LEAD Workflow Orchestration

Lavanya Ramakrishnan

Renaissance Computing Institute

University of North Carolina – Chapel Hill

Duke University

renci rensistance computing institute

North Carolina State University

Outline

- Background and LEAD Service Architecture —web services, BPEL
- LEAD Workflows

-status, site visit example run -characteristics, workflow structures

LEAD Virtual Grid Integration

-resource management

Linked Environments for Atmospheric Discovery

Rationale

—each year, mesoscale weather – floods, tornadoes, hail, strong winds, lightning, hurricanes and winter storms – causes hundreds of deaths, routinely disrupts transportation and commerce, and results in annual economic losses in excess of \$13B.

• From "offline" to "online" forecasting —data assimilation and adaptive evaluation

Static Forecasting

Dynamic Adaptive LEAD System

Meteorology goal

-to provide timely and accurate forecasts using dynamic adaptation

- Computer Science goal
 - -map application requirements to resource capabilities
 - redundant runs, scheduling policies

-adapt to weather as well as resource behavior

Need real time monitoring to make adaptation decisions

LEAD Control and Data Flow

Service Oriented LEAD Workflows

Source: Beth Plale

Business Process Execution Language (BPEL)

- BPEL (aka WSBPEL and BPEL4WS)
 - enable cross-enterprise automated business processes
 - -multiple vendor participation
 - Oracle, Microsoft, IBM, SUN, SAP, BEA, EDS, Adobe, ...
 - -multiple implementations
 - Oracle BPEL, IBM BPWS4J and Microsoft BizTalk Process Managers, Active BPEL (www.activebpel.org) Open Source Process Manager

Features

- —loop and control logic, synchronous/asynchronous communication
- -composition and concurrent execution

LEAD Site Visit Experimental Ensemble

Virtual Grid Application Development Software Project

Characteristics of LEAD Workflows

- Coupled analysis and assimilation tools, data repositories
 - -change configuration rapidly and automatically in response to weather
 - -Streaming data, steer remote observing technologies
- Multilevel monitoring and intelligent control
 - -workflow, resource, application, service

-performance and reliability guarantees of the resources

Adapting Workflow Structure

- Reactive Adaptation

 –e.g. service failure, resource behavior
- Proactive prediction and decisions

—adjust i, j, k (weather science meets the infrastructure science) to meet individual workflow guarantees

-global optimization of number of workflows being serviced

Outline

Background and LEAD Service Architecture
 web services, BPEL
 LEAD Workflows
 status, site visit example run
 characteristics, workflow structures

LEAD Virtual Grid Integration

-resource management

LEAD Architecture

LEAD Architecture

Crosscutting Services	LEAD Portal
MyLEAD	BPEL Workflow Engine
	Client Interface
Authorization	Application Services (e.g. WRF, IDV, etc)
Authentication	Resource and Data Management (VGrid,
Monitoring	myLEAD, etc)
	Protocols (e.g. web services, GridFTP,
Notification	Gatekeeper)
-	Distributed Resources (compute, disk)

Virtual Grid provides LEAD ...

 Dynamic, scalable resource abstraction framework

-scheduler, resource broker

Integrated monitoring and notification of resource behavior

-NWS, NWS-HAPI

Proposed LEAD – VGrADS Architecture

Some Thoughts ...

LEAD Dynamic Workflows

- Multilevel monitoring
- Multiple decision points
 - Streaming data
 Unidata LDM
 - Service monitoring —web service load
 - Application — behavior on resources
 - Resource
 - -performance
 - -reliability

vgDL Specification for LEAD

LEAD Virtual Grid Research Implications

- Streaming data in resource scheduling —fixed point makes scheduling complicated
- Persistent and transient services

 –service directory, monitoring, scheduling
- Data management across the virtual grid —run time knowledge of data location
- Integrated decision process

 performance and reliability guarantees
 application, weather

Comments?

LEAD Monitoring Architecture

LEAD Control and Data Flow LEGEND

