited validation and assessment [PP5]

 iii. Execution System/Grid Economy:
• Design experiment to investigate allocation

efficiency under various pricing schemes. [GE9]
• Target second VGrADS-enabled application (to be

determined) as a driving application. [GE10]
• Verify using both GridSAT and second application.

[GE11]
 iv. Execution System/Fault Tolerance:

a. Limited validation and assessment [FT5]

