
Virtual Grid Resource Attributes
 Version 0.7

March 15, 2005
Jerry Chou, Andrew A. Chien, and Henri Casanova

vgrads@cs.ucsd.edu

1. Overview
 Virtual Grid resource attributes are used to describe and characterize resources in a
virtual grid while the application is using them. That is, when the virtual grid (VG) has already
been created, and the application wishes to monitor how well the resources are working out, or if
they are changing. The notion and capabilities of virtual grid resource attributes are quite general,
and we use them to present a wide range of static (cpu speed, memory, IP address, architecture
type) and dynamic (delivery cpu fraction, load factor, network weather service, disk space
available) information to the application in convenient form. 1 For example, the current
implementation integrates information from the MDS (the Globus LDAP-based information
service) and the Network Weather Service, presenting them seamlessly as resource attributes for
each VGNode (node which corresponds to a resource within the VG). Ganglia is likely to be
another future information source. Note that the role of the virtual grid resource attributes are
primarily to provide a simple, convenient, uniform source of information for dynamic resource
management. That is to obviate the need for an application developer to use a distinct API and
tool for each type of information (e.g. MDS, NWS, Ganglia, etc.).

However, the properties of the attribute will affect what style of implementation is most efficient.
Slowly varying attributes, such as are often stored in the MDS are best updated periodically, or if
used only rarely may be requested from the underlying information service on demand. A
dynamic attribute, such as network bandwidth and latency provided by NWS provides interesting
challenges both in compact presentation of information and rapid access.

The set of VG resource attributes is user-extensible, flexible and can even be resource-specific.
Each VGNode has a set of default attributes associated with it. Any application (or any user-
level program) can provide a resource attribute definition, extending the resource attribute set.
Two mechanisms are provided to implement a resource attribute:

• A user program can traverse the VG, defining attribute values using the “setAttribute”
method, or

• A user program can be built as a module of vgAgent, allowing the attribute to have a
sophisticated implementation, which includes caching and computation on demand.

Figure 1 explains how the VG attributes relate to application controllers, vgES and information
services.

1 VG resource attributes should not be confused with vgDL attributes which are used for selection by the vgFAB.
While the names and corresponding semantic values of such attributes may overlap significantly, they are distinct
sets and implementations with the Virtual Grid system.

In Section 2, we explain extensibility and flexibility. Section 3 lists all current default
attributes associated with different types of VGNode. Section 4 shows the VGNode API for
adding, reading and getting attributes. Section 5 presents a few examples for using VG attributes.
Finally, our future plans are described in Section 6.

2. Flexibility and Extensibility of VG Attributes

In VG, resource attributes are defined as key-value pairs. The key is the name of an
attribute, and the values are strings (or in some cases single and multi-dimensional arrays of
strings). Each VGNode maintains a list of keys to represent the attributes associated with it.
Application controllers can check the existing keys by calling vgGetAttribute() and add a key
into the list by calling vgWriteAttribute() on the VGNode. The vgAgent provides the capability
to implement resource attributes which are periodically updated to the VGNodes. In general, a
VG attribute can be any type of data, created at any time, and updated on any schedule
(including on-demand). Applications controllers can access attribute values through
vgReadAttribute(). However, if the attribute is not defined a null value is returned.

3. Basic Attributes

To represent all kind of attributes, we divide them into two types: intra-attributes (local)
and inter-attributes. Intra-attributes are associated with a single VGNode, while inter-attributes
are related to two VGNodes (or more). For example, memory, disk and CPU are intra-attributes,
while network measurements of bandwidth and latency are inter-attributes. Since inter-attributes
need two VGNodes as reference, inter-attributes are stored internally in a two-dimensional array
of values. By contrast, intra-attributes are stored in a one-dimension key-value pair list. The
default attributes associated with different types of VGNodes are listed below. For each attribute,
we give the variable type, description and example value.

 Host
Intra Attributes:

Attribute Name Type Description Example
Hostname String Fully-qualified Public Hostname Csag-226-248.ucsd.edu
Processor String CPU Model Name Pentium 4
OS String OS or kernel version name in Linux

Application
Controllers

vgWriteAttribute()

Figure 1: VG resource attributes connect application controllers (applications), VGs, and a
collection of information services. Application controllers use vgReadAttribute() to access
information. Additional attributes can be defined either by use of vgWriteAttribute() or
vgAgent.

MDS

NWS

Ganglia

…
…

Information
Services

vgAgent

VG
vgES

vgGetAttribute()
vgReadAttribute()
vgWriteAttribute()

vendor-specific convention
Clock Integer Clock speed of a CPU (MHz) 2000
Cache Integer Second-level unified cache size of

a CPU (KB)
256

CPUs Integer Total number of CPUs 2
Memory Integer Total Memory Size (MB) 512
Avail_Memory Integer Available Memory Size (MB) 200
Disk Integer Total Disk Size (MB) 80000
Avail_Disk Integer Available Disk Size (MB) 12000
Avail_CPU Integer 1-minute average processor

availability for the host (%)
198

IP String A list of IP Addresses available on
the host

132.239.226.248;
137.243.34.248;
10.0.0.25

 Cluster

Intra Attributes:
Attribute Name Type Description Example value
Processor String CPU model name. Pentium
CPUs Integer Number of CPUs 64
Nodes Integer Number of Hosts 32
Memory Integer Total Memory Size MB 32768
Avail_Memory Integer Total Available Memory Size MB 20000
Disk Integer Total Disk Size MB 5120000
Avail_Disk Integer Total Available Disk Size MB 300000
Avail_CPU Integer 1-minute average processor

availability for all computing
elements (%)

6370

Inter-Attributes:

Attribute Name Type Description
BW Integer[][] Bandwidth between any two Hosts within a Cluster.
Latency Float[][] Latency between any two Hosts within a Cluster.

 Bag

Intra-Attributes:
Attribute Name Type Description Example value
CPUs Integer Number of CPUs in a Host 2
Nodes Integer Number of Hosts 128
Memory Integer Total Memory Size MB 40000
Avail_Memory Integer Available Memory Size MB 20000
Disk Integer Total Disk Size MB 10000000
Avail_Disk Integer Available Disk Size MB 3000000

Inter Attribute:

Attribute Name Type Description
BW Integer[][] Bandwidth between any two Hosts within a Bag
Latency Float[][] Latency between any two Hosts within a Bag.

 Close/Far/highBW/lowBW

Every VGNode with type Close,Far,highBW or lowBW has exactly two child nodes,
because these are binary operations in vgDL. So the Inter attribute value can be simply
represented by a single variable.

Inter Attribute:

Attribute Name Type Description
BW Integer Bandwidth between two Aggregates
Latency Float Latency between any two Aggregates

For a VGNode with type Close, the value for latency is set to ‘0’.
For a VGNode with type highBW, the value for bandwidth is set to ‘0’.
For a VGNode with type Far and lowBW, the values for both bandwidth and latency are set to
‘0’.
These attribute values are set to ‘0’, because there can be no guarantee of any network
connectivity.

4. Attribute JAVA API, VGNode Class
Intra Attribute

 String[] vgGetAttributes ()
=>Return the current set of Intra Attributes describing this VGNode as a null-terminated array of
null-terminated strings.

 String vgReadAttribute (String attribute)
=>Returns the value associated with the Intra Attribute for this VGNode.

 VGResult vgWriteAttribute (String attribute, String value)
=>Writes the value associated with the Intra Attribute for this VGNode.

Inter Attribute

 String[] vgGetInterAttributes ()
=>Return the current set of Inter Attributes contained in this VGNode as a null-terminated array
of null-terminated strings.

 String[][] vgReadInterAttribute (String attribute)
=>Returns the pairwise value associated with the Inter Attribute between the child VGNodes of
this VGNode.

 VGResult vgWriteInterAttribute (VGNode node, String attribute,
String[][] value)

=>Writes the value associated with the Intra Attribute between two child VGNodes of this
VGNode.

5. Attribute Usage and Example

 Usage:
1. The attributes can be examined by vgMON to detect a resource violation of the original

vgDL requirements.
2. The Inter Attributes under a Cluster or TightBag can be used by application controller to

decide where the best place to locate and/or transfer the data is.

 Example:
//create a VG has a TightBag with four clusters

//choose the two clusters that have maximum bandwidth

//move data from one to the other

//terminate VG

6. Future Work
The VG resource attribute system is the focus of a wide range of innovative activities. Particular
areas of focus in the future include:

 Additional information service interfaces (such as Ganglia) thru vgAgent
 Experimentation with caching and on-demand attributes
 More efficient group interfaces to dump inter attribute values

